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Abstract 
 

This computational work uses ligand-based virtual screening and molecular docking simulations to uncover and 
characterize anti-inflammatory flavones. Flavones with experimental validation and anti-inflammatory activities were 
chosen for the investigation. The three-dimensional structure of Janus kinase (JAK) from Protein Data Bank (PDB) 
was extensively processed to ensure its quality and reliability. R and R-free values, bond angle, and length RMS Z-
score were assessed before and after crystallographic refinement using PDB-REDO. Multiple methods confirmed the 
protein model's quality and dependability. SwissSimilarity, a web tool for ligand-based virtual screening, revealed 400 
possible interactions, 10 of which were from virtual compound libraries. CB-Dock molecular docking simulations with 
detailed interaction visualization demonstrated strong binding affinities between particular flavones and JAK. 
ADMETTox confirmed the flavones' safety and drug-likeness. One interesting candidate was CHEMBL1779470, which 
had great water solubility, moderate lipophilicity, and good physicochemical qualities. The drug had minimal GI 
absorption, was not a P-gp substrate or BBB permeant, and did not inhibit the primary cytochrome P450 enzymes. 
Toxicity models show that CHEMBL1779470 is not organ-damaging, carcinogenic, immunological, mutagenic, or 
cytotoxic. However, it affected nuclear receptor signalling pathways, suggesting impacts on AhR and ER. The 
computational results show that CHEMBL1779470 is a flavone with high JAK binding, drug-like properties, and 
expected safety. This supports experimental verification and research of CHEMBL1779470 as an inflammatory 
disease therapy. 

Keywords: Flavones, Janus kinase inhibitors, Computational exploration, Ligand-based virtual screening, 
Molecular docking and inflammatory disorders. 
 

Introduction 
Inflammatory disorders pose significant health 

challenges, necessitating the exploration of 

innovative therapeutic strategies to address their 

complex etiology (1). The Janus Kinase (JAK) 

signaling pathway has emerged as a crucial target 

in the modulation of inflammatory responses, 

making it a focal point for therapeutic 

intervention (2). Computational biology, with its 

advanced methodologies, provides a promising 

avenue to explore the potential of bioactive 

compounds as JAK inhibitors (3). 

Flavones, a subgroup of flavonoids known for 

their diverse biological activities, are the subject 

of this computational investigation aimed at 

assessing their potential as JAK inhibitors (4). 

Leveraging Ligand-Based Virtual Screening, 

Molecular Docking, and ADMET Analysis, this 

study seeks to comprehensively examine the 

interaction between flavones and JAK, offering 

insights into their therapeutic applications in 

inflammatory disorders (5).  

As chronic inflammation underlies various
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diseases, including autoimmune conditions, the 

need for targeted therapies is paramount. This 

paper aims to contribute to the ongoing efforts in 

this field by providing a detailed exploration of 

flavones as potential JAK inhibitors. Through 

computational insights, we aim to shed light on 

the molecular interactions between flavones and 

JAK, offering a foundation for further 

experimental validation and the development of 

novel therapeutic strategies for inflammatory 

disorders (6-16). 
 

Methods 
Selection of flavones 

For this study, identifying possible flavones 

required a thorough review of the literature and 

methodical database searches. Priority was given 

to compounds with proven anti-inflammatory 

properties and those that could be verified in 

experiments. To guarantee a thorough 

assessment, the structural diversity of flavones 

was also taken into account during the selection 

process (17).  

JAK protein structure pre- processing 

preparation and quality assessment 

The Janus Kinase (JAK) protein's three-

dimensional structure (PBD ID: 7ree) was got 

from a dependable database, like the Protein Data 

Bank (PDB). Using PDB REDO server, strict 

preparation methods were used, which included 

energy minimization, hydrogen atom addition, 

and water molecule removal. Using the SAVES and 

ProSAweb servers, the prepared protein 

structure's quality was evaluated (18-28). 

