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Abstract 
 

Reinforcement learning (RL) has arisen as a formidable approach to empower robots to acquire intricate skills by 
engaging with their surroundings. This study presents a novel application of RL techniques to address the challenging 
problem of collision avoidance in the context of a Kinova Gen3 robotic arm tasked with ball balancing. The goal of the 
robot is to maintain dynamic equilibrium of a ball on its end effector while navigating a constrained workspace and 
avoiding collision with obstacles. Modern RL algorithms are used in this approach to enable the robot to learn 
collision-free control strategies through data-driven learning. Specifically, this paper employs RL, combining actor-
critic architecture with advanced exploration strategies to learn optimal collision avoidance behaviors efficiently. The 
actor component learns a policy that determines the robot's actions to maintain the ball's balance, while the critic 
component estimates the value function to provide valuable feedback for policy improvement. To facilitate effective 
learning, a realistic simulation environment was designed. The Kinova Gen3 robotic arm interacts with simulation 
environment to collect large amounts of data, which are then utilized to train and refine the RL-based collision 
avoidance policy. The effectiveness and adaptability of the suggested RL-based collision avoidance technique is 
validated by experimental simulation results. The Kinova Gen3 robotic arm successfully learns to perform the ball 
balancing task while maintaining safety through intelligent collision avoidance strategies. By showing how RL can be 
used to help robots accomplish complex tasks like dynamic equilibrium and real-time obstacle avoidance, this 
research advances robotic control methodologies. 

Keywords: Ball balancing, Collision avoidance, Kinova Gen3 robot, Reinforcement learning, Robotics simulation, 
Soft actor-critic. 
 

Introduction 

Recent advancements in the field of robotics have 

demonstrated the possibility for robots to carry 

out difficult tasks on their own. One crucial aspect 

of this progress is the development of intelligent 

control strategies that enable robots to operate 

safely and efficiently in dynamic environments (1, 

2). A key challenge in achieving this is of collision 

avoidance, which involves navigating an 

environment while preventing unintended 

physical contact with obstacles or other entities 

(3, 4). The advanced robotic platform known as 

the Kinova Gen3 robot has several degrees of 

freedom and adaptable end effectors, making it 

ideal for a variety of applications, including pick-

and-place, assembly, and manipulation operations 

(5). Addressing collision avoidance is particularly 

critical for scenarios where precision and 

dexterity are essential, such as in the context of a 

Kinova Gen3 robotic arm engaged in a ball-

balancing task. In the ball balancing task, the 

robot's objective is to maintain an equilibrium of 

a ball on its end effector while operating within a 

confined workspace. This task inherently requires 

precise control to counteract the ball's 

movements and ensure its stability. 

Robots are now being trained to learn 

complicated tasks and adapt to a variety of 

contexts using reinforcement learning (RL), a 

revolutionary technique. Robots can learn from 

experience through trial and error using RL, 

which is different from conventional rule-based 

approaches. This allows robots to gradually 

improve their behavior based on the results of 

their activities (6). This paper explores the 

integration of RL approaches for the Kinova Gen3 

robotic arm to perform the ball-balancing task 

more effectively. The major objective of this 

research is to create an intelligent collision  
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avoidance technique that enables the Kinova Gen3 

robotic arm to navigate an environment filled 

with obstacles while maintaining a safe and stable 

ball balance. The objective is achieved by 

leveraging the principles of RL and seeking to 

imbue the robot with the ability to autonomously 

perceive its surroundings, evaluate potential 

collision risks, and make real-time decisions to 

prevent unwanted contact. By effectively 

addressing collision avoidance, the paper aims to 

augment the robot's versatility, reliability, and 

adaptability in dynamic environments. 

The structure of the paper is as follows: Section: 

Literature review, covers the survey of the 

literature. Sub-section: Reinforcement learning, 

discusses related work on the use of RL in 

robotics and sub-section: Soft actor-critic 

algorithm, discusses related work on soft actor-

critic (SAC) algorithm used in obstacle avoidance 

for robot environment. Section: Materials and 

methods, includes sub-section: Kinova Gen3 

robot, which contains detailed description of 

Kinova Gen3 robot. Sub-section: Integration: 

Kinova Gen3 robot and collision avoidance system 

presents steps for integration between Kinova 

Gen3 robotic arm and collision avoidance system. 

Sub-section: Experiment simulation mentions the 

details about the experimental simulation 

performed for collision avoidance. Section: 

Results, presents outcomes of simulation. Section: 

Discussion, opens with the mention of limitations 

of the current study, further contains detailed 

discussion surrounding the results received from 

experimental simulation and ends with 

concluding remarks with some final thoughts and 

recommendations for the future research. 

In summary, this work is a major step toward 

applying RL techniques to give, the Kinova Gen3 

robotic arm, intelligent collision avoidance 

capabilities for the ball balancing task. The 

paper's solution to this basic problem advances 

the objective of improving the performance of 

robots functioning in dynamic and unstructured 

environments, opening the door to the 

development of robotic systems that are safer, 

more effective, and more adaptable. 
 

