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Abstract 
 

A properly planned design will minimize travel distance, handling of materials diligence, and operating costs, as well 
as saving time and ease site congestion. The majority of mathematical optimization approaches discovered thus far 
are effective for modest problems and frequently fall within global or local optimum solutions, which does not ensure 
continued convergence. As a result, the motive of this work is to propose an Improved Red Panda Optimizer (IRPO) 
algorithm inspired by the predatory habits of Red pandas, integrating with the Mutation and crossover strategy of 
Differential Evolution and Oppositional Based Learning and solving a shortcoming of earlier research. The analysis 
revealed that the proposed approach can lead to very positive results in connection with enhanced exploitation, 
convergence, avoiding local optima, and exploration. Additionally, the IRPO method yields better ideal solutions for 
the great majority of the design and shows that this strategy may be used for a variety of limited issues across 
different search domains. The results of the ideal site layout optimization method show how well the suggested 
approach works in real-world situations where search areas are ambiguous. 

Keywords: Construction site design, Differential evolution, Improved red panda optimizer, Red panda 
optimization. 
 

Introduction 
The construction site plan has an important 

influence on the cost of the project, efficiency, 

security, and other factors (1). Yet the site design 

strategy can be created without consideration for 

the goals of the project, and in other 

circumstances, no particular site design strategy 

is implemented (2). As a consequence, the 

construction task takes longer to complete, costs 

more to build, and the project's quality suffers. 

The lack of available space on the building site in 

comparison to equipment and supplies (1) 

emphasizes the importance of good site design to 

conserve time as well as reduce site congestion. 

As a result, travel distance, handling of materials 

effort, and operating expenses are reduced (3). 

The planning process, also known as factors of 

production, is included in operational plans to 

generate a more efficient system (4). 

Furthermore, builders and workers on site devote 

the majority of their time to building zones. As a 

result, if they can move to the concerned location 

swiftly, and easily, and in turn productivity will 

increase (5). 

Factors such as the workplace and the amount of 

communication between sites are taken into 

account when creating a building site design to 

avoid construction disputes and enhance the 

workspace (5, 6). Heuristic approaches and 

optimization methodologies are applied to solve 

the problem. Arithmetical optimization 

methodologies have been developed to obtain 

optimal solutions. They are, however, only 

applicable to modest problems, whereas artificial 

intelligence approaches have been devised for a 

larger challenge. To find the ideal configuration, 

optimization techniques are therefore applied (7). 

An updated model of the optimization techniques 

becomes faster over time than finding the 

information by hand (8). Furthermore, improving 

the flow of materials on the spot has been shown 

to cut 10- 30% of the cost of handling materials 

(9), demonstrating the model's efficacy. On the 

other hand, heuristic approaches typically yield a 

good answer in a reasonable amount of time and 

have produced an approximate estimate rather 

than a perfect solution for large problems. 
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The paradigm of metaheuristic algorithms is 

frequently utilized to provide a solution for 

construction design challenges. Furthermore, 

hybrid methodologies were used, including the 

hybrid Whale Optimization Algorithm (WOA), 

Colliding Bodies Optimization (CBO), and a hybrid 

AI-based particle Bee Algorithm (BA) for building 

design optimization (10). Nonetheless, the Red 

Panda Optimizer has not been fully exploited in 

the site design. Furthermore, it is simple to 

develop high-quality solutions (11). An Improved 

Red Panda Optimizer (IRPO) algorithm, on the 

other hand, generates a faster, and better result in 

less time. The optimal solution to the site layout 

problem involves combining heuristic and 

optimization techniques to increase accuracy or 

precision within a specified time frame. 

The goal of this work is to create an Improved Red 

Panda Optimizer (IRPO) algorithm to improve the 

accuracy and degree of convergence of the initial 

framework that was presented by Mirjalili in 

2015 (12), notwithstanding the limitations of 

previous studies. To achieve the goal, Opposition-

Based Learning (OBL) is adopted, followed by 

the Mutation and Crossover Strategy of 

Differential Evolution.  The generated algorithm's 

performance is tested by comparing it to three 

genuine records (13), with the inclusion of an 

additional case study to guarantee its efficacy. 

