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Abstract 
 

As the global energy market is growing rapidly, global warming and concern towards the energy crisis is an issue to 
address in the modern energy market. Addressing these issues by balancing the peak power shifting on real time in 
micro grids. This paper discusses about an intelligent multi-agent-based system, which allows the user to prioritize 
the load. Metaheuristic Ebola optimization algorithm (EOA) is discussed to address the objective of peak load shifting. 
electrical load appliances are considered as the load agents and smart home model using Internet of Things (IoT) 
meter to analyze the appliance performance and user comfort to address the power consumption uncertainty. 
Mathematical modelling of the proposed algorithm for energy shifting in smart home is discussed and compared with 
other optimization algorithm. Simulation results shows that it is efficient that energy consumption-based load 
allocation allows fewer energy sources taking energy consumption as objective. 
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Introduction 
As energy demand rises, traditional systems 

become more complex, less viable, hazardous, 

unprofitable, and suffer from substantial power 

losses. This is a growing problem. Distributed 

energy resources, such as intermittent renewable 

energy, small gas or oil power plants, and energy 

storage, can now be used in a novel way thanks to 

the notion of microgrids. Microgrids can be used 

to lessen their reliance on the larger power grid 

by distributing the controllable and renewable 

energy that is generated locally. Individual loads 

are handled in the context of the energy market 

paradigm, with the help of local generation, 

storage systems, user comfort, DGs, and utilities. 

Increased integration of RES into the grid has 

replaced or reduced traditional generators in 

response to rising global energy consumption and 

the push for sustainable development. The 

inherent challenge of RES is its inherent 

variability. In order to construct microgrids that 

are both autonomous and connected to the grid, 

many management techniques and control tactics 

are being employed. Numerous researchers are 

honing algorithms for optimising system 

components like energy storage system sizing and 

the financial advantages of doing so (1). Optimal 

power management, dynamic bidding strategies, 

and the levelized cost of each component (2). 

Within the framework of the current energy 

market paradigm, this study proposes an efficient 

method of energy management using smart 

microgrids (SMG) to address these issues, with the 

ultimate goal of providing a solution that is both 

economical and sustainable (3). The Control Agent 

(CA), Energy Market Controller (EMMC), and 

Home Energy Management Controller (HEMC) 

work together to accomplish set objectives. There 

is a two-tiered energy management strategy 

provided for specific objectives (4, 5). The first 

step is to manage the load and plan the storage in 

accordance with the local generation and market 

prices. The second objective is to regulate the 

energy market using four distinct forms of priority 

and control agent input. By contrasting it to other 

optimisation techniques. Adaptive Whale 

Optimisation (AWO), a variant of a meta-heuristic      
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methodology, can help identify a more 

comprehensive solution to the problem. The 

proposed methodology is implemented in a 

community test environment based on SMG. The 

residents of the many homes in the area have 

varying incomes and interests. The simulation 

results validate the effectiveness of the proposed 

effort. 

To explain the uncertainty of Load, a probability 

density technique based on LSTM-quantile 

regression was developed (6). The "actual price of 

energy," which tries to pass on the true cost of 

electric power supply to customers, employs a 

demand response mechanism (7). Here, the 

system's anticipated future demand (usually 

within an hour) is estimated using Markov chains, 

and an economic dispatch of Distributed 

Generation plants is then carried out to determine 

the actual cost of energy (8). Proposed a dynamic 

developing power management framework in 

micro grid. A dynamic differential game model is 

modelled and analysed to solve the optimization 

(9). Modified particle swarm optimization (MPSO) 

is utilised to solve the energy management 

optimization problem. Genetic algorithm (GA) is 

also used to compare the MPSO output. In order to 

improve MPSO performance and achieve 

maximum efficiency, hierarchical control is 

employed in conjunction with the energy 

management approach (10). To keep an 

alternating current (AC) load going in the face of 

external disturbances, a hybrid DC microgrid 

freestanding grid system employing four sources 

(PVA, BESS, super capacitor, and fuel cell) is used. 

