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Abstract

Without advanced artificial intelligence (AI) technologies, monitoring and identifying wildlife has become increasingly
difficult. To examine Al-driven methodologies for wild animal identification, this work uses a diverse dataset of
annotated images with human, domestic and wild animal annotations. Convolutional Neural Networks (CNNs),
AlexNet, and Deep Q-Learning (DQN) models are developed and compared by combining sophisticated preprocessing
techniques such as dynamic color space conversion and day-night image translation. The models are evaluated on
accuracy, precision, recall, F1-score, and mean percent error (MPE) loss metrics for classifying diverse species. The
DQN model achieves the best performance with 79.5% accuracy, 0.78 precision, 0.84 F1-score, and 0.24 MPE loss.
These findings demonstrate Al's potential to support conservation efforts by enabling accurate and automated wildlife
monitoring. The comparative assessment of different models and factors influencing performance provides
methodological insights to guide future research toward robust and generalizable Al solutions for biodiversity and
habitat management.
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Introduction

Human populations expand into wild habitats,
posing inherent risks and conflicts with wildlife.
According to the Wildlife Conservation Society,
over 500 species are in danger from retaliatory
killings linked to human-wildlife conflict globally
(1). These conflicts led to the killing of 550
elephants in Myanmar (2) and over 220 crocodile
deaths per year in Indonesia (3). Furthermore,
these encounters result in the loss of human life.
For instance, recent reports document over 500
deaths per year in India resulting from elephant
rampages across villages (4). Machine learning and
artificial intelligence (AI) have made wildlife
monitoring processes more automated and
improved. Al-based approaches, such as deep
learning, can identify images and audio recordings
accurately. A large dataset of annotated wildlife
images has enabled scientists to develop models
that classify species with high accuracy and
efficiency. Al has a key role to play in wildlife
Artificial
intelligence is used to collect, process, and analyze
data about wildlife behavior, habitat monitoring,
species identification, and more. By combining Al

conservation and management.

with wildlife, researchers and conservationists can
gain valuable insights into various species and
habitats to make informed decisions about their
preservation and protection. This work explores a
wild animal identification system using artificial
intelligence. Convolutional Neural Networks
(CNN), AlexNet, and Deep Q-Learning (DQN) are
examined for identifying wild animals in diverse
environmental conditions. Wild animal images are
preprocessed using data augmentation, color
space
conversion. There are three goals to this work:
evaluating the performance of deep learning
models for identifying wild animals; identifying
factors affecting model performance, such as

conversion, and day-to-night image

dataset quality, preprocessing methods, and model
architecture; and discussing pragmatic importance
of this work. As human populations expand into
wild habitats, conflict between humans and
wildlife is likely to increase, posing a threat to both.
Mitigating supporting
conservation efforts require effective monitoring
and identification of wild animals. It can, however,
be labor-intensive, time-consuming, and error-

these conflicts and
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prone to monitor wildlife using traditional
methods. To mitigate risks and safeguard human
lives, it is important to employ more efficient and
accurate approaches to mitigate human-wildlife
conflicts. Advanced technologies with the
capability of automating wild animal identification
and enhancing proactive human protections are a
pressing need in this context. A critical gap exists
in the development and evaluation of Al-enabled
systems specifically designed to address human
safety regarding  wild
identification.

The primary goal of this research is to create and
test an Al-based system that can precisely identify
and track wild animals in various natural
environments using deep learning methods. More
specifically, the aims of this work are as follows. Al-
enabled wild animal identification system
applications for wildlife conservation, habitat
management, biodiversity preservation, and
human-wildlife conflict mitigation. To build a
diverse dataset of annotated images including
human, domestic, and wild animal annotations for
training and evaluating comprehensive models.
This aims to assess the impact of preprocessing
techniques, such as color space conversion, day-to-
night image translation, and data augmentation, on
animal identification performance. To provide
methodological insights into dataset quality,
preprocessing methods, and model architecture
that influence deep learning model performance.

concerns animal

This research investigates the performance of
various DL models in identifying animal species
from images, including CNN's, Alex-Net, and DQN.
There are several significant benefits to developing
and implementing a robust wild animal
identification system. A primary benefit is the
mitigation of risks associated with conflicts with
wildlife, and then it identifying wild animals
contributes to conservation efforts by providing
valuable data about wildlife populations and
distributions. Intelligent identification systems are
capable of processing data from diverse sources,
including satellite imagery, camera traps, and
acoustics, in an efficient and scalable manner. As
well as educating the public about wildlife
conservation, wild animal identification systems
can promote coexistence with nature. By using Al-
driven identification systems, costs can be reduced
compared to traditional monitoring methods, since
fewer human resources are required and existing
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infrastructure, such as camera traps, can be more
effectively utilized. This research contributes to
this work, in this study assessing how deep
learning models perform in identifying wild
animals to develop Al-based wildlife monitoring
solutions. This research contributes to enhancing
conservation efforts by developing automated
species identification tools. This work offers
methodological insights into future Al-based
conservation research through the evaluation of
model performance and influencing factors. Our
research fosters interdisciplinary collaboration
among biologists, ecologists, and economists. This
how wildlife monitoring
methodologies have evolved historically and how
they are used today. To identify wild animals, the
method employs a comprehensive data acquisition
strategy, sophisticated preprocessing pipelines,
and tailored deep learning models, as discussed in
section 3. Section 4, Results and Discussion,
discusses the efficacy and nuances of deep learning
models. In section 5, Al holds the potential to
transform wildlife conservation while balancing
ethical and societal concerns.

