

Original Article | ISSN (0): 2582-631X DOI: 10.47857/irjms.2023.v04i01.086

Peripartum Cardiomyopathy Complicated with Possible Pulmonary Embolism: A Case Report

Purna kala Gurung^{1*}, Bigisa Basnet¹, Prerana Shrestha¹, Ramesh Shrestha²

¹Department of Anaesthesiology and Critical Care, B. P. Koirala Institute of Health Sciences, Dharan, Nepal. ²Department of Obstetrics & Gynaecology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal. *Corresponding Author's Email: purnakalagrg@hotmail.com

ABSTRACT

Peripartum cardiomyopathy associated with pulmonary embolism is a rare life threatening complication of pregnancy. The early symptoms of peripartum cardiomyopathy in heart failure and pulmonary embolism mimic those of the normal physiologic changes of pregnancy, making a diagnostic dilemma. Hence, it is important to understand the principles of assessment of these conditions which mimic physiological symptoms of pregnancy. Here, we share our experience of a 22 year old, primigravida at 38 weeks of gestation with no comorbidities presented in obstetric emergency with two days history of shortness of breath and productive cough who survived from critical event following the start of unfractionated heparin infusion and other supportive treatment.

Key words: Critical event, Peripartum cardiomyopathy, Pulmonary embolism, Unfractionated heparin.

INTRODUCTION

Peripartum cardiomyopathy (PPCM) or pregnancy associated cardiomyopathy is defined as development of systolic heart failure (SHF) that occurs towards the last month of pregnancy and up to five months after delivery, with left ventricular ejection fraction (LVEF) less than 45% in the absence of other identifiable causes of HF (1). Patients with PPCM and LVEF < 35% are at risk for development of thromboembolism, which affects about 6.6% to 6.8% of women (2) due to hypercoagulable state of pregnancy and stasis of blood due to severe left ventricle (LV) stasis.

The incidence of PPCM is increasing may be due to improved diagnosis and recognition; and also due to increasing maternal age, preeclampsia, multiparity, multiple gestations and maternal cardiovascular risk. As the early signs and symptoms of HF in PPCM and pulmonary embolism (PE) may mimic the physiological changes that occur in pregnancy, there is a delay in diagnosis and management of the patient making the mortality rate high. Therefore, it

is crucial to differentiate between physiological versus pathological signs and symptoms.

The aim of this case report is to familiarize a rare life threatening disease so that early diagnosis and prompt management is initiated to help prevent mortality.

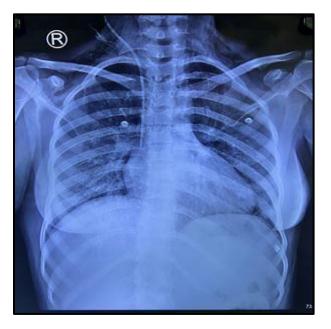
CASE REPORT

A 22 year old, primigravida at 38 weeks of gestation was referred to the Obstetric emergency (ER) with suspected rheumatic heart disease in failure with complaint of shortness of breath and productive cough since two days.

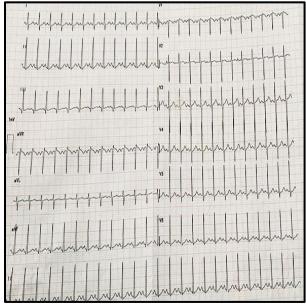
On presentation, she was dyspneic with respiratory rate of 60/min, heart rate of 200/min, blood pressure of 110/80 mm of Hg and peripheral capillary oxygen saturation (SpO₂) of 40 – 50 % on high flow oxygen supplementation via simple face mask and bilateral crepitations were heard on chest auscultation with no added heart sound. Due to low SpO₂ and fall in Glasgow Coma Scale (GCS), she was intubated in ER.

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(Received 04th December 2022; Accepted 25th January 2023; Published 30th January 2023)


Immediately after intubation, she developed bradycardia followed by asystole. Cardiopulmonary resuscitation (CPR) was commenced immediately and was successful to achieve return of spontaneous circulation (ROSC) with $\rm SpO_2$ of 90 %, heart rate (HR) of 180/min and blood pressure (BP) of 110/70 mm of Hg. Blood mixed frothy secretion was present in endotracheal tube which was suctioned and impression was made as pulmonary edema due to heart failure with pneumonia. Patient was then shifted in maternal intensive care unit (MICU) for further management on diuretics, antibiotics and ventilatory support.