Building project management as well as 

engineering can be difficult. A construction site 

involves a large number of individuals and 

supplies, making it a complicated workspace. It is 

critical to optimize the building process or 

associated action to keep expenses, time frames, 

and total productivity as low as possible (14-16). 

Construction site layout must be planned with the 

dynamics and dangers of the site in mind. A 

carefully designed site layout adds greatly to time 

and cost savings, particularly when it comes to 

operating expenses. Furthermore, building a 

productive structure and a more secure 

environment through the use of pleasant 

equipment, supplies, and workflows (17-21). 

Reduced handling of materials conflicts, 

workplace congestion, and excursion distance, in 

particular, can reduce the cost of operations by 

20% to 50% (22). 

To achieve an efficient and effective optimization 

method, numerous decision-making tools were 

applied. Many studies on workplace design 

difficulties emphasize using artificial intelligence 

to discover ideal solutions. To find a solution, 

metaheuristic algorithms are frequently utilized. 

In 2018, a study was conducted to evaluate three 

systems' performance in three case studies. 

Particle Swarm Optimization (PSO), Artificial Bee 

Colony (ABC), and Symbiotic Organisms Search 

(SOS) are the three algorithms (13). The model 

was used to identify the best site layout by 

decreasing laborers' journey distance at every 

place given their frequency of travel. To find a 

more stable and ideal solution, a hybrid whale 

optimization technique (WOA) - colliding bodies 

optimization (CBO) method was also 

implemented in 2018 (10), as was a hybrid 

symbiotic organisms search algorithm in 2020 

(22). The overall Distance to move (DT) (13, 22) 

is determined using the following equation [1-3]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷𝑇 =

∑ ∑ ∑ ∑ 𝑓𝑟𝑎𝑐𝑑𝑖𝑠𝑡𝑏𝑑𝑦𝑎𝑏𝑦𝑐𝑑
𝑚
𝑑=1

𝑚
𝑐=1

𝑚
𝑏=1

𝑚
𝑎=1   [1] 

Subject to 

∑ 𝑦𝑚
𝑎,𝑏=1 𝑎𝑏

= 1, 𝑎, 𝑏 = 1,2,3, …𝑚 [2] 

    𝑦𝑎𝑏 ∈ {0,1} where a,b=1,2,3,…m    [3] 

where m is the number of facilities, 𝑓𝑟𝑎𝑏  

represents the frequency and  𝑑𝑖𝑠𝑡𝑎𝑏  denotes the 

distance between site a and b.yab and  ycd are part 

of the location-facility allocation matrix.i.eyab= 1 ie 

facility a is allocated to location b; otherwise  yab= 

0. 𝑓𝑟𝑎𝑏  represents the frequency of trips in 

building among the facilities a and b, 

 𝑑𝑖𝑠𝑡𝑎𝑏denotes the distance among the locations 

on a and b. 

Moreover, the Red Panda Optimizer (RPO) 

method has demonstrated its effectiveness as an 

instrument for optimization by outperforming 

seven prominent algorithmic methods: PSO, GA, 

SMS, BA, FPA, CS, and FA (12). Still, it demands 

substantial time of execution to provide a solution 

and a superior selecting approach to boost 

operational effectiveness (23, 24). Further 

investigation is necessary to enhance the efficacy 

of alternative random walks and enhance the 

performance of the RPO algorithm (12). Using 

Laplace distribution and opposition-based 

learning for a wider exploration region (25) and 

integrating Differential Evolution (DE) to gain 

higher accuracy, convergence, and run time (26, 

27) are just a couple of the research projects that 

have successfully increased efficiency. 