This research introduces an innovative DQNAI-
enabled system for wild animal identification that
excels in dynamic natural environments. The
system advanced preprocessing
techniques with machine learning models,
ensuring robust performance under diverse
conditions. Trained on a combination of real and

work examines

integrates

synthetically altered images, it maintains high
accuracy even in challenging scenarios like low-
light settings. This represents a significant advance
over traditional methods, offering practical
benefits for both human safety and wildlife
management. By providing real-time animal
detection and identification, the system enables
early threat warnings and efficient population
monitoring, supporting conservation efforts and
mitigating human-wildlife conflicts. Its integration
with various monitoring technologies makes it a
valuable tool for biodiversity preservation and
community protection, bridging the gap between
academic research and real-world ecological and
safety applications.

The following contents are described about the
research work of wild
It finds factors that
outdoor animal recognition and counting. First, it
examines the types, uses, and mounting locations

existing animal

identification. influence
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of sensors. Then it summarizes several studies
related to livestock and wild animals (5). Various
factors, including the px/m ratio, animal color,
animal behavior, artificial objects, and the px/m
ratio of the images, influence algorithm accuracy.
Some traits are shared by wild and livestock
animals. DeneseNet169, InceptionResNetV2,
ResNetV2-50, and Xception were evaluated in (6).
This Model performance is measured by F1 score
and precision. The Inception and ResNetV2
outperformed the others by 99%. To avoid human
interaction in forest-prone areas, the research
developed an elephant intrusion monitoring
system. A vision-based camera compares images
with the template's images to identify animals.
Elephant ivory, trunks, ears, and trunk patterns
identify the animals. A LabVIEW algorithm is used
to process images in this model (7). The research
work used the Classifier with TESPAR data using
Time and Spectrum features and Teager-MFCC
spatial coefficients. In spite of the limited number
of training data (sound recordings), TESPAR S-
matrices be
discriminating between 10 species in (domestic
and wild animals, human voice recordings) (8).
Using an identification device, the work proposed
emitting a frequency that affects the nervous
system of animals, which will cause them to leave
that site. Biology and acoustics are combined in
this cross-disciplinary science. Animals or humans
use sound to communicate, so every sound or call

were found to effective at

is important (9).

In a paper proposed a system using a Wi-Fi
microcontroller and the Internet of Things to
detect wild animals near agricultural farms. Forest
officers receive information from the transmitter
using Energia IDE. Each corner also has RF
transceivers, laser detectors, laser diodes, and
buzzers. The Wi-Fi module sends a message on
infringement. The proposed system is tested on an
animal database. A Python server alerts the forest
officer. This system can make high-casualty areas
safer for humans and wildlife (10).

YOLOVS5 is proposed to detect four types of farming
intrusion animals. Cross-stage partial networks
(CSP) serve as the backbone of YOLOvV5. Input
images are processed by this network to extract
beneficial characteristics. In approximately 94% of
cases, this method detected animal intrusions very
effectively (11). All state-of-the-art criteria are met
by these models. Activity engagement and
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duration are influenced by bear characteristics and
external factors, according to the research (12).
Furthermore, the methodology provides insight
into the relationship between climate variables
(temperature and precipitation) human activity
(hunting), and animal age, gender, and activity
engagement.

A system proposed YOLOv8 with deep learning
algorithm is used here to detect four distinct
categories: Lions, Tigers, Leopards, and Bears.
Using documentaries, YouTube videos, and Kaggle
datasets. A total of 1619 images in four categories
are annotated. In addition to YOLOv8m, YOLOvS8]I,
and YOLOv8x, three other YOLOv8 architectures
were trained (13). The model proposed to improve
by augmenting the dataset images. An extra-large
model trained at 20 frames per second had a map

of 94.3%. In-the-wild image capture with
unconstrained conditions. Part-based
convolutional networks (PCNs) represent

discriminative part-level features. To alleviate the
effects of the small amount of yak image data,
random erasure and region-visibility prediction
(RERP) are proposed as an auxiliary learning task.
The proposed method with the SEResNet50
backbone achieves 97.57% Rank-1 accuracy and
76.30% mAP, respectively, compared to existing
methods. The proposed method with the ViT
backbone gets the best results when generalized to
different views (14). The work used feature stride
shortening, anchor size optimization, and hard
negative class to overcome practical issues (15). A
work examined 23,748 images from 14 UAS
campaigns for the presence of kiang. Small animal
detection performance was improved by
researchers (16) by shortening feature strides and
optimizing anchor sizes, respectively, and hard
(17)
positives, improving the F1 score from 0.44 to 0.86.
A majority of the existing reviews focus on CNN's
applications in different scenarios instead of
addressing CNN in a more general sense, and some
new ideas have not been discussed. The objective

