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Abstract 
In Very Large Scale Integration (VLSI) circuits, the estimation techniques for resistors (R), inductors (L), and 
capacitors (C) heavily rely on segmented circuit analysis, which involves usage of complex mathematical 
simplification models. These methods have been conventionally applied to estimate the behavior of circuits, but when 
faced with systems featuring unique circuit architectures, they often encounter inaccuracies and limitations. The 
significance of adders as fundamental building blocks in intricate circuit design cannot be overstated. In such complex 
circuits, various parameters, including parasitic resistances, inductances, and capacitances, engage an indispensable 
effort in the analysis of delays and performance. However, the conventional estimation methods fail to address the 
complexities of these systems and the impacts of parasitics accurately. To overcome these challenges, this paper 
proposes a novel approach that harnesses the potential of machine learning algorithms. By integrating machine 
learning into the estimation process, the research aims to achieve specific and precise analysis methods that can cater 
to the needs of modern VLSI circuits. The proposed methodology involves collecting a comprehensive dataset using 
different adder circuits. From each individual adder circuit layout, the relevant information on resistors, capacitors, 
and inductors is carefully extracted and compiled. This dataset serves as the foundation for training the machine 
learning models. Three standard machine learning models are employed in this study: adaboost, Tree, and k-Nearest 
Neighbors (kNN). Their task is to predict the values of resistors, inductors, and capacitors based on the input data 
from the adder circuits. Among these models, adaboost proves to be the most effective, exhibiting superior 
performance by achieving a reduced root mean square error of about 0.008. When compared to the Tree and kNN 
models, adaboost stands out as the optimal choice for accurately estimating the R values in VLSI circuits. 
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Introduction 
The continuous advancement of integrated circuit 

technology has revolutionized the field of 

electronics and digital systems. Very Large Scale 

Integration (VLSI) circuits have become the 

backbone of modern-day electronic devices, 

facilitating the integration of millions of transistors 

on a single chip. As the complexity of VLSI circuits 

increases, accurate estimation of resistors (R), 

inductors (L), and capacitors (C) has become 

imperative to ensure optimal circuit performance 

and reliability. Estimation techniques for R, L, and 

C have long been a subject of intense research in 

the VLSI community. Traditional approaches 

involve segmented circuit analysis, employing 

complex mathematical simplification models. 

While these methods have been effective in 

analyzing standard circuit configurations (1-4), 

they often fail to address the complexities 

associated with systems featuring unique circuit 

architectures. The presence of parasitic 

resistances, inductances, and capacitances  

 

significantly impacts circuit behavior, causing 

inaccuracies and limitations in the estimation 

process. 

Segmented circuit analysis has been the 

conventional approach for estimating R, L, and C in 

VLSI circuits. This method involves breaking down 

the circuit into smaller segments and employing 

mathematical simplification models to analyze the 

behavior of each segment. While this approach has 

provided valuable insights into circuit 

characteristics, it falls short when dealing with 

non-standard circuit configurations and parasitic 

effects. 

Parasitic elements such as parasitic resistances, 

inductances, and capacitances arise due to the 

physical layout of the circuit and the interactions 

between different components. These parasitic 

effects can significantly impact circuit performance 

and introduce inaccuracies in the estimation of R, 

L, and C values. The inaccuracies stemming from 

traditional estimation techniques pose substantial 

obstacles in the realm of modern VLSI circuit  

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY 

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, 

and reproduction in any medium, provided the original work is properly cited. 
 

(Received 18th February 2024; Accepted 27th April 2024; Published 30th April 2024)      



Saravanakumar and Usha                                                                                                                        Vol 5 ǀ Issue 2 
 

746 

 

design. In an era where the need for smaller, faster, 

and more energy-efficient electronic devices is 

ever-increasing, the precise estimation of 

parameters such as resistors (R), inductors (L), and 

capacitors (C) becomes even more imperative. 

Furthermore, the increasing complexity of VLSI 

circuits necessitates the development of more 

sophisticated analysis methods that can adapt to 

unique circuit architectures. 

Machine learning algorithms have shown 

tremendous potential in diversified domain, 

inclusive of natural language processing, speech 

processing, and pattern recognition. The 

application of machine learning in VLSI circuit 

analysis presents a promising avenue for 

overcoming the limitations of traditional 

estimation techniques (5-7). By harnessing the 

power of machine learning, it is possible to develop 

specific and precise analysis methods that can 

effectively account for parasitic effects and unique 

circuit configurations. 

