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Abstract 
 

Object detection plays a vital role in CCTV systems. Cameras are now deployed at traffic lights, roadways, shopping 
centers, railways, banks, and other public locations to increase security. It isn't easy to follow the video quickly and 
continuously, though. Therefore, surveillance cameras are not required, and human surveillance is needed. A significant 
difficulty for CCTV cameras is detecting anomalies such as theft, accidents, crimes, and other illegal activities. The 
frequency of abnormal behaviour is the same as that of regular events. To detect objects in a video, we first analyze 
each pixel in the image. Segmentation in digital photography is the process of dividing different parts of an image into 
pixels. Segmentation performance is affected by uneven and dim lighting. These factors significantly impact the real-
time object detection process of CCTV systems. In this article, we propose an Adaptive Image Information Enhancement 
Algorithm (AIIE) to improve images affected by poor lighting. Test results compare the output of the current method 
with the improved ResNet model architecture and show significant improvement in object detection in video streams. 
The proposed model delivers better results regarding metrics such as precision, recall, and pixel precision. We also saw 
significant improvements in object detection. 
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Introduction 
Image processing in low-light conditions poses 

significant challenges, often resulting in reduced 

image quality due to inadequate illumination. The 

distortion in image information can severely impact 

critical image processing applications such as object 

detection and surveillance. Real-time object detection 

is crucial in video surveillance systems, automatically 

detecting anomalies or unusual events (1). However, 

the performance of such systems is hindered by the 

vast data volume in video streams, demanding high-

quality images for effective object detection. In 

dynamic environments, especially during nighttime, 

lighting conditions fluctuate, leading to poor-quality 

images and videos that subsequently affect the 

accuracy of image-based analyses. Various 

methodologies have been proposed to enhance 

visualization in low-light scenarios. Previous studies 

have explored non-uniform illumination models (2) to 

assess the contribution of illumination in segmented 

scenes. Additionally, convolutional neural networks 

(CNNs) have emerged as powerful mathematical 

models, employing multiple layers to autonomously  

identify crucial features within image data without 

manual intervention (3). Recent advancements in deep 

learning have furthered our understanding of CNNs 

and their applications in low-light image processing 

for object detection. Advanced CNN architectures 

now incorporate numerous layers, with higher levels 

contributing to increased output resolution (4-6). 

Moreover, the implementation of residual networks 

(ResNets) has revolutionized the training process by 

introducing fast connections that exploit both high-

level and low-level features to bypass missing training 

layers (7). These ResNets offer efficient object 

recognition in challenging lighting conditions, 

providing a methodological advantage over traditional 

deep neural networks (8). Recent studies have 

emphasized the need to address low-light conditions 

efficiently for robust target recognition. Switching 

between low and high-resolution images is essential, 

and the integration of CNN models is pivotal in this 

pursuit (9). Additionally, contemporary approaches 

emphasize brightness enhancement and noise 

reduction through size-dependent subspace  

analysis techniques.  
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Object detection in low-light 

environments  
Due to insufficient lighting, the recorded image 

information has many dark areas and noise 

(10,11). Images in dim lighting must be optimized 

to achieve precise target detection. In the process 

of using methods to improve low-light images, 

there are the following drawbacks: 

• It requires complex structures and a large 

number of parameters. 

• It requires more layers and more calculations. 

• Training requires relevant data sets, but it isn't 

easy to obtain relevant images. 

These problems make object detection systems 

less efficient and use more computing power (12). 

Adaptive truncation schemes can be used in size-

dependent subspaces to remove noise (13). Deep 

Network methods (14) and traditional 

illumination and optimization methods (15) are 

also used to reduce noise. Recessed lighting can be 

combined with modified reflectors. It is used to 

improve images in dark environments (16, 17). 

Another night vision detector (NVD) approach is 

based on hierarchical features and contextual 

matching networks. Different lighting profiles can 

be designed independently of each other, although 

they overlap during the training phase (18). The 

training datasets are used, and the model uses a 

simple face-to-face global network. Another 

method is based on the Retinex multiscale discrete 

wavelet transform (19). It is generated by a CNN 

with channels and a Gaussian kernel to implement 

image enhancement and noise reduction 

networks. This architecture learns to insert images 

from pairs of dark and light ideas.  
 

Object detection using gaussian 

distribution 
Noise seriously affects the relationship between 

neighbouring pixels (20, 21). Functional 

differences between modified and unmodified 

regions can be identified using a set of Gaussian 

models to remove background information (22). 