negatives significantly reduced false

in this review is to provide some novel ideas and
perspectives in this rapidly expanding area (18).
Using 284,000 pre-segmented Urdu handwriting
characters from 200 males and 200 females, two
gender classification models are proposed, trained,
and tested. Compared to existing deep learning
gender classification models, the proposed models
achieved state-of-the-art performance. Overall
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accuracy of the Alex-Net model was 99.14%, while
that of the LeNet-5 model was 98.55% (19).
Aviation is explored in this paper using Deep
Reinforcement Learning. A Double Deep Q-
Learning agent will be trained to control the
plane's attitude control. The QPlane toolkit will be
used for this and both simulators used (20).

The report provides a comprehensive overview of
the HWC issue, based on relevant case studies and
key lessons learned. With the exception of humans
and elephants, this is a comprehensive review of
wild mammal-human conflict written in the past
decade (21). The spatial pattern of conflict is
essential to understanding the dynamics of
human-wildlife conflict. Human conflict with Asian
elephants Elephas Maximus has increased in the
Rajaji-Corbett landscape of Uttarakhand, India,
where elephant habitat has been converted to
agricultural land. Binomial Generalized Linear
Models (GLMs) were used to analyze the
predictors of household-level human-elephant
conflicts (HECs) near protected areas using 266
semi-structured questionnaires (22). By using
Pearson's bivariate chi-square test and binary
logistic regression analysis, it intends to conduct
an in-depth analysis of how attitudes toward HEC
are influenced by location, demographics, and
socio-economics in BTR and its neighboring areas.
EDER includes the Eastern Doors Elephant
Reserve (BTR) (23). Ecosystems depend on Asian
elephants. Managing conflict between humans and
elephants requires understanding this species'
potential distribution area. The Global Biodiversity
Information Facility (GBIF) data was used to
simulate the potential distribution area of Asian
elephants across South and Southeast Asia using
maximum entropy (MaxEnt) (24, 25).

Many limitations exist in existing systems for
identifying and monitoring wild animals. There are
challenges relating to accuracy, such as poor image
quality or low light, which can lead to
misclassification. The recognition of diverse fauna
is also challenging in many systems because they
are species-specific. Computing resources are
another barrier, making deployment in remote
areas difficult. Developing and deploying systems
is complicated by data bias and privacy concerns.
Most conservation organizations, especially those
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in resource constrained areas, may not be able to
afford  sophisticated  monitoring  systems.
Enhancing wild animal identification systems to
support wildlife conservation requires addressing
these limitations.

Methodology
The  proposed work introduces novel
advancements for wild animal identification

systems. The first step is to improve preprocessing
by incorporating innovative techniques like
dynamic color space conversion, tailored to
diverse environments, and advanced algorithms to
ensure robust performance under varying lighting
conditions. In addition, it integrates state-of-the-
art deep learning models, including Convolutional
Neural Networks (CNNs), AlexNet, and Deep Q-
Learning. The models leverage hierarchical
features and reinforcement learning techniques to
identify and track wildlife with unprecedented
accuracy and To provide a
comprehensive assessment of model performance,
this work introduces a novel evaluation metric,
Mean Percentage Error Loss (MPE), which
surpasses traditional metrics. This work
represents a significant advancement in the field of
wild animal identification by combining these
advancements. For wildlife monitoring and
conservation, it offers unparalleled accuracy,
adaptability, and reliability.
To the
generalization of the models across different
scenarios and image characteristics the following
methods are employed.
1. Lighting Conditions: The  day-to-night
conversion technique is employed to deal with

efficiency.

enhance model's robustness and

diverse lighting scenarios.

Background Diversity: Images from various
settings were included, and augmentation
techniques were used to further diversify
backgrounds.

Animal Pose and Orientation: To represent a
wide range of poses and animations, extensive
data augmentation methods are employed.
Image Quality: The training set included images
of varying quality, and preprocessing steps
were applied to enhance images where
necessary.
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Figure 1: Flow of the Proposed Work

Dataset

Kaggle's dataset consists of training and testing
sets, containing RGB images captured during the
day. There are domestic animals, wild animals, and
humans in these images. With this dataset, a
system for detecting and alerting to wild animals’
presence during the day is likely to be developed.
It could be used for wildlife conservation,
monitoring, safety, and conflict mitigation.