An extensive examination of multi-objective 

algorithmic strategies was also taken into 
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consideration to showcase the article's analytical 

prowess. For TCQS trade-off optimization in 

building construction across India (AOSMA) an 

integrated model, the adaptive opposition slime 

mold technique is employed (28). In (29) the 

authors adopt the Hybrid Sine Cosine 

Optimization Technique for routing problems in 

Cement Transport Vehicle. Using a hybrid multi-

verse optimizer to model a large discrete time-

cost trade-off problem (30). An inventive time-

varying Wolf-Inspired Optimized Support Vector 

Regression (WIO-SVR) model was created to 

estimate the 48-step-ahead power usage in 

projects (31). Building project time, cost, and 

quality can all be improved by using the slime 

mold algorithm (32). A water distribution 

system's design was enhanced by the application 

of artificial intelligence (AI) techniques (33). 

lowering the cost of supply construction by 

utilizing the Particle Swarm Optimization feature 

of the Dragonfly Algorithm (34). Slime Mold 

Algorithm (SMA) was adopted to handle the 

duration, price, and quality trade-off issues in a 

construction venture (35). The authors (36) use a 

Genetic algorithm for efficient utilization of 

construction resources. 

Despite the prospect, there has been little 

investigation carried out using the RPO technique 

or its modified version for construction layout 

challenges. Taking into account the foregoing, the 

current research proposed an Improved Red 

Panda Optimizer algorithm that uses Opposition-

based Learning to boost the junction point of 

every iteration. Furthermore, using OBL with the 

Differential Evolution strategy increases the 

likelihood of discovering the ideal solution. The 

suggested model is expected to become a more 

dependable and efficient instrument for decision-

making than the other approach since it offers an 

ideal site layout with an ideal overall traveling 

distance between facilities. 
 

Methodology 
Red panda optimization 

The eastern Himalayas and southern China are 

home to the little red panda. Its entire body and 

legs are covered in reddish-brown fur; its 

stomach and legs are black; its ears are lined with 

white, its nose is mostly white, and its tail is 

ringed. Its twisted semi-retractile fingers and 

flexible joints make it an excellent climbing-suited 

species (32). The red panda prefers places with 

coniferous and mild herbaceous and hybrid 

forests with uphill slopes and abundant bamboo 

cover close to water sources. Despite the red 

panda's native habits, its hunting approach that 

relies on its excellent senses of vision, hearing, 

and odor, as well as this animal's high competence 

in tree-climbing, is far more astounding. These 

organic red panda behaviors are mathematically 

modeled to create the suggested Red Panda 

Optimization (RPO) technique. The following 

phases make up the RPO approach: 

Initialization 

Red pandas make up the population-based 

metaheuristic algorithm that underpins the 

recommended RPO approach. Concerning the 

problem variables, each red panda in the RPO 

design represents a potential solution based on its 

location inside the search region. Consequently, a 

vector represents each red panda, or potential 

solution, in mathematics. Equation [4] can be used 

as a matrix to provide a mathematical description 

of the red pandas in the algorithm population. 

This data matrix has a red panda (i.e., a potential 

solution) in each row and recommended values 

for the parameter associated with the problem in 

each column. Red pandas are initially placed 

randomly in the search space at the start of RPO 

execution using equations [5] and [6]. 

        𝑌 = [

𝑦1

𝑦 2..
𝑦𝑛

] 𝑛 × 𝑚                                       [4] 

=

[
 
 
 
 
𝑦1,1 ⋯ 𝑦1,𝑗 … 𝑦1,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑦𝑖,1 ⋯ 𝑦𝑖,𝑗 … 𝑦𝑗,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑦𝑛,1 … 𝑦𝑛,𝑗 … 𝑦𝑛,𝑚]

 
 
 
 

𝑛 × 𝑚           [5] 

𝑦𝑖,𝑗 = 𝑙𝑜𝑏𝑗 + 𝑟𝑜𝑖,𝑗 . (𝑢𝑝𝑏𝑗 − 𝑙𝑜𝑏𝑗), 𝑖 = 1,2,3, … . . 𝑛, 𝑗

= 1,2, … …𝑚                                 [6] 

where Y is the population matrix of the locations 

of the red pandas, yi is the ith red panda (i.e., 

candidate solution), yi,j is its jth dimension (i.e., 

problem variable), N is the number of red pandas, 

m denotes the number of problem variables, roi,j 

is a random number in the range (0, 1), and lobj 

and upbj are the lower bound and upper bound of 

the problem. 

Recognizing that every red panda's location 

represents a possible solution allows one to find 

the objective function of the problem that 

corresponds to each panda's position. Equation 

[7] states that the set of values that have been 
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assessed for the objective function can be 

represented as a matrix in which FU is the vector 

of objective function values and Fui is the value of 

the objective function as decided by the ith red 

panda. 