The primary contribution of this paper are as listed 

below 

• Integrating machine learning algorithms into the 

estimation process for resistors, inductors, and 

capacitors in VLSI circuits. 

• Demonstrate the adaptability of machine 

learning models to different circuit 

configurations and design requirements. 

A wide variety of full adder circuits are constructed 

and simulated using Microwind and Dsch Tool. The 

logical equations governing the full adders are 

listed below as equation [1] and equation [2].  
 

𝑂𝑝𝑡_𝑆 = (𝐼𝑝𝑡_𝐴 ^ 𝐼𝑝𝑡_𝐵 ^ 𝐼𝑝𝑡_𝐶)                   [1] 

𝑂𝑝𝑡_𝐶 = (𝐼𝑝𝑡_𝐴. 𝐼𝑝𝑡_𝐵) + (𝐼𝑝𝑡_𝐵. 𝐼𝑝𝑡_𝐶) +

(𝐼𝑝𝑡_𝐶. 𝐼𝑝𝑡_𝐴)                      [2] 
 

In the above equations ^ symbol represents XOR 

operation. The schematic of the circuits under 

consideration is given in Fig. 1.  

Full Adder Employing Half Adders (FAEHA) 

A full adder is a crucial combinational logic in 

digital logic circuits, responsible for performing 

binary addition of 3 inputs – Ipt_A, Ipt_B and a 

input carry (Ipt_C) - to produce 2 number of yields: 

the sum (Opt_S) and the carry-out (Opt_C). To 

construct a full adder, we can employ an OR gate 

and 2 numbers of single bit adders. The first half 

adder is used to add inputs A and B, yielding a sum 

output (S1) and a carry-out output (C_out1) (8). 

Subsequently, the second half adder combines the 

carry-out output (C_out1) from the first half adder 

with the carry input (Ipt_C) and produces another 

sum output (S2) and carry-out output (C_out2). To 

generate the final sum (Opt_S) output, we take the 

XOR of the sum output (S2) from the next half 

adder and the carry input (Ipt_C). As for the final 

carry-out (Opt_C) output, it is obtained by 

performing an OR operation on the carry-out 

output (C_out2) from the next half adder and the 

carry-out output (C_out1) from the initial half 

adder. 

Full Adder Employing MUX and XOR (FAEMX) 

To construct a full adder using XOR gates and 

multiplexer (MUX), the sum (Opt_S) output is 

designed initially. The XOR gate is utilized to

 

 

 

Figure 1: (A)FAEHA, (B) FAEMX, (C) FAEMXN, (D) FAEM; (E) FAEXMI 
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compute the bitwise sum of inputs Ipt_A, Ipt_B, and 

Ipt_C (9). The output of the XOR gate represents 

the sum bit. Next, the carry-out (Opt_C) output is 

accomplished using MUX, which selects the carry 

input (Ipt_C) or a combination of the carry input 

(Ipt_C) and the AND operation between Ipt_A and 

Ipt_B, based on the inputs Ipt_A and Ipt_B. The MUX 

acts as a switch that chooses between the carry 

input (Ipt_C) and the carry generated by Ipt_A and 

Ipt_B, depending on whether Ipt_A and Ipt_B are 

both 1 (indicating a carry). The output of the MUX 

represents the carry-out (Opt_C) bit. By integrating 

XOR gates and MUX, a full adder circuit can be 

constructed with minimal components, making it 

an efficient and widely-used method for binary 

addition in digital systems. This approach 

demonstrates the versatility of XOR gates and MUX 

in designing complex circuits, ensuring accurate 

computation of sums and carry-outs, critical for 

various arithmetic operations in computers and 

microprocessors. 

Full Adder Employing MUX and XNOR 

(FAEMXN) 

To construct a full adder using XNOR gates and 

MUX, the design procedure is started with the sum 

(S) output. The XNOR gate is employed to compute 

the bitwise sum of inputs Ipt_A, Ipt_B, and Ipt_C. 