Dataset of this work were collected using high-
(trap cameras, handheld
cameras), which captured diverse images of wild
animals in their natural habitat. A motion-
activated HD camera trap is used to record
motions. While capturing images during the day
and night, it is equipped with infrared sensors for
the significant feature set. Using professional
cameras, wildlife photographers get close-up shots
of various animals in different poses.
Preprocessing

Data pre-processing is an essential step in data
analysis and machine learning, including the
identification of wild animals. This preparation

resolution cameras
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stage enhances raw data quality, reduces noise,
and ensures compatibility with subsequent
processing steps. A range of pre-processing
techniques are used in wild animal identification to
optimize their effectiveness. In the wild, lighting
conditions vary from day to night, so color space
conversion and data augmentation strategies are
frequently  used
representations.

Color Space Conversion
Using different color models or color spaces to

to  standardize image

represent colors in an image is called color space
conversion. Based on mathematical principles,
each color space defines colors differently. LAB
(Lightness, A, and B color opponent dimensions) is
the most commonly used color space in image
processing and computer vision. Depending on the
color space, animals may have distinct color
patterns and characteristics. By converting images
into different color spaces, it can enhance
computer vision algorithms' ability to discriminate
between different types of animals. Figure 2
describes the result of Color Space Conversion.
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Figure 2: Color Space Conversion

Day to Night Image Conversion

For wild animal detection systems, day-to-night
image conversion is essential to adapt to low-light
environments, augment training data, simulate
nighttime conditions for testing and evaluation,
and enhance safety. Detecting and monitoring wild
animals during both day and night can be achieved
using these systems by converting daytime images
into nighttime equivalents. Nighttime image
collection in the wild can be expensive and
challenging. Converting daytime images into
nighttime equivalents enhances the training
dataset, allowing the algorithm to learn from more
diverse examples. The augmentation improves the
robustness and generalization of the detection

Table 1: Algorithm 1: Day Night Conversion

model, allowing it to recognize animals in different
lighting conditions.

Algorithm 1: Day Night Conversion

The algorithm (Table 1) converts daytime images
to simulated nighttime images through four steps.
First, each pixel's brightness is decreased by a fixed
amount. The second step is to add a blue tint by
increasing the blue channel while leaving red and
green unchanged. According to a supplied kernel
size parameter, it applies Gaussian blur to smooth
over the image. Lastly, it returns the processed
image with blue tint, Gaussian blur, and decreased
brightness. Through strategic adjustments to
brightness, color, and sharpness, the algorithm
simulates nighttime scenes from daytime images.
Figure 3 shows the Night image converted results.

Input: Day Time Image (Ipq,)
Output: Night Time Image (Iy;ga¢)
Algorithm: Day_Night_Conversion

1. Let Ipqy represent the daytime image loaded from the given image path

2. For each pixel P, in Iy, adjust its brightness using the following formula

3. Vp =clip(Vp + brigBtness_factor,0,254). where, V, is the value (brightness) component of
pixel p, and brightness_factor is a negative value indicating the amount of brightness
adjustment

4. Apply ablue tint to the image Ipg,. Let I, be the resulting image after applying the blue tint.
The blue tint can be applied by adding a constant blue color matrix T to each pixel in Ipg,,.
Itint = lgqy + T, Where T=[-10 0 10].

5. Apply Gaussian blur to the image Ir;,; to add a softness effect, I, = GaussianBlur(
Irine, Kernel_size), where kernel_size is the size of the Gaussian kernel used for blurring.

6. Return the Processed Image Iy;gm¢

End Algorithm
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Figure 3: Day to Night Converted Image

Data Augmentation

Image augmentation (14) involves applying
various transformations to existing images to
artificially increase the diversity of a dataset. The
collection of a large and diverse dataset of wild
animal images can be time-consuming and
challenging. With image augmentation, it can
generate more training examples by rotating,
scaling, flipping, cropping, and translating the

existing images. This increases the size of the
dataset, allowing the detection model to be trained
on more data. There are many poses, orientations,
and lighting conditions that animals can appear in
in the wild. The augmentation of images during
training makes the detection model more robust to
these variations. Models can generalize to unseen
examples in real-world scenarios by training on
augmented data.
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Figure 4: Data Augmented Images

Figure 4 shows the augmented data images. Class
imbalance issues can occur in wildlife datasets
when certain animal classes dominate. Using
image augmentation, synthetic images can be
generated augmentation, synthetic images can be
generated for underrepresented classes, ensuring
that all classes receive sufficient training data.
Deep Learning Models

A subset of machine learning algorithms, deep
layers of
to learn

learning models employ multiple
(ANNs)
hierarchical representations of data. Computer

vision, natural language processing, and speech

interconnected neurons
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recognition have all benefited from using these
models because they extract complex patterns and
features from raw data. Deep learning models are
essential for developing accurate and efficient
detection systems for wild animals.

(a) Training Set: These images are mostly used
for training (70%) with domestic animals, wild
animals, and humans. The model to learn and
understand the characteristics of different types of
animals and humans, these images are required.
(b) Testing Set: To evaluate the trained model,
30% of the set is tested. The model has not seen
these images in the training phase, but they are
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similar to those in the training set. This allows
researchers and developers to assess the model's
ability to predict new data.