𝐹𝑈 = [

𝐹𝑈1

𝐹𝑈 2..
𝐹𝑈𝑛

] 𝑛 × 𝑚 = [

𝐹(𝑌1)

𝐹(𝑌2)
. .

𝐹(𝑌𝑛)

] 𝑛 × 𝑚         [7]                                             

The updation of the candidate solution can be 

done in two steps exploration and exploitation as 

follows: 
 

Exploration 

By comparing the values of the goal function, one 

may use [8] to model the set of recommended 

food resource sites for each red panda. The 

matching red panda will select at random one of 

these suggested locations as its meal spot. 

𝐹𝑃𝑖 = {𝑦𝑘| 𝑘 ∈ {1,2, … 𝑁} 𝑎𝑛𝑑 𝑀𝑘 < 𝑀𝑖}  ∪

 {𝑦𝑏𝑒𝑠𝑡}                                                                             [8] 

where FPi is the set of recommended food sources 

for ith red panda, and ybest is the position of the 

red panda with the best value for the objective 

function (best candidate solution). Then, using 

equations [9] and [10], a new position is 

determined. 

 

𝑦𝑖
𝑙1: 𝑦𝑖,𝑗

𝑙1 = 𝑦𝑖,𝑗 + 𝑟𝑎𝑛. (𝑓𝑠𝑖,𝑗

− 𝐼. 𝑦𝑖,𝑗)                                                                    [9]                          

𝑦𝑖 = {
𝑦𝑖

𝑙1 , 𝑓𝑢𝑖
𝑙1 < 𝑓𝑢𝑖

𝑦𝑖 , 𝑒𝑙𝑠𝑒
                                            [10]                                       

 

Where 𝑦𝑖
𝑙1 is the updated position of the red 

panda, 𝑦𝑖,𝑗
𝑙1  is the dimension in the jth position, 

𝑓𝑢𝑖
𝑙1 is the value of the objective function,𝑓𝑠𝑖,𝑗is 

the source of food and I is a random value in the 

range of {1,2}. 
 

Exploitation 

Red pandas are placed in the second stage of the 

RPO due to their capacity to climb trees and take 

breaks there. The majority of the time, red pandas 

rest on trees. This animal first forages on the 

ground before climbing the neighboring trees. 

Red pandas move slightly as they approach and 

ascend the tree, which improves the potential of 

the suggested RPO method to exploit and localize 

search in promising locations. First, a new 

position is computed for every red panda by 

mathematically representing their usual climbing 

behavior using equations [11] and [12]. If the 

value of the goal function is raised, the new 

position then takes the place of the old one. 

𝑦𝑖,𝑗
𝑙2 = 𝑦𝑖,𝑗 +

𝑙𝑜𝑏𝑗 +  𝑟𝑎. (𝑢𝑝𝑏𝑗 − 𝑙𝑜𝑏𝑗)

𝑠𝑡
, 𝑖

= 1,2, … 𝑁, 𝑗 = 1,2, . . 𝑚 𝑎𝑛𝑑 𝑠𝑡

= 1,2, … 𝑆𝑇                                     [11] 

𝑦𝑖 = {
𝑦𝑖

𝑙2 , 𝑓𝑢𝑖
𝑙2 < 𝑓𝑢𝑖

𝑦𝑖 , 𝑒𝑙𝑠𝑒
                             [12]                                                                                                    

Where 𝑦𝑖,𝑗
𝑙2  is the new position based on the 

second phase, ST is the maximum iteration 

 
     Figure 1: Workflow of the proposed system 

 

Opposition-based learning 

When employing OBL, over half of the instances 

for anticipated solutions depart from the globally 

most effective approach based on probability 

theory. The idea of opposition-based learning is to 

come up with a solution that is opposed to the 

original. Furthermore, this strategy applies to the 

algorithm's initial and updated solutions until it 

generates the optimum result. As a result, the 

opposite forecast is initiated to speed 

convergence (37). 
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Differential evolution 

Differential evolution (DE) is an intuitive and 

strong population-based metaheuristic search 

algorithm that operates by utilizing the 

evolutionary process to continuously improve the 

candidate solution. Differential evolution employs 

four processes: initialization, mutation, crossover, 

and selection. The random individuals within the 

limits are initialized during the initialization step. 