In MICU, again her oxygen saturation started to fall to 30% with decrease in urine output inspite of treatment with diuretics, morphine, few bolus doses of nitroglycerine and ventilatory support. As patient was in critical condition, we made the assumption of pulmonary embolism based on 1) no clinical improvement with the medication we initiated; 2) the unremarkable finding we found on chest auscultation; 3) the ABG report which showed lactic acidosis with severe hypoxemia and low normal partial pressure of arterial carbon dioxide (Table 1); and 4) the vital signs that showed tachycardia, tachypnea, hypoxia with normal blood pressure. Based on high clinical suspicion of sign


and symptoms closer to pulmonary embolism, we started intravenous unfractionated heparin (10,000 units followed by infusion of 15 units/kg/hr), diuretic and other supportive treatment. After couple of hours her saturation started to increase up to 70%. On 2nd day of admission (DOA), patient went into labour and dead fetus was delivered with the help of forceps. On 4th DOA, tracheal extubated was done and oxygen saturation was maintained on facemask.

On 5th day, echocardiography was done and showed reduction of systolic function with LVEF of 15-20%, mild mitral regurgitation (MR) and mild tricuspid regurgitation (TR). Intravenous infusion of unfractionated heparin (15 units/kg/hr) was changed to low molecular weight heparin subcutaneously before shifting to ward.

With the chest X-ray (Figure 1), electrocardiography (Figure 2), echocardiography and improvement of patient condition with anticoagulant and diuretic, impression made the of peripartum cardiomyopathy with possible pulmonary embolism. Patient was shifted to the ward on 5th day and was stable throughout the admission in the ward and was discharged on eighth day of admission.

Figure 1: Chest X-ray showing an increased cardiothoracic ratio.

Figure 2: Electrocardiography showing sinus tachycardia.

Patient was reviewed by a cardiologist and discharged on oral torsemide 10 mg, spironolactone 12.5 mg, Losartan 25 mg and Metoprolol XL 25 mg with advised to follow up in two weeks in cardiology outpatient department (OPD). The ABG and blood investigation reports done during

hospital stay are listed in Table 1 and Table 2 respectively. Unfortunately, the computed tomography pulmonary angiogram (CTPA) was not done due to technical problem in the scan machine and couldn't confirm our diagnosis as PE.

Table 1: Arterial blood gas

Date & Time	12/12	12/12	12/13;	12/14	12/15
	9:00am	5:30 pm	7:25 am	8 am	4:15pm
pН	7.19	7.23	7.38	7.4	7.49
PaO2 (mmHg)	37.8	53.4	82.1	71.8	93.5
PaCO2 (mmHg)	33.3	43.4	33.4	21.9	27.9
SaO2 (%)	43.7	78.5	95.6	92.3	97.9
HCO3 (mmol/L)	12.6	17	20.4	22.1	23.9
Lactate (mmol/L)	7.1	2.7	1.5	1.2	1.7

Table 2: Laboratory analysis

Parameters	Day 1	Day 2	Day 3
Hemoglobin (gm/dl)	10.9	7.5	8.0
PCV (%)	41.2	23.3	24.3
Total Count (cell/mm ³)	15,300	11000	9100
Platelets(cells/mm ³)	4,44,000	196000	163000
Blood sugar (mg/dl)	118	95	80
Urea/Creatinine (mg/dl)	28/0.8	68/2.38	103/1.8
Na ⁺ /K ⁺ (mmol/L)	131/4.5	130/4.4	138/4.0
Total protein/Albumin (gm/dl)	6.1/3.3	5.2/2.8	N/A*
Total/direct bilirubin (mg/dl)	3.23/1.65	2.5/1.36	N/A
SGPT/SGOT (U/L)	350/623	244/479	N/A
ALP/GGT (U/L)	462/41	345	N/A
LDH (U/L)	1033	N/A	N/A
D-Dimer (mg/dl)	5.17	N/A	N/A
PT/INR (secs)	18/1.22	18/1.22	15/1.0
aPTT (secs)	N/A	N/A	28 secs

