
 

International Research Journal of Multidisciplinary Scope (IRJMS), 2024; 5(2): 652-662   

     

Original Article | ISSN (O): 2582-631X                      DOI:10.47857/irjms.2024.v05i02.0595 

Logistic Regression Based Model for Pain Intensity Level 
Detection from Biomedical Signal 

Manisha Shantaram Patil*, Hitendra Dhansing Patil 
 

Department of Computer Engineering, Shri Shivaji Vidya Prasarak Sanstha's Bapusaheb Shivajirao Deore College of Engineering, 
Dhule (MS), India.  *Corresponding Author’s Email: manishavpatil2007@gmail.com 
 

Abstract 

Hospitals today make the effort to assess acute pain with self-report assessments such as the quantitative pain the level 
of intensity Index and visual input index. However, because these techniques rely on patient input, they are imprecise. 
Thus, an objective, statistical approach to ongoing pain monitoring is necessary. In computer vision research, 
identifying pain intensity is a difficult challenge to solve. However, current subjective pain evaluation is unreliable 
because it heavily relies on the patient's response. In order to improve the standardization of pain evaluation, 
automated pain identification using physiological data might provide essential objective information. In the present 
study, we provide an objective pain recognition approach based on physiological signals that can extract novel features 
from electromyography (EMG), electrodermal activity (EDA), and electrocardiogram (ECG) data that have not 
previously been utilized for pain recognition. Utilizing the Bio-Vid Heat Pain Database (Part A) for evaluation and 
clinical validation, the proposed machine learning logistic regression-based method performs significantly better than 
previous techniques recorded in the literature for both the electrodermal activity (EDA) and fusion approaches, with 
average performances of 82.36% and 83.20% for the binary classification experiment that discriminates within the 
baseline and the pain tolerance level (T0 vs. T4). Our result shows that it outperforms most of the previously proposed 
methods in related works. 

Keywords: Bio-potential, Classification, Feature, Logistic regression, Pain. 
 

Introduction 
The study aims to investigate pain intensity, a 

subjective experience, by examining its biological 

correlates. Pain, in its essence, is a complex 

sensory and emotional experience typically 

associated with tissue damage. It's subjective and 

varies greatly among individuals. Understanding 

the biological basis of pain intensity can provide 

insights into its mechanisms potential biomarkers, 

and therapeutic targets. Pain intensity refers to the 

perceived magnitude or strength of pain 

experienced by an individual. It can be measured 

on various scales, including numerical rating scales 

(NRS), visual analog scales (VAS), or verbal 

descriptor scales (VDS). This subjective experience 

can be influenced by factors such as psychological 

state, past experiences, and cultural background. 

Operationalizing pain intensity in terms of 

biological signals involves identifying 

physiological markers that correlate with the 

subjective experience of pain. This could include 

neurophysiological measures such as brain activity 

autonomic nervures system responses and 

biochemical markers (e.g., cytokines, 

neurotransmitters). By examining these biological 

signals alongside self-reported pain intensity 

measures, researchers can gain a more 

comprehensive understanding of the physiological 

processes underlying pain perception. This 

integration of subjective and objective measures is 

crucial for advancing our understanding of pain 

and developing more effective treatments. 

The visual analog scale and numeric rating scale 

can be used to evaluate pain (1). These techniques, 

however, are only effective when the patient is 

cooperative and sufficiently alert that is, under 

circumstances that aren't often provided by the 

medical community (2). Additionally, there are 

tools available for assessing pain in individuals 

with linguistic as well as cognitive disorders as 

well as in patients receiving automatic ventilation 

while sedated (3). All things considered, these 

techniques still require improvement or 

verification. Conditions that prevent a sufficient 

meaningful assessment of pain may lead to the  
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development of chronic pain, under per fusion of 

the operative field, or cardiac stress in individuals 

that are already at risk (4). Some of the research 

investigated the relationship between pain and a 

single bio-potential (5). Under conditions of tonic 

noxious stimuli areas of high intensity stimulation 

produced a higher level of skin conductance than 

low-intensity stimulation; the heart rate increased 

with short-term stimulation as opposed to 

prolonged stimulation, and corrugator 

electromyography revealed no discernible effect 

on the response (6-7). Our objective is to enhance 

pain diagnosis and pain status assessment through 

our research. We prepared an extensive 

multimodal dataset with multiple pain levels 

caused specifically for this purpose. A solution 

could be a machine learning model, such as logistic 

regression. The mathematical subcategories of 

amplitude, frequency, stationarity, entropy, 

linearity and variability were used to extract a total 

of characteristics from the electrocardiogram, skin 

conductance level, and face and trapezius 

electromyography signals. Based on logistic 

regression, we were given a classification rate of 

83.20% for the two class problem baseline vs. pain 

tolerance threshold. 