DE's primary functions are selection, mutation, 

and crossover. 
 

Mutation 

The mutant vector is created via this operation. 

Equation (13) shows how to generate the mutant 

vector MVi for an individual Yi. 

MVi = Yr1 + MF∗ (Yr2 − Yr3)                                    

[13] 

Where MF represents the mutation factor that 

regulate the difference Yr2 − Yr3 and Yr1,Yr2 and 

Yr3 are randomly chosen individuals 
 

Crossover 

To sustain population variety, the DE employs 

single-point binary crossover. Based on the 

individual Yi and the vector MVi specified in 

Equation (14), it generates the trial vector Zi. 

Yi,j = {
𝑀𝑉𝑖,𝑗

Yi, j elsewhere
, 𝑖𝑓 𝑟𝑎 ≤ 𝐶𝑅||𝑗 == 𝑟        

[14] 
 

Improved red panda optimizer 

The proposed method adopted Improved Red 

Panda Optimizer i.e. integration of Red Panda 

Optimizer, Opposition based Learning, and 

Differential Evolution. The workflow is 

represented in Figure 1. 

Initially, the populations are initialized using 

oppositional-based Learning. Then the red panda 

optimization is applied to the objective function 

mentioned in equations 1 to 3. The populations 

are initialized using Equations 4 to 6. The 

positions of the red panda are then updated using 

equations 7 to 12. Then the crossover and 

mutation strategy of Differential Evolution is 

adopted by applying equations 13 and 14. The 

steps will be repeated until the maximum 

iteration. 
 

Results and Discussions 
The proposed technique is used in three instances 

(1-3) from Prayogo's work (13). The results were 

subsequently analyzed with other metaheuristics 

algorithms such as Particle Swarm Optimization 

(PSO), Artificial Bee Colony (ABC), and Symbiotic 

Organisms Search (SOS) methods with a 

population size of 100 and executed for 50 cycles. 

The equations mentioned in [1-3] and the 

mechanism of Improved Red Panda Optimizer are 

applied to minimize the overall distance to be 

traveled by the site workers with the given 

facilities. 
 

Case study 1 

The first case study has eleven sites for 11 

Provisions. In this scenario, the side Entrance (SE) 

and main entrance (ME) are fixed in positions 1 

and 10, accordingly. Figure 1 depicts the 

preliminary site arrangement. The information 

about the original spot of the facilities is shown in 

Table 1.  Furthermore, Table 2 illustrates the 

distance to travel, and Table 3 illustrates the 

frequency with which workers travel between 

sites. 

 
     
 Figure 2: The original design of case 1 (13)
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Table 1: Additional data for case study 1 

Position Provisions Indication 

1 Side Gate(SG) Permanent 

2 Site office (SO) - 

3 False workshop (FS) - 

4 Labor residence (LR) - 

5 Storeroom 1 (S1) - 

6 Storeroom 2 (S2) - 

7 Carpentry workshop (CW) - 

8 Reinforcement steel workshop (RW) - 

9 Electrical water, and utility control room (UR) - 

10 Main gate (MG) Permanent 

11 Concrete batch workshop (BW) - 

 

 

 

 

Table 2: Case study 1 distance among the positions (in meters) 

Position 1 2 3 4 5 6 7 8 9 10 11 

1 0 15 25 33 40 42 47 55 35 30 20 

2 15 0 10 18 25 27 32 42 50 45 35 

3 25 10 0 8 15 17 22 32 52 55 45 

4 33 18 8 0 7 9 14 24 44 49 53 

5 40 25 15 7 0 2 7 17 37 42 52 

6 42 27 17 9 2 0 5 15 35 40 50 

7 47 32 22 14 7 5 0 10 30 35 40 

8 55 42 32 24 17 15 10 0 20 25 35 

9 35 50 52 44 37 35 30 20 0 5 15 

10 30 45 55 49 42 40 35 25 5 0 10 

11 20 35 45 53 52 50 40 35 15 10 0 

 

 

 

 

