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Abstract

Plant leaf disease identification and evaluation in a timely and accurate manner is crucial for efficient farming
operations for crop yield optimization. Employing the most recent advances in technology, specifically the combination
of deep learning and the Internet of Things (IoT), this paper offers an efficient approach to identifying plant diseases.
We propose a transfer learning-based deep learning classification model which makes use of pre-trained models
including Convolutional Neural Networks (CNN), AlexNet, Residual Networks (ResNet), InceptionV3, and Visual
Geometry Group-16 (VGG-16). To provide wider accessibility, high-resolution images of tomato plant leaves displaying
disease symptoms are gathered from a dataset and saved in cloud storage using Internet of Things devices. Following
the image extraction from the cloud, images are preprocessed using data argumentation, normalization, color space
conversion, background removal, and noise removal. Different tomato plant disease classes are classified using the pre-
trained models CNN, AlexNet, ResNet, InceptionV3, and VGG-16. The deep learning models' accuracy is increased using
the transfer learning technique, which also reduces the workout duration. The VGG-16 model outperforms other models
in the experiment, recognizing plant illnesses with an astounding accuracy of 93.7% on average, proving the efficacy of
the suggested approach. This new approach may revolutionize the diagnosis of diseases affecting tomato plants and
promote environmentally friendly agricultural practices.
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Introduction

In modern agriculture, the ability to identify
diseases in tomato leaves is essential for both
early intervention and minimizing crop losses.
Visual inspection is a useful method for identifying
diseases in tomato plants since they can develop
various diseases, such as blights, wilts, and fungal
infections, which show up as unique visual signs
on their leaves. Deep learning and machine
learning techniques have become effective tools
for automating the detection process in recent
years (1). There are various ways to go about this
endeavor. First, machine learning methods such
as Support Vector Machines (SVMs) and decision
trees can be trained on an image dataset that
includes annotated images containing wholesome
and damaged tomato leaves (2). Through the
extraction of relevant data from the images, such
as color, texture, and shape. These models are
trained to differentiate between different
diseases; on the other hand, CNN is a type of deep
learning technique that excels at recognizing

complex patterns in images and may be trained to
identify specific disease signs. Their ability to
distinguish between healthy and damaged leaves
across various disease types has demonstrated
impressive success. These techniques use
complex algorithms to analyze multiple visual
properties, including color, texture, and form, to
distinguish between healthy and infected leaves.
Datasets including pictures of both healthy and
damaged leaves are used to train models. The
model developed in this research uses CNN for
assistance because working with images has
advantages, especially when it comes to image
categorization. Models are trained using datasets
that contain images of both diseased and healthy
leaves. In this paper, the model created takes the
help of CNN due to the benefits of working with
images, particularly in image categorization to
produce customized outcomes. Table 1 (3)
displays the proportion of agricultural loss caused
by weeds, plant diseases, and pests on each
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continent. Africa has the highest percentage of
plant disease-related agricultural loss (15.6%),
followed by Asia (14.2%) and South America
(13.5%), according to the table.

Numerous pathogens, including nematodes,
bacteria, viruses, and parasitic plants, are the
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cause of plant diseases. All sections of a plant,
including the stems, leaves, roots, fruits, and
flowers, are vulnerable to infection. Crop yields,
quality, and safety can all be impacted by plant
diseases. In extreme circumstances, they may
result in total crop failure.

Table 1: Agricultural Loss (%) Caused by Pests, Plant Disease and Weeds

Continent Agricultural loss (%)
Pests Plant Disease Weeds Total

Africa 16.7 15.6 16.6 48.9
North America 10.2 9.6 11.4 31.2
South America 14.4 13.5 13.4 41.3
Asia 18.7 14.2 13.4 47.1
Europe 10.2 9.8 8.3 28.2

501 Type

Agricultural Loss (%)

North America

South America

Pests

Plant Disease
Weeds

Total

Asia

Continents

Figure 1: Agricultural Loss (%)

Numerous reasons can lead to plant disease, such
as:
e Plant diseases can spread quickly when a
single crop is planted over a large area.
Variations in temperature and precipitation
can increase the vulnerability of crops to
disease.

Pests that are resistant to pesticides may
emerge as a result of overuse. Plant disease
management may become more challenging
as aresult.

Oerke EC et al, (4) reported the agriculture loss
(%) as shown in Figure 1. The graph indicates that,
after pests, plant disease is the second-most
leading cause of agricultural loss. Plant diseases
account for 5% to 20% of agricultural losses in the
Continents as shown on the graph. Numerous
pathogens, including bacteria, viruses, and fungi,
can cause a wide range of plant diseases. They can
harm a plant's entire structure, including the roots,
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leaves, and fruits. Plant diseases have the power to
destroy plants, drastically lower crop yields, and
render food crops unmarketable. With its ability to
train image-based models on large datasets of both
healthy and diseased plant leaves, deep learning
can also be applied to large-scale disease
monitoring and analysis, which can help reduce
overall loss and inform preventative measures (5).
A more comprehensive diagram that demonstrates
the relationship between plant disease detection
and deep learning could incorporate images,
accuracy metrics, and a simplified workflow that
outlines the steps involved.