Related Work  
The main objective of early pain assessment 

research was on the amalgamation of multimodal 

information, which included biological signals 

based on the Bio-Vid Heat Pain Database (BVDB) 

and facial expression. The BVDB collects the bio-

physiological signals in the following manner: 

Muscle activity is recorded by an electromyogram 

(EMG). The trapezius muscle is twitching, 

indicating an increased amount of stress, which is 

normal after pain stimuli (8). The 

electrocardiogram generated signals of the heart 

and provides a wealth of data regarding heart 

health. EDA, mentioned to as skin conductance 

(SC) and galvanic skin response (GSR), is a skin 

conductance and electrical property measurement 

that demonstrates a substantial correlation with 

the level of emotion.  

Kachele et al. (8-9) utilized a random forest 

classifier to continuously estimate the level of pain 

and achieved accuracy 53.90%. Werner et al. (10) 

utilized multi-model signals (Part-A) and a random 

forest classifier to recognize the intensity of pain 

however with these novel ECG characteristics they 

were able achieve an average accuracy of 67.18%. 

In addition, they increased the accuracy to 81.12% 

by utilizing the TabNet model with ECG features. 

In comparison to other signals such as the 

combination of EDA and ECG data signals (11) the 

pain categorization using EDA signals was 

significantly higher. These extracted characteristi

cs offer more information for ECG signals that 

helps with pain detection (12). As an example, 

using a random forest classifier to compare the 

outcomes of the classification occupation B0 vs. P4.  

Gruss et al. (13) 159 features in total were 

retrieved, and SVM classifiers have been suggested 

for the binary pain classification. Significant 

improvements in pain recognition have been 

observed using deep learning and transfer 

learning models on physiological data. Lopez-

Martinez et al. (14) two hidden layers one common 

and one person-specific in multi-task neural 

networks were given signal properties of EDA and 

ECG, and they outperformed single-task neural 

networks in terms of performance. Wang et al. (15) 

developed hybrid classifiers based on recurrent 

neural networks to categorize the level of pain. 

They utilized a bidirectional long short-term 

memory (LSTM) network for integrating manually 

created features with the temporal dynamic 

attributes of physiological inputs.  

Thiam et al. (16) developed a hybrid data 

consolidation method for pain assessment on two 

separate pain databases, including the biovid heat 

pain database, based on deep denoising 

convolutional auto-encoders. Thaim et al. (17) 

developed a CNN (convolutional neural network) 

for the classification of pain based on physiological 

the inputs (ECG, EDA, and EMG). Pouromran et al. 

(18) pain intensity estimation using calculated 

features from ECG, EDA, and EMG data and trained 

the algorithms on these  features such as linear 

regression, support vector, xgboost, and neural 

network. Investigators exploring pain evaluation 

have shifted their focus to just physiological 

signals due to the association identified between 

unpleasant pain and physiological signals. 

Subramaniam et al. (19) introduced an 

amalgamated CNNLSTM classifier for binary pain 

detection based on ECG and EDA inputs. Still, 

analysing the various facial regions is necessary for 

face expression based pain identification, which 

can be difficult and time-consuming in clinical 

environments. Research on pain demonstrate that 
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the autonomic nervous system is greatly impacted 

by pain, which results in variations to heart rate 

and EDA. 
 

Methodology  
Data Sets 
A multi-modal collection of data called the Bio-Vid 

Heat Pain Database (Part A) (Walter et al., 2013) 

includes 87 healthy subjects (20) that were 

exposed to a total of four stages of separately 

standardized as well, steadily growing thermal 

pain stimulation (T1, T2, T3, T4). Numerous 

modalities, including as video signal and all bio 

potential signal information, were captured 

throughout the trials. Every single stage of pain 

level elicitation is arbitrarily induced 20 times, 

lasting 4 seconds each time. This was followed by 

a randomized recovery period that lasted 8 to 12 

seconds. A reference point temperature T0 of 32◦C 

remained used throughout this recovery phase and 

video signal shows in Figure 1. No pain and pain 

signal of all physiological signal feature are shown 

in Figure 2.   