Table 3: Case study 1 frequency of movement among the positions  

Provisions SO FS LR S1 S2 CW RW SG UR BW MG 

SO 0 5 2 2 1 1 4 1 2 9 1 

FS 5 0 2 5 1 2 7 8 2 3 8 

LR 2 2 0 7 4 4 9 4 5 6 5 

S1 2 5 7 0 8 7 8 1 8 5 1 

S2 1 1 4 8 0 3 4 1 3 3 6 

CW 1 2 4 7 3 0 5 8 4 7 5 

RW 4 7 9 8 4 5 0 7 6 3 2 

SG 1 8 4 1 1 8 7 0 9 4 8 

UR 2 2 5 8 3 4 6 9 0 5 3 

BW 9 3 6 5 3 7 3 4 5 0 5 

MG 1 8 5 1 6 5 2 8 3 5 0 
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Table 4: Case study 1 overall distance travelled for different techniques 

Techniques Minimum 
distance  (m) 

Maximum 
Distance(m) 

Average 
Distance(m) 

Standard 
Deviation (m) 

PSO 12546 12840 12583 70.321 
ABC 12546 13190 12812.07 169.552 
SOS 12546 12714 12560.07 39.953 
IRPO 12546 12516 12481.12 23.108 
 

Table 5: Optimal distance travelled based on positions for case study 1 

Techniques SO FS LR S1 S2 CW RW SG UR BW MG Distance 
Travelled 

PSO 9 11 5 6 7 2 4 1 3 8 10 12546 

ABC 9 11 4 5 7 6 3 1 2 8 10 12546 

SOS 9 11 4 6 7 5 3 1 2 8 10 12546 

IRPO 8 10 5 5 6 4 2 1 2 7 9 12546 

 

 
Figure 3: Optimal design layout using IRPO for case study 1 

 

The algorithm iterates through 200 cycles with 

100 populations to increase speed. The 

convergence curve of the proposed algorithm is 

compared with previous studies on the WOA-CBO 

algorithm (10). The objective function value 

indicates that the IRPO completed the optimal 

journey distance in less time and at a faster pace 

than the WOA-CBO (Figure 2 and 3; Table 4 and 

5). 

Case study 2 

Ten locations for ten facilities from a residential 

building project in Surabaya, Indonesia, make up 

the second scenario. The placements of the 

entrance gate (EG) and guard post (GP) are 

determined in places 4 and 5 as shown in Figure 

4, below Table 6 contains data regarding 

predetermined places, whereas Tables 7 and 8 

indicate the distance traveled and periodicity 

across each of them consecutively. The following 

is the original layout for the given scenario 

(Figure 5 and Table 9 and 10). 

Case study 3 

The building site design for a hotel project in 

Surabaya, Indonesia, is shown in Figure 6. The 

tower crane (TC), power supply (PS), site gate 

(SG), main gate (MG), and tower crane (TC) are all 

secured in their proper locations, with positions 

1, 2, 7, and 9 in that sequence. Information for the 

third case such as 14 positions and 14 provisions 

are provided in Tables 11, 12, and 13 respectively. 
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Figure 4: The original layout for case study 2 (13) 

 

 

 

Table 6: Additional data for case study 2 

   

Position Provisions Indication 

1 Batching plant (BP)  - 

2 Site office (SO) - 

3 Formwork workshop (FW) - 

4 Entrance gate (EG) Permanent 

5 Guard post (GP) Permanent 

6 GRC fabrication (GF) - 

7 Contractor office (CO) - 

8 Steel storage (SS) - 

9 Steel fabrication 1 (SF1) - 

10 Steel fabrication 2 (SF2) - 

 

 

 

Table 7: Case study 2 distance among the positions (in meters) 
 

Position 1 2 3 4 5 6 7 8 9 10 

1 0 139 156 33 39 49 139 170 174 150 

2 139 0 19 106 100 112 128 160 165 188 

3 156 19 0 125 119 131 112 144 148 207 

4 33 106 125 0 12 23 111 143 147 123 

5 39 100 119 12 0 12 99 131 135 111 

6 49 112 131 23 12 0 89 121 125 101 

7 139 128 112 111 99 89 0 32 36 104 

8 170 160 144 143 131 121 32 0 9 42 

9 174 165 148 147 135 125 36 9 0 102 

10 150 188 207 123 111 101 104 42 102 0 
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Table 8: Case study 2 frequency of movement among the positions  