In order to increase the grid's power-sharing 

capacity, an ideal energy management approach is 

deduced (11). presents a control algorithm for a 

reliable Energy Management System (EMS) 

functioning in grid-linked mode, with the goal of 

reducing operational costs (12).  

Micro grids 
Since microgrids are such an important connector 

between dispersed renewable energy producers 

and the larger grid, they are the subject of intense 

study (13). Recent microgrid studies have 

concentrated on investigating load-level 

integration of microgrid technologies (14). Due to 

the complexity of safeguarding and maintaining 

several interconnected distributed generators, 

traditional power grids have become antiquated 

(15). A tiny microgrid platform can serve as a 

viable alternative to the traditional grid by 

integrating distributed micro resources such as 

distributed generators, storage devices, loads, and 

voltage source converters at the user end (16). 

Microgrids can be set up to function as either grid-

connected or stand-alone systems, depending on 

the available generation, the feasibility of grid 

connection, and the needs of the consumers (17). 

Microgrids powered by dispersed energy 

resources have transformed the conventional 

electricity system. Control, protection, operational 

stability, and reliability on the grid are all sources 

of concern (18). As of yet, there has been no actual 

implementation of microgrids in the commercial 

market. The proposed microgrid would be formed 

when solar panels are installed on one of the six 

dwellings as shown Figure 1 (19).   
 

 
Figure 1: System model of residential energy management 
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Role of IOT 
Electric grid efficiency and power are two of the 

primary goals of research into the smart grid. 

Information and communication technology (ICT) 

can be used to help improve power grid system 

efficiency by implementing smart energy 

management techniques (20). As a result of 

incorporating RERs, smart energy storage, and 

new transmission technologies into the power 

grid, the smart grid has gained new capabilities 

like real-time monitoring, fast restoration, battery 

displays, and automated outage management (21). 

Adding these new aspects complicates energy 

transmission and raises key issues including 

energy efficiency, high energy costs, and societal 

well-being throughout the development of smart 

grid energy trading systems (22). 

IoT-era scenarios that involve energy trading 

include micro-grids, energy harvesting, and 

vehicle-to-grid (V2G) networks. To solve today's 

power issues, microgrids have been developed. 

Self-sustaining grids and consumers are linked by 

the Internet of Things (IoT). IoT brings the idea of 

energy sharing and load balancing in micro grids 

into reality by exchanging the information of 

Distributed generation (DG) and the load in the 

given area (Figure 2). 

System modelling and cost function 

δ – Controllable load power (Power consumed 

over Controllable equipment) 

γ – Uncontrollable load power (Power consumed 

over Uncontrollable equipment) 

Total power consumed by individual house 

without solar power generation is given in 

equation [1]. 

Power consumed = δ + γ   [1] 

Solar power generation in the selected area = α 

Then the total power utilized in the individual 

house can be calculated using equation [2]. 

Power consumed = δ + γ – α [2] 

Two different case studies can be considered from 

the second equation. Case 1 where the generation 

in the micro grid stand-alone house is less than 

the total power consumption at specified time. 

Case 2 where the generation is greater than the 

total load consumption in the same micro grid 

stand-alone house at specified time. 

ẞ = electrical appliances 

Let us discuss these two cases in detail with 

possible constrains. If the load δ + γ > α, then 

power is purchased from the grid. If the load δ + γ 

< α, then no power is utilized from the grid. In this 

case excess generation is sent back to the grid, 

assuming no outage in the line. If there is outage 

in the line, no power is sent back considering 

safety issue constrains. During such constrains, no 

power is sent back to the grid which leads α not 

being utilized, excess power generated, assuming 

part of the generation being utilized by the load δ 

+ γ. In the proposed model we concentrate on the 

second case where the load δ + γ < α, and during 

outages, where the micro grid can be isolated 

from the main supply controlling the generated 

power being utilized by the community of housed 

instead of send back to the grid making it self-

sustainable, keeping the predicted load in 

consideration. This is possible by allocation the 

generated.

 
Figure 2: System diagram of the IoT-based smart buildings in the electrical power system 
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power being utilized by priority loads during 

outages. This allocation of load and bifurcation of 

the generated power to specified needed load is 

done using Ebola Optimization. 