Feature Extraction 
The method of extracting significant 

characteristics from an increased data element in 

order to increase information density is called 

feature extraction (21). Models that can predict the 

class of information gathered are constructed 

using these features.  

 
 

 

Figure 1: Recorded physiological data and video 

signal ECG; EMG; EDA (μS) 

 

Figure 2: Top (no pain bio-potential), bottom 

(pain bio- potential) 
 

The time domain and frequency domain, which are 

the continuums from which feature domains were 

computed, are the main classifications for feature 

domains (22). Time domain features, following 

pre-processing, effectively retrieve information 

from the time stream sampled. In arousal 

quantification, where reactions to stimuli were 

demonstrated to be mainly time-invariant, SCL 

time domain properties were found to be 

beneficial (23-24). Non-stationarity is 

demonstrated by EMG time domain analysis (25). 

However, under controlled circumstances, time 

domain EMG characteristics have demonstrate 

outstanding accuracy (26). On the other hand, 

features in the frequency domain are determined 

using data that has been modified and require 

spectral domain characterization. It has also been 

demonstrated to be connected with the phasic 

element of SCL, the skin conductance reply. Along 

with these feature categories, another way to 

classify feature extraction methods is based on the 

gentle of data information they are intended to 

likely to theoretically. Numerous theoretical 

characteristics types were investigated in this 

study, including others that represent such as 

amplitude signal, frequency properties, linearity, 

variability, entropy, linearity, similarity, and 

stationarity (27). Table 1 provides a 

comprehensive summary of these features. 
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Figure 3: Pairwise variable heatmap 

It shows that the ECG modality was described by 3 

aspects, SCL modality by some feature. In order to 

determine which variable show greatest 

connection with the categorization and whether 

any particular variables provide redundant 

information, pairwise correlation analysis was 

performed shown Figure 3 and Figure 4 shows 

intensity distribution of few feature from listed 

features. 

Fusion and Classification 
In this research we used Biovid Pain dataset this 

pain database was gather data from various 

sources such as clinical trials, (EHRs), or self-

reported assessments, ensure the data collected 

include relevant information such as pain intensity 

ratings, time stamps, and possibly contextual 

factors like activity levels, medication use, and 

physiological measurements. Employ appropriate 

ethical considerations and data privacy protocols, 

especially when dealing with sensitive health 

information. Identify biological signals that are 

correlated with pain intensity. These signals may 

include physiological measures such as: 

Electrodermal activity (EDA), Heart rate variability 

(HRV), Electromyography (EMG), Skin 

temperature, Blood pressure choose signals that 

are accessible, non- invasive, and feasible for 

continuous monitoring over time. Extract relevant 

features from the chosen biological signals to 

represent different aspects of pain intensity. 

Feature extraction techniques can include time-

domain, frequency-domain, and time- frequency 

domain analyses, as well as nonlinear dynamics 

measures. Commonly used features may include: 

Statistical measures (mean, variance, skewness, 

kurtosis) Frequency domain measures (power 

spectral density) Time-domain measures (root  

    

    

    

    

    

    

    

    

    

    

Figure 4: Illustration of features 
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Table 1: A Summary categories features 

Feature Group Detail 

HOMAV Magnitude Mean Absolute Value First Higher-Order 

MAV Magnitude Mean Absolute Value 

P2P Magnitude Peak to Peak Amplitude 

PK Magnitude Peak Amplitude 

RMS Magnitude Root Mean Square 

TMNP Magnitude Peaks  of the Mean Relative Time 

TMNV Magnitude Mean Relative Time of the Valleys 

IQR Variability Interquartile Range 

R Variability Range 

SD Variability Standard Deviation 

VAR Variability Variance 

IDS Stationarity Own- Interal Degree of Stationarity 

MD Stationarity Median 

ApEn Entropy Approximate Entropy 

PLDF Linearity Population Lag Dependence Function 

MIDS Stationarity Modified Integral Degree of Stationarity 

FuzzyEn Entropy Fuzzy Entropy 

SampEn Entropy Sample Entropy 

ShannonEn Entropy Shannon Entropy 

Spectral En Entropy Spectral Entropy 

LDF Linearity Lag Dependence Function 

PLDF Linearity Population Lag Dependence Function 

MDCOH Similarity Median Coherence 

MMNCOH Similarity Modified Mean Coherence 

BW Frequency Bandwidth 

CF Frequency Center Frequency 

MDF Frequency Median Frequency 

MNF Frequency Mean Frequency 

MOF Frequency Mode Frequency 

ZC Frequency Zero Crossings 

MNRR Variability Mean Resting Rate 

RMSSD Variability Root Mean Square Consecutive Interval Variations 

SDMN Stationarity Standard Deviation of Mean Vector 

LDF Linearity Lag Dependence Function 

SDSD Stationarity Standard Deviation of Standard Deviation Vector 
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mean square, entropy) Wavelet transforms 