Provisions BP SO FW EG GP GF CO SS SF1 SF2 

BP 0 10 8 9 3 9 0 0 0 0 

SO 10 0 8 12 8 9 11 5 0 1 

FW 8 8 0 4 3 8 0 0 0 0 

EG 9 12 4 0 6 15 10 10 8 5 

GP 3 8 3 6 0 9 5 3 2 1 

GF 9 9 8 15 9 0 0 0 0 0 

CO 0 11 0 10 5 0 0 7 7 10 

SS 0 5 0 10 3 0 7 0 25 27 

SF1 0 0 0 8 2 0 7 25 0 16 

SF2 0 1 0 5 1 0 10 27 16 0 

 

Table 9: Case study 2 overall distance travelled for different techniques 

Techniques Minimum 
distance  (m) 

Maximum 
Distance(m) 

Average 
Distance(m) 

Standard 
Deviation (m) 

PSO 39184 40736 39327.07 303.011 
ABC 39184 46698 41733.77 2013.849 
SOS 39184 40666 39243.4 274.206 
IRPO 39184 39820 39198.10. 177.62 
 

 

Table 10: Optimal distance travelled based on positions for case study 2 

Techniques BP SO FW EG GP GF CO SS SF1 SF2 Distance 
Travelled 

PSO 2 6 3 4 5 1 10 7 9 8 39184 

ABC 2 6 3 4 5 1 10 7 9 8 39184 

SOS 2 6 3 4 5 1 10 7 9 8 39184 

IRPO 2 5 3 3 4 1 8 6 7 7 39184 

 

 

 

 
Figure 5:  Optimal design layout using IRPO for case study 2 
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Figure 6: The original layout for case study 3 (13) 

 

Table 11: Additional data for case study 3 

Position Provisions Indication 

1 Main gate (MG)  Permanent  

2 Site gate (SG)  Permanent 

3 Guard post (GP)  - 

4 Office (O)  - 

5 Workers toilet 1 (WT1) - 

6 Wiremesh storage (WS) - 

7 Tower crance (TC)  Permanent 

8 Workers toilet 2 (WT2)  - 

9 Power source (PS)  Permanent 

10 Health post (HP) - 

11 Material storage (MS)  - 

12 Workers barrack (WB) - 

13 Reinforcement fabrication (RF) - 

14 Formwork fabrication (FF) - 

 

Table 12: Case study 3 distance among the positions (in meters) 

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 65 60 43 38 37 25 17 10 8 11 17 0 51 

2 65 0 7 14 15 7 23 33 51 45 40 36 47 15 

3 60 7 0 7 12 4 20 30 43 37 31 28 45 8 

4 43 14 7 0 9 9 12 23 26 20 15 11 32 6 

5 38 15 12 9 0 2 4 14 22 23 15 14 34 18 

6 37 7 4 9 2 0 8 18 26 25 19 15 35 12 

7 25 23 20 12 4 8 0 2 10 10 6 10 12 28 

8 17 33 30 23 14 18 2 0 8 9 5 13 10 38 

9 10 51 43 26 22 26 10 8 0 12 5 15 1 42 

10 8 45 37 20 23 25 10 9 12 0 1 9 6 36 

11 11 42 34 15 15 19 6 5 5 1 0 6 4 36 

12 17 36 28 11 14 18 10 13 15 9 6 0 15 27 

13 0 47 45 32 34 35 12 10 1 6 4 15 0 51 

14 51 15 8 6 18 12 28 38 42 36 36 27 51 0 
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Table 13: Case study 3 frequency of movement among the positions  

Provisions MG SG GP O WT1 WS TC WT2 PS HP MS WB RF FF 

MG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SG 0 0 1 1 1 30 1 1 1 3 15 2 2 0 