In this section, we proposed to predict four tomato
leaf diseases using pre-trained models such as
CNN, AlexNet, ResNet, Inception V3, and VGG-16.
The following list consists of four different diseases
of Tomato leaf.

Tomato Late Blight
Though late blight, which is brought on by the
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fungus Phytophthora infestans, is rare, it can
wreak havoc on tomato plants when it's cool and
rainy (6). Either young (upper) or old (lower)
leaves can be affected by late blight.

Tomato Leaf Mold

In humid greenhouses with inadequate air
circulation, the fungus Fulvia fulva can produce
leaf mold, which can lead to various issues. On
lower leaves, this fungal disease manifests as fuzzy
plenty of buff-colored spores on the underside and
yellow spots on the top surface. As the disease
spreads higher on the plant, these leaves begin to
drop prematurely.

Tomato Mosaic Virus (ToMV)

ToMV is an RNA-based virus that infects plant
species and is stable and extensively dispersed.
Typically, it causes uneven ripening, brown wall or
internal browning on some fruit kinds, and
bending and mosaicking of the leaves (7).
Tomato Yellow Leaf Curl Virus (TYLCV)
The single genomic component of the monopartite
tomato yellow leaf curl virus (TYLCV) is
homologous to DNA-A of the bipartite
begomoviruses. To infect a system, these single-
stranded viruses only need DNA-A (8).

Thus, we present a deep learning-based transfer
learning method with an integrated IoT approach
to identify tomato plant diseases from leaf images.
Using this technique, farmers can upload photos of
their plants' leaves via a network connection or
gather them directly in the field. The images are
then safely saved in cloud storage. To predict
diseases, a data analysis component retrieves
these images from the cloud. To predict different
tomato plant diseases, we use deep learning
models in conjunction with transfer learning. The
method minimizes the amount of data and the time
needed for model testing and training. To predict
tomato plant diseases, pre-trained models such as
CNN, AlexNet, ResNet, Inception V3, and VGG-16
are modified and improved.

Findings are saved on cloud servers and can be
accessed by researchers, farmers, and agricultural
specialists for planning mitigation and diagnosis.
Key contributions of this proposed method:

o Applying transfer learning for efficiency:

Pre-trained models reduce data
requirements and speed up model
development.
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e Deep learning for accurate diagnosis: This
model offers high accuracy in identifying
specific plant diseases.

Enhancing the effectiveness of the model by
integrating IOT with the prediction model.
Various deep-learning models and techniques
have been discussed in this section. Several
researches about deep learning models detecting
diseases in plants have been done, and few of them
have been discussed here. Tomato is a widely fruit
grown in India. Diseases affect their growth and
decrease their production in the market. In recent
years Artificial Early disease detection in a variety
of crops has been made possible in large part by
artificial intelligence and machine learning.
Agarwal et al, (9) used convolution neural
networks to classify and detect diseases. This CNN
model consists of eight layers: two fully connected
layers, three max-pooling layers,
convolutional layers. Nine distinct categories of
illnesses have been classified by the authors. In the
course of this study, 7000 images in all were
examined. The accuracy ranged from 76% to 100%
depending on the kind of illness. In this study, an
average accuracy of 91.2% was reached. To
compare performance, the same researchers also
conducted tests.

For VGG-16, 77.2%;
Mobilenet, it was 63.75%; and for Inception, it was

and three

the accuracy was for
63.4%. LeNet, a CNN variant, was employed by
Tiwari et al, (10) to identify and categorize
illnesses in tomato leaves. They made use of 18160
pictures from ten distinct classes. To expedite the
training process, researchers in this experiment
downsized every picture to 60 X 60 resolution. The
convolutional, stimulation, pooling,
linked layers of the traditional CNN model are all
present in LeNet. In addition, they have expanded
the original LeNet design with new layers.

and fully

This experiment yielded a 94% accuracy rate.
(11) have wused 4
architectures of CNN to detect the leaf diseases.
LeNet layers, VGG16 -13
convolutional layers, ResNet50, and Extreme
Inception (Xception) (36 convolutional layers).

Guerrero-lbafiez et al,

-2 Convolutional

The researchers have used 14,903 images which
belong to 9 different classes. Adding these many
layers to their architecture is a complex task. As
they added more convolutional layers, the overall
complexity of these models increased (12). Use of
Random Forest Classification algorithm to classify
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the healthy and diseased images.

The Histogram of an Oriented Gradient (HOG) is
used for feature extraction. A feature descriptor
employed in computer and image
processing for the recognition of objects is the
Histogram of oriented gradients or HOG. The
accuracy was 70.4%. Random Forest model
accuracy was slightly better compared to other
classification machine learning models. The author
also used three-component descriptors - Hu
moments, Haralick texture, and Color Histogram.
Hu moments extract shape, Haralick texture
extract texture, and color histogram represent the
color distribution in an image.

In comparison to conventional machine learning
models, the use of Deep Learning models for plant
disease

vision

detection and classification has
improved accuracy. A
comprehensive review of the Deep Learning
models used for detecting plant diseases is
provided by the authors in their publication (13).
All of the deep learning models from 2012 to 2018
have their parameters, salient characteristics, and
pros and cons mentioned. A breakdown of all the
models' performance measures during these years
is given. A method based on the CNN and Learning
(LVQ)
presented in the paper (14). Learning Vector
Quantization refers to a neural network that
combines supervised and competitive learning.