The output of the XNOR gate represents the sum 

bit. To design the carry-out (Opt_C) output. MUX is 

instrumental in this step, as it selects the carry 

input (Ipt_C) or a combination of the carry input 

(Ipt_C) and the OR operation between Ipt_A and 

Ipt_B, depending on the values of Ipt_A and Ipt_B 

(10). The MUX acts as a switch, choosing between 

the carry input (Ipt_C) and the carry generated by 

Ipt_A and Ipt_B, considering whether Ipt_A and 

Ipt_B are both 0 (indicating no carry) or not. The 

output of the MUX represents the carry-out 

(Opt_C) bit. The integration of XNOR gates and 

MUX in the full adder circuit demonstrates an 

efficient and resource-effective approach to binary 

addition in digital systems (11).  

Full Adder Employing MUX (FAEM) 

Hussain (12) introduced a novel full adder circuit 

design that relies on the gate diffusion input (GDI) 

concepts and the switching patterns of the inputs. 

The adder's construction comprises two stages: an 

XOR-XNOR module in the first stage, followed by 

the last phase for producing the expected outputs. 

Leveraging the input switching patterns and 

employing GDI methods for every blocks, the 

circuit achieves minimized switching activities of 

the transistors. As a result, this design leads to 

significant improvements in power consumption, 

computational complexity and delay. The first 

stage of the full adder is the XOR-XNOR module, 

where the XOR gate is used to calculate the bitwise 

sum of the inputs, and the XNOR gate is employed 

to handle the carry bits. This intermediate stage 

plays a crucial role in preparing the data for the 

subsequent stage. In the final stage, the circuit 

processes the results from the XOR-XNOR module 

and generates the desired sum (Opt_S) and carry-

out (Opt_C) outputs. By reducing the switching 

activities of the transistors through input 

switching activity pattern analysis and GDI 

techniques, the full adder circuit demonstrates 

improved performance metrics (13). The 

minimized switching activities lead to reduced 

propagation delays, enhancing the overall speed 

and efficiency of the full adder. Moreover, the 

reduction in power consumption results in energy-

efficient operation, making it favorable for low-

power applications. Furthermore, the 

computational complexity reduction simplifies the 

circuit design and facilitates easier integration into 

larger systems. 

Full Adder Employing XOR, MUX and Inverter 

(FAEXMI) 

The proposed design of a new full adder centers 

around the utilization of a XOR gate, two 2X1 

multiplexers, and one CMOS inverter. The primary 

focus in developing this circuit lies in achieving 

two key objectives: minimizing power 

consumption and reducing the overall size of the 

full adder. To achieve the goal of minimum power 

consumption, careful consideration is given to the 

selection of components and the arrangement of 

the circuitry. By employing low-power devices and 

optimizing the switching activities of the 

transistors, the full adder design strives to 

significantly reduce power requirements while 

maintaining reliable operation. Simultaneously, 

the emphasis on creating a compact full adder size 

is of paramount importance (14). This objective 

involves efficient placement and integration of the 

XOR gate, multiplexers, and CMOS inverter within 

a limited chip area. Through careful layout and 

design techniques, the new full adder aims to 

occupy a smaller physical footprint, making it 

suitable for modern integrated circuit applications. 

By combining these two essential design 
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objectives, the proposed full adder aspires to offer 

a compelling solution for power-sensitive and 

space-constrained scenarios. The potential 

benefits of this design lie in its ability to contribute 

to energy-efficient computing systems and pave 

the way for higher-density circuit integration. 

Moreover, the compact size ensures effective 

utilization of valuable chip real estate, enabling 

more complex circuitry and functionality in VLSI 

chips (15). 
 

Methodology 
Dataset Collection 
The initial footstep in the proposed methodology 

involves gathering a comprehensive dataset of 

adder circuits. Adders are fundamental 

components in VLSI circuits, widely used in 

arithmetic and logic operations. A diverse set of 

adder circuits is selected as discussed in section 2, 

to cover various circuit architectures and design 

complexities. Each adder circuit is simulated, and 

relevant information about the resistors, 

inductors, and capacitors is extracted. 

For data collection, commercial VLSI design tools 

the Microwind and Dsch are utilized to generate 

circuit layouts and perform simulations. These 

simulations involve applying various test cases 

and stimulus signals to the adder circuits to 

observe their responses. The simulations record 

the circuit characteristics, such as delay, power 

consumption, and parasitic effects, which are used 

as features for training the machine learning 

models. The Table 1 shows the generated data set 

for the different adder circuits with its R, L and C 

Values. 

