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Abstract 
 

With the enhancement of artificial intelligence and machine learning, nowadays it is in trend that mobile clients 
acquiesce their sign for diagnosing medical illnesses. Edge computing methodology is frequently used for medical 
diagnosis as it reduces the transmission latency and allows users and devices even at remote locations to analyze the 
data at the edge of the network. Since data-driven machine learning algorithms need to develop an identification 
system over huge medical data, they may be concerned about the privacy of data leakage during medical diagnosis. To 
solve this issue in our work a privacy-preserving medical diagnosis system is developed on edge. With our model, we 
encrypt the user input during the submission of the user input and that will be diagnosed for the disease and the user 
will be given the result in encrypted form which he could decrypt, to preserve the privacy of the user. The security and 
experimental analysis of our model explains the efficiency of our proposed system. The gradient boosting (CatBoost) 
model is redesigned by following the cloud-edge model, which accepts the ciphered model parameters rather than 
usual data to get rid of the amount of cipher to plain text computation using Triple-DES. In addition, we have 
optimized our model using the Harris Hawk Optimisation technique. Additionally, our algorithm offers private and 
prompt diagnosis while maintaining secure diagnosis on the edge. Our security study and investigational assessment 
depict that our algorithm is effective, efficient and secure. 
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Introduction 

Machine learning in the medical field largely 

focuses on creating algorithms and methods to 

assess if a system's behavior in diagnosing 

diseases is accurate. Machine learning (ML) 

algorithms are being applied to the diagnosis of 

illnesses is one illustration of the medical field's 

benefit from this technology. To detect diseases 

early and enhance therapies, machine learning 

technology can help find hidden or complex 

patterns in diagnostic data. We located several 

technologies, some of which enhance their 

accuracy by learning from new data, both in use 

and in development. One of the areas where 

mobile devices can have the biggest influence is 

personalized diagnostics. Diagnosing based on 

Machine learning has enormous advantages in 

enhancing the eminence of healthcare services 

and staying away from costly diagnosis charges 

when compared to the dearth of experts and the 

high cost of manual diagnosis. Due to this, both 

academic and industrial fields have given machine 

learning-based medical diagnosis a lot of 

attention. More and more requirements have 

risen as a result of the development of 

telemedicine applications in the fields of mobile 

telemedicine and clinical healthcare (1-4), and 

mobile telemedicine (4). However, the growth has 

also been escorted by several issues, including a 

lack of training data, security flaws, and privacy 

worries. It is a major problem in medical practice 

that gathering enough medical data takes a lot of 

time and money.  

The amount of health data stored in a single 
medical source is usually limited, which makes 
the development of data-driven machine learning 
difficult. To create a suitable diagnosis model, it is 
necessary to exchange the training data that is 
dispersed throughout numerous medical 
institutions. With the advent of cloud computing, 
machine learning on outsourced medical data has 
been extensively studied because of the 
advancements in large storage capacity and 
infinite processing power (5, 6). However, the 
increased frequency of interaction between 
mobile users and the cloud leads to undesirable 
transmission delay and slow request answers (7-
9). Patients' lives, health, and medical safety are 
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significantly impacted by a delayed diagnosis 

response, particularly those who have been 

diagnosed with an acute disease (such as acute 

heart disease, pneumonia, etc.)., Edge computing 

is a novel paradigm for computing, has been 

proposed to solve this problem by using edge 

nodes that are located close to mobile users to 

reduce latency and deliver efficient computing 

services (10-13). The development of machine 

learning techniques based on edge computing 

during the past few years (14-16) has been 

significant in enhancing the effectiveness of 

diagnosis using edge computing.  