Home energy management controller 

A power distribution network is considered 

having a number of micro grids connected to the 

utility grid (23). As a part of microgrid, appliances 

in a house home can be classified into two types 

based the operation pattern and electricity 

demand: 

i) power adjustable appliances 

ii) power uncontrollable appliances.  

Many appliances whose operation period and 

power can be adaptable are power adjustable 

appliances such as fridge, air conditioner and so 

on. On the contrary, the power uncontrollable 

appliances are those appliances whose operation 

period and power consumption are fixed, such as 

rice cooker, oven and so on. Home energy 

management systems using IoT optimization have 

gained significant attention in recent research. 

These systems aim to optimize energy 

consumption in smart homes by utilizing IoT 

technologies and advanced optimization 

techniques. The use of deep learning-based 

techniques (24) and artificial intelligence (AI) 

optimization methods have been explored to 

enhance the performance of these systems (25). 

Fixed loads 

The loads which are adjustable by user comfort. 

Number of devices in this sector depends on the 

user need and economical factor of each house. 

This may reduce the complications in the network 

by having one way communication (26). 

Power flexible loads 

Loads such as AC are prioritized according to the 

power consumption and weather conditions, to 

improve the daily load curve of the system over a 

duration of 24hr (27). 

Time controllable loads 

The loads which can be shiftable to the least peak 

hr without compensating the comfort during 24hr. 

these loads are switched on during surplus power 

availability or least peak load during a scale of 

24hr. smart plug can also be used to adjust the 

operating time of these loads (28). 

Ebola optimization 

Ebola optimization algorithm (EOA) is a 

metaheuristic optimization algorithm proposed by 

Olaide Nathaniel Oyelade et al. in 2022 resulted in 

best values on eight data sets with eight fitness 

and cost function (29). In this paper, with the help 

of study from above sited author and bifurcating 

the load on priority basis, we formulate the 

mathematical expression for household load 

shifting to optimize the overall cost of the 

operation in smart microgrid environment (30, 

31). Electrical appliances are taken as load agents 

with s and s' are taken as shiftable and non-

shiftable loads which are expressed as shown in 

equation [3] and [4].  

𝑠 = 𝑠′ ⋅ 𝑎 − 𝑎    [3] 

𝑠′ = 2 ⋅ 𝑟𝑎𝑛𝑑     [4] 

∆(I) express the change in power of electrical 

appliances or the deviation in the load. Change in 

load power may be incremental or decremental 

depending on the maximum power compared to 

the solar power generated, and it can be 

expressed as shown in equation [5]. 
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Peak load shifting with controllable, shiftable and 

non-shiftable load is expressed in equation [6]. 

Flowchart for the proposed EOA is shown in 

Figure 3.  
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Results and Discussions 
Optimal load shifting of six different residential 

buildings is taken with priority-based load cases. 

Each residential buildings having control over the 

priority and non-priority load chosen over the 

duration of operation on their own. Results are 

shown below for different residential buildings. 

Figure 4 shows the power consumption over the 

residential building with and without Demand 

side management (DSM). 

The optimal scheduled energy for residential 

building 1 is shown in Figure 5. It also gives the 

comparative analysis with the other optimization 

techniques like Whale and PSO. From the Figure 5 

it can be seen that, results obtained for Ebola is 

better than that of other optimization techniques. 

The optimal scheduled energy for residential 

building 2 is shown in Figure 6. Here the PSO has 

reached the power consumption of the actual load 

resulting in higher price and whale optimization  
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Figure 3: Flowchart of the proposed ESA metaheuristic algorithm 

 

 
Figure 4: Management of load profiles with and without optimization 

 

also have higher load than the proposed 

technique. 

The optimal scheduled energy for residential 

building 3 is shown in Figure 7. Both the 

compared optimization techniques PSO and Whale 

having high load scheduling than that of the 

proposed Ebola technique resulting in low cost 

from proposed optimization technique. 