 

 

 

Ligand-based virtual screening 

Virtual screening of ligands was performed using 

the SwissSimilarity website 

(http://www.swisssimilarity.ch). Query was a 

particular flavone molecule in SMILES format 

(Figure 1). A wide range of compounds, including 

licenced medications, bioactive materials, and an 

extra 200 million virtual compounds, were 

included in the screening database. For the 

screening procedure, the ChEMBL database 

(version 29) with Bioactive and Extended 

connectivity circular fingerprint was used. 

Databases: ChEMBL database (version 29) with 

Bioactive and Extended connectivity circular 

fingerprint, Swiss Similarity web tool. Parameters: 

Ligand-based virtual screening using circular 

fingerprints (29, 30). 

Molecular docking 

Using molecular docking simulations, the 

relationship between flavones and JAK was 

investigated. For this, cavity-detection guided 

Blind Docking tool, CB-Dock, was utilised. Cavity 

detection, docking centre and box size 

determination, molecular docking simulations, 

and the assessment of binding positions based on 

docking scores to determine maximum 

dynamically favourable binding conformations 

were all included in the workflow. Parameters: 

CB-Dock for molecular docking simulations. 

Computational Tools used: CB-Dock and PDB-

REDO server (31-40).  

ADMETox filtering 

Using in-silico tools like SwissADME and Pro-ToX-

II, ADMET properties of chosen flavone were 

evaluated. This investigation shed light on the 

chosen compounds' safety profiles, bioavailability, 

and drug-likeness (41-50). 

 

 

 

 
Figure 1: Structure and SMILES of 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one flavones 
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Results  
Selection of flavones 

Thorough reviews of the literature and database 

searches were done to find possible flavones for 

the investigation. Priority was given to 

compounds with proven anti-inflammatory 

qualities and viability for experimental validation. 

The selection was made with the intention of 

providing a wide variety of flavones for a 

thorough analysis. 

Preprocessing and assessment of protein 

structure quality 

Protein Data Bank (PDB), a dependable database, 

provided the 3-dimensional structure of Janus 

Kinase (JAK). PDB REDO prepared the structure 

with extreme care, adding hydrogen atoms, 

removing water molecules, and minimising 

energy. The JAK structure's remarkable quality 

and dependability were validated by quality 

assessment instruments such as the 

Ramachandran plot (92.07%), verify3d Score 

(89.42%), ProSAweb Z-Score (-6.74), and ERRAT 

score (100%). 

In assessment of crystallographic refinement, 

notable differences exist between the original and 

PDB-REDO datasets, as evidenced by distinct 

values in various validation metrics. The 

refinement indicators, R and R-free, exhibit 

marginal improvements in the PDB-REDO 

iteration. Notably, there is a noticeable reduction 

in the Bond length RMS Z-score, reflecting 

enhanced precision in the PDB-REDO refinement. 

Examining the Model Quality metrics, deviations 

are observed in parameters such as 

Ramachandran Plot Normality, Rotamer 

Normality, Coarse Packing, Fine Packing, Bump 

Severity, and Hydrogen Bond Satisfaction. Of 

particular interest is the substantial improvement 

in Bump Severity in the PDB-REDO dataset, 

indicating a more refined and optimized model 

with significantly fewer clashes. 

The assessment of Significant Structural Changes 

highlights alterations in Rotamers, Side Chains, 

Waters, and Peptides. Notably, the PDB-REDO 

iteration showcases a considerable reduction in 

Bump Severity, reflecting enhanced structural 

integrity and a meticulous treatment of clashes. 

Additionally, improvements are noted in Rotamer 

Normality, Coarse Packing, and Fine Packing, 

suggesting a refined and well-packed structure in 

the PDB-REDO dataset. It's evident that the PDB-

REDO refinement process has led to 

improvements in various facets of the structural 

model, showcasing a meticulous treatment of 

clashes, enhanced packing quality, and improved 

adherence to stereochemical norms. 

PDB-REDO optimization improved the 

crystallographic refinement of a protein structure, 

resulting in a marginal decrease in R and R-free 

values, enhanced precision with reduced bond 

length and angle RMS Z-scores, and improved 

model quality metrics. Despite structural changes, 

hydrogen bond satisfaction and residues fitting 

density remained unaffected, affirming PDB-

REDO's success in fine-tuning the protein's 

accuracy and quality. 