Data Annotation Process is done with training the
Al-enabled identification system prepared in the
following manner. At first, the Experts manually
reviewed and annotated each image by manual
labeling. To ensure accurate and detailed
annotations, identified and
labeled according to its species. Objects were
detected in the images by drawing bounding boxes
around each animal. Using this technique, it could
identify animals in different backgrounds.

each animal was

Volume 5 | Issue 3

Convolutional Neural Network

In deep learning, convolutional neural networks
(CNN/ConvNet) (15) are a class of deep neural
networks used to analyze visual imagery. Neural
networks are typically associated with matrix
multiplications, but ConvNet is not. The technique
is called convolution. In mathematics, convolution
is the process of modifying the shape of two
functions by producing a third function.
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Figure 5: Convolutional Neural Network Architecture

Figure 5 shows the architecture of Convolutional
Neural Network. In CNNs, convolutional layers
apply filters (also known as kernels) to the input
images. Edges, textures, and shapes can be
extracted from the input images using these
filters. During  wild the
convolutional layers learn discriminative features
that distinguish animals from background
scenes. To down sample feature maps and reduce
spatial dimensions, pooling layers, such as max

animal detection,

pooling or average pooling, are often inserted after
the
features, the models become more resilient to
translations and distortions of the input images. By
pooling layers, wild animal detection models can
capture the most salient features while reducing

convolutional layers. By pooling learned

computational complexity.

In a fully connected layer, the extracted features
are flattened after several layers of convolutional
and pooling operations. Feature extraction from
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input images is used to train these layers to learn
complex patterns and relationships between
features. An image containing a wild animal is
classified as either containing a particular type of
animal or belonging to the background class by
fully connected layers. A non-linear activation
function, such as ReLU (Rectified Linear Unit), is
applied after each convolutional and fully
connected layer to introduce non-linearity and
enable the network to learn complex mappings.
ReLU is commonly used because of its simplicity
and effectiveness in preventing vanishing
gradients. CNN architectures consist of one or
more neurons as their output layer, depending on
their specific function. The presence or absence of
a particular animal is commonly classified as a
sigmoid-activated neuron. The output layer for
multiclass classification tasks (e.g., classifying
multiple types of animals). Figure 6 shows the

Confusion Matrix of CNN.
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Algorithm 2: CNN Model

Algorithm the CNN model (Table 2) has 4
convolutional layers interspersed with 4 max
pooling layers, followed by 2 fully connected layers
prior to output. ReLU activation is used, and the
network is trained with categorical cross-entropy
loss optimized using Adam.

Alex Net

AlexNet (16) has 5 convolution layers, 3 max-
pooling layers, 2 normalized layers, 2 fully

Table 2: Wild Animal CNN Algorithm

connected layers, and one SoftMax layer. An
activation function called ReLU is added to each
convolution layer. Because of the presence of fully
connected layers, the input size is fixed because of
the max-pooling function. The input size is usually
stated as 224x224x3, but due to padding it ends up
being 227x227x3.There are over 60 million
parameters in AlexNet. Figure 7 shows the
architecture of the Alex Net.

Input: Training dataset (X_train, y_train): A collection of labeled images of wild animals and background
scenes. Testing dataset (X_test): Unlabeled images for evaluating the trained model.

Output: Predictions & Accuracy

Algorithm: Wild Animal CNN

1. Define an input layer of 150x150 pixels with three color channels corresponding to the input
images with Training Set X_train, y_train and Testing Set X_Test.

2. Activate four convolutional layers with 32, 64, 128 and 128 filters, respectively.

3. After each convolutional layer, use MaxPooling layers to downsample the feature maps.

4. Finalize the convolution by flattening the output.

5. Activate ReLU and connect 512 units in a fully connected layer.

6. Regularize dropouts with a 0.5 rate.

7. Multi-class classification with three classes requires softmax activation at the output layer.

8. Measure the difference between predicted and actual distributions using categorical cross-
entropy. and Choose Adam optimizer with default learning rate.

9. The accuracy metric should be monitored during training.

10. Use the data generator with a batch size of 32 to feed the training dataset into the model.

11. Using backpropagation and gradient descent optimization, train the model over 10 epochs.

12. Make predictions on the testing dataset using the trained model (not provided in the code
snippet).

13. Detect wild animals accurately by calculating accuracy.

End Algorithm
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AlexNet uses images with dimensions of weather conditions, and camera angles is