 

Table 1. Generation of dataset 

Adder Node C(fF) R(kohms) L(nH) Power(uW) 

FAEHA Ipt_A 3.89 0.542 0.02 12.03 

FAEHA Ipt_B 3.87 0.582 0.02 12.03 

FAEHA Ipt_C 3.98 0.583 0.02 12.03 

FAEHA Opt_S 1.15 0.18 0.01 12.03 

FAEHA Opt_C 1.3 0.182 0.02 12.03 

FAEMX Ipt_A 3 0.556 0.02 9.272 

FAEMX Ipt_B 1.73 0.291 0.01 9.272 

FAEMX Ipt_C 3.07 0.481 0.03 9.272 

FAEMX Opt_S 0.87 0.18 0.01 9.272 

FAEMX Opt_C 2.51 0.379 0.03 9.272 

FAEM Ipt_A 2.89 0.555 0.02 10.026 

FAEM Ipt_B 1.73 0.291 0.01 10.026 

FAEM Ipt_C 4.32 0.555 0.02 10.026 

FAEM Opt_S 2.66 0.38 0.04 10.026 

FAEM Opt_C 2.22 0.378 0.03 10.026 

FAEMXN Ipt_A 3.26 0.623 0.03 7.395 

FAEMXN Ipt_B 1.73 0.291 0.01 7.395 

FAEMXN Ipt_C 2.97 0.48 0.02 7.395 

FAEMXN Opt_S 0.87 0.18 0.01 7.395 

FAEMXN Opt_C 2.51 0.379 0.03 7.395 

FAEXMI Ipt_A 5.31 0.742 0.05 8.723 

FAEXMI Ipt_B 7.77 1.629 0.04 8.723 

FAEXMI Ipt_C 5.74 0.717 0.05 8.723 

FAEXMI Opt_S 2.78 0.381 0.04 8.723 

FAEXMI Opt_C 3.1 0.383 0.04 8.723 
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Figure 2: Simulation in Orange Tool 

 

Feature Engineering 
Feature engineering is a crucial step in preparing 

the dataset for machine learning. The collected 

simulation data contains a multitude of features, 

including parasitic resistances (R), inductances 

(L), and capacitances (C), as well as other circuit 

parameters. It is essential to preprocess and select 

the most relevant features to reduce 

dimensionality and enhance model performance. 

During feature engineering, data normalization 

and scaling techniques are applied to bring all 

features within a standardized range. Additionally, 

feature selection methods, such as correlation 

analysis and feature importance ranking, are 

employed to identify the most influential features 

for R, L, and C estimation. 
 

Machine Learning Model Selection 
In this step, various machine learning algorithms 

are considered for the estimation of resistors, 

inductors, and capacitors in VLSI circuits. Standard 

machine learning models, including adaboost, 

Decision Trees, and k-Nearest Neighbors (kNN), 

are evaluated for their performance on the 

preprocessed dataset. 

The selection process from the dataset involves 

dividing into training and testing sets. The dataset 

selected for training is chosen to train the machine 

learning models on the relevant features and 

corresponding R, L, and C values. The testing set is 

then employed to assess the accomplishment of 

the models and generalization ability. The 

simulation environment in Orange Data Mining 

tool is displayed in Fig.2. 

Model Training and Optimization 
The selected machine learning models are trained 

using the training dataset. During the training 

process, hyperparameters of the models are fine-

tuned to achieve the best possible performance. 

Procedures like grid search and cross-validation 

are applied to optimize the hyperparameters and 

prevent overfitting. 

To assess the accuracy of the trained models, 

metrics like Root Mean Square Error (RMSE), and 

Mean Square Error (MSE) are calculated using the 

equation [3] and equation [4].  

𝑅𝑀𝑆𝐸 =  √∑ ‖𝑆(𝑖)− 𝑆̂(𝑖)‖
2𝐷𝑃

𝑖=1

𝐷𝑃
      [3] 

 

𝑀𝑆𝐸 =  √
∑ (𝑆(𝑖)−𝑆̂(𝑖))2𝐷𝑃

𝑖=1

𝐷𝑃
           [4] 

Where DP is the total count of data, S(i) represents 

the calculated sample value at ith iteration, 𝑆̂(𝑖) is 

its respective predicted value. 

The model with the lowest error values on the 

testing set is considered the most suitable for R, L, 

and C estimation in VLSI circuits. 