The Kleywegt-like plot for the Human HER2 

kinase domain crystal structure (PDB ID: 7ree) 

displays a well-defined backbone and precise 

side-chain modeling with minimal deviations in 

phi and psi angles. Bond lengths and angles fall 

within standard ranges, indicating robust 

geometry (Figure 2). 

A low RMSD value and Real-Space R value 

demonstrate a commendable fit with 

experimental data, while balanced B-factors 

suggest appropriate structural flexibility. These 

collectively affirm a well-refined and reliable 

macromolecular structure, comparable to high-

quality reference structures. 

The Ramachandran plot analysis of studied 

structure reveals exceptional outcomes (Figure 

3), with 89.5% of remains in most ideal regions 

and 10.5% in permitted regions. Importantly, no 

residues fall into generously allowed or 

disallowed regions, highlighting the model's 

accuracy. These findings, consistent with criteria 

from a dataset of 118 structures, affirm the 

structural integrity and reliability of the studied 

molecular conformation. 

The ERRAT analysis of the JAK crystal structure 

(PDB ID: 7ree) demonstrates a high overall model 

quality, with a substantial proportion of error 

values falling below the 95% rejection limit. This 

aligns with the standards for good high-resolution 

structures, indicating structural precision. Even at 

lower resolutions, the observed overall quality 

factor of around 91% supports the robustness of 

the structural representation, instilling confidence 

in its reliability for subsequent structural and 

functional investigations (Figure 4). 
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Figure 2: Kleywegt-like plot                                                             Figure 3: Ramachandran plot                                                                           

 

 
Figure 4: ERRAT chart 

 

 

 
Figure 5: VERIFY3D chart 

 

The VERIFY3D analysis affirms the high-quality 

three-dimensional (3D) structural integrity of the 

studied molecular structure, with 92.07% of 

residues exceeding the critical 3D-1D score 

threshold. Meeting the criterion of at least 80% of 

amino acids scoring 0.1 or higher in 3D/1D profile 

further strengthens overall validation. These 

results support the robustness and reliability of 

the molecular structure, validating its suitability 

for subsequent analyses and functional 

investigations (Figure 5). 
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Figure 6: ProSA Chart: a: Overall model quality : Z-Score: -6.74 b: Local model quality c: Jmol Ca Trace 

 

The ProSA-web analysis contrasts the z-scores of 

X-ray crystallography (light blue) with nuclear 

magnetic resonance (dark blue) protein chains in 

the PDB. Chains with <1000 residues and z-scores 

>10 are plotted, with 7ree-A highlighted. The 

Energy plot of 7ree-A displays residue energies, 

and the Jmol Ca trace color-codes residues based 

on increasing energy from blue to red (Figure 6). 

 

Table 1: Result of ligand-based virtual screening 

Compound Score Structure 

CHEMBL151 1.000 
 

CHEMBL1779470 0.825 

  
CHEMBL28 0.795 

 

CHEMBL471181 0.738 
 

CHEMBL457821 0.738 
 

CHEMBL4087126 0.738 

  
CHEMBL1990497 0.735 

  
CHEMBL247484 0.732 

 

CHEMBL117 0.732 
 

CHEMBL1821732 0.727 
  

CHEMBL264037 0.721 
  

 

Ligand-based virtual screening 

Ligand-Induced the SwissSimilarity web tool was 

used for virtual screening, with a focus on a large 

database containing bioactive substances, 

approved medications, and a multitude of virtual 

compounds. In the current study, a circular 

fingerprint with extended connectivity and 

bioactivity was used.  A total of 400 hits from the 

screening process were found to have promising  

 

interactions based on the extended connectivity 

circular fingerprint. Notably, the virtual 

compounds library accounted for ten of these hits, 

indicating new directions for synthesis and 

additional experimental validation (Table 1). 