227x227x3, where the three channels represent
color information (red, green, blue). Wildlife
habitats are featured in these images, along with a
variety of animals and scenery. A Rectified Linear
Unit (ReLU) activation function follows each
convolutional layer. Convolutional layers can
extract hierarchical features from input images,
allowing the model to distinguish between types of
animals based on fur texture, body shape, and
distinctive markings. A max-pooling layer is
interspersed between the convolutional layers. In
max-pooling operations, the spatial dimensions of
feature maps are reduced while the most salient
features are retained. Using this method, the model
focuses on the most informative aspects of the
images and can be generalized across different
wildlife scenes. After the convolutional layers,
AlexNet incorporates local response normalization
(LRN). Its robustness to variations in lighting,

improved by these layers, which enhances its
ability to detect subtle variations in animal
appearances. Two fully connected layers follow the
convolutional and pooling layers. A model can
capture complex relationships between animal
attributes and background elements by learning
high-level representations of features extracted
from input images. Fully connected layers are
crucial for predicting the presence of wild animals.
In AlexNet, a soft-max layer outputs the probability
distribution over different classes of wild
animals. The model was trained to recognize
different types of animals by classification. With
the soft-max activation function, the model
calculates a probability score for each class of
animal, indicating whether that animal is likely to
appear in the input image. Figure 8 shows the
Confusion matrix of the alex net model.
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Table 3: Algorithm for Wild Animal AlexNet

Volume 5 | Issue 3

Input: Training dataset (X_train, y_train): A collection of labeled images of wild animals and
background scenes. Testing dataset (X_test): Unlabeled images for evaluating the trained model.

Output: Predictions for the testing dataset
Algorithm: Wild Animal AlexNet

1. A convolutional layer (Conv) with ReLU activation functions is added to the input layer with
dimensions 227x227x3 with Training and Testing Set.

2. Todown sample feature maps, intersperse three Max Pool layers.

3. After the first and second convolutional layers, add two Local Response Normalization (LRN)
layers (Normalization).

4. Tolearn high-level representations, add two fully connected layers (FC).

5. A softmax output layer should be added to produce probability distributions over different
animal classes.

6. To minimize the defined loss function, feed the training dataset (X_train, y_train) into the
Alex Net model and adjust model parameters by backpropagation and optimization. During
each epoch, the network is traversed forward and backward.

7. Predict the testing dataset (X_test) using the trained model.

8. Analyze the model's performance metrics to determine its effectiveness.

End Algorithm

Algorithm 3: WildAnimal AlexNet Model
Algorithm 3 (Table 3) shows the Alexnet model.
AlexNet contains 5 convolution layers, 3 max-pool
layers, and 2 fully connected layers. ReLU
activation is employed, and the model is
optimized through SGD to minimize log loss.
Deep Q-Learning

The deep Q-learning algorithm (21) combines the
power of deep learning with Q-learning principles.

Image classification has been successfully applied
to various tasks. Deep Q-learning uses deep neural
networks to approximate the Q-function, which
represents the expected reward for taking
particular action at a given state. To train the
network, past experiences are stored in a buffer
and randomly sampled using an experience replay
technique. Figure 9 shows the architecture of the
Deep Q Learning.

Picel of images fed
as input

Figure 9: Architecture of the Deep Q-Learning

A camera placed in a wildlife habitat can capture
images representing a state space in wild animal
detection. Images provide information about the
current environment, such as the presence or
absence of animals, their locations, and potentially
other contextual data, such as weather conditions.
Agent actions are determined by the observed
states. When wild animals are detected, the camera
may be moved to different angles or positions, its
settings adjusted (e.g., zoom level, exposure), or
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alerts triggered. Agents receive feedback based on
their actions through the reward function. To
detect and track wild animals accurately, a reward
function may be designed to minimize false alarms
and energy consumption. Positive rewards could
be given for correctly detecting animals and
negative rewards for incorrectly detecting animals.
The Deep Q-Network (DQN) is DQL's core
component, which is a deep neural network that
outputs Q-values based on an image (state). In the
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current state, the Q-values represent the expected
rewards for taking each action. By training, the
DQN approximates the optimal action-value
function, which specifies the expected cumulative
reward for following a particular policy. Training
and sample efficiency are typically improved
through experience replay in the DQL. DQNs are
trained by sampling mini-batches of experiences
and storing them in a replay buffer. This prevents
the network from overfitting to recent experiences
by decorrelation. In addition, a target network
may be used to stabilize training by providing
target Q-values during the update process. By
updating the target network periodically, the
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variance in the Q-value estimations is reduced and
convergence is improved. Through Q-learning or
deep Q-learning with experience replay, the agent
interacts with the environment by selecting
actions based on the current state. A wild animal
detection policy is learned iteratively until an
optimal policy is reached. Once trained, a DQL
agent can autonomously detect and track wildlife
in real time in wildlife monitoring
systems. Detection accuracy, false alarm rate, and
energy efficiency can be used to evaluate the
agent’s performance. Figure 10 shows the
Confusion Matrix of Deep Q-Learning.
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Figure 10: Confusion Matrix of Deep Q-Learning

Table 4: Algorithm for Deep Q-Network (DQN) for Image Classification

Input: Training dataset (X_train, y_train): A collection of labeled images for training the DQN, testing
dataset (X_test, y_test): A collection of labeled images for evaluating the trained DQN, Neural network
architecture, Replay buffer capacity, Discount factor (gamma), Exploration parameters (epsilon),