Adopting a real-time high-performance edge 

model and accurate diagnosis of medical issues is 

crucial to focus on the vulnerability in medical 

diagnosis. The gradient boosting (CatBoost), the 

most advanced machine learning model, exhibits 

exceptional talent in Kaggle contests thanks to its 

great prediction performance in the distributed 

scenario. Additionally, thanks to its tree-based 

structure, CatBoost has improved explainability 

and simplicity. As a result, many systems have 

used the CatBoost model to make medical 

diagnoses (17-19), however, they disregard the 

essential issue of information security during the 

training stage. When patients are told they have a 

private disease (like HIV or Hepatitis B virus), 

they frequently experience some psychological 

resistance. It is seen as a factor in the condition's 

deterioration. Consequently, it is essential to 

preserve their privacy. In addition to the fact that 

a lot of sensitive information is contained in 

medical data, more and more data are prohibited 

from being transformed into plaintext as a result 

of privacy policies (such as GDPR (20) and HIPPA 

(21). Protecting the privacy of medical analysis in 

the context of edge computing is therefore crucial. 

(22-25). 

Homomorphic encryption (HE) (26) is a potential 

approach to address privacy issues since it 

minimizes the likelihood of information leakage 

while preserving data secrecy. The currently used 

single or dual-cloud mode cloud computing 

framework, which has been expanded to include 

edge computing, is the main support for the 

privacy-preserving machine learning algorithms 

based on HE (27). Unfortunately, because the 

private key is preserved in a single cloud rather 

than two, the single-cloud model (28) is more 

likely to cause a privacy leakage than the dual-

cloud model. Sensitive data are exposed once the 

cloud has been compromised. In addition, the 

dual-cloud model's practical uses are restricted by 

the high presumption of non-collusion among two 

partial honest cloud servers (29-31). Additionally, 

a significant amount of secure computation over 

encrypted data is required during the machine 

learning training phase. The first difficult problem 

arises from the growing amount of outsourced 

encrypted data, which places a significant 

computational burden, particularly for edge 

nodes with limited resources (32). Thus, it is 

crucial to consider lightweight when utilizing 

privacy-preserving machine learning in edge 

computing. Our privacy-preserving CatBoost over 

encrypted model parameters greatly reduces 

computational overhead when compared to data-

sharing-based privacy-preserving machine 

learning. In this study, we introduce the Secure 

Encrypted Machine Learning model in edge 

computing. Our algorithm primarily uses the 

following constructions: 

• CatBoost on edge: Using model parameters 

developed over many edge nodes rather than 

training data, the algorithm builds a CatBoost-

based diagnosis model, eliminating the 

limitations of cumbersome training data storage 

and ensuring the viability of CatBoost. 

• Privacy-preserving training: The algorithm 

creates HE-based secure computing with a 

single-cloud model, choosing the best 

parameters over encrypted model parameters. 

Only one part of the secret key is kept in the 

single cloud because it is randomly split into 

two parts. Thus, the single cloud model can 

guarantee the dependability of the privacy-

preserving training on the resource-constrained 

edges in addition to offering strong privacy 

preservation for training the lightweight 

CatBoost. 

• Secure diagnosis on CatBoost at the edge: A 

mobile user can send an edge encrypted query, 

and the edge will provide the associated 

diagnosis results. This is how the algorithm 

offers secure diagnosis. It is used throughout the 

procedure to ensure the privacy of the returned 

diagnosis results for executing the private and 

prompt diagnosis. 

To ensure privacy preservation throughout the 

training phase, previous jobs on preserving 

privacy using machine learning (33-35) have been 

offered, however, these schemes lacked 

implementation. Since then, more and more plans 
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to preserve privacy have been put out. To support 

matrix factorization with encrypted data, A 

privacy-preserving non-negative matrix 

factorization technique based on 

additionHomomorpic Encryption was presented 

by Fu et al. (36). However, since these matrix 

parameters can be obtained by a third party 

during the computation process, there is a risk of 

privacy leakage, which can be acquired by a third 

party during the computation process, which 

could result in privacy issues. 