The average accuracy that the researchers were

demonstrated

Vector Quantization algorithms was

able to achieve was 86%. There were a total of five
distinct classifications utilized. One for healthy
leaves and four for leaf diseases. This research
paper (15) describes a work in which the Resnet
model has been used to classify plant diseases with
leaf approach.
importance of

images wusing deep-learning
it highlights the
agricultural productivity in India and the global
food industry with special
commodification as well as acknowledging disease
detection challenges due to infrastructure scarcity.
With SGD optimization, the accuracy is as high as

Therefore,

a focus on

87.5% using ResNet for classifying plant diseases
in this work. The authors introduce layer-wise
fine-tuning and later propose
toward disease detection via this new ground of
visual recognition accommodated through the

contributions

rapid growth in technology. In the paper (16), the
study utilized fine-tuned pre-trained CNNs, namely

VGG16, ResNet, and Inception, in detecting
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diseases of plant leaves. The training set consisted
of 5,000 images: 3,500 healthy and 1,500 diseased
leaves. The dataset was pre-processed for quality
and agreement. The accuracy of the models
achieved was at a maximum of 99.35% when
tested on Plant Village data, but it went down to
31% on differently conditioned images. The
advantages of the approach were high accuracy,
rapid classification suitable for mobile
applications, and general applicability across
species However, the model
performance degraded in the presence of varied
image conditions and could classify only the
upright leaf orientation type on a uniform
background. The comparisons of various methods
discussed above are given in Table 2.

and diseases.

Methodology

We designed an automated system that involves
taking images of the tomato leaves using a
Raspberry Pi HQ camera connected to an NVIDIA
Jetson Nano GPU processor, processing the images
using Transfer learning-based deep learning
models, and recording the results on the Cloud to
create an efficient, reasonably priced, and easily
deployable solution. The images are preprocessed
using data argumentation, normalization, color
space conversion, background removal, and noise
removal are performed. Then the images are
classified using pre-trained deep learning models
such as CNN, AlexNet, ResNet, Inception V3, and
VGG net. These models are already pre-trained
and used for the classification of tomato leaf
diseases. It classifies the leaf as normal, leaf late
blight, Tomato mold leaf, and yellow virus leaf. The
proposed method is shown in Figure 2.In this
section, we proposed a data pre-processing
architecture for the Plant disease detection model,
deep learning models
particularly good at extracting complex patterns
from image data, making them well-suited for
plant disease detection.

we use which are

However, to fully utilize raw images, we require
careful preprocessing to unlock their full potential.
Here's an In-Depth Look at Some Important
Methods.

Image Augmentation

A common problem in deep learning is data
scarcity. Augmentation artificially enlarges the
dataset with diverse variations of existing images,
enhancing model generalizability and preventing
over fitting. Techniques like Rotation, flip, scaling,
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cropping, color jittering, noise addition, and elastic
deformations are common methods (17) applied
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argumentation such as Enhanced image, height,
width shift, rotation, shearing and, horizontal flips

to leaves. For the proposed method, are applied.
Table 2: Comparison of different Methods for Tomato Leaf Detection
Reference Model Data Accuracy Advantages Disadvantages
Agarwaletal, CNN (8 layers: 2 7000 images, 9 76%-100% High  average Limited data,
9 fully connected, categories (average accuracy, varied accuracy
3 max-pooling, 3 91.2%) effective for depending on
convolutional) multiple disease diseases
categories
Tiwari et al, LeNet (CNN 18,160 images, 94% High accuracy, Limited to specific
(10) variant) 10 classes efficient resolution, may not
training  with generalize well
downsampled
images
Guerrero- LeNet, VGG-16, 14,903 images, 93.25% (VGG- Extensive use of Increasing
Ibafiez et al, ResNet50, 9 classes 16) different complexity with
(11 Xception architectures, more layers, high
high accuracy computational cost
Bhise et al, ResNet Not specified 87.5% (SGD High accuracy Infrastructure
(12) optimization) with SGD challenges for
optimization, disease detection
potential for
fine-tuning
Saleem et al, ResNet50 5,000 images Validation: High precision Difficult
(13) 91%, Testing: for some distinguish visually
89% diseases, similar diseases,
improved needs larger
performance dataset and field
with data validation
augmentation
Data Normalization Segmentation and Background
Standardized input values are frequently assumed Removal

by deep learning algorithms. By scaling pixel
intensities to a standard range (such as 0-1 or
mean-standard deviation), normalization
promotes convergence and increases training
stability (18). The dataset images are n normalized

for further processing

Color Space Conversion

Certain features specific to a disease can be
emphasized by converting Red Green Bule (RGB)
images to other color spaces. HSV highlights
saturation and hue, which helps identify illnesses
based on color. We used CIELAB a color perception
tool that helps identify subtle symptoms (19).
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Plant diseases rarely affect the entire image.
Isolating the relevant region (i.e., leaf) through
techniques like thresholding, level sets, or deep
learning-based segmentation methods improves
disease detection accuracy by focusing on the
affected area (20). Hence segmentation using the
thresholding method is performed on the given
dataset images