Literature review 
Reinforcement learning  
RL, a branch of machine learning (ML), focuses on 

instructing agents (such as software or robots) 

about how to make decisions based on input from 

their environment. The agent learns to draw 

conclusions that maximize a reward signal in 

order to make better decisions (7, 8). Through the 

use of RL algorithms, a robot can adjust and learn 

from its interactions with its surroundings. This is 

especially helpful for tasks requiring the robot to 

maneuver through intricate or dynamic 

environments with shifting obstacles (9). RL 

models have the ability to apply their training 

data's knowledge to novel and unfamiliar 

scenarios. This implies that the robot doesn't need 

a lot of reprogramming to handle a variety of 

obstacle configurations and adapt to novel 

situations. Robots can learn by trial and error, 

which is frequently the most efficient way to find 

the best routes around obstacles, thanks to RL 

(10, 11). In order to create efficient obstacle 

avoidance policies, it can experiment with various 

actions and track the results. The robot can 

gradually enhance its obstacle avoidance 

techniques by using RL. It can improve its policies 

and become more adept at avoiding obstacles as it 

engages with the environment and gathers 

feedback (12). Many tasks involving robot 

manipulation involve high-dimensional state 

spaces, for which it can be difficult to apply 

conventional rule-based or hard-coded methods. 

Such intricate state spaces can be handled by RL, 

and it can acquire useful policies in these 

conditions (13). When a robot must navigate 

unexpected obstacles or changes in the 

surroundings, or when it must perform tasks in 

unstructured and dynamic environments where 

obstacles are not known with precision 

beforehand, RL is a good fit. Creating obstacle 

avoidance behaviors in traditional robotics often 

requires a great deal of human programming. 

Because RL allows the robot to learn obstacle 

avoidance techniques on its own, it can drastically 

reduce the need for explicit programming (14).  

RL stands as a promising frontier in foreseeing 

and preventing collisions across various domains. 

By leveraging iterative learning through 

interactions with simulated or real environments, 

RL agents can discern complex patterns and 

anticipate collision scenarios. These models learn 

from trial and error, continuously refining 

strategies to navigate environments and avoid 

potential collisions. RL also allows for the creation 

of adaptive collision avoidance strategies that can 
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evolve in response to changing scenarios, offering 

potential applications in autonomous vehicles, 

robotics, aviation, and other safety-critical 

domains. The ability to proactively predict and 

avert collisions showcases the potential of RL in 

enhancing safety and efficiency across a spectrum 

of industries. There are different types of 

algorithms present in RL for performing 

manipulation tasks. Figure 1 illustrates the 

detailed classification of RL algorithms. 
 

Soft actor-critic algorithm 
Model-free RL is a widely used learning method. 

SAC is a type of policy gradient technique. It is 

intended to support exploration in a steady way 

and manage continuous action spaces effectively. 

SAC introduces entropy regularization to the 

policy optimization process, which leads to a 

more exploratory policy and better performance 

in complex environments (15). When it comes to 

sample efficiency, SAC is well-known to be 

superior to certain other RL algorithms. Given 

that gathering data can be expensive and time-

consuming, this can be essential for training in 

real-world scenarios. In tasks involving physical 

systems, such as robot manipulation, efficient 

learning is particularly crucial (16). SAC uses 

methods to promote stable and strong policies, 

such as entropy regularization. This can assist in 

teaching the robot policies that minimize the 

chance of collisions by avoiding obstacles and 

doing so in a smooth and controlled manner (17). 

Continuous control in high-dimensional action 

spaces is necessary for many robot manipulation 

tasks. SAC can learn policies that give it fine-

grained control over robot movements, making it 

an excellent choice for tasks requiring continuous 

action spaces (18). Stochastic policy, which SAC 

employs, naturally includes exploration. This is 

essential for the robot to learn efficient obstacle 

avoidance techniques because it must experiment 

with different actions to find safe routes around 

obstacles (19). SAC is capable of learning from 

previously gathered data because it supports off-

policy learning. For tasks where it is unsafe or 

impractical to collect data in real-time, this is 

advantageous. The algorithm can enhance 

obstacle avoidance by optimizing previous 

experiences (13, 20). Dense rewards are hard to 

come by for RL in many real-world settings. When 

learning from sparse reward signals, as is 

frequently the case in obstacle avoidance tasks, 

SAC can handle it well (21). Compared to some 

other RL algorithms, SAC usually requires fewer 

hyper parameters to adjust, making it more user-

friendly for individuals who are not RL experts 

(22). 

There are some key concepts of the SAC 

algorithm. Entropy regularization: Entropy 

regularization in SAC maximizes policy entropy 

and expected cumulative reward, encouraging 

exploratory behavior and better policy discovery 

in complex, uncertain environments (23). Off-

policy learning: SAC is an off-policy algorithm that 

can learn from data from any policy, enhancing 

efficiency by reusing past experiences from 

different policies (24). Dual Q-functions: The 

twin-critic setup in SAC employs two Q-functions 

to estimate the action-value function, thereby 

mitigating overestimation bias and ensuring more 

stable value function estimates (25). 
 