GP 0 1 0 1 0 0 1 1 1 1 1 1 1 0 

O 0 1 1 0 3 1 1 1 1 2 2 3 2 2 

WT1 0 1 0 3 0 0 1 0 0 2 0 4 0 0 

WS 0 30 0 1 0 0 0 1 0 4 2 4 4 0 

TC 0 1 1 1 1 0 0 1 1 1 0 1 0 0 

WT2 0 1 1 1 0 1 1 0 1 2 2 2 2 2 

PS 0 1 1 1 0 0 1 1 0 0 0 1 0 0 

HP 0 3 1 2 2 4 1 2 0 0 3 3 2 2 

MS 0 15 1 2 0 2 0 2 3 3 0 2 15 2 

WB 0 2 1 3 4 4 1 2 3 3 2 0 2 2 

2RF 0 2 1 2 0 4 0 2 2 2 15 2 0 0 

FF 0 0 0 2 0 0 0 2 2 2 2 2 0 0 

 

Table 14: Overall distances travelled for case study 3 for different technique 

Techniques Mininum 
distance  (m) 

Maximum 
Distance(m) 

Average 
Distance(m) 

Standard 
Deviation (m) 

PSO 4276 4973 4553.93 159.39 
ABC 4391 4932 4662.46 157.69 
SOS 4281 4531 4398.4 67.02 
IRPO 4008 4230 4121.1 59.18 
 
 

Table 15: Optimal distance travelled based on positions for case study 3 

Techniques MG SG GP O WT1 WS TC WT2 PS HP MS WB RF FF Distance 
Travelled 

PSO 1 2 8 5 10 3 7 12 9 4 6 11 14 13 4276 

ABC 1 2 6 11 12 3 7 10 9 4 5 8 14 13 4391 

SOS 1 2 5 8 13 6 7 12 9 4 3 11 14 10 4281 

IRPO 1 2 4 9 10 2 5 7 8 3 6 10 11 11 4008 

 

 
Figure 7: Optimal design layout using IRPO for case study 3 

 

The IPRO results are compared with PSO, ABC, 

and SOS algorithms in the tables below. When 

compared to the other three methods, the 

suggested model yields the lowest mean and  

 

standard deviation, indicating accuracy and 

consistency. A structure design based on the 

recommended method is shown in Figure 7 and 

Table 14 and 15. 
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The purpose of this study is to increase the Red 

Panda Optimizer (RPO) algorithm applicability for 

construction design optimization through 

repeated evaluations based on given 

requirements rather than developing unnecessary 

hypotheses concerning the optimization issue. 

Combining the suggested Improved RPO with 

other techniques like the crossover and mutation 

approach of differential evolution and 

oppositional-based learning, it emphasizes how it 

enhances exploration and exploitation with global 

and local searches. Because of this, it is 

anticipated that the novel enhanced red panda 

optimizer (IRPO) algorithm will prove to be an 

effective tool for making decisions by producing 

the best possible plan for the construction site 

that has the shortest total commute time. 
 

Conclusion 
The planning of the building site layout has a 

significant impact on the project's efficiency, 

budget, and schedule. A carefully planned layout 

will help to save a period reduce site congestion, 

and reduce commute time, handling effort, and 

operational expenditures. Enhancing 

effectiveness, security, and improving workflow. 

For the building site scheduling problem, artificial 

intelligence-based approaches, like metaheuristic 

algorithms, have been thoroughly investigated. 

The solution was discovered using optimization 

techniques. Furthermore, developing effective 

solutions helps to reduce the cost of handling 

materials by 10-30% because of improved 

material flow. 

An enhanced Red Panda Optimizer algorithm was 

created to offer an ideal solution for construction 

site layout problems. Developments were made 

by combining OBL and MCS to increase the 

likelihood of producing an ideal solution.  The 

proposed approach is contrasted with a prior 

study that used PSO, ABC, and SOS algorithms for 

three case studies. Furthermore, determines the 

optimal overall journey distance and site 

architecture layout for a single real-world case 

study. With the lowest mean and standard 

deviation, the hybrid ALO algorithm 

outperformed the other approach in terms of 

consistency, precision, and convergence, 

according to the overall result. As a result, it is 

consistent in offering optimal solutions and is 

appropriate as an alternate choice tool for this 

specific situation. To have a more accurate picture 

of the problem, the proposed model can be 

updated for further study by taking into account 

the facility's dimension, cost aspect, and building 

stages. 
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