Ma et al. suggested a random tree architecture 

with a Paillier cryptosystem that offered accurate 

and secure training on encrypted data (29). To 

build a model without disclosing personal 

information, Wang et al. (31) presented a 

collaborative neural network approach that 

protects privacy. A privacy-preserving approach 

for productively training neural networks was 

created by Mohassel et al. (33). The HE-based 

processes used in the aforementioned methods 

(37) are useful for machine learning while 

preserving privacy. Nevertheless, there is a large 

overhead associated with the safe calculation that 

was applied over a sizable volume of encrypted 

data (31). 

To tackle the aforementioned issue, a model-

sharing-based privacy-preserving machine 

learning framework has been created that 

outsources encrypted model parameters instead 

of utilizing more local data. In addition to 

ensuring the training of machine learning, it can 

shift some computation from being outsourced 

over ciphertexts to being performed locally over 

plaintexts, which can increase efficiency and 

lighten the workload. Yu et al. initially created a 

methodology based on models that were 

outsourced from different data owners without 

revealing local data (37). However, this approach 

uses random numbers in place of encryption 

technology, which is very susceptible to inference 

attacks that result in privacy breaches (38). 

After that, Cheng et al. (39) suggested an 

encrypted model parameter-based secure 

XGBoost. These settings can, however, be 

accessed and decrypted by a different party. The 

security of local data may be in danger because 

the parameters also contain critical information. 

Li et al. (40) established a secure classification 

service with outsourced encrypted Support 

Vector Machine (SVM) models; nevertheless, it 

cannot offer privacy-preserving model training. 

Based on encrypted models, Aono et al. (41) 

developed a privacy-preserving deep learning 

system without revealing the participants' local 

data to a server. This approach significantly sped 

up the execution of associated secure 

computation while maintaining accuracy. 

Unfortunately, Wang et al. (42) showed how the 

single-cloud model will result in privacy leakage 

from the aforementioned schemes (40, 41). When 

the cloud is breached, it is simple to leak due to 

the trained model's privacy. 

The dual-cloud approach is used to avoid the 

single-cloud model's limitations and stop data 

leakage during computation. Liu et al. (30, 31) 

proved the security and accuracy of secure 

computation using a dual-cloud server technique. 

Additionally, Hu et al.'s research (28) 

demonstrated that the non-colluding dual-cloud 

model outperformed the single-cloud model in 

terms of security. Even if one server is 

compromised, the other server's presence 

prevents it from leaking the trained model's 

privacy information. Privacy concerns in edge 

computing were taken into account in Liu et al.'s 

(27) adaptation of the secure computation based 

on a dual cloud model to the edge computing 

environment. Unfortunately, sending encrypted 

data between two cloud servers is necessary to 

perform secure computation, which increases 

computational overhead and communication load. 

Additionally, each resource-constrained edge 

node needs to do six modular multiplication 

operations, two modular addition operations, and 

five modular exponentiation operations to 

perform safe computation, which is not practical 

in an edge computing environment. Despite the 

suggestion of Zhang et al.'s (43) privacy-

preserving feature transform on edge with 

lightweight, robust privacy preservations cannot 

be guaranteed because the submitted photos 

were only provided in plaintext. To the extent of 

our understanding, the edge computing literature 

does not account for the trade-off between 

privacy concerns and lightweight (46-49). In 

addition to efficiency and real-time model 

training, we develop a lightweight privacy-

preserving machine learning system with good 

privacy preservations on the edge. The authors in 

(49) proposed efficient task scheduling in fog 

computing but they didn’t focus on security. 

Because we employed the effective method 

catboost, our research improves prediction 
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accuracy. Unlike xgboost, which requires 

preprocessing of categorical data, catboost allows 

our approach to run more quickly (45). The most 

pertinent features were chosen from the dataset 

using the Harris Hawk optimization technique, 

which improved the feature selection process and 

may have reduced computing complexity as well 

as improved the performance and interpretability 

of the model. When compared to other research 

that has already been done, our system did well 

with these (49). Furthermore, compared to RSA, 

the Ed25519 key generation technique is quick 

and difficult to break. Ed25519 serves as the 

authentication key. We used TripleDES to provide 

secure communication of diagnosis from the edge 

platform to mobile users and symptoms from 

mobile users to the edge platform. Because it uses 

three 56-bit keys to provide a better level of 

security, the TripleDES algorithm works well. Our 

algorithm performs better than other algorithms 

and research works thanks to these adjustments 

(47-49). 
 