Noise Reduction and Filtering

Confusion in Deep learning models can arise from
noise introduced during acquisition or
transmission. Techniques like Gaussian filtering,
median filtering, and bilateral filtering smoothen
images while preserving edges crucial for disease
identification (21). In the proposed method, we
applied Gaussian filtering to remove noises.
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Figure 2: Proposed Method

Transfer Learning

Apply learned models to huge ImageNet, such as
VGG16 or ResNet. datasets to leverage pre-learned
features and accelerate training, especially with
limited data (22). In the proposed method we have
applied 5 pre-trained networks and compared
their results by carefully selecting and applying
these data preprocessing techniques, we can
prepare our image data for optimal performance in
deep learning-based plant disease detection
models. Experimentation and evaluation are key to
finding the best approach for our specific needs.

In this section, we proposed five transfer learning
based Deep learning models.

CNN

Deep learning neural network architectures such
as convolutional networks are utilized primarily in
the field of recognizing patterns in images (23). A
prime instance of an artificial neural network is
CNN. Three layers comprise a traditional Artificial
Neural Network (ANN): input, hidden, and output.
Convolutional, non-linearity, pooling, and fully
connected layers make up the layers of a CNN that
resemble this. A great deal of tasks requiring
image-driven pattern recognition is handled by
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CNNs. Benefits CNN can automatically recognize
and determine pertinent aspects in images one key
component of the strategy is that the networks
have been developed to automatically adjust to the
spatial arrangement of features the subject learns
and pull relevant characteristics from the images
dynamically translation invariance ability to
recognize translation invariance a technique that
aids in confirming the presence of illnesses
unrelated to leaf orientation.

Natural Language Processing (NLP), computer
vision, and image classification are a few additional
applications for CNN (24). Agarwal M and Others
(9) have reported the CNN architecture is shown in
Figure 3. We must first decide on our model's
architecture. Our data is input in 256*256 format
with three channels. We have five distinct classes
altogether, thus five is the total amount of output
classes that we have set. The structure of our
model consists of pooling and convolutional layers.
Initially, a 3 x 3 convolutional layers of 32 filters is
present. A 2 x 2 max pooling layer follows this. This
minimizes the size by highlighting things at a lower
level. This structure is repeated twice to add
maximum pooling layers of size 2 x 2 and
convolutional layers containing 64 and 128 filters,
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respectively, to deepen our model. A flattening
layer is applied to the resultant feature map to
convert it into a flat vector. A thick, covert coating
of Next, a 128-neuron hidden (dense) layer is
introduced. This layer improves generalization
and enriches the learned characteristics. Lastly, the
output layer uses the softmax activation function
to compute the likelihoods between classes using
four neurons. To teach our model, we must

Vol 5 | Issue 3

ascertain the ideal metrics and function. We
employ the Rectified Adam optimization technique
in this paper. This approach facilitates the more
effective use of gradients by dynamically adjusting
the learning rate. Additionally, because categorical
cross-entropy is frequently employed in multiclass
classification tasks, it is utilized as the loss of
function during training.

3 ! 4 \
Tomato : i ‘,
Leaves — H - —_ —
from Convolution , Convolution 1 Con“ilu“o“ i i | —
Dataset + + . 4
Max Pooling Max Pooling Max *’fohng 3
Flatten
Figure 3: The Architecture of CNN Based on Agarwal et al, (9).
ResNet intricate disease patterns while retaining essential

In the proposed method, ResNet employs skip

connections, which function as informational
"magic highways," to counteract vanishing
gradients. These shortcuts guarantee that

important visual cues about healthy and diseased
plant tissues reach the diagnosis station (final
layers), unlike regular roads (convolutional layers)
where details can be lost. Consider the analysis of
leaf images. While regular models may find it
difficult to retain subtle color changes that are
layered deeply, ResNet's shortcuts allow it to learn

(x4)

maxPool

IMAGES —3p

7x7 cony, 64 stride 2

(x6)

fundamental information. Because of this, ResNet
is an effective method for detecting plant diseases
early and accurately, which could save crops and
livelihoods. To achieve this, we have limited the
batch size to 32, and the output classes to 5 (the
total number of qualified individuals). We gave
ourselves some leeway in determining the total
amount of input channels, be
determined by the various experiments we carried
out. Padshetty et al, (25) used ResNet Architecture
as shown in Figure 4. The proposed method used
the same architecture.

which will

(x3)

PREDICTED
SUBJECT

7 7 fc, softmax

Figure 4: The architecture of ResNet based on Padshetty et al, (25)

Benefits: It was one of the models that first

demonstrated the competitiveness of deep

365

learning in image classification. It is deep enough
to capture the deeper patterns involved in leaf
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diseases. It utilizes the ReLU activation function,
enabling quicker solving the
vanishing gradient problem. It is included to

training and

maximize the use of GPU processing for faster
training.