Consider domain knowledge and previous 

research to guide the selection of features that are 

likely to capture meaningful information related to 

pain intensity. Split the data into training, 

validation, and test sets to evaluate model 

performance and prevent overfitting. Train the 

model using the training set and optimize model 

parameters using techniques such as cross-

validation, grid search, or Bayesian optimization. 

Evaluate the model's performance on the 

validation set using appropriate metrics. Fine-tune 

the model as needed based on validation results 

and retrain it on the entire training set. 

Fusion of data and stimulus classification follow 

next after feature extraction. An early fusion model 

is utilized in this work. All feature vectors from the 

various modalities are merged. Higher-

dimensional feature vectors   that are standardized 

for each individual are produced by converting 

each variable into a z-score dependent on the 

corresponding individual-specific average and 

standard deviation. Proposed pain level 

classification method shown in Figure 5. Initially 

pre-processes physiological signal, after that 

relevant feature extracted shown in Table 1 and for 

classification in this work we use logistic 

regression (LA) machine learning classifier to 

classify level of pain intensity.  

Logistic Regression 
Logistic regression is a supervised machine 

learning algorithm that accomplishes binary 

classification tasks by predicting the probability of 

an outcome, event, or observation. The model 

delivers a binary or dichotomous outcome limited 

to two possible outcomes: yes/no, 0/1, or 

true/false. A machine learning model can be 

effectively set up with the help of training and 

testing. The training identifies patterns in the input 

data and associates them with some form of 

output.  Training a logistic model with a regression 

algorithm does not demand higher computational 

power. As such, logistic regression is easier to 

implement, interpret, and train than other ML 

methods. Logistic regression uses a logistic 

function called a sigmoid function to map 

predictions and their probabilities. The sigmoid 

function refers to an S-shaped graph. 

Moreover, if the output of the sigmoid function is 

greater than a predefined threshold on the graph, 

the model predicts that the instance belongs to 

that class. If the estimated probability is less than 

the predefined threshold, the model predicts that 

the instance does not belong to the class. The 

sigmoid function shown in equation 1 is referred 

to as an activation function for logistic regression 

and is defined as: 

𝑓(𝜒) =
1

 1 + 𝑒−𝜒
                       [1] 

The equation 2 represents logistic regression: 

𝑦 =  
e(b0 + b1X)

1 +  e(b0 + b1X)
 

                [2] 

The only machine learning approach that is not a 

black box model is logistic regression. Black box 

models are typically complex but logistic 

regression illustrates exactly the framework 

executes in reality. A typical, multinomial, or 

binary logistic regression can be utilized. It is a 

binary logistic regression in this instance. The 

logistic regression model's equations that are 

shown in equation 3 and 4. 

P(𝑦|𝑥) = rr(x)                                          [3] 

𝜋(𝑥) =
exp(𝛽0+𝛽1𝑥1𝑖+⋯+𝛽𝑝𝑥𝑝𝑖)

1+exp(𝛽0+𝛽1𝑥1𝑖+⋯+𝛽𝑝𝑥𝑝𝑖)
      [4] 

Probability computations are performed for 

predicting classes in the Logistic Regression 

technique. Applying the threshold value as an 

estimate is necessary for classification data 

created on the binary reply data. A cut point of 0.5 

could be applied. Class 0 is the predicted result if 

the possibility generated by the algorithm is below 

0.5, and Class 1 is the predicted outcome if the 

possibility generated by the algorithm is greater 

than or equal to 0.5 (28). The stages for
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Figure 5: Pain classification framework 
 

categorizing the logistic regression approach are 

listed below: 

• Determine which factor is dependent, then split 

it into binary data scores of 0 and 1, which 

represent respectively. 

• Fail or successful situations. 

• Calculate the intercept (a) and coefficient value 

(β) associated with each variable that is 

independent express in equation 5. 