*Not applicable = N/A

DISCUSSION

Peripartum cardiomyopathy is a rare life-threatening complication of pregnancy with a high mortality rate of around 50% (3–5). It may be associated with severe and lasting complications including severe HF, pulmonary edema, cardiogenic shock, cardiopulmonary arrest secondary to HF or arrhythmias, thromboembolic complications, and

death. The hypercoagulable state of pregnancy and stasis of blood in patients with PPCM and LVEF <35%, are at risk for development of thromboembolism affecting 6.6% to 6.8% of women (2). The symptoms of the normal physiologic changes of pregnancy mimic to those of heart failure and PE (Table 3) (6).

Table 3: Differential diagnosis of dyspnea in pregnancy

Diagnosis	Signs and Symptoms	Diagnostic tests	
Benign dyspnea of	Gradual onset mild dyspnea, S3	Chest X-ray (CXR) and echocardiography	
pregnancy	may be present, normal SpO ₂ and	would be normal	
	jugular venous distention (JVD)		
Peripartum	Symptoms of right heart failure	CXR suggestive of pulmonary edema and	
cardiomyopathy	common in 1-6 weeks of	possible cardiomegaly; LVEF <45 % and	
	postpartum period, JVD,	global hypokinesia on echocardiography	
	pulmonary rales, peripheral edema;		
	laterally displaced apical impulse		
Severe pre-eclampsia	Edema usually in antepartum,	Proteinuria, CXR shows pulmonary	
or eclampsia	associated headache; hypertension,	edema; echocardiography shows	
	JVD, pulmonary rales and	preserved or mildly decreased LVEF, left	
	peripheral edema, S4 may be	ventricle hypertrophy (LVH) present if	
	present	chronic hypertension	
Cardiac dysfunction	Acute HF symptoms preceded by	ECG shows ischemic changes; raised	
(secondary to	chest pain, JVD, pulmonary rales,	cardiac specific enzymes; CXR reveals	
ischemia or stress	murmur of ischemic mitral	pulmonary edema; segmental wall	
cardiomyopathy)	regurgitation (MR) is present	motion abnormalities with or without	
		ischemic MR on echocardiography;	
		coronary angiography may show	
		stenosis/occlusion/dissection	

Cardiac dysfunction	Heart failure symptoms preceded	ECG shows tachyarrhythmia; CXR shows	
secondary to	by palpitations, tachycardia,	pulmonary edema; echocardiography	
arrhythmia	pulmonary rales, peripheral edema	shows diffuse hypokinesia	
Previously	Features of right heart failure	ECG show chamber enlargement/or	
undiagnosed valvular	usually present in late second	hypertrophy; CXR shows pulmonary	
disease (eg,	trimester; JVD, pulmonary rales,	edema with enlargement of left atrium	
rheumatic valve	peripheral edema, murmur of	(LA) and pulmonary artery (PA) in mitral	
disease)	valvular stenosis or regurgitation	stenosis; echocardiography shows valve	
	(or both) present	lesion(s)	
Pulmonary embolism	Sudden onset dyspnea associated	CT pulmonary angiography shows	
	with pleuritic chest pain during	pulmonary embolism; D-Dimer levels are	
	peripartum or up to 8 weeks	non-specific; ABG shows respiratory	
	postpartum, may be accompanied	alkalosis/hypoxemia/may be non-specific;	
	by features suggestive of deep vein	Echo cardiography to evaluate the size of	
	thrombosis (DVT), tachycardia,	RV	
	associated right ventricle (RV)		
	heave, accentuation of P2;		
	pulmonary exam often		
	unremarkable		
Amniotic fluid	Acute onset cardio-respiratory	Raised D-dimer, low fibrinogen, and	
embolism syndrome	collapse during or immediately	thrombocytopenia	
	after labor, usually associated with		
	bleeding from disseminated		
	intravascular coagulopathy (DIC);		
	tachypnea, hypotension, and		
	crackles are present		
Asthma	History of cough, wheezing; use of	Positive provocation test or response to	
	accessory muscles; on chest	bronchodilator challenge in pulmonary	
	examination wheezes or decreased	function test	
	air movement (or both)		