Alexnet

The science of computer vision was greatly
enhanced by the groundbreaking CNN architecture
known as AlexNet, which was first introduced in
2012. The network, which was created by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton,
was essential to deep learning's success in image
recognition applications first, second, third, and
fourth layers, which are then followed by the
pooling layer and the three fully-connected layers
in the fifth layer. During the back-propagation
optimization process for the AlexNet architecture,
convolutional kernels are retrieved by using the
Stochastic Gradient Descent (SGD) technique to
optimize the entire cost function. In general, the
pooling layers work on the convolved feature
corresponds to aggregate the data within the
specified neighborhood window using a max
pooling operation or an average pooling operation.
The convolutional layers behave on the feature
supplied with the slipping
convolutional kernels in order to produce the

maps that are
convolved feature maps. Some of the useful
techniques, such as the dropout regularization
method and the Rectified Linear Units (ReLU) the
non-linear layer, are responsible for AlexNet's

Vol 5 | Issue 3

success. A rectifier with a half-wave function called
the ReLU can greatly speed up training and avoid
overfitting. The dropout technique, which is
typically used in the fully connected layers of the
AlexNet architecture, can be thought of as a type of
normalization by stochastically lowering the
number of input cells or hidden neurons to zero in
order to lessen the co-adaptations of the neurons
(26). One unique feature of AlexNet was that its
activation functions were ReLU. ReLU made it
possible to solve the vanishing gradient issue,
which sped up training convergence. By
normalizing the responses of nearby neurons,
Local Response Normalization (LRN), which was
incorporated into the first two convolutional
layers, improved the network's capacity for
generalization. Figure 5 shows architecture of
Alexnet as used by Chen et al, (27), applied to the
proposed method.

Benefits: ResNet utilizes residual connections,
thereby making the training of much deeper
networks possible by solving the vanishing
gradient problem. Capable of training much
deeper networks such as 50, 101, or 152 layers,
which are potentially good at grasping very
intricate datasets. They aid in the training of
deeper by
connections. This implies that shortcut paths to
some layers are available so that the degradation
problem can be alleviated. Performance: The
network exhibits high performance in most cases

networks adding short-circuit

across a range of image classification benchmarks.

Input data Convl Conv2 Conv3 Conv4 Conv5 FC6 FC7 FC8
ﬁ ; -| ﬁ A—) —if ! — 1 — g OuTPUT
A 13x 13 x 384 13x 13 x 384 13x 13 X 256
27x 27 x 256
55X 55 X 96 L
L | L] 1co0
227x 227 x 3 4096 4096
Figure 5: Architecture of AlexNet Based on Chen et al, (27)
VGG-16 its deep architecture, utilizes a sequential

In the proposed methodology, VGG-16, known for
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arrangement of convolutional layers followed by
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max-pooling layers, culminating in fully connected
layers. This structured design enables the model to
capture intricate features of plant images, essential
for accurate disease detection. Unlike some
traditional models, VGG-16's approach enhances
feature learning, ensuring that subtle color
changes indicative of plant diseases is effectively
retained during the training process. With its well-
defined architecture, VGG-16 stands as a robust
tool for early and accurate plant disease detection,
contributing significantly to crop preservation and
agricultural sustainability. Figure 6 shows the
architecture of VGG16 as proposed by Alatawi et
al, (28). The same type is used in the proposed
method An RGB image with a preset dimension of
224 by 224 is the input for the Cov1 layer. After
passing through an array of convolution (conv.)
layers, the image is processed through filters
having an extremely tiny receptive field 3x3, which
is sufficient to capture left/right, up/down, and
center concepts. As a linear transformation on the
source channels, each of the configurations
additionally makes use of 1x1 convolution filters.
For three-by-three convolution layers, the amount
of padding corresponds to one pixel, and the
convolution stride stays constant at one pixel. The
convolution layer's input's spatial padding is made
to preserve the depth of field even after the
convolution. Five classes are finally classified.

Benefits: VGG 16 is Very simple and uniform
architecture where only 3x3 convolution layers are
stacked up one after another. High and enough to
realize complicated characteristics (16 layers).
Makes it easier for understanding and applying
with the same use of small convolution filters.

Inception-V3

Vol 5 | Issue 3

In the proposed method, Inception V3, developed
by Google, stands out for its intricate design,
incorporating inception modules that capture
multi-scale features within images. To minimize
the size of the data, the Inception module provided
by the Inception Neural Network employs
maximum pooling and filters of varying sizes (29).
This architecture has proven to be highly effective
in the domain of plant disease detection,
showcasing remarkable capabilities in the early
and accurate identification of various diseases.
Better optimization methods, lower computing
costs, a more complex neural network, and
increased efficiency are all features of Inception
V3. The utilization of Inception advanced feature
extraction capabilities enhances its ability to
discern subtle visual cues, contributing to precise
disease diagnosis. Its robustness lies in the diverse
set of features captured by the inception modules,
facilitating the extraction of both global and local
information from leaf images. Studies use the
versatility and robustness of Inception V3,
positioning it as a pivotal tool in advancing the field
of plant disease detection and precision
The author Saritha et al, (29)
proposed an Inception Net as shown in Figure 7.
We have used the same architecture in the
proposed method.