Materials and methods 
RL-based manipulation in a confined environment 

is the application of RL techniques to help robotic 

systems or agents perform manipulation tasks 

under specific constraints. Constrained 

environments can include scenarios with limited 

workspace, safety constraints, or other 

restrictions that the agent must consider while 

performing the manipulation tasks. Applying RL-

based manipulation in constrained environments 

requires a thoughtful design of the task, 

observation, action spaces, reward function, and 

safety considerations. It also involves extensive 

testing and evaluation to ensure that the agent 

can perform the manipulation task safely and 

effectively within the specified constraints. This 

section presents the details of Kinova Gen3 

robotic arm, integration between Kinova Gen3 

robotic arm and collision avoidance system. This 

section also talks about safety and effectiveness of 

the proposed RL based approach for collision 

avoidance. It explains about how RL based 

collision avoidance system improves security and 

effectiveness of robot’s ball balancing task. It also 

demonstrates the use of a SAC algorithm and 

describes the experimental simulation of the 

Kinova Gen3 robotic arm for ball balancing task 

by collision avoidance.
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Figure 1: Classification of RL algorithms 

 

Kinova Gen3 robot 
The company Kinova Robotics, which is renowned 

for producing creative and adaptable robotic 

solutions, created the 7-degree-of-freedom (7-

DOF) Kinova Gen3 robotic manipulator. With a 

focus on enhancing human-robot collaboration 

and improving the quality of life for people with 

mobility limitations, the Gen3 robot is intended 

for a range of applications, including research, 

manufacturing, and assistive technology. Figure 2 

depicts the primary parts of the Kinova Gen3 

system. Its design is compact and it weighs 

incredibly little. It features user-friendly 

programming and control interfaces, 

customizable end-effectors and accessories for 

task-specific adaptability, force and torque 

sensors for safety and feedback, and compatibility 

with various simulation programs like 

MATLAB/Simulink and robot operating system 

(ROS). These elements emphasize accuracy, 

modularity, and user-friendliness, and together 

they make the Kinova Gen3 robot a flexible and 

collaborative platform for a range of applications 

(26). 
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Figure 2: Primary parts of Kinova Gen3 robot “adapted from Kinova Robotics (26)” 

 

There are two main ways that the Kinova Gen3 

robotic arm can be controlled. The first is a high-

level application programming interface (API) 

that makes use of the Kinova Gen3 controller 

library's angular or cartesian control options. 

Through access to specific actuators, the second 

approach, the low-level API, enables users to 

directly control the robotic arm. This method is 

perfect for users who need more sophisticated 

control capabilities because it offers greater 

flexibility and faster feedback (27). 

For the Kinova Gen3 robot's obstacle avoidance, 

therefore, conventional rule-based programming 

techniques are either too limited or too time-

consuming. This would justify investigating RL 

methods, like SAC, as a substitute for 

automatically picking up obstacle avoidance 

techniques. While the Kinova Gen3 robotic arm 

may be adept at avoiding obstacles in controlled 

settings, it finds it difficult to apply these abilities 

to unfamiliar or novel situations. The goal of this 

work is to create SAC-based techniques that 

enhance generalization. One area of research that 

still needs to be addressed is how to train real 

Kinova Gen3 robots using RL algorithms such as 

SAC with less data and sample complexity. Closing 

this gap makes training more effective and 

realistic in real-world environments. A major 

concern is making sure the Kinova Gen3 robot is 

safe while it uses RL to learn obstacle avoidance 

techniques. Developing methods for integrating 

safety and risk reduction during training is one 

area of unmet research need. 
 

Integration: Kinova Gen3 robot and 

collision avoidance system  
Integrating a collision avoidance system with the 

Kinova Gen3 robot's ball-balancing task involves 

ensuring the safety of the robot, the environment, 

and any interacting objects or humans. Following 

are key points to consider for the integration: 

Sensors: Implement a combination of sensors 

such as cameras, LiDAR, and proximity sensors to 

detect the surroundings. Utilize force/torque 

sensors on the robot's joints to sense unexpected 

contact with objects. 

Collision detection: Develop algorithms for real-

time collision detection based on sensor data. 

Implement methods to distinguish between 

expected contacts (with the ball) and unexpected 

collisions. 

Collision response: Design a collision response 

strategy to ensure safe robot behavior. Integrate a 
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control algorithm to stop or adjust the robot's 

motion upon detecting a collision. 

Trajectory planning: Incorporate collision-

aware trajectory planning to generate robot paths 

that avoid obstacles. Consider dynamic 

replanning to adapt to changes in the 

environment during task execution. 

Obstacle/Human-robot interaction: Implement 

safety measures to detect and respond to the 

presence of obstacles/human in the robot's 

workspace. Integrate a obstacle/human-aware 

motion planning system to avoid collisions with 

obstacle/humans. 

Safe zones: Define safe zones where the robot 

can operate without collision concerns. 

Implement logic to guide the robot back to a safe 

state if it deviates from the predefined safe zones. 

Emergency stop mechanism: Integrate an 

emergency stop system that halts the robot's 

motion in critical situations. Ensure quick and 

reliable activation of the emergency stop 

mechanism. 

System monitoring: Implement continuous 

monitoring of the collision avoidance system's 

performance. Provide feedback and alerts to the 

operator in case of any issues or limitations in the 

collision avoidance system. 

Integration with control system algorithm(s): 

Integrate collision avoidance functionalities 

seamlessly with the Kinova Gen3 robot's control 

system. Ensure that the collision avoidance 

system does not compromise the performance of 

the ball-balancing task. 

Testing and validation: Conduct thorough 

testing in simulation environments and real-

world scenarios. Validate the collision avoidance 

system's effectiveness in preventing collisions 

while maintaining the efficiency of the ball-

balancing task. 