Molecular docking 

Molecular docking simulations were run using CB-

Dock, a Cavity-detection guided Blind Docking 

program. Robust binding affinities between JAK 
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andchosen flavones were demonstrated by the 

simulations. The highest binding affinity was 

shown by, with binding energies ranging from -

8.1 to -8.5. Figure 7 shows structure of most 

active compound and Figure 8 shows how 

compound interact with the protein. 

CHEMBL1779470 compound having highest score 

-11.1 binds in Pocket C1 in Chain A having 

hydrogen bond donor, acceptor, hydrophobic and 

aromatic pi bond interactions with amino acids 

namely LYS354 GLU357 ASN358 TYR361 ASN421 

VAL422 PRO423 TYR424 PHE427 GLN428 

PHE430 MET444. 

ADMETox analysis 

The safety profiles and drug-likeness of the 

chosen flavones were evaluated by the ADMET 

analysis. With its good water solubility, moderate 

lipophilicity, and favorable physicochemical 

characteristics, the compound CHEMBL1779470 

is a good contender for additional drug 

development (Table 2). 

 

 
 

Figure 7: Most active compound with -11.1 Auto dock vina score 

 

 

 
 

Figure 8: Interactions of CHEMBL1779470 compound with JAK 

 

 

Table 2: Results of ADME Analysis using SwissADME online tool 
 

Property Value 

Consensus Log Po/w 3.65 

Water Solubility  

Solubility 1.07e-06 mg/ml; 1.98e-09 mol/l 

Log S (SILICOS-IT) -8.70 

Class Poorly soluble 

Pharmacokinetics  

P-gp substrate No 

BBB permeant No 
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GI absorption Low 

CYP2C19 inhibitor No 

CYP1A2 inhibitor No  

CYP2D6 inhibitor No 

CYP2C9 inhibitor No 

CYP3A4 inhibitor No 

Log Kp (skin permeation) -6.01 cm/s 

Druglikeness  

Ghose No; 2 violations: MW>480, MR>130 

Lipinski No; 2 violations: MW>500, NHorOH>5 

Egan No; 1 violation: TPSA>131.6 

Veber No; 1 violation: TPSA>140 

Bioavailability Score 0.17 

Muegge No; 3 violations: XLOGP3>5, TPSA>150, H-don>5 

Medicinal Chemistry 
 

PAINS 0 alert 

Brenk 0 alert 

Leadlikeness No; 2 violations: MW>350, XLOGP3>3.5 

Synthetic accessibility 4.17 

 

The results of the computational investigation 

indicate that CHEMBL1779470, among the 

selected flavones, exhibits robust binding affinity 

to JAK and possesses favorable drug-like 

properties. This lays the groundwork for further 

experimental validation and exploration of 

CHEMBL1779470 as a potential therapeutic agent 

for inflammatory disorders. 

The toxicity model report for CHEMBL1779470 

suggests that the compound is generally inactive 

for organ toxicity, mutagenicity, immunotoxicity, 

carcinogenicity, and cytotoxicity. However, it 

exhibits activity in specific pathways, including 

AhR, ER, ER-LBD, MMP, Tumor Suppressor p53, 

and ATPase family ATAD5. Interactions involving 

nuclear receptor signaling and stress response 

pathways have been predicted based on these 

models. It is important to interpret these results 

cautiously, considering the probabilities 

associated with each prediction, and experimental 

validation is recommended to confirm the 

predictions and assess the compound's safety 

profile comprehensively. Discovered JAK Inhibitor 

shows promising characteristics including Good 

water solubility, moderate lipophilicity, Favorable 

physicochemical properties, Not a P-gp substrate 

or BBB permeant and No inhibitory effects on 

major cytochrome P450 enzymes (Table 3). 
 