𝑎 = 𝑦 ̿ − 𝛽�̅�                         [5] 

 

• In order to generate a linear model from a 

logistic model, transformations is required 

because the logistic model is non-linear. 

Generate a probabilistic framework using the 

logistic function that equation 2 produced.  

• Data obtained from the logistic and probability 

models are entered into the regression model, 

which is then tested.  

It belongs to category 0 if the value of π(x) is less 

than 0.5 and category 1 if n(x) equal 0.5. 

Logistic regression is a commonly used statistical 

method for binary classification tasks, where the 

goal is to predict the probability that an instance 

belongs to one of two classes. In the context of pain 

classification, logistic regression can be a valuable 

tool for determining the likelihood that a certain 

set of features or variables is associated with the 

presence or absence of pain. Validity in the context 

of logistic regression refers to the extent to which 

the model accurately reflects the underlying 

relationship between the predictors (features) and 

the outcome variable (presence or absence of 

pain).This involves ensuring that the variables 

included in the model are relevant and that the 

assumptions of logistic regression are met Validity 

can be enhanced by carefully selecting variables 

based on theoretical understanding and empirical 

evidence, as well  as  by  assessing  model  fit  and 

performance through techniques like cross-

validation. Reliability in logistic regression 

pertains to the consistency and stability of the 

model's predictions over repeated samples or 

observations. A reliable logistic regression model 

should produce consistent results when applied to 

different datasets with similar characteristics. This 

can valuated through measures such as confidence 

intervals, which provide an indication of the 

precision of the estimated coefficients, and by 

conducting sensitivity analyses to assess the 

robustness of the findings to variations in the data 

or modelling assumptions. 

In the context of pain classification, the validity of 

a logistic regression model representativeness of 

the sample features such as pain intensity, 

location, duration, and associated symptoms 

would contribute to the validity of the model. 

Reliability in pain classification using logistic 

regression would  involve demonstrating 

that the model produces consistent predictions 

across different patient populations or settings.  
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This could be assessed by applying the model to 

independent datasets or by conducting validation 

studies in diverse clinical settings. Overall, while 

logistic regression can be a useful methodology for 

pain classification, ensuring both validity and 

reliability requires careful attention to model 

development, validation, and interpretation. 

Additionally, it's important to acknowledge the 

limitations of logistic regression, such as its 

assumption of linearity between the log odds of the 

outcome and the predictor variables, and to 

consider alternative modelling approaches when 

appropriate. 

The dataset is randomly split into 80% training 

and 20% testing sets in the train/test splitting with 

k = 7, which results with slightly higher accuracy 

and area under the curve but lower compute 

complexity than k = 10 across the majority of ML 

models. This is done after the data has been pre-

processed. As a result, 7-fold cross validation has 

been used to assess the precision of machine 

learning models. 

Logistic regression is susceptible to overfitting, 

especially when the number of features is large 

relative to the number of observations. 

Regularization techniques such as L1 (Lasso) 

regularization can help prevent overfitting by 

penalizing large coefficients. 
 

Results and Discussion 
Assess the model’s performance using a 

combination of evaluation metrics such as MAE, 

MSE, RMSE, MAPE, R-squared, and correlation 

coefficient. Compare the model’s performance 

against baseline models or alternative forecasting 

methods to gauge its effectiveness.  Conduct 

sensitivity analysis to evaluate the robustness of 

the model to changes in input parameters or 

assumptions. Use techniques such as feature 

importance or coefficient analysis to determine the 

relative importance of predictors in the model. 

Identify which biological signals or features 

contribute most significantly to the prediction of 

pain intensity. Consider the clinical relevance of 

predictors and prioritize those that align with 

physiological mechanisms or known risk factors 

for pain. 

For regression models, interpret the coefficients to 

understand the direction and magnitude of the 

effect of each predictor on the pain intensity. 

positive coefficients indicate that an increase in the 

predictor variable leads to an increase in pain 

intensity, while negative coefficients suggest the 

opposite. Consider the scale and units of the 

predictor variables when type of model used 

(linear, nonlinear, time series) and the feature 

engineering techniques applied. Translate model 

findings into clinically meaningful insights by 

considering how changes in predictor variables 

may impact collaborate with healthcare 

professionals to validate model findings and assess 

their clinical relevance and applicability. 