Another classic technique is the algorithm (23), 

which combines the image-related Network (24). 

Provides the best noise reduction built into Fusion 

Net. Bayesian solutions evaluate ideal and unseen 

Gaussian backgrounds in the trained Network 

(25). Because it uses a Gaussian algorithm, shape 

changes can be approximated efficiently. The MG 

method (26) can model customarily distributed 

data to represent deep features. Converting 

representations from large datasets (such as 

ImageNet) to smaller datasets is just as effective. 

Existing Gaussian mixture models (GMMs) allow 

background subtraction strongly influenced by 

noise and dynamic backgrounds (27). 
 

Object recognition by probabilistic 

method  
According to this approach, survival can be 

assessed using a combination of femoral cartilage 

volume and peripheral magnetic resonance 

imaging (MRI). Magnification (EM) techniques are 

commonly used to simulate brain imaging. These 

methods also require unique noise reduction 

methods for each level (28). Another approach 

(29) extends from probabilistic atlases that 

provide information about healthy tissues to latent 

atlases that offer information about lesions. This 

general probabilistic model and its discriminant 

extension give the model semantic meaning. The 

author (30) developed a new algorithm using 

random objects and background distribution to 

obtain more accurate segmentation results. The 

proposed framework maximizes. Probabilistic 

models can be applied to various imaging 

colourimetry and magnetic resonance imaging. 

Before processing remotely captured images, the 

cloud content must be cleared. It is based on a 

combination of attention and probabilistic 

sampling mechanisms. Algorithm-centric 

correlations between spatially scaled 

multispectral images and spectral sections. 

Obtaining updated labels with multiple labels 

using fully convolutional networks (31) and 

choosing the appropriate sampling mode are 

crucial for high-quality image reconstruction (32). 

Sampling methods based on probabilistic quality 

functions can automatically adjust the sampling 

rate based on previously measured data. Constant 

random quality function. The incremental 

sampling technique avoids sampling delay. 
 

Object detection using background 

subtraction methods 
The rest of the background is essential to 

distinguish between stationary and moving 

objects. Dynamically changing contexts complicate 

the process and lead to erroneous results. 

Therefore, the Dynamic Moving Average (ARMA) 

model (33) uses the spatial-temporal correlations 
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between the input images to build a good 

background image model. The adaptive least 

squares method can be used to update dynamic 

soil properties. The blur map uses the C-fuzzy 

background subtraction method, which refers to 

the Fuzzy Cluster Neighborhood (FCFN) (34), to 

describe the temporal properties of pixels. 

Overcome ranking challenges by organizing 

everything on the backend and front end. 

Hyperspectral images (HSI) contain many bands 

and must be reduced in size before processing. Use 

the curvature filter to remove the noise and use the 

remaining background to get the first result. 

Specific shape layers can be used in adaptive 

weighting methods to achieve final quality. Fast 

and slow lighting changes also affect the 

background less mode. An adaptive local mean 

texture function (35) was introduced to solve this 

problem. Calculating adaptive thresholds for 

foreground pixels. Compare the background 

pattern with the sequence of video frames using 

the ALMT function on the foreground pixels. 

Choosing the proper background reduction 

method and related settings is crucial to achieving 

optimal object recognition in low-light conditions. 

The authors (36) studied several parameters of the 

background subtraction algorithm with the 

necessary parameters to detect the appearance of 

darkness. 
 

Object detection using graph based 

network 
Advances in image processing. According to the 

filters used, GCNNs can be divided into two 

categories: spatial techniques and spectral 

techniques. The lack of graphic guidance greatly 

hinders the learning process. Directed graph 

convolutional networks built with fast local 

convolution operators scale well to large graphs. 

Information about feature boundaries may be lost 

in high object detection video samples. The 

architecture works within the GCN framework and 

provides a mechanism for efficiently clustering 

shared super pixels. The author (36) proposed a 

new module of interest for super pixel encryption. 

Finally, adjustments are made through cognitive 

optimization to ensure consistency between 

essential factors. It can lead to the loss of 

information about shared features over long 

distances. The authors proposed a dense 

combination of multiscale CNN maps to increase 

the local contextual knowledge of the joints (37). 