Documentation and training: Document the 

integration process, including parameters, 

algorithms, and safety considerations. Provide 

training for operators on the proper use and 

limitations of the collision avoidance system. 
 

Safety, performance, and effectiveness 
Integrating RL based collision avoidance system 

with the Kinova Gen3 robot's ball-balancing task 

holds significant promise in enhancing the robot's 

performance and safety. This integration 

empowers the robot to foresee potential collisions 

with objects or obstacles in its environment and 

dynamically adjust its movements to prevent 

these collisions. It helps robot to maintain its 

focus on balancing the ball while concurrently 

analyzing its surroundings and autonomously 

modifying its movements to avoid collisions with 

static or dynamic obstacle. This capability not 

only enhances the safety of the robot's operation 

but also ensures the continuity and efficiency of 

the ball-balancing task, minimizing interruptions 

caused by potential collisions. 

Moreover, the RL based collision avoidance 

system with the Kinova Gen3 robot's task can 

serve as a paradigm for safer human-robot 

interactions. It showcases the potential for 

collaborative environments where robots work 

alongside humans, mitigating the risk of accidents 

and collisions in shared spaces. This RL 

integration represents a significant stride in 

advancing both the performance and safety 

aspects of robotic tasks, setting a precedent for 

future applications of collision avoidance 

strategies in various robotics domains. 

Additionally, the adaptive nature of RL enables 

the robot to learn from its experiences and 

improve its collision avoidance strategies over 

time. By continuously updating its decision-

making processes based on real-time feedback, 

the system becomes more adept at identifying and 

avoiding potential collisions in various 

environments, thereby further enhancing the 

security and effectiveness of the robot's ball 

balancing task in diverse and dynamic settings. 
 

Experiment simulation 
The MATLAB/Simulink simulation uses a 

powerful 7-DOF manipulator called the Kinova 

Gen3 robot. The key goal of the robot is to 

maintain a ping pong ball balanced in the exact 

center of a flat surface (plate) that the robot's 

gripper is firmly grasping. During this task, the 

robot must demonstrate exceptional control and 

dexterity to avoid any collisions with potential 

obstacles present in its workspace. The ultimate 

goal is to showcase the robot's ability to perform 

delicate and precise tasks while ensuring the 

safety of the surrounding environment.  
 

Outline of steps  

The further part outlines the steps involved in 

achieving the experimental simulation setup. 

Perception and sensing: The robot arm needs to 

be equipped with sensors like cameras or depth 
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sensors to perceive the position and orientation of 

the ping pong ball and the flat surface. Algorithms 

for object detection and tracking can be used to 

determine where the ball is in the workspace of 

the robot. The flat surface's position and 

orientation must also be known by the robot, and 

they can either be assumed or calibrated prior to 

the task.  

Planning and control: Once the robot has the 

necessary information about the ball's position 

and the flat surface, it can plan a trajectory to 

approach and pick up the ball. Inverse kinematics 

will be used by the robot's control system to 

determine the joint angles necessary to move the 

end-effector (gripper) to the proper position and 

orientation for delicately picking up the ball.  

Balancing the ball: Once the ball is picked up, the 

robot will move to the center of the flat surface 

while holding the ball. To balance the ball, the 

robot's control system will need to constantly 

adjust the end-effector's position and orientation 

based on feedback from the sensors. Vision-based 

feedback control algorithms can be used to keep 

the ball at the center of the surface and maintain 

its stability.  

Avoiding obstacles: To prevent collisions with 

obstacles, the robot must have a collision 

detection and avoidance system. This can be 

achieved using proximity sensors or depth 

sensors to detect obstacles in the robot's vicinity. 

The control system should incorporate obstacle 

avoidance logic to adjust the robot's trajectory 

when it detects an obstacle in its path. In this 

experiment, solid brick is considered as a static 

obstacle and is placed with respect to the base 

link of the Kinova Gen3 robot. Table 1 provides 

the details pertaining to the dimension and frame 

of obstacle with respect to the robot.   

Task completion: Once the robot successfully 

balances the ping-pong ball in the center of the 

level surface without colliding, the assignment is 

deemed complete.  

Setting up RL environment in 

MATLAB/Simulink  
Figure 3 shows the Kinova Gen3 robotic arm 

block diagram along with the RL environment 

with a specified RL agent. This agent observes the 

environment, and based on observations, it 

provides positive and negative rewards for every 

correct and incorrect action, respectively. After 

receiving a maximum reward, the agent decides 

whether the work is done. 

The block diagram of the RL environment 

prepared in MATLAB/Simulink is shown in Figure 

4. The 7-DOF manipulator’s end-effector is 

connected to the plate and ball. The plate sensor 

and ball sensor are further attached to the blocks 

to have real-time data collection of ball balancing. 

These sensors send data as observations and 

actions based on which RL agent decides the 

rewards to be assigned. The training is said to be 

done once the manipulator learns the 

environment completely. 

The block diagram of the subsystem of the 

environment is shown in Figure 5. The first joint 

is actuated using a scope signal for the continuous 

movement of the arm. When the joint starts to 

actuate due to the signal, the RL agent SAC starts 

balancing the ball at the center of the plate. 