Incorporate patient-reported outcomes and 

subjective assessments to complement objective 

predictors and provide a holistic understanding of 

pain intensity dynamics. There are various metrics 

are used to determine the performance of classifier 

(model) such as sensitivity, specificity, and 

accuracy. After the classification algorithm has 

produced predictions, we were to want to 

determine the accuracy of those predictions. Since 

the metrics that are important to your model may 

change based on its intended application, accuracy 

in classification models can be an especially 

complex notion. We have fit a logistic regression 

model on dataset to try and predict. We have some 

predictions, we can evaluate the model to 

determine how well it is predicting the actual class. 

A key piece in understanding the accuracy of our 

model is the confusion matrix. 

We evaluate the proposed approach on the Bio-Vid 

Heat Pain Database's Part A as the basis. The LOSO 

cross validation approach is employed, whereas a 

subject gets assigned as a test, and the other 

subjects are utilized for train the model. In order to 

evaluate the training process average accuracy (in 

percentage terms) with previous studies is 

provided. We take approximately four binary 

classification tasks to recognize pain. In this 

investigations additionally we utilize of other 

modalities.  

The results of the categorization tasks for subjects 

87 are displayed in Table 2. We conclude that the 

recommend approach for pain evaluation gain 

significant advantages from EDA signal. The fusion 

of physiological signal. The fusion of physiological 

signal often performs well for pain categorization 

tasks. The Table 3 presents the evaluation of the 

suggested method according to the maximum pain 

classification compared to previous studies. In 

Table 2, we evaluate fused signal and EDA, and for 

87 participants, we achieve an accuracy of 83.20% 
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and 82.36%, respectively. We achieved the best 

performance for fused signals for the classification 

of Pain level 0 vs Pain level 4. Table 3 shows the 

way the proposed method performs on 

classification tasks in comparison to numerous of 

earlier method, for different classification 

methods, for different classification tasks, the 

suggested approach performs more effectively 

than other approaches in most cases. Figure 6 

shows that classification accuracy of different 

modality and Figure 7 show that comparison of 

classification accuracy with various previous 

method. 
 

Table 2: Binary classification accuracy with 

multiple signals and fusion signal 

Task  ECG EMG  EDA  Fusion 

T0 vs T1 49.17 49.15 61.76 61.12 

T0 vs T2 50.21 50.92 66.93 66.86 

T0 vs T3 52.80 53.52 76.38 76.19 

T0 vs T4 57.40 58.59 82.36 83.20 

 

 

 
Figure 6: Bio-potential signals accuracy 

 

 

Table 3: An assessment of the binary classification 

accuracy among T0 and T4 using all bio-signals is 

carried out 

Method Modality Accuracy 

Kachele et al. [9] 
Multimodal 

signals 
82.00 

Werner et al. [2]  
Multimodal 

signals 
76.60 

Lopez-Martinez et 

al.  [14] 

Multimodal + 

videos 
80.60 

Proposed LR 

Method 

Multimodal 

signals 
83.20 

 

 

Figure 7: Comparison of classification accuracy 

between T0 and T4 

Logistic regression methodology in pain intensity 

classification involves rigorous selection of 

predictor variables, validation against external 

criteria, transparent reporting of results, and 

assessment of time points. Valid and reliable 

logistic regression models can provide valuable 

insights into the factors influencing pain intensity 

and aid in clinical decision- making and treatment 

planning. 

The adoption of ML in pain treatment and research 

offers transformative opportunities to enhance 

patient care, optimize treatment outcomes, and 

advance our understanding of pain disorders.  

However, it also requires careful consideration of 

ethical, regulatory, and practical considerations to 

realize its full potential in clinical practice. 

Conclusion 

Overall our approach achieves identical outcomes 

for pain recognition by utilizing the available 

signals in the dataset. 

Further research in these fields may substantially 

modify the development of new treatments and 

enhance current knowledge of and treatment of 

individuals suffering pain by utilization of 

advanced data fusion techniques, such as deep 

learning architectures and Bayesian networks, to 

extract meaningful insights from multimodal 

datasets and uncover hidden relationships 

between variables. 
 

Abbreviation 
EMG: Electromyography 

EDA: Electrodermal Activity 

ECG: Electrocardiogram 

SC: Skin Conductance  

GSR: Galvanic Skin Response  

ECG: Electrocardiogram 

LA: Logistic Regression 
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ML: Machine Learning 

HOMAV: Mean Absolute Value First Higher-Order 

RMS: Root Mean Square 

IQR: Interquartile Range 

LOSO: Leave One Subject Out 
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