Methodology 
This section provides a detailed description of the 

machine learning technique CatBoost, the Triple 

DES encryption algorithm, and the Ed25519 key 

generation algorithm. 

Harris Hawks Optimization Algorithm 

Input: Existing problems 

Output: Optimized dataset 

1. Initialize the population 

2. In the population- Evaluate the fitness value 

3. Identify the best fitness score 

4. Divide the population into different clusters 

and promote cooperation between them. 

5. Perform Exploration - by randomly modifying 

the solutions. 

6. Perform Exploitation - by making small 

modifications to the best solution. 

7. Repeat the steps from 2 to 5 until the best 

solution is found. 

Figure 1 represents the workflow of the Harris 

Hawks Optimization Algorithm. The algorithm 

uses a set of formulas to update the position of the 

Hawks using equations 1-4. 

1. Position update formula for exploratory 

hawks: 

x_new = x_old + rand() * (x_best - 2 * x_old)     [1] 

where x_old is the current position of the hawk, 

x_best is the position of the elite hawk with the 

best fitness and rand() is a random number 

between 0 and 1. 

2. Position update formula for elite hawks: 

x_new = x_old + rand() * (x_A - x_B)       [2] 

where x_old is the current position of the elite 

hawk, x_A and x_B are the positions of two 

randomly selected elite hawks, and rand() is a 

random number between 0 and 1. 

3. Calculation of step size: 

step_size = l * exp(-c * iter)      [3] 

where l is the initial step size, c is a constant 

value, iter is the current iteration number. 

4. Updating the position using the step size: 

x_new = x_old + step_size * randn()              [4] 

where randn() is a random number generated 

from the normal distribution.  

 
 

Figure 1: Harris Hawks Algorithm 
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Taking privacy restrictions into account, the 

offloading procedure may be optimized using the 

HHO algorithm. In edge computing applications, 

the HHO algorithm can help maintain privacy by 

intelligently choosing the best edge node for data 

processing while taking privacy needs into 

account. 
 

CatBoost Algorithm 

CatBoost manages category features 

automatically. Consider a dataset D with n 

samples. Each sample has a real-valued goal, y, 

and m sets of features in a vector, x. Given a loss 

function L(yi,Ft), gradient boosting adopts an 

additive version which successively builds a 

series of approximations Ft in a greedy manner 

using equations 5-7. The ith expected output value 

yi and the tth function Ft that estimates yi are the 

two values that make up the loss function. After 

creating function Ft, we can find another function 

Ft = Ft-1 + α.ht  [5] 

where α is a step size and function ht is a base 

predictor selected from a family of functions H to 

minimize the anticipated loss, to enhance our 

estimations of yi. That is, 

ht= argh€Hmin £L(y,Ft-1 + h)  [6] 

Taylor approximation or negative gradients are 

used to approach the minimization in this way: 

ht= argh€Hmin £(
𝛿𝐿𝛾

𝛿𝐹𝑡 − 1−ℎ)
2

  [7] 

 

Ed25519 KeyGeneration Algorithm 

Ed25519 utilizes tiny private keys (32 or 57 

bytes, respectively), tiny public keys (32 or 57 

bytes), and tiny signatures (64 or 114 bytes) with 

a high level of security (128 or 224 bits, 

respectively). 

The EdDSA contains the private key as priv_Key 

and the public key as pub_Key using equation 8. 

pub_Key = priv_Key * G.       [8] 

The seed, a random integer used to create the 

private key, is used.The open key Using the EC 

point multiplication, pub_Key is a point on the 

elliptic curve: (The private key multiplied by the 

curve's generating point G) pubKey = privKey * G. 
 