Space and thoughtful units allow development. The 

nature of space and time. Each model layer has an 

independent kernel size, which leads to very 

flexible programming. Some changes are needed to 

improve image efficiency while addressing 

interference issues. [Graphic convolutional layers 

3 to 6] can be added to the design of trainable 

neural networks, which helps to find the hidden 

features in the Network, thus improving the 

learning capabilities. Internet sustainability. The 

advantage of incorporating graph warping into 

existing CNNs is the flexibility to compute 

adjacency graphs, build compound object weights 

in non-local filters, and avoid operations. Indicates 

a predetermined amount. The non-cognitive basis 

elements can be used to solve the knowledge base 

integrity problem (38). The transformation-based 

knowledge graph model uses these parameter 

values to translate the knowledge base completion 

task. 
 

Methodology 
M-Resnet architecture 
The M-ResNet architecture tackles the challenges 

of object detection in low-light conditions. It 

incorporates a selective search algorithm, 

replacing the sliding window approach to mitigate 

redundancy and reduce algorithmic complexity. 

This alteration enhances the algorithm's efficiency. 

Additionally, handcrafted feature extraction 

methods are substituted with a CNN. This CNN 

efficiently extracts features and improves the 

network's resilience to interference. Utilizing a 

pre-trained CNN model, such as AlexNet trained on 

ImageNet, extracts features to predict the presence 

of the target within the image frame or determine 

the class of the detected object. While the R-CNN 

model has significantly enhanced object detection 

performance, certain limitations persist. The M-

ResNet architecture is augmented by additional 

layers to enhance image quality by mitigating low-

light effects and delays, thereby improving object 

detection accuracy. The new layer operations 

include two-sided adaptive sampling and 

symmetric local binary sampling, as illustrated in 

Figure 1. These operations facilitate noise 

reduction while preserving edge details, allowing 

for precise object identification within video 

images. Low-light images serve as input in the initial 

stage, exhibiting reduced accuracy compared to 

typical images.



Madhan and Shanmugapriya                                                                                                                     Vol 5 ǀ Issue 1 

 

65 
 

 

Figure 1: M-Resnet Architecture with New Layer Operations for Improved Object Detection and Low-Light 

Elimination 

AIIE algorithm
To address the challenges of low-light images, the 

Adaptive Image Information Enhancement (AIIE) 

algorithm is implemented. This algorithm employs 

bilateral filtering, adaptive filtering, and 

symmetric local binary path computations to 

increase image brightness and enhance object 

detection accuracy for low-light images, as 

depicted in Figure 2. 

 

Figure 2: Adaptive Image Enhancement System Architecture 

Bilateral filtering 
The input image is processed by a non-linear 

binary filtering technique using the video sequence 

as a source. This method improves image 

smoothness while preserving edge information. BF 

Represents the bilateral filtering, and P and Q 

represent the weight of two images. It is shown in 

equation 1
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Pixel-weighted averaging is another name for this 

two-sided process, as the picture shows in Figure 

3. It provides detailed information about the input 

image, which is helpful during processing. The 

Bilateral filtering is shown in equation 2 and 3.  

Noise cancellation process.

 

  ( ) ( )yyfyIyIHyI
W

IilteringBilateralF isi

x

ri

p

pin

i

−−= 


)()()(
1

--------------[2] 

( ) ( )yyfyIyIHW isi

x

rp

i

−−= 


)()( -----------------[3] 

Binary filtering combines field filters with area 

filters. It measures the average similarity and 

neighbours of a pixel and replaces it. In order to 

apply this proposed work to a CCTV system, 

sample images under suitable lighting conditions 

will be purchased beforehand. During observation, 

especially at night, the recommendation system 

compares the current image with the pictures 

taken from the imaged samples in a specific period. 

Exact components can be sample images 

superimposed on significant components of the 

existing image frame to allow the object 

recognition process to continue. 
 

Adaptive sampling 
The result of two-sided operations may contain 

pixel edges that cause aliasing effects in the image 

data. Streaks occur because curves and lines 

extend endlessly. Each pixel is displayed multiple 

times. A specific point (x, y) within an image pixel. 

The radiation density L can be calculated as follows 

in equation 4 and 5 

dxdyyxfyxpL n

A ),(),(= -------------[4] 

niX i ,,.........2,1, = ----------[5] 

No additional sampling is required at any time. 