Benefits: InceptionV3 optimally facilitate the
capturing of multi-scale features by the use of

agriculture.

parallel convolutional layers that are processing
different filter sizes. InceptionV3 can achieve high
performance with comparatively fewer
parameters when compared to other networks of
similar =~ depth. Auxiliary classifiers are
incorporated in the model to counter the vanishing
gradient problem and improve convergence.

’_.'
b ol Bt I O Bt e S I B B B R B B R I R i B R ) ot
S| =l 8l [l gl |e]efalg] [ r] 2] | elele] 2] | 4] g A
AR B E IR R B EH AP E AP B E R EEHE
= e HHEIHEE N HEEE N HEREEE =
= 0] & Q10 Q00 QI0Q Q100 5
Figure 6: Architecture of VGG-16 Based on Alatawi et al,, (28)
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Figure 7: Architecture of Inception V3 Based on Saritha et al, (30)

Comparative Summary

CNN is the basic block to perform classification of
images in just the right order of complexity as well
as efficiency. AlexNet may be used for relatively
simpler problems and where we have the
minimum available computational
While, ResNet will be suitable for very complex and
deep networks in which it can be trained over the
very deep models without degradation. It is also
efficient in capturing multi-scale features using
fewer parameters. VGG-16 is inherently a simple
and a deeper one but containing more parameters
than InceptionV3 (30).

Criteria for Selection of models

Image Classification Task: These models have
shown strong capabilities of correctly classifying
an object and a scene that appears in an image,
which would also be robust in this task of

resources.

recognizing plant diseases from leaf images.
Transfer Learning Capability: All these models
have, so to say, the qualities of being pre-trained on
large datasets, for instance, on ImageNet. Its
training features that can also be transferred and
fine-tuned to learn specifically from our small
dataset regarding tomato plant disease images.
Depth and complexity: Architectures such as
ResNet and InceptionV3 are very deep by design,
with novelties such as residual connections in the
case of ResNet and inception modules for the
thus, they
encapsulate detail and fine patterns extracted from
the images. They are going to be helpful in
extracting subtle differences between healthy and
diseased leaf patterns of a plant.

Computational Efficiency: While deeper models

InceptionV3  architecture; can
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such as ResNet and InceptionV3 outperform
models such as VGG-16 and AlexNet have an
architecture that is relatively simple yet shows
effectiveness. This trade-off in complexity must
ensure that performance is developed within the
bounds of computational efficiency, especially
during deployment
constrained devices or in IoT environments.

Community and Tool Support: These models
include

model on resource-

a rich community, meaning well-
documented implementations and pre-trained
weights exist. This in turn makes it easier to bring
the models from paper to real-world
implementations.

Experimentation and Benchmarking: Most
prior works and benchmarks have used these
models in the past as baselines or reference points,
making the comparison and validation of result
much easier.

Therefore, these five models are selected to use in
plant leaf disease identification: CNN, AlexNet,
ResNet, InceptionV3, and VGG-16. The reason is
that they have been proven best in problems of
image classification, via transfer learning; for
handling complicated features in the image, they
are less resource-intensive in terms of
computation; at last, they are very well supported
by the community together with benchmarking in
similar applications. together
contribute to an accurate and effective framework
for identification and diagnosis of diseases in

tomato plants using deep learning techniques.

These models

Results

We utilized the images from camera obtained using
IOT model which comprises images of various
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tomato plant diseases and healthy leaves. The
dataset consists of three classes: Diseased Tomato
Plants (Tomato late blight, Tomato mold leaf,
Tomato mosaic virus and Tomato yellow leaf curl
virus), Healthy Tomato Plants (Tomato leaf).
10,182 images total from camera shows tomato
leaves in four different disease- and healthy-class
categories. This dataset includes samples of leaves
with varying degrees of disease infection as well as
a broad range of diseases. It is clear that there is an
in the dataset from Table 3's
distribution of sample numbers across classes,

imbalance

where there are noticeably different sample counts
for each class. The maximum number of samples
associated with the Yellow Leaf Curl Virus disease
is 5357, while the minimum number of samples
associated with the Mosaic Virus disease is 373.

Table 3: Distribution of Samples in the Dataset
Class Label

Sample Count

Late Blight 1909
Leaf Mold 952
Yellow Leaf Curl Virus 5357
Tomato Mosaic Virus 373
Healthy 1591
Total 10182

All images were standardized to a resolution of
256x256 pixels. During the training phase, 90% of
the dataset was used for training the deep learning
model, while the remaining 10% was reserved for
testing. Additionally, validation was performed on
the training dataset using a 10% validation split.
Cross- validation with k=5 using stratified k-fold
was employed to ensure robust model evaluation.
Figure 8 shows different types of tomato leaves
with disease.

The following indicators were used to assess the
effectiveness of the suggested plant disease
detection approach.

Accuracy

This metric, which is computed as the ratio of
correctly to total
observations is used to evaluate how accurate
the model's predictions The

classified observations

are overall.
Equation [1] gives it formula to calculate it
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TruePos+TrueNeg

Accuracy = [1]
TruePos+TrueNeg+FalsePos+FalseNeg

Whereas True Pos, for instance, a true positive in
the context of plant disease detection happens
when the model accurately classifies a diseased
plant leaf as such.