EdDSA Sign (EdDSA_sign)  

▪ Add G to pubKey to calculate pubKey. 

▪ Create a secret integer r = 

hash(hash(priv_Key) + message) mod q) 

deterministically. (This is somewhat 

condensed) 

▪ Multiply it by the curve generator to 

determine the public key point hidden behind 

r: R = r * G 

▪ The formula for h is h = hash(R + pub_Key + 

message) mod q. 

▪ Put s = (r + h * priv_Key) mod q to work. 

▪ R, s, deliver the signature. 
 

EdDSA Verify Sign(EdDSA_verify_sign) 

▪ The formula for h ish = hash(R + pubKey + 

message) mod q. 

▪ Calculate P1 = s * G, and then calculate P2 as R 

+ h * pub_Key. 

▪ Return P1==P2 

The fact that the points P1 and P2 are identical EC 

points establishes that the points P1, generated by 

the associated private key, and P2, produced by 

the corresponding public key, are identical. 
 

Secure Computation using Triple DES 

The Triple Data Encryption method (TDEA or 

Triple DEA), sometimes known as Triple DES 

(3DES or TDES), is a symmetric-key block cipher 

that employs the DES cipher method on three 

occasions for each data block. Without having to 

create an entirely new block cipher algorithm, 

Triple DES offers a reasonably easy way to 

increase the key size of DES to thwart such 

attacks. Three DES keys, K1, K2, and K3, totaling a 

combined total of 56 bits (excluding parity bits), 

make up the "key bundle" used by Triple DES. 

This is the encryption algorithm using equations 

9-10. 

Cipher= EK3(DK2(EK1(plaintext)))  [9] 

The decryption algorithm is: 

Plaintext= DK1(EK2(DK3(ciphertext))) [10] 

Where E denotes encryption and D denotes 

decryption. 

 

 System Model 

The core components of our system concept are 

the Key Generation Centre (KGC), Cloud Platform 

(CP), Edge Nodes (ENs), and Mobile Users (MUs) 

as shown in Figure 2. Assume that the system 

contains N ENs.It should be noted that a secure 

channel, such as Secure Socket Layer (SSL) or 

Transport Layer Security (TLS), is used to 

synchronize the communication between these 

entities. Each entity's specific role is illustrated as 

follows: 
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Figure 2: System Model 

 

▪ Key generation center: Our system's secret 

shares are sent to other entities for use in safe 

computing in the future, and the Key generation 

center is completely trusted to create, manage, 

and distribute those shares. (Step 1).  

▪ Edge node: An EN is a medical institution with 

limited storage and processing power that 

stores a small amount of medical data. An EN is 

willing to work cooperatively with other ENs to 

create a global model during the training phase. 

This model then submits locally optimal model 

parameters after encryption and offers compute 

services to the CP to carry out secure 

computation. (Step 2). 

▪ Cloud platform: The computing and storage 

capacities of CP are infinite. To build a global 

model, it first gets the encrypted model 

parameters from several ENs and then selects 

the globally optimal model parameters (Step 3). 

▪ Mobile user: An EN in the area can receive an 

encrypted diagnosis request from a MU (Step 4), 

and the MU can then get the encrypted diagnosis 

result from the EN (Step 5). To protect diagnosis 

privacy, a MU and the EN work together to 

implement secure computing of the diagnosis 

phase. 
 

Threat Model 

For the hostile perspective, we take into account 

the potential risks to the system based on the data 

that system entities (such as CP, ENs, and MUs) 

have access to. 

▪ Objects making threats: Assume that KGC can be 

trusted to distribute keys. MUs, ENs, and CP are 

viewed as sincere but inquisitive organizations 

that follow rules but try to decipher encrypted 

content to find out more. In actuality, 

cooperation between CPs and ENs compromises 

EN privacy, but cooperation between an EN and 

a MU also compromises personal data about 

particular individuals. It is not worthwhile to 

collaborate with other organizations to 

accomplish CP, EN, and MU in order to stop the 

disclosure of personal information. We assume 

that neither CP nor ENs nor MUs are 

coordinating with one another. 