Model Evaluation and Comparison 
Once the models are trained and optimized, they 

are evaluated on the testing dataset to assess their 

performance in estimating R, L, and C values. The 

evaluation involves comparing the predicted 

values to the ground truth values obtained from 

circuit simulations. The model with the highest 

accuracy and the lowest error values is identified 

as the most effective for VLSI circuit analysis. 
 

Results and Discussion 
The machine learning models are developed with 

the Orange Data mining Tool installed in a Dell 

Computer System with intel i5 processor running 

on Windows OS. The developed data set of the 

adder circuits with different parameters are used 

as input dataset from Table 1. In Table 4, the 

estimated values of resistance (R), Capacitance (C) 

and inductance (L) are showcased, derived from 

three different predictive models: adaboost, Tree, 

and kNN. Each of these models was employed to 
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analyze the circuit's characteristics and predict the 

R, C and L values. It serves as a valuable reference, 

shedding light on the estimated inductance values 

achieved through the adaboost, Tree, and kNN 

models. The presentation of results in Table 2 is 

instrumental in understanding the strengths and 

limitations of each model in accurately predicting 

inductance. It should be noted that the data inputs 

are shuffled to strengthen the prediction accuracy. 

In statistics and machine learning, the MSE is a 

regularly used measure to assess the efficacy and 

efficiency of predictive models. It calculates the 

average of the squared value of difference between 

a dataset's actual (ground truth) values and 

anticipated values. The predicted values are 

produced from the model, and the squared 

difference between each anticipated value and the 

appropriate real counterpart is then calculated to 

provide the MSE. The MSE value is then calculated 

by averaging the squared differences among each 

of the dataset's data values. A lower MSE signifies 

greater accuracy and precision since the model's 

predictions are more closely aligned with the 

measured data. From the graph in Fig. 3 shows that 

the adaboost model over performs the other 

models.

 

 

Table 2. Estimation of R, C and L values using machine learning model 

Adder Node 

R(K) C(fF) L(nH) 