Pneumonia	Acute onset fever with chills and	Increased total leucocyte count); CXR
	rigors, breathlessness, productive	shows consolidation and interstitial
	cough (blood stained sputum),	infiltrates, echocardiography is normal
	tachypnea, decrease in SpO _{2,}	
	bronchial breathing, crepitations	
	and decreased air entry on	
	auscultation	

The risk factors for PPCM include primiparity, multiparity, advanced maternal age, multifetal pregnancy, pre-eclampsia and gestational hypertension, asthma, autoimmune disease, substance abuse, obesity, thyroid disorder, prolong use of tocolysis and African American race (6, 7). The one risk factor we could identify in our patient was primiparity.

The worldwide variation in the incidence of PPCM ranges from 1 in 102 live births to 1 in 20000 live births due to different ethnicities (6). With the higher maternal mortality rate of PPCM complicated with PE, the management of such patient requires a multidisciplinary setting with familiarization of the various pharmacotherapies available for better prognostic outcome. Because of unavailability of bed side chest x-ray and echocardiography in MICU, we had difficulty in making the diagnosis and proper management.

The crucial decision that we made based on high clinical suspicion of PE to start therapeutic unfractionated heparin at correct time made her to survive as she had already started to develop kidney injury. Early use of anticoagulant should be strongly considered due to the high maternal mortality for an untreated PPCM with PE.

Women diagnosed with PPCM should be counseled about the risks of subsequent pregnancy and should be closely monitored throughout the pregnancy and until six months postpartum with frequent clinical examinations and serial echocardiograms.

CONCLUSION

The advancement in imaging technology makes the clinician easier to make a primary diagnosis of PPCM. As echocardiogram is a noninvasive bed side procedure, should be consider especially when life

threatening cardiopulmonary pathologies are suspected to institute proper treatment and to avoid potentially fatal errors whenever feasible. However, in poor resource settings and in do or die situation where further investigations are not possible, a confident clinical diagnosis must be made in view of high clinical suspicion based on history, clinical presentations and reports that are readily available.

ACKNOWLEDGEMENT

We would like to thank to those who took part in the treatment of the patient. Also we are thankful to patient and her family members for giving us approval for publication.

CONFLICT OF INTEREST

None

FUNDING

No funding sources.

REFERENCES

- 1. Sliwa K, Hilfiker-Kleiner D, Petrie MC, Mebazaa A, Pieske B, Buchmann E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur J Heart Fail. 2010;12(8):767–78.
- 2. Dash D, Mody R, Malan SR, Ahmed N, Mody B. Peripartum cardiomyopathy: A 2022 update. Iberoam J Med. 2022;4(2):104–12.
- 3. Costanzo-Nordin MR, O'Connell JB. Peripartum cardiomyopathy in the 1980s: etiologic and prognostic consideration and review of the literature. Prog Cardiol. 1989;2(3):225–39.
- 4. Demakis JG, Rahimtoola SH, Sutton GC, Meadows WR, Szanto PB, Tobin JR, et al. Natural course of peripartum cardiomyopathy. Circulation. 1971 Dec;44(6):1053–61.
- 5. Sliwa K, Skudicky D, Bergemann A, Candy G, Puren A, Sareli P. Peripartum cardiomyopathy: analysis of clinical outcome, left ventricular function, plasma levels of cytokines and Fas/APO-1. J Am Coll Cardiol. 2000 Mar;35(3):701–5.

6. Honigberg MC, Givertz MM. Peripartum cardiomyopathy. BMJ [Internet]. 2019 Jan 30;364:k5287. Available from: http://www.bmj.com/content/364/bmj.k 5287.abstract

7. Pearson GD, Veille JC, Rahimtoola S, Hsia J, Oakley CM,

Hosenpud JD, et al. Peripartum cardiomyopathy: National Heart, Lung, and Blood Institute and Office of Rare Diseases (National Institutes of Health) workshop recommendations and review. JAMA. 2000 Mar;283(9):1183–8.