▪ Threats from an outside enemy: It is assumed 

that the data transmitted over the 

communication channels between the MUs and 

ENs and the CP and ENs, respectively, can be 

intercepted by an external attacker. 

Additionally, a foe may pervert an EN, MU, or CP. 
 

System Framework 

Here, we present a thorough explanation of how 

to build a fundamental CatBoost architecture for 

the global diagnostic model. Next, to provide a 

quick and private diagnosis service, we suggest a 

secured diagnosis on edge. 

The proposed system contains 3 stages: 

▪ Key generation: The EdDSA_sign() function is 

invoked to generate private and public key pairs 

during signup. Then, the Ed25519 verifysign() 

function is invoked on the login page to check 

the identity of the user. The user gets 

authenticated only if the verifysign() method is 

true. 

▪ Privacy-preserving CatBoost: Before delivering 

decision nodes to the CP, ENs locally train and 

encrypt them to create a global model over N 

ENs (Step 1). CP then designates the global node 

as the optimal split of a decision node among the 

submitted nodes to accomplish global 

optimization (Step 2). At last, each EN creates 

neighborhood leaf nodes (Step 3). 

▪ Secure diagnosis on edge: Before sending 

symptoms to a nearby EN, a MU must encrypt 

them to create a secure diagnosis service. The 
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anonymity of the provided symptoms and the 

provided diagnosis results must be maintained. 
 

Privacy-preserving CatBoost 

We suppose that different ENs build the global 

model collectively without exchanging training 

data. Many ENs are thought to store data with a 

non-i.i.d distribution, which means that the global 

distribution and each individual biased 

distribution are preserved without losing 

generality. As a result, the final trained model of 

each EN retains local distinctions in addition to 

learning knowledge across all ENs.Specifically, 

over N ENs, the suggested privacy preserving 

CatBoost is built. The representation of the kth 

tree model is Fk(x)= wq(x) during the training of 

the kth round. Decision nodes and leaf nodes 

make up the tree nodes, with a split value 

included in each decision node. Figure 3 shows 

the overall workflow 
 

BuildDecisionNode 

The construction of the decision node involves 

two steps by applying equations 11-12: 

▪ Building locally optimal split 

▪ Building globally optimal split 

BuildLocalNode: The optimal splitting is chosen 

for the ith (i € (1,N)) EN while maximizing Gain. 

Gain= ½ * gain –𝜓   [11] 

Gain= 
𝐺𝐿

2

𝐻𝐿+𝜓
 + 

𝐺𝑅
2

𝐻𝑅+𝜓
  [12] 

 

BuildGlobalNode  

The Cloud Platform will locate the split with the 

maximum gain to execute the globally optimal 

split after obtaining the locally optimal split and 

the evaluation indexes from N Edges. It also 

returns the global optimum in an encrypted 

format to each of the edge nodes and the edge 

nodes in turn decrypt the parameter and use it. 

 

 
   Figure 3: Overall System Architecture 
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Algorithm 1. Building Decision Node 

Input: Training dataset X with n instances and m features, where each instance is represented by a 

feature vector x_i and corresponding class labels y_i. 

Output: Decision tree T represents the local edge node. 

1. Initialization: Create an empty root node root for the decision tree T. 

2. Stopping Criteria: If any of the following conditions are met, stop growing the tree and return the 

current node as a leaf node: 

o All instances in the current node belong to the same class. 

o All features have been used for splitting. 

o The maximum depth of the tree has been reached. 

3. Feature Selection: Select the best feature f_best from the remaining unused features based on a 

suitable criterion (e.g., information gain, Gini index, etc.). 

4. Splitting: Split the current node into child nodes based on the selected feature f_best. Iterate over all 

possible feature values v of feature f_best and create a child node for each value. 

5. Instance Partitioning: Partition the instances in the current node into the corresponding child 

nodes based on the feature value v of feature f_best. Assign an instance to the child node whose 

feature value matches v. 