True Neg, An illustration of a true negative in plant
disease detection is when the model accurately
classifies a leaf of a healthy plant as healthy.
False Pos, An illustration of a false positive in plant
disease detection is when a healthy plant leaf is
mistakenly classified as diseased by the model
(Type I error).

False Neg, An illustration of a false negative in plant
disease detection is when a Type Il error causes the
model to mistakenly classify a diseased plant leaf
as healthy.

Specificity

The specificity (which is correct Negative Rate):
Specificity gauges how well the algorithm can
distinguish between all real, healthy plant cases
and identify healthy plants. The Equation [2] gives
the formula to calculate it.

TrueNeg

Specificity = [2]

TrueNeg-+FalsePos
Precision

Precision can be defined as the proportion of all
favorably forecasted leaves by the system to the
accurately predicted disease-affected leaves. The
Equation [3] gives the formula to calculate it.

(3]

.. TruePos
Precision = ———
TruePos+FalsePos

Sensitivity or Recall

Sensitivity is defined as the percent of correctly
forecastleaves with illness compared to the overall
instances that were positive of the test case The
Equation [4] gives the formula to calculate it.

(4]

P TruePos
Sensitivity =

F1-Score

Recall and accuracy can be balanced by one
measure dubbed the F1-scoring system, which is
the harmonic mean of the two measurements. The
Equation [5] gives the formula to calculate it.

(5]

TruePos+FalseNeg

Precisonx*recall
Flscore =2 —————
Precision+recall
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EEEE t«i

B Tomato _Mold Leaf

D  Tomato Yellow_Virus

C  Tomato_Mosaic Virus

Figure 8: Different Type of Tomato Leaf Disease

Table 4: The Result of the Proposed Method without Argumentation

Method Accuracy
Tomato late Tomato leaf Tomato Mosaic Tomato Yellow Leaf
blight mold Virus Curl Virus

CNN 0.754 0.762 0.741 0.751

AlexNet 0.768 0.789 0.763 0.773

ResNet 0.787 0.807 0.785 0.790

Inception V3 0.805 0.823 0.802 0.804

VGG-16 0.819 0.838 0.819 0.818

(a) Image (b) Height Shift (¢) Width Shift
Enhancement

(d) Rotation (e) Shearing (F) Horizontal Flip

Figure 9 (a-f): Image Argumentations

By evaluating these metrics, we can assess the distinguishing them from healthy plants and
effectiveness and performance of the deep learning anomalies.
model in accurately detecting plant diseases and
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Results without Image Augmentation
The proposed method used metric accuracy for
analysis of the experimental results without image
argumentation techniques. Following Table 4
shows the result of the proposed method without
argumentation.

Argumentation

Augmentation of images analysis was needed in
this experiment to ascertain how the volume of
data affected the accuracy of the model that was
developed. The model's performance was
compared to and without augmentation in order to
undertake experiments. Tests were carried out
using constant hyper parameters. The number of
nodes needed for the layer that is hidden is
indicated by the hidden units. This unit is in the
middle of the number of output and input nodes.
Adam is an optimization method that is a
development of the recently popularized
stochastic gradient descent in deep learning. The
CNN algorithm, a transfer-learning method, was
used in this investigation. In order to minimize the
length of the training process, a low epoch value
was chosen. 30,000 images were obtained with
image augmentation, compared to around 10,
1820 without image augmentation. Models lacking
image augmentation scored lower and were
consequently less adept at identifying visual
patterns since there was less variance in the
training data. Each pixel in the image is translated
by a constant factor in both the horizontal and
vertical directions to achieve height and width
shifting. In our instance, a random selection from
the range [0, 0.2] was made for the constant factor.
The RGB values of the closest pixels are filled in the
empty spaces while shifting, discarding the pixels
that cross the boundary. The results of performing
a width shift and a height shift are shown in Figure
9(b) and 9(c), respectively.

The
consideration when rotating an

into
The
rotation angle in our instance was selected at
random from a range of [-20, 20] degrees. Rotation
has an effect, as seen in Figure 9(d). Shearing is
done by using a shearing factor to move each pixel
in a fixed direction by a quantity proportional to its

image's centre pixel is taken

image.
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distance from the bottom-most pixels in the image.
Random selections were made from the possible
values [0, 0.2] for the shearing factor. Figure 9(e)
illustrates the effect of shearing. To turn an image
horizontally, the pixels must be mirrored in
relation to the centroid parallel to the x-axis. Figure
9(f) shows the outcome of flipping something
horizontally. Table 5 shows the hyperparameters
of Image Argumentation taken for the proposed
methods. Table 6 shows the results of healthy
tomato leaf classification and its comparison with
other models. It can be inferred VGG-16 provide
better accuracy compare to other models. Table 7
shows the results of Tomato late blight disease leaf
classification and its comparison with other
models. It can be inferred VGG-16 provide better
accuracy compare to other models. Table 8 shows
the leaf disease
classification and its comparison with other
models. Table 9 shows the results of Tomato
mosaic virus disease classification and its
comparison with other models. Table 10 shows the
of Tomato yellow virus
classification and its comparison with other

results of Tomato mold

results leaf curl
models. From the experimental analysis, it found
the VGG-16 produce better results compared to
other methods. It is better because VGG model has
high ability to extract higher level features from
images. This leads to higher accuracy. As the
number of levels with fewer kernels rose, non-
linearity also grew, which is a positive trend in
deep learning. Nevertheless, the computationally
demanding and vast number of parameters
associated with VGG-16 present a drawback. We
have compared the VGG16 which provides better
accuracy for healthy leave detection with 3 other
methods and the result shown in the Table 11.