Actual 
Predicted 

Actual 
Predicted 

Actual 
Predicted 

Ada Tree KNN Ada Tree KNN Ada Tree KNN 

FAEMX Opt_S 0.18 0.18 0.18 0.304 0.87 0.87 1.05 2.24 0.01 0.01 0.01 0.02 

FAEMXN Ipt_B 0.291 0.291 0.291 0.391 1.73 1.73 1.85 2.27 0.01 0.01 0.01 0.02 

FAEHA Ipt_A 0.542 0.582 0.566 0.563 3.89 3.61 3.91 2.84 0.02 0.02 0.02 0.02 

FAEXMI Opt_S 0.381 0.381 0.381 0.436 2.78 2.78 2.61 3.89 0.04 0.04 0.04 0.03 

FAEM Ipt_B 0.291 0.291 0.291 0.344 1.73 1.73 1.85 2.76 0.01 0.01 0.01 0.02 

FAEMX Opt_C 0.379 0.379 0.379 0.435 2.51 2.51 2.61 2.24 0.03 0.03 0.03 0.03 

FAEM Opt_S 0.38 0.381 0.381 0.45 2.66 2.66 2.61 2.76 0.04 0.04 0.04 0.03 

FAEHA Ipt_B 0.582 0.582 0.566 0.563 3.87 3.87 3.91 2.84 0.02 0.02 0.02 0.02 

FAEXMI Ipt_C 0.717 0.717 1.173 0.805 5.74 5.74 6.27 3.99 0.05 0.05 0.05 0.04 

FAEMX Ipt_A 0.556 0.556 0.531 0.436 3 3 3.13 2.24 0.02 0.02 0.03 0.03 

FAEHA Ipt_C 0.583 0.583 0.566 0.563 3.98 3.87 3.91 2.84 0.02 0.02 0.02 0.02 

FAEM Ipt_C 0.555 0.555 0.566 0.578 4.32 3.61 3.61 2.76 0.02 0.02 0.02 0.03 

FAEMXN Ipt_A 0.623 0.623 0.682 0.449 3.26 3.26 3.13 2.27 0.03 0.03 0.03 0.03 

FAEHA Opt_S 0.18 0.182 0.18 0.282 1.15 1.15 1.05 2.84 0.01 0.01 0.01 0.02 

FAEHA Opt_C 0.182 0.182 0.18 0.282 1.3 1.3 1.05 2.84 0.02 0.02 0.01 0.02 

FAEXMI Ipt_A 0.742 0.742 0.682 0.576 5.31 5.31 6.27 3.99 0.05 0.05 0.05 0.04 

FAEMXN Ipt_C 0.48 0.48 0.431 0.431 2.97 2.97 3.05 2.27 0.02 0.02 0.03 0.03 

FAEXMI Ipt_B 1.629 1.629 1.173 0.805 7.77 7.77 6.27 4.98 0.04 0.04 0.05 0.04 

FAEMXN Opt_S 0.18 0.18 0.18 0.264 0.87 0.87 1.05 2.27 0.01 0.01 0.01 0.01 

FAEXMI Opt_C 0.383 0.383 0.431 0.436 3.1 3.1 3.05 3.89 0.04 0.04 0.04 0.03 

FAEMX Ipt_C 0.481 0.481 0.531 0.436 3.07 3.07 3.05 2.24 0.03 0.03 0.03 0.03 

FAEM Ipt_A 0.555 0.555 0.531 0.47 2.89 3.61 3.61 2.76 0.02 0.02 0.02 0.03 

FAEM Opt_C 0.378 0.378 0.379 0.397 2.22 2.22 1.85 2.76 0.03 0.03 0.03 0.03 

FAEMXN Opt_C 0.379 0.379 0.379 0.431 2.51 2.66 2.61 2.27 0.03 0.03 0.03 0.03 

FAEMX Ipt_B 0.291 0.291 0.291 0.304 1.73 1.73 1.85 2.24 0.01 0.01 0.01 0.02 
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Figure 3: Mean Square Error of Three models for R (A), C (B) and L (C) estimation 
 

Root Mean Square Error is a metric that is widely 

employed to assess the accuracy and performance 

of predictive models, particularly in regression 

tasks. It is a variation of the Mean Square Error that 

addresses some of its limitations, making it a 

preferred choice for evaluating model predictions. 

The square root of the average of the squared 

discrepancies among the predicted values and the 

matching actual (ground truth) values in a dataset 

is employed to figure out the RMSE. By taking the 

square root, RMSE brings the metric back to the 

original scale of the data, which is especially 

beneficial when interpreting the error in real-

world units or when comparing multiple models. 

Like MSE, a lesser RMSE value implies that the 

predictions made by the model are accurate 

towards the true values, signifying higher accuracy 

and precision. However, RMSE has the added 

advantage of being less sensitive to outliers or 

extreme values in the dataset due to the square 

root operation, as it dampens the impact of large 

errors. For the developed model the RMSE is 

calculated as depicted in Fig. 4.

 
 

 

Figure 4: Root Mean Square Error of Three models for R(A), C(B) and L(C) estimation 

(A) (B) 

(C) 
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Conclusion 
The integration of machine learning algorithms for 

accurate estimation of resistors, inductors, and 

capacitors in VLSI circuits represents a significant 

advancement in the field of circuit design and 

analysis. Traditional methods based on complex 

mathematical simplification models often lead to 

errors, especially in systems with unique circuit 

architectures. However, the proposed 

methodology leverages machine learning 

techniques to overcome these challenges 

effectively. By using various adder circuits and 

collecting datasets comprising resistor, inductor, 

and capacitor values, the methodology successfully 

trains and optimizes machine learning models like 

adaboost, Tree, and kNN. Through rigorous 

evaluation, the adaboost model emerges as the 

most effective, exhibiting reduced mean square 

error and superior accuracy compared to the other 

models. The results of this study demonstrate the 

potential of machine learning in improving the 

precision and reliability of estimating critical 

parameters in VLSI circuits. By minimizing errors 

in estimation of R, L and C parameters, the 

proposed approach enhances circuit performance 

and efficiency. Moreover, the adaptability of the 

methodology to different circuit architectures 

ensures its applicability in diverse electronic 

devices and systems. 

This research opens up new avenues for further 

exploration in the field, encouraging the 

application of machine learning techniques to 

tackle complex circuit design challenges. As the 

demand for high-performance, energy-efficient 

electronic systems continues to grow, the 

integration of machine learning in VLSI circuit 

design will play a decisive identity in shaping the 

future of modern computing and technology. 
 

Abbreviation 
VLSI – Very Large Scale Integration, R – Resistor, L 

– Capacitor, C – Inductor, kNN – K Nearest 

Neighbors, RMSE – Root Mean Square Error, MSE – 

Mean Square Error 
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