6. Recursion: Recursively apply steps 4-7 to each child node until the stopping criteria are met. 

7. Leaf Node Creation: If a child node becomes empty after partitioning, create a leaf node and assign 

the majority class label of the instances in the parent node as its predicted class label. 

Return the decision tree T. 
 

 

Algorithm 2. Building Global Node 

Input: Encrypted gains, Encrypted Local decision tree 

Output: Globally Optimal decision tree 

1. Initialize variables: v_f_b = v_score_b, v_s_b = v_score_b. 

2. For n in range 0 to N: 

• CompareEncIndex: Compute v_score_a_hash = v_score_hash_b * v_score_a. 

• Update v_f_b using scalar multiplication: v_f_b *= v_score_a_hash. 

• Update v_s_b using scalar multiplication: v_s_b *= v_score_a_hash. 

3. Compute v_s_com = v_score_b * v_score_hash_a - v_score_hash_b * v_score_a. 

4. If v_score_a_n - v_score_hash_a_n * v_score_a_n< 0, then: 

• Update v_score_a_n with v_score_hash_a_n. 

• Update v_score_hash_a_n with v_score_a_n. 

5. Return v_f_b, v_s_b 
 

 

Algorithm 3. Secure Diagnosis on Encrypted CatBoost 

Input: Triple DES Encrypted instance (enc_sym), Triple DES encrypted CatBoost(CB) = {"((" F_K "))" ^"K" 

〗"k=1" } comprises of K encrypted trees. 

Output: Encrypted diagnosis result (enc_ŷ). 

1. Set (enc_ŷ) to (0). 

2. For 1 ≤ k ≤ K, do the following: 

o Set (node) as the root node of (F_K). 

o While true, do the following: 

▪ If (node) is a leaf node, then: 

▪ Obtain label weight (w) from the leaf node. 

▪ Update (enc_ŷ) by multiplying it with (w): (enc_ŷ) ← (enc_ŷ) × (w). 

▪ Break the loop. 

▪ Else, do the following: 

▪ Obtain the split threshold (s) on f-th feature from (node). 
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▪ Obtain the f-th feature value (sym_f) from (enc_sym). 

▪ Apply Triple DES((s), (sym_f)). 

▪ If (s) ≤ (sym_f), then: 

▪ Set (node) as the left child of (node). 

▪ Else, do the following: 

▪ Set (node) as the right child of (node). 

3. Return (enc_ŷ) as the encrypted diagnosis result. 

The diagnosis result is computed using equation 13. 

 �̂� = ∑ Fk(sym)K
k=1                                                                                                               [13] 

 

Secure Diagnosis in Edge 

We design a secure diagnosis method between the 

EN and MU while considering the limitations of 

MUs' limited processing power and the 

confidentiality of symptoms submitted. To finish, 

we employ secure lightweight computation. Note 

that an EN owned by a medical facility maintains 

the encrypted local diagnosis model for secure 

diagnosis over encrypted requests and that 

sensitive data is contained in the parameters of 

EN's trained model and the information of MU's 

requests. Therefore, it is essential to guarantee 

strong privacy preservations without leaking any 

privacy during the diagnosis process. 
 

Results and Discussions 
Attack Analysis 
We categorize these into groups based on the 

descriptions in Section 4.2attacks into the 

following categories when operating in a hostile 

environment. 

Type-I: Corruption: Assuming that a rival tries to 

exert pressure and collaborate with CPs, ENs, and 

MUs to access private information and change 

secret keys stored in these entities. 

There are three attack models used in this kind of 

attack. 

• Text-only cipher attack model: The adversary 

can look at parameters that are encrypted 

and try to figure out secret keys. 

• Known-sample attack paradigm: In a known-

sample attack paradigm, an adversary can 

obtain certain plaintext parameters and their 

corresponding ciphertexts, and then try to 

derive the secret keys. 