Therefore, adaptive sampling only up samples the 

pixels at the object's edge, thus preserving the object's 

edge in the equation 6. 
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Symmetric local binary path 
By determining the neighbourhood of each pixel 

and processing the result as a binary number. LBP 

operators in CCTV applications may notice changes 

in light changes. LBP encoded pixel value. The LPB 

can be calculated by determining the difference 

between the pixel intensities of adjacent pixels in 

equations 7 and 8. In, where n denotes the location 

of the adjacent pixel. It represents the size of n, 

which is 8. If adjacent pixels have equal or greater 

values, set the value to 1; otherwise, set it to zero. 
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Results 
Dataset 
To illustrate the difference between various low-

light images in CCTV systems, additional images 

from three different datasets from Plants, Animals, 

and Birds were selected for the test. The diverse 

dataset contained images captured under different 

low-light conditions, including severely low, 

moderately low, and normally lit scenarios. Test 

results are compared with current methods. 

During the training phase, 6452 images were used 

in the dataset. The algorithm was trained using a 

subset of the dataset that covered a spectrum of 

low-light conditions, ensuring diversity in 

illumination levels for robust model training. 

Validation of the algorithm's performance was 

carried out on a distinct subset of images to gauge 

its ability to detect objects accurately across 

various low-light conditions. In Figure 3, three 

different images  

represent the low-light conditions of the new 

existing gate and the architecture of the modified 

new gate. In the coconut group, two variants of the 

same image can be saved for testing, as shown in 

Figure 3. The input image is pre-processed under 

normal lighting conditions (Figure 5). The photo 

has good lighting conditions are selected.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Sample images from the dataset used. 

Analysis
Precision, Recall, and F1-score calculations were 

performed for each illumination level, providing 

insights into the algorithm's capability to detect 

objects accurately under varying low-light 

conditions. A zebra is selected, and the 

probabilities of all three creatures appearing are 

99.9, 99.8, and 99., respectively. A similar image 

can be seen in Fig 4(a): Low Light Input Image and 

Fig 4(b): Brightness Improved Image. The second 

image, now tested with the resnet model, shows 

four individual zebras. Poor lighting conditions can 

cause this false output. Fig 4(c) Accuracy in Low 

Light and Fig 4(d): Accuracy in Brightness 

Improved Image. 



Madhan and Shanmugapriya                                                                                                                     Vol 5 ǀ Issue 1 

 

68 
 

                               
       Figure 4(a): Low Light Input Image                               Figure 4(b): Brightness Improved Image 

                               
                Figure 4(c): Accuracy in Low Light                                        

 

 

Table 1 shows the accuracy comparison between 

the low-light and bright-light images. The Accuracy 

for low light is 74%, and for high light, it should be 

96%. Figure 5 represents the Accuracy of object 

detection in various luminance parameters. 

Several parameters from the coco, Wild Track, and 

CIFAR datasets can be used to evaluate 

performance, including recall, precision, F1 score, 

pixel resolution, fusible crosshair, and fusible 

crosshair. Recall provides the integrity of  

predictions drawn from the ground truth. 

Accuracy demonstrates the relationship between 

positive findings and ground truth. It provides the 

rate of overlap between the target output and the 

expected output. The average IoU metric is 

measured as the average of all value intersections 

associated with the semantic layer. Various ML 

techniques are evaluated, and their performance 

metrics are estimated to define the malicious RDP 

sessions. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+ 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
× 100%        [9] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%         [10] 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑇𝑃

𝑇𝑃+𝐹𝑁
          [11] 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%        [12] 

Figure 4(d): Accuracy in Brightness 

Improved Image 
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𝐴𝑃 𝑠𝑐𝑜𝑟𝑒 = ∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑛−1)𝑛 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛       [13] 

𝑆𝑒𝑝𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
× 100%         [14] 

𝐺𝑀𝑒𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                       [15] 

TP is a True Positive, TN is a True Negative, FP is a False Positive, and FN is a False Negative value. 

 

Figure 5: Accuracy in object detection 

This tabulation compares the various algorithm 

parameters with AIIE (Adaptive Image 

Information Enhancement Algorithm) algorithms 

to find the precision, accuracy, recall, and f1 score. 

The various algorithms used for comparison are 

the ACNN, Faster R-CNN, Gaussian mixture, and 

DCGAN models. A comparison of different 

Algorithms is shown in Table 2. 

Table 1: Image Type 

 

Fig 6 shows the overall performance of the 

Adaptive Image Information Enhancement 

Algorithm. The experimental values indicate that 

the AIIE algorithms give more precision when 

compared to other algorithms. For example, the 

Precision of AIIE, ACNN model, Faster R-CNN, 

Gaussian mixture model, and DCGAN model are 

78,63,55,70.68 respectively.  