The optimal scheduled energy for residential 

building 4 is shown in Figure 8. Whale and PSO 

optimization techniques resulted in higher energy 

consumption compared to the proposed 

technique. From the figure it is clear that 

proposed technique has better load optimized.
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Figure 5: The optimal scheduled energy for residential building 1 

 
Figure 6: The optimal scheduled energy for residential building 2 

 
Figure 7: The optimal scheduled energy for residential building 3 
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Figure 8: The optimal scheduled energy for residential building 4 

 

 

Figure 9: The optimal scheduled energy for residential building 5 
 

 
Figure 10: The optimal scheduled energy for residential building 6 
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The optimal scheduled energy for residential 

building 5 is shown in Figure 9. Load optimized 

with PSO is higher than the actual load at some 

time, it is clear that Ebola optimization has better 

load selection than the other two techniques. 

The optimal scheduled energy for residential 

building 6 is shown in Figure 10. Load 

optimization in residential building 6 with PSO 

and Whale is comparatively similar in nature and 

Ebola optimization gives better load balance 

which is clearly visible in the figure. 

Total energy cost in different residential buildings 

is shown in Figure 11. As we can see the 

comparative results shows that Ebola, Whale and 

PSO techniques used results in less cost compared 

to the actual energy usage without optimization. 

Although Whale optimization results is similar 

results in resident 3 and resident 5, there is a 

significant difference in cost at remaining 

residential buildings. 

Average energy usage in residential buildings is 

shown in Figure 12. Although Whale and PSO 

techniques reduced the cost of energy 

consumption in a significant manner, Ebola 

optimization bought a further reduction in cost 

reduction, clearly showing the gap. 

 

 
Figure 11: Total energy cost in different residential buildings  

 

 
Figure 12: Average energy use in residential buildings 
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Table 1: Load deviation details 
  

Ebola WOA PSO Without Opti 

Res1 1021.11344 1148.367568 1251.13721 1605.81637 

Res2 915.825936 935.5921706 1197.26014 1671.11429 

Res3 766.851814 768.0132902 971.683811 1733.61429 

Res4 105.936192 107.3506002 129.642271 206.957923 

Res5 755.555163 762.3223439 1132.13498 1410.30189 

Res6 788.990599 859.1931291 1256.02551 1284.81429 

 

Table 2: Cost deviation details 
  

Ebola WOA PSO Without Opti 

Res1 7310.71108 8220.57811 8955.38102 11491.3371 

Res2 6557.90544 6699.23402 8570.16003 11958.2171 

Res3 5492.74047 5501.04503 6957.28925 12405.0921 

Res4 767.193771 777.306791 936.692239 1489.49915 

Res5 5411.96942 5460.35476 8104.51514 10093.4085 

Res6 5651.03278 6152.98087 8990.33241 9196.17214 

 

Load deviation with respect to proposed 

optimization technique with the Whale 

optimization and PSO technique is shown in Table 

1. An average load deviation for six residential 

buildings of 45% from the actual load is made 

possible with the proposed technique, which is 

3% more from Whale optimization also 20% more 

improvised results from PSO.  

Cost deviation details are shown in Table 2. An 

average cost deviation of 45% from the overall 

cost for six residential housed which is 20% more 

improvised compared to PSO technique and 3% 

improved compared to Whale optimization. 

Whereas whale optimization has 42% reduction 

from the overall cost which is 3% less than the 

Ebola optimization technique, with PSO at 25% 

deviation from the overall cost. 
 

Conclusion  
Sharing of load in six residential buildings 

depending on the load priority with optimal load 

shifting strategy is discussed in this paper. Real 

time data collected over the internet for six 

residential buildings is studied to reschedule the 

operating time for optimal usage of power 

equipment’s and to reduce the cost. Overall price 

reduction of 45% in average with respect to the 

operational cost without DSM in six residential 

buildings and an average reduction in load is 

about 45% is made possible with the proposed 

Ebola optimization technique by scheduling the 

electrical appliances based on fixed loads, power 

flexible loads and time controllable loads. 

Proposed technique bought an average of about 

20% improvement compared to PSO technique 

and around 3% average improvement from Whale 

optimization Technique. 
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