Number of episodes

Output: Classification accuracy on the testing dataset

Algorithm: Deep Q-Network (DQN) for Image Classification

1. Create a random weighted DQN neural network.

2. Initialize the replay buffer with the capacity 'replay_buffer_capacity’'.

3. For each training episode:

a. Initialize the environment (neural network parameters).

b. Select an image from the training dataset to initialize the initial state 's".
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c. While the episode is not finished:

i. Choose a random action 'a' with probability epsilon (exploration).

ii. Alternatively, select the action 'a’ that maximizes the Q-value for the current state 's'

(exploitation).

iii. Act'a’ (forward pass through the neural network) and observe next state 's_next' (output

probabilities for each class).

iv. Compare predicted probabilities with one-hot encoded labels for the selected action.

v. Replay buffer the transition (s, a, loss, s_next).

vi. Take a mini-batch of replay buffer transitions.

vii. Determine the target Q-values using the Bellman equation:

Q_target(s, a) = loss

viii. Reduce the loss between predicted and target Q-values by updating the DQN parameters:

loss = MSE (Q_predicted(s, a), Q_target(s, a))

A gradient descent algorithm is used to update the DQN parameters.

ix. Change the current state 's' to the next state 's_

4. Using the training dataset, evaluate the trained DQN:

a. Using the testing dataset, for each image:

i. Apply the trained DQN to the image and obtain the predicted probabilities for every class. Assign
the class with the highest probability as the predicted class.

b. Determine the classification accuracy by comparing the predicted classes to the ground truth.

5. Display the classification accuracy and trained DQN model on the testing data.

End Algorithm

Algorithm 4: DQN Model

Algorithm 4 (Table 4) shows the DQN Model. The
DQN uses a ResNet-50 backbone for feature
extraction. It has a convolutional encoder-decoder
pathway to produce Q-values for each possible
action. Experience replay memory size is 10,000
transitions, and target network update frequency
is 100 steps.

This work prioritized data dependability and
accuracy by sourcing a diverse image dataset from
Kaggle, followed by particular manual labeling.
Preprocessing techniques, including color space
conversion and day-to-night image
transformation, were applied to enhance image
features. Data augmentation methods such as
rotation, scaling, and flipping were employed to
increase dataset diversity and improve model
robustness. The Deep Q-Learning (DQN) system,

297

effectiveness was evaluated using standard

machine learning metrics (Accuracy, Precision,

Recall, F1-Score) alongside a novel Mean
Percentage Error Loss measure, ensuring a
comprehensive assessment of the model's

performance across various scenarios.

Results and Discussion

This work is implemented and tested with Intel
Core-i7 2620M, 16 GB RAM, 1TB HDD with
Windows 11 and Python. Data analysis, machine
learning, and evaluation are performed using
Python, which is used to implement the system.
Data manipulation and numeric computing tools
are provided by NumPy and Pandas. Scikit-Learn
provides ML / DL algorithms. The Matplotlib and
Seaborn libraries can be used to visualize data,
features, and accuracy metrics.
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Three deep learning models were evaluated on a
set of metrics: CNN, AlexNet, and Deep Q-Learning
(DQN). 1,346 images are included in the dataset
from Kaggle, split into three categories: Humans,
Domestic animals, and Wild animals. Among the
wild animals are elephants, lions, bears, and
others. Dogs, cats, and similar animals are
domestic animals. Training and test sets are split
75-25%. In addition, unlabeled daytime images of
wildlife were scraped from public repositories. The
day-night conversion algorithm generated
nighttime variants. The training images were
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augmented with 2,000. The models were trained in
TensorFlow for 50/100 epochs with early stopping
if validation loss doesn't decrease for 5 consecutive
epochs. With a learning rate 0.001 and a batch size
of 32, Adam optimizer was used. To balance the
data, classes were weighted. Mixed precision
models were trained using Keras and TensorFlow.
Accuracy measures how often the model correctly
predicts labels. The error rate or
misclassification rate represents the ratio of

class

incorrect to accurate predictions. Figure 11 shows
the accuracy and Error rate.

Ac cm‘a%%e?&_ﬂ‘ 54.6

Error Rate.
CNN. 60.9
Accuracy, [CNN. AlexNet.
39.1

Accuracy, DQN,

79.5

Error Rate,

154

Accuracy & Error Rate

Error Rate,
DQN. 20.5

Classifier(s) Accuracy

Error Rate

Figure 11: Accuracy and Error Rate

Precision measures how accurate the model is.
This ratio measures the number of true positives
made by the model (true positives plus false
positives) versus the total number of positive
predictions. In wild animal identification, precision
refers to the proportion of correctly identified
instances of a particular species among all
predicted instances. The model is more precise
when it identifies the target species with higher
precision. The recall or sensitivity of a model
measures its ability to identify instances of a given
class. True positives and false negatives are
calculated as the ratio of true positives to actual

instances. Recall is the ratio of correctly identified
instances to all actual instances of a species.
Models with higher recall minimize false negatives
by capturing more instances of the target species.
A model’s F1 score provides a balanced measure of
precision and recall. Weighted average of precision
and recall, ranging from 0 to 1. Precision and recall
are balanced in high F1 scores. Wild animal
identification models were evaluated using the F1
score to minimize false positives and false
negatives. Figure 12 shows the precision, recall
and F1-Score (26).
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Figure 12: Precision, Recall & F1-Score
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MFE loss is the average percentage difference
between the predicted and actual values in a
dataset. The mean of all absolute percentage errors
in the dataset was calculated. When using Al to
identify wild animals, MFE Loss may be applied
when predicting continuous variables based on
image data, such as animal size or age. The lower
the MFE Loss, the better the performance of the
regression model, as it reflects a smaller deviation
between the predicted and actual values. Figure 13
shows the MFE Loss.