• Chosen-plaintext: The opponent can encrypt 

specific plaintexts to extract the 

corresponding ciphertexts, which can then be 

used to deduce secret keys. 

Type-II:Eavesdropping: In the unlikely event that 

a hostile party attempts to listen in on the data 

being sent across the communication channel, he 

or she will attempt to discover private 

information about other people and extract these 

private facts. 
 

Performance Analysis 
The experiment setting is described in detail in 

this part, followed by an examination of the 

theoretical performance in comparison to other 

privacy-preserving schemes. 

Experimental settings 

We use two open datasets to conduct our 

evaluation as shown in Table 1. 
 

Table 1: Summary of the datasets used in our 

study 

Dataset Objects Features 

Heart 303 14 

Thyroid 3163 25 

 

1. Heart disease dataset: It has two labels, "0" for a 

patient without heart illness and "1" for a 

patient with heart disease, totaling 303 

instances, 14 traits, and two labels. 

2. Thyroid disease dataset:  It has two labels, "0" 

for a patient without thyroid disease and "1" for 

a patient with thyroid disease. There are 3,163 

instances in total, along with 25 features. 

The system we propose is written in Java, and a 

PC tester with 3.30 GHz four-core CPUs and 4 GB of 

RAM is used to evaluate the trials. We use the cross-

validation approach to split the dataset into thirds 

and use the remainder as the validation set. 

Catboost is used with the parameters g 14 0, c 14 

20, and sampling rate rates as 14 80% over local 

training data of each EN to train a model over 

several ENs.The entire procedure for constructing 

an XGBoost's kth tree involves constructing decision 

nodes across N ENs using BuildLocalNode and 

BuildGlobalNode. Each EN constructs the section 3 

local decision nodes during the BuildLocalNode 

phase. 
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Figure 4: Accuracy of LPME |n|=1024 bits, N=3, K=5, h=3 

 

 

 

 

 

              Figure 5: Running Time |n|=1024 bits, N=3, K=5, h=3 
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Figure 6: Running Time N=3, K=1, h=3 

  

 

Figure 7: Running TimeN=3, K=1, h=3 

 

Comparative Analysis 
To demonstrate the LPME system and (29), we 

create a thorough comparison analysis of the (29), 

which, in contrast to our approach, is a 

distributed learning framework that safeguards 

privacy and safely learns over encrypted training 

data. Figure 4 shows the accuracy and figure 5-7 

shows the running time for various bit lengths. 

• Our system's accuracy increases with the 

number of trees in the tree; for example, when 

K is 14, it is 85.4 percent accurate for heart 

disease and 95.3 percent accurate for thyroid 

disease, while at K is 1, it is 90.6 percent 

accurate for heart disease and 97.1 percent 

accurate for thyroid disease. 

• Our system has a small accuracy difference 

when compared to the original CatBoost, 

which is implemented over the global dataset, 

with an accuracy difference of less than 1% 

between the two datasets. When K= 14 is used, 

the accuracy is 94.6 percent (a 0.3% 

improvement over the dataset for heart 

disease) and 99.1 percent (a 0.1% 

improvement over the dataset for thyroid 

disease) when compared to the original 

CatBoost. 
 



Malathy et al.,                                                                                                                                            Vol 5 ǀ Issue 1 
  

168 

 

Conclusion 
In this study, an edge-based confidential Catboost 

framework is developed that can both offer 

secure CatBoost across edge nodes with strong 

privacy protections and enable real-time, privacy-

preserving medical diagnosis. The suggested 

system's secure computing may build the 

CatBoost model securely with minimal overhead 

and effectively deliver medical diagnoses without 

leaking personal information. The Harris Hawks 

Optimization reveals the best newly generated 

dataset required. The overall accuracy value was 

used to prove that it provides the best output 

compared to other strategies. The time efficiency 

was accurate in the proposed model. The model 

addresses the private network active attacks. The 

security and efficacy of the system on edge 

computing were validated by real-world dataset 

experiments. 
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