 

Table 1: Details of the dimension and frame of  

obstacle i.e. solid brick 

 

Description Value 

Dimensions (L,W,H) in m 0.08, 0.08, 0.3 

Density in kg/m3 1000  

Mass in kg 1.92  
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Figure 3: Kinova Gen3 robotic arm environment 

 

 

 
Figure 4: Block diagram of RL environment in MATLAB/Simulink     

 

                                                                                                                                                                                               

 
Figure 5: Block diagram of subsystem 
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Setting up training environment for the 

robotic arm in MATLAB/Simulink 
To train the robotic arm to balance the ball 

without colliding with the obstacle using the 

Simscape™ Multibody™ model, further steps were 

followed.  

Model the manipulator: (i) Create a Simscape™ 

Multibody™ model to represent the robotic arm 

(Kinova Gen3) with its multiple joints and links. 

(ii) Define the dynamics and kinematics of each 

joint in the model, including the actuated joints 

that receive torque signals as control inputs. The 

robot's control system utilizes inverse kinematics 

to determine the joint angles necessary to 

position and orient the end-effector (gripper) in 

the proper position for delicately picking up the 

ball. 

Model the ball: (i) Add a separate Simscape™ 

Multibody™ component to represent the ping 

pong ball with six degrees of freedom for 

translational and rotational motion. (ii) Define the 

mass, inertia, and other physical properties of the 

ball in the model. 

Model the plate: (i) Add another Simscape™. To 

represent the plate that is attached to the 

manipulator's end effector, use a Multibody™ 

component. Inverse kinematics will be used by 

the robot's control system to determine the joint 

angles necessary to move the end-effector 

(gripper) to the proper position and orientation 

for delicately picking up the ball. (ii) The plate 

should be constrained to move along with the end 

effector, meaning its position and orientation are 

affected by the manipulator’s movements. 

Implement the spatial contact force: (i) Use the 

Simscape™ Multibody™ Spatial Contact Force 

block to model the interaction between the ball 

and the plate when they come into contact. (ii) 

Configure the block to calculate and apply the 

contact forces and torques between the ball and 

the plate based on their interaction. 
 

Training the robotic arm in 

MATLAB/Simulink environment  
The following steps are used to train the robotic 

arm to balance the ball without colliding with the 

obstacle: 

(a) Define environment 

(b) Create agent 

(c) Training an agent 

(d) Simulate trained agent 

(a) Define environment: In the ball-balancing 

environment, the RL agent interacts with a 

simulation where the goal is to balance the ball on 

the plate using the Kinova Gen3 robotic arm while 

avoiding obstacles. The environment is defined as 

follows: 

Observation space: The observation space is a 

continuous space that is represented by a vector 

with 22 elements. A distinct observation is 

associated with each element of the vector. The 

elements that make up the observation vector are 

as follows: 

1. Joint angles of the two actuated joints 

(continuous). 

2. The two actuated joints' joint velocities 

(continuous). 

3.  Positions of the balls (x and y offsets from the 

middle of the plate) (continuous). 

4. Ball velocities (derivatives of x and y) 

(continuous). 

5.  Plate orientations (quaternions) (continuous). 

6. Plate velocities (quaternion derivatives) 

(continuous). 

7.  Joint torques since the previous time step 

(continuous). 

8.  Ball's mass and radius (constants). 

Each of these components is a continuous value 

that reflects the status of the environment at a 

particular time step. 

Action space: The action space is also a 

continuous space represented by a 2-element 

vector. The normalized joint torque value for each 

of the two actuated joints on the robotic arm is 

represented by an element of the vector. The 

action vector is continuous and ranges from -1 to 

1 for each joint, where -1 represents maximum 

negative torque, 0 represents no torque (i.e., 

neutral position), and 1 represents maximum 

positive torque. The agent selects the continuous 

joint torque values as actions at each time step to 

control the robotic arm and balance the ball on 

the plate effectively. 

Reward function: The reward function used in 

the environment comprises three components: 

1. rball: A reward for the ball going toward the 

plate's center (continuous). 

2. rplate: A penalty for plate orientation 

(continuous). 

3. raction: A penalty for control effort 

(continuous). 
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Each of these components is a continuous value, 

providing feedback to the agent about its 

performance and behavior during the simulation. 

By specifying continuous observation and action 

spaces, the environment allows the RL agent to 

learn precise control strategies to balance the ball 

on the plate effectively. The agent can fine-tune its 

actions based on the continuous observations and 

the provided reward signal to optimize its 

behavior and achieve the task’s objective. The 

number of observations and actions from the 

environment are numObs = 22; and numAct = 2 

respectively. The continuous observation and 

action specifications are supported by the 

Simulink environment interface. A reset function 

is responsible for randomly initializing the ball’s 

initial x and y positions relative to the center of 

the plate. This function ensures that each time a 

new episode starts, the ball is placed at a different 

position on the plate, introducing variability in the 

initial conditions for the simulation. It is 

necessary to designate Sample Time (Ts) and 

Simulation Time (Tf) as Ts = 0.01 s; and Tf = 10 s 

respectively. 