The results revealed significant variations in the
performance of the models across different
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(20.5%), and superior precision (0.78) compared
to CNN and AlexNet. Conversely, CNN and AlexNet
demonstrated relatively lower accuracy (39.1%
and 45.4%, respectively) and precision (0.42 and
0.45, respectively), although AlexNet displayed
higher recall (0.96) compared to DQN and CNN.

The Receiver Operating Characteristic (ROC) curve
is a graphical representation used to evaluate the
performance of binary classification models. It
illustrates the trade-off between the true positive
rate (sensitivity) and the false positive rate (1 -
specificity) across different thresholds used for
classifying instances. Figure 14 shows the ROC

metrics. Notably, the DQN model exhibited the Curve.
highest accuracy (79.5%), lowest error rate
B MPE Loss. @ MPE Loss,
CNN. 0.78 AlexNet, 0.79
)
w
(=)
-
=
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Figure 13: MPE Loss
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Wild animal identification using Al, the ROC curve
in Figure 14 and 15 provide valuable insights into
the performance of binary classification models in
distinguishing between different animal species.
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They help researchers assess the model's
sensitivity to true positive identifications while
controlling for false positive identifications,
thereby guiding model selection and optimization

efforts.
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The system exhibits significant precision and
steadfastness in distinguishing a broad range of
animal species under diverse environmental
scenarios, which is of substantial worth in the
context of safeguarding wildlife. Its proficiency in
effectively overseeing and monitoring animal
communities is instrumental in facilitating well-
timed actions concerning species at risk of death.
Moreover, the system's capacity to reliably
recognize animals in proximity to human
settlements contributes to the mitigation of
human-wildlife conflicts by offering early alerts
and enabling defensive strategies. Furthermore,
integrating this technology with camera traps,
drones, and surveillance networks enhances real-
time monitoring and decision-making capabilities.
Ultimately, this research not only advances animal
identification technology but also offers practical
solutions for maintaining ecological balance and
protecting communities, bridging the gap between
technological
applications in wildlife management and public
safety. There are several strengths to the choice of
test environment and dataset for this work in

innovation and real-world

terms of replicating real-life wild animal’s
interactions. A diverse dataset was used in the
work, including images of humans, domestic pets,
and wild animals. To distinguish the types of
different diversity subjects the employed models
are trained. This dataset likely contains a variety of
natural backgrounds, lighting conditions, and
animal poses/behaviors that real-life deployments
would need to handle. It is difficult to capture low-
light conditions which commonly occur while
monitoring wildlife. Using data augmentation
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techniques, the training set was expanded to 2,000
images for exposing the models to a wider range of
variations in the real world. The proposed Model
to be determined if they are capable of identifying
a variety of wildlife species such as elephants,
lions, and bears.

Conclusion

This work presented an investigation into the
effectiveness of various deep learning models for
wild animal identification using Al. Leveraging a
diverse dataset of wild animal images and
employing preprocessing
techniques, including color space conversion, day-
to-night image conversion, and data augmentation,
model trained and evaluated three deep learning
models: Convolutional Neural Network (CNN),
AlexNet, and Deep Q-Learning (DQN). The results
demonstrate significant variations in the
performance of these models, with DQN
outperforming CNN and AlexNet in terms of

sophisticated

accuracy, error rate, precision, and overall
predictive capability. The success of DQN
underscores the potential of reinforcement

learning-based approaches for tackling complex
tasks such as wild animal identification, where
sequential decision-making and environmental
interactions play a crucial role.

While our findings offer promising insights into the
feasibility of Al-based solutions for wildlife
monitoring and conservation, several challenges
and opportunities remain. Future research efforts
should focus on addressing limitations such as
dataset biases, model interpretability, and
scalability the robustness and

to ensure
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applicability of AI models diverse
ecosystems and species. Despite the promising
results, limitations should be
acknowledged. These include the reliance on static
image data, potential biases in dataset
composition, and challenges associated with
model interpretability and explainability. Future
research directions may focus on addressing these
limitations through the integration of dynamic
sensor data (e.g, audio, video streams),
collaborative data sharing initiatives, and the
development of interpretable Al algorithms.
Moreover, efforts should be made to evaluate the
scalability and transferability of the proposed
models to different geographic regions and

ecological contexts.
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