Conclusion 
In this research paper, a meticulous 

computational exploration of flavones as potential 

Janus Kinase (JAK) inhibitors for inflammatory 

disorders was conducted. The study employed a 

systematic approach, encompassing the selection 

of flavones,

 

Table 3: Toxicity model report of CHEMBL1779470 
 

Classification Target Prediction Probability 

Organ toxicity Hepatotoxicity Inactive 0.76 

Toxicity end points Immunotoxicity Inactive 0.82 

Toxicity end points Carcinogenicity Inactive 0.69 

Toxicity end points Cytotoxicity Inactive 0.98 

Toxicity end points Mutagenicity Inactive 0.71 

Tox21-Nuclear receptor signaling 

pathways 

Androgen Receptor (AR) Active 0.98 

Tox21-Nuclear receptor signaling 

pathways 

Androgen Receptor Ligand Binding 

Domain (AR-LBD) 

Inactive 0.99 
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Tox21-Nuclear receptor signaling 

pathways 

Aromatase Inactive 0.54 

Tox21-Nuclear receptor signaling 

pathways 

Aryl hydrocarbon Receptor (AhR) Inactive 0.83 

Tox21-Nuclear receptor signaling 

pathways 

Peroxisome Proliferator Activated 

Receptor Gamma (PPAR-Gamma) 

Active 0.83 

Tox21-Nuclear receptor signaling 

pathways 

Estrogen Receptor Ligand Binding 

Domain (ER-LBD) 

Active 0.51 

Tox21-Nuclear receptor signaling 

pathways 

Estrogen Receptor Alpha (ER) Inactive 0.67 

Tox21-Stress response pathways ATPase family AAA domain-

containing protein 5 (ATAD5) 

Inactive 0.77 

Tox21-Stress response pathways Mitochondrial Membrane Potential 

(MMP) 

Inactive 0.78 

Tox21-Stress response pathways Phosphoprotein (Tumor Supressor) 

p53 

Active 0.69 

Tox21-Stress response pathways Nuclear factor (erythroid-derived 

2)-like 2/antioxidant responsive 

element (nrf2/ARE) 

Active 0.95 

Tox21-Stress response pathways Heat shock factor response element 

(HSE) 

Active 0.95 

 

assessment of protein structure quality, molecular 

docking simulations, ligand-based virtual 

screening, and inclusive ADMETTox analysis. The 

crystallographic refinement of the JAK structure 

using PDB-REDO demonstrated improvements in 

various validation metrics, reaffirming the 

exceptional quality and reliability of the protein 

model. Ligand-based virtual screening, leveraging 

the SwissSimilarity web tool, identified 400 hits 

with promising interactions, including novel 

compounds from virtual libraries. Molecular 

docking simulations using CB-Dock revealed 

strong binding affinities between selected 

flavones and JAK, with detailed interactions 

elucidated. 

The ADMETTox study that zeroed in on 

CHEMBL1779470 praised the compound's 

moderate lipophilicity and excellent water 

solubility, among other desirable qualities. 

Compound exhibited low gastrointestinal 

absorption, was not a BBB permeant or P-

glycoprotein substrate, and showed no inhibitory 

effects on major cytochrome P450 enzymes. As far 

as organ toxicity, cancer risk, immunotoxicity, 

mutagenicity, and cytotoxicity go, 

CHEMBL1779470 was projected to be inactive by 

toxicity models. However, it was anticipated to be 

active in certain nuclear receptor signaling 

pathways. CHEMBL1779470: Robust binding 

affinity, favorable drug-like properties, and 

predicted safety profiles as compared to proven 

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-

chromen-4-one flavones  

The findings collectively designate 

CHEMBL1779470 as a promising candidate for 

further experimental validation and potential 

therapeutic development for inflammatory 

disorders. The robust binding affinity to JAK, 

coupled with favorable drug-like properties and 

predicted safety profiles, positions 

CHEMBL1779470 as a valuable lead compound in 

the pursuit of effective anti-inflammatory agents. 

Still this research virtual screening results needs 

experimental validation, computational 

predictions may not always reflect real-world 

outcomes, biological systems are intricate and 

virtual screening may oversimplify interactions 

and unpredicted side effects or interactions may 

occur in vivo. 

This research provides a foundation for future 

experimental studies to validate the in silico 

findings and advance the development of novel 

therapeutics for inflammatory conditions. 
 

Abbreviations 
JAK: Janus Kinase, PDB: Protein data bank, BBB: 

Blood Brain Barrier 
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