(b) Create agent: The agent is a SAC agent in this 

simulation. To approximate the value of the 

policy, SAC agents use one or two parametrized Q-

value function approximators. The Q-value 

function critic takes the present observation and 

action as inputs and produces a single scalar that 

represents the estimated discounted cumulative 

long-term reward that the agent would earn by 

implementing the strategy in the state 

corresponding to the present observation. The 

SAC agent in this example employs two critics for 

state and observations. The two critics have 

considered updating each state and action space 

for joint movement. The neural network used to 

represent each critic's parametrized Q-value 

function has two input layers: one for the 

observation channel (provided by 'obsInfo') and 

the other for the action channel (given by 

'actInfo'). The scalar value corresponding to the 

Q-value estimation is returned by the output 

layer. 

For each critic's neural network, model utilize an 

array of layer objects to specify each network 

path. Each path's input and output layers are 

given names as well. These names connect the 

pathways and expressly relate the network input 

and output levels to the pertinent environmental 

channels. By structuring the neural networks in 

this effective way to model the Q-value functions 

for the SAC agent with two critics. This design 

facilitates the agent’s learning and decision-

making processes throughout the simulation. The 

critic neural network is shown in Figure 6.  

To implement the SAC agent with two critics, it is 

essential to create and initialize two dlnetwork 

objects. These dlnetwork objects represent the 

neural networks used as the critics in the SAC 

architecture.  

SAC agents are created for continuous action 

spaces, and they use a continuous Gaussian actor 

to carry out a parametrized stochastic policy. This 

actor neural network creates random behaviors 

by selecting samples from a Gaussian probability 

distribution. The Gaussian actor has two output 

layers, each with the same number of elements as 

the action space dimensions. Each action 

dimension's mean values are provided by one 

output layer, while the other output layer 

provides each dimension's standard deviations. A 

Softplus or rectified linear unit (ReLU) layer 

ensures the standard deviations are non-negative. 

Importantly, the 'UpperLimit' and 'LowerLimit' 

parameters of 'actInfo,' utilized to generate the 

actor, are read by the SAC agent to determine the 

action range. Internally, the agent scales the 

distribution and restricts the action to the 

predetermined bounds. As a result, it is 

unnecessary and undesirable to include a 

"tanhLayer" as the final nonlinear layer in the 

mean output path. To view the actor neural 

network, one can use the plot function 

plot(actorNetwork). Figure 7 shows the actor 

network. 
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Figure 6: Critic Network 

 

 

Figure 7: Actor network 

 

The actor function is created using the 

rlContinuousGaussianActor class, which is 

designed for handling continuous action spaces 

with Gaussian policies. This function defines the 

neural network architecture for the actor, which 

generates actions based on observations. An 

experience buffer with a maximum capacity of 1 

million samples is used in this simulation to train 

the SAC agent. Mini-batches of size 128 are 

randomly chosen from this buffer during training 

to update the agent's neural network. The agent 

employs a discount factor of 0.99, or about 1. A 

higher discount factor tends to favor long-term 

rewards over short-term rewards. This means the 

agent is more inclined to prioritize actions that 

lead to higher cumulative rewards over extended 

periods rather than focusing solely on immediate 

rewards. The Adam optimization technique 

updates the actor and critic neural networks 

throughout the simulation. The optimizer is set up 

with a gradient threshold of 1 and a learning rate 

of 0.0001 (1e-4). This setup ensures that the 

optimization process efficiently updates the 

network weights based on the observed gradients 
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while preventing large gradient magnitudes that 

could lead to unstable training. 

(c) Training an agent: For training an agent, the 

rlTrainingOptions is used to specify the training 

parameters: 

1. 200 maximum episodes, each having a 

maximum runtime of floor (Tf/Ts) time steps. 

2. Training should be stopped when the agent 

obtains an average cumulative reward of 

more than 450 over 100 consecutive 

episodes. 

3. To expedite training, use the Parallel 

Computing ToolboxTM software and set the 

UseParallel option to true. 

4. To use the Use Parallel option, make sure the 

Parallel Computing ToolboxTM software is 

installed and correctly configured. This will 

expedite training and increase its 

effectiveness. 

By changing the 'doTraining' argument to false 

and loading a pre-trained agent to speed up the 

execution of this example. When the ball is 

released on the plate, the Kinova Gen3 robotic 

arm fails to balance it before training, as shown in 

Figure 8, and the ball falls down from the plate. 

Set 'doTraining' to true if you want to start over 

and train the agent from scratch but be aware that 

this will require a lot of calculation and could take 

a while. The trained agent is used to complete the 

remaining jobs effectively for the time being. 

(d) Simulate trained agent: The ball's initial 

position with respect to the plate's center must be 

provided. Set the userSpecifiedConditions flag to 

false to randomize the starting ball position 

during the simulation. For simulation 

configuration, create a simulation options object. 

For the simulation episode, the agent will only be 

simulated for a maximum of floor (Tf/Ts) steps. 

Define initial conditions for the ball: 

ball.x0 = -0.125 + 0.25 * rand; % Initial x distance 

from plate center (meters) 

ball.y0 = -0.125 + 0.25 * rand; % Initial y distance 

from plate center (meters) 

Figure 9 shows the status of Kinova Gen3 robotic 

arm when RL training starts. The Kinova Gen3 

arm, when trained with SAC, is now able to 

balance the ball on the plate after avoiding 

collision with the static obstacle. To visualize the 

trajectory of the ball, Figure 10 can be used. This 

figure will display the movement of the ball over 

time, allowing you to observe its path and 

position changes. 