Fig 7 shows the overall Recall performance of the 

Adaptive Image Information Enhancement 

Algorithm. The experimental values indicate that 

the AIIE algorithms give more precision when 

compared to other algorithms. For example, the 

Recall of AIIE, ACNN model, Faster R-CNN, 

Gaussian mixture model, and DCGAN model are 

84,85,78,81,81 respectively. 

Figure 8 shows the overall F1 Score performance 

of the Adaptive Image Information Enhancement 

Algorithm. The experimental values indicate that 

the AIIE algorithms give more precision when 

compared to other algorithms. For example, the F1 

Score of AIIE, ACNN model, Faster R-CNN, Gaussian 

mixture model, and DCGAN model are 

84,71,70,71,74, respectively. 

Figure 9 shows the overall Pixel Accuracy 

performance of the Adaptive Image Information 

Enhancement Algorithm. The experimental values 

show that the AIIE algorithms give more precision 

when compared to other algorithms. For example, 

the Pixel accuracy of AIIE, ACNN model, Faster 

CNN, Gaussian mixture model, and DCGAN model 

are 95,87,74,87,92, respectively. 
 

Discussion 
The proposed system employing the AIIE 

algorithm represents a significant advancement in 

improving object detection accuracy under low-

light conditions. Its strengths lie in its ability to 

enhance image quality, thereby facilitating more 

accurate object detection compared to existing 

systems. By utilizing the AIIE algorithm, this 

system effectively  

 The AIIE algorithm's superiority becomes evident 

in the comparative analysis against existing 

models. It consistently outperforms these models 

74%
96%

0%

50%

100%

150%

Low light  image High Light image

1 2

Accuracy 

S. No. Input Image Type Accuracy  

1 Low light  image 74% 

2 High Light image 96% 
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in critical metrics such as precision, recall, F1 

score, and pixel accuracy. Visual representations 

further emphasize the algorithm's excellence, 

providing a clear understanding of its superior 

performance compared to other evaluated models. 

However, despite its significant strengths, the 

system does present limitations. One notable 

concern is its potential computational complexity, 

which might require substantial resources. 

Additionally, real-time implementation in 

scenarios necessitating immediate object 

detection and response might pose a challenge due 

to computational demands. 

Moreover, while the system displays proficiency 

across various datasets, its performance in more 

diverse environmental conditions or with different 

object types might vary. Generalizing its success 

beyond the specific datasets used in this evaluation 

remains an area for further exploration. Despite 

these limitations, the AIIE-based system presents a 

compelling solution for addressing low-light image 

challenges in object detection tasks. Its consistent 

performance enhancements and robustness across 

diverse datasets signify its potential in 

applications reliant on accurate object detection 

under varying lighting conditions, such as 

surveillance and security systems. Continued 

research and refinement could further amplify its 

applicability and performance in real-world 

scenarios. 

 

Table 2: Comparison of various algorithm 

 

 

        
 

S. No. Method Precision Recall F1-score Pixel accuracy 

1 AIIE Algorithm 78 86 84 95 

2 ACNN model 63 85 71 87 

3 Faster R-CNN 55 78 70 74 

4 Gaussian mixture model 70 81 71 79 

5 DCGAN model 68 81 74 82 

Figure 6: Precision comparison of the 

existing and proposed algorithms 

Figure 7: Recall comparison of the existing and 

proposed algorithms 
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Conclusion 
This paper presents AIIE, an integrated component 

within an enhanced ResNet architecture, 

addressing                                                                                                  

object detection challenges in low-light CCTV 

systems. The ResNet model incorporates 

connection hops, mitigating issues with fading 

gradients during training. The inclusion of the 

ellipse layer significantly bolsters low-light 

imaging capabilities without compromising 

performance. Operations within this layer, such as 

employing binary filters for enhanced lighting 

conditions, adaptive sampling to avoid anti-

aliasing, and utilizing local binary models, offer 

more precise image details. These processes 

enable deeper image analysis, enhancing object 

detection accuracy. Extensive evaluations across 

varied datasets consistently demonstrate AIIE's 

superiority over existing methods in handling low-

light conditions in CCTV object detection. 

However, increased computational time in 

processing excessively low luminance images 

remains a limitation. The AIIE integrated ResNet 

model signifies a substantial leap in low-light 

object detection for CCTV systems. Its promise lies 

in improved accuracy, opening avenues for 

advancements in real-time surveillance 

applications. This innovation lays the groundwork 

for future developments in addressing 

illumination challenges in object detection 

systems. Future research aims to innovate light 

data enhancement methods without relying on 

distinct light conditions, striving to further 

improve performance and processing speeds in 

object detection workflows. 
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