Table 5: Hyper-parameters of Image

Argumentation
Hyper-parameter
Hidden units 128
Optimizer Adams
Epoch 40
Batch Size 32
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Table 6: Comparison of Different Models for Healthy Tomato Leaf Classification

Vol 5 | Issue 3

Model Accuracy Sensitivity Specificity Precision F1 Score
CNN 0.865 0.822 0.893 0.885 0.852
AlexNet 0.876 0.841 0.912 0.905 0.872
ResNet 0.898 0.876 0.921 0.917 0.896
InceptionV3  0.915 0.892 0.928 0.925 0.908
VGG-16 0.937 0.907 0.947 0.945 0.926
Table 7: Comparison of Different Models for Plant Disease-Tomato Late Blight
Model Accuracy Sensitivity Specificity Precision F1 Score
CNN 0.872 0.909 0.888 0.891 0.899
AlexNet 0.899 0.928 0.905 0.907 0.917
ResNet 0.915 0.934 0917 0.919 0.927
Inception V3 0.927 0.945 0.931 0.932 0.939
VGG-16 0.942 0.956 0.949 0.949 0.951
Table 8: Comparison of Different Models for Plant Disease -Tomato Mold Leaf
Model Accuracy Sensitivity Specificity Precision F1 Score
(Recall)
CNN 0.856 0.818 0.879 0.872 0.842
AlexNet 0.879 0.832 0.918 0.910 0.868
ResNet 0.904 0.892 0.926 0.924 0.906
Inception V3 0.921 0.908 0.934 0.932 0.919
VGG-16 0.935 0.921 0.946 0.944 0.932
Table 9: Comparison of Different Models for Plant Disease -Tomato Mosaic Virus
Model Accuracy Sensitivity Specificity Precision F1 Score
CNN 0.879 0.906 0.890 0.891 0.896
AlexNet 0.900 0.926 0.908 0.910 0.917
ResNet 0.916 0.938 0.919 0.921 0.929
Inception V3 0.928 0.947 0.933 0.933 0.939
VGG-16 0.942 0.958 0.948 0.947 0.948

Table 10: Comparison of Different Models for Plant Disease ~-Tomato Yellow Leaf Curl Virus

Model Accuracy Sensitivity Specificity Precision F1 Score
CNN 0.863 0.817 0.887 0.878 0.843
AlexNet 0.883 0.830 0.920 0.912 0.869
ResNet 0.907 0.897 0.928 0.926 0911
Inception V3 0.922 0.921 0.935 0.934 0.923
VGG-16 0.966 0.923 0.942 0.941 0.932
Table 11: Comparison of Proposed Method with Existing Works

Reference Paper Proposed Methods Accuracy

(12) ResNet 87.5%

9 CNN (8 layers: 2 fully connected, 3 max-pooling, 3 76%-100% (average

convolutional) 91.2%)
(10) LeNet (CNN variant) 92%
proposed VGG 16 93.7%
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Discussion

In addition, the original dataset has a class
imbalance, as was previously mentioned. Diverse
approaches have been taken on this problem in the
body of current literature. Under sampling and/or
oversampling specific classes has been the most
popular approach to address the problem. It has its
own shortcomings even though it somewhat
balances the dataset. It is possible that some of the
challenging images for particular classes—which
might include important information the model
needs to learn—will be eliminated by under
sampling. Eventually, this reduces the model's
generalizability. By employing diverse data
augmentation methods, oversampling generates
multiple marginally distinct renditions of the
source photos. If augmentation is carried out prior
to the dataset being split into train, validation, and
test sets, it could, nevertheless, bring minute
deviations from the training set into the test set. An
overestimation of the system's accuracy will result
from the model's propensity to correctly
categorize the other variants in the test set as it
obtains experience classifying one version of the
image during training. We decided to carry out
data augmentation while runtime since each
choice offers benefits and drawbacks Accuracy,
sensitivity, and specificity were mostly higher
all employing
augmentation comparison to those not

across tasks for models
in
employing augmentation. Across all tasks, models
with and without augmentation were more
accurate, sensitive, and specific. In comparison to
using or not using augmentation, other models
were consistently outperformed by VGG-16 model.
However, the difference was more pronounced
with augmentation since VGG-16 has shown that it
could better capture complex features using
additional data. Data augmentation will immensely
help in enhancing the model efficacy, this is mostly
true where the dataset is limited. Augmentation
has an impact of increasing the variability and
richness of training data; better
generalization and robustness model

predictions take place.

Applications and Challenges

In practical terms, our fresh deep computing model
for tomatoes leaf illness detection presents both
advantages and difficulties in real-world
agricultural environments. If the system has been
put into location it will be able to spot such

hence
in
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circumstances in their early phases allowing for
quick action to be taken to stop the