      
Figure 8: Kinova Gen3 robotic arm before training        Figure 9: Kinova Gen3 robotic arm when RL 

training starts   

 

Figure 11 shows the Kinova Gen3 7-DOF 

manipulator attached with a plate to its end 

effector, and a Ping Pong ball is placed over to be 

balanced by the arm while manipulating through 

the defined RL environment. The robot is trained 

with a SAC algorithm to avoid collision with the 

grey-colored solid obstacle placed in the RL 

environment. After successful training, the Kinova 

Gen3 robotic arm is able to balance the ball on the 

plate without colliding with the obstacle present 

in the environment. 

Figure 12 shows the collision avoidance of the 

manipulator with the black color solid obstacle 

present in the environment. After collision 

avoidance, the manipulator is still balancing the 

ball on the plate in the environment. 
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Figure 11: Arm balancing the ball on plate 

 

 

 

 

 

 

 

 

Figure 12: Arm balancing the ball on plate without colliding with the obstacle 

 

 

 

Figure 10: Ball position on plate after successful training 
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Results 
In recent years, there has been a remarkable 

surge in the application of artificial intelligence 

(AI) techniques within the field of robotics,  

particularly for complex manipulation tasks. This 

paper provides a comprehensive approach of SAC 

algorithm of RL methodology pertaining to AI-

driven manipulation tasks on Kinova Gen3 Robot 

using MATLAB/Simulink.  

 

 

The accompanying graphs, specifically shown in 

Figure 13 and Figure 14, offer a visual 

representation of the learning process of a Kinova 

Gen3 robotic arm over multiple episodes of a RL 

task. In the initial stages, it is observed that the 

episode rewards exhibit a decreasing trend as the 

arm interacts with the environment. However, as 

the number of episodes progresses, a notable 

transformation occurs. The Kinova Gen3 robotic 

arm begins to learn and adapt from its 

interactions with the environment, resulting in a 

substantial increase in episode rewards. 

 

 
Figure 13: Graph of episode number vs episode reward 

 

 

 
 

Figure 14: Graph of RL episode manager available in MATLAB/Simulink 
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Table 2. Theories and data to support the benefits of current work 

 

Reference 

No. 

Focus Strength Limitations 

(5) Internet of Skills 

framework, testing 

RL methods without 

demonstrations 

- Improvement in performance on 

inverse kinematics and obstacle 

avoidance tasks  

- PPO recommended for stability  

- Foundation for developing an 

Internet of Skills 

Policy proximal 

optimisation (PPO) 

recommendation, 

limited comparison to 

recent RL 

advancements 

(28) Indoor inspection 

tasks in confined 

areas 

- Stable autonomous navigation  

- Safe travel configuration  

- Hardwired data connection 

Limited information on 

specific tasks, future 

studies needed 

(29) Optimal path 

determination using 

3D cubic Bézier 

curves 

- Modification of path without 

changing control points 

- Hierarchical clustering for optimal 

path based on curvature, torsion, 

and path length  

- Works in 3D environments with 

different obstacles 

Lack of real-world 

testing, focus on specific 

shape parameters 

(30) Torque reduction in 

confined spaces 

- Reduction in required actuator 

torque with bracing contacts 

- Realistic deployment potential in 

confined spaces for collaborative 

manufacturing 

Planning time 

constraints, fidelity of 

dynamics model 

 

(31) 

Safe robot motion in 

the presence of 

humans 

- Theoretical stability properties  

- Productivity assessment 

- Potential for industrial applications  

- Replanning in the presence of 

unexpected human reactions 

Lack of real-world 

human interaction 

testing 

(32) Path and joint 

configuration 

planning for 

redundant 

manipulators 

- Effective solution for 3D obstacle 

avoidance  

- Combining sampling-based and 

optimization-based algorithms 

- Suitable for path and joint 

configuration planning 

Limited exploration of 

optimal end-effector 

paths 

(33) Payload increase for 

a manipulator 

- Use of B-spline parametric curves 

for smooth joint trajectories 

- Reliable payload increase for 

Kinova Gen3  

- Exploration of optimization 

parameters for efficiency 

Limited exploration of 

dynamic constraints, 

assumptions in 

trajectory generation 

 

 

Robot simulation
The successful training process provides an 

evidence that the Kinova Gen3 robotic arm has 

achieved a profound understanding of the RL 

environment. This is highlighted by the arm 

consistently receiving maximum rewards, with 

some episodes even reaching a remarkable score 

of up to 454. The primary objective of the task is 

to maintain balance while delicately maneuvering 

a ball on a plate, all the while avoiding collisions 

with obstacles strategically placed within the 

environment. In the depicted graph, which shows 

the relationship between episode number and 
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episode rewards, there is an initial decline in 

episode rewards. However, as the number of 

episodes progresses, there is a clear trend of the 

Kinova Gen3 robotic arm learning from its 

interactions with the environment, ultimately 

leading to the attainment of maximum rewards. In 

Figure 13 and Figure 14 the light blue color 

represents the highest episode rewards achieved 

in each episode, while the yellow color 

corresponds to the growing number of episodes 

conducted. The dark blue shade, on the other 

hand, signifies the seamless training process of 

the robotic arm utilizing the SAC algorithm. 

 

Discussion 
This paper only focuses on the static obstacle 

placed in the robot’s path but when trained in 

different RL environments with dynamic 

obstacles the results may vary depending on the 

training episodes and parameters. The training of 

SAC will be further dependent on the RL 

environment created and differentiated according 

to the robot and particular task it is trained with. 

RL offers a suite of benefits for obstacle avoidance 

in various domains. It enables the development of 

robust and flexible obstacle avoidance systems 

that can evolve and improve their strategies over 

time, making them well-suited for real-world 

applications where environmental conditions may 

change unpredictably. Table 2 details about the 

theories and data from the previous related 

research work to support the benefits of current 

work. The research findings mentioned in the 

Table 2 reveal the important limitations of the 

related work that provide opportunities for 

further development in the field of obstacle 

avoidance for robotic arm manipulation. Some 

studies lack real-world trials, which are important 

in ensuring the effectiveness and reliability of 

practical algorithms and systems. Additionally, 

humans tend to focus on specific aspects, such as 

planning the right path or optimization, without 

having to delve into many robot tasks. 

Computational efficiency, especially planning 

time, has been cited as a limiting factor in some 

projects. The latest research prioritizes reducing 

planning time for time allocation. While some 

research work focuses on the use of sensors. 

Recent developments in this field often explore 

advanced technology, ML, and cognitive 

algorithms to increase the power and flexibility of 

robotic systems. 

This previous related research includes different 

tasks and algorithms but did not focus on the 

obstacle avoidance in RL environments. To 

overcome this research gap, the RL based obstacle 

avoidance of Kinova Gen3 robotic arm is 

performed. The methodology used in this 

research work is based on recent developments 

and can reduce time required to train the robot 

with reduced training episodes.  

In the initial training phase, the Kinova Gen3 

robotic arm was not able to balance the ball on 

the plate and failed to avoid collision with the 

obstacle. The Kinova Gen3 robotic arm initially set 

to 6000 episodes for training but as training 

episodes reach to 200 the agent/robot learned to 

avoid collision with the static obstacle present in 

the environment. The maximum rewards assigned 

to these episodes is 454 and robots were able to 

achieve it in 10 seconds after completion of 

training.  

In Figure 15 it is displayed that the robot was 

learning form the environment and due to that 

the rewards are negative. But after the successful 

training of the robot, as shown in Figure 16, the 

maximum reward of 454 were assigned to the 

robot which indicates that the training turned out 

to be successful and robot avoided the collision 

with the obstacle. 

Term “average reward” in Figure 15 and Figure 

16 typically refers to the expected sum of rewards 

obtained by the agent over time, averaged across 

multiple episodes. The average reward in SAC is a 

key metric used to evaluate the performance of 

the learned policy. It reflects how well the agent is 

doing in the environment over a period of time. 

The term “episode Q0” in Figure 14, Figure 15 and 

Figure 16 generally refers to the initial estimate 

or initialization of the Q-function at the beginning 

of each episode. In SAC, Q0 represents the initial 

estimate for the Q-function at the start of an 

episode before any learning updates occur. 
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Figure 15: Before SAC training 

 

 

 

 
Figure 16: After SAC training  

 

The Kinova Gen3 7-DOF manipulator successfully 

avoided the collision with the static obstacle 

present in the environment using the SAC 

algorithm based on RL. The Simulation took 10 

seconds after successful training and proved to be 

the stable algorithm for the ball-balancing task 

with a maximum reward of 454. After achieving 

maximum rewards, the Kinova Gen3 robot 

manipulator performed the ball balancing task 

without colliding with the static obstacle present 

in the RL environment. 

Future research may include dynamic obstacles 

present in the environment. This problem can be 

further solved with other RL-based algorithms, 

such as deep deterministic policy gradient 

(DDPG) and asynchronous advantage actor critic 

(A3C) algorithm, and one can compare the results. 

 

Abbreviation 
Abbreviations used in this manuscript are defined 

at their first occurrence in the manuscript. 

However, for quick reference, a consolidated list 

is provided as below:  

7-DOF: 7-degree-of-freedom 
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A2C: Advanced Actor Critic 

A3C: Asynchronous Advantage Actor Critic 

ACER: Actor Critic with Experience Replay 

ACLA: Actor-Critic Learning Automation 

AI: Artificial Intelligence 

API: Application Programming Interface 

C51: Categorical DQN 

DDPG: Deep Deterministic Policy Gradient 

DQN: Deep Q-Network 

DR-DQN: Delayed-Reward Deep Q-Network 

HER: Handsight Experience Replay 

I2A: Imagination-Augmented Agents 

MBMF: Model-Based Priors for Model-Free 

MBVE: Model Based Value Expansion 

MCTS: Monte-Carlo Tree Search 

ML: Machine Learning 

NAF: Normalized Advantage Function 

PG: Policy Gradient 

PPO: Policy Proximal Optimisation 

QR-DQN: Quantile-Regression Deep Q-Network 

QV-Learning: Quality-Value Learning 

ReLU: Rectified Linear Unit  

RL: Reinforcement Learning 

ROS: Robot Operating System 

SAC: Soft Actor-Critic 

SARSA: State-Action-Reward-State-Action 

TD: Temporal Difference 

TD3: Twin-Delayed Deep Deterministic Policy 

Gradient 

TRPO: Trust Region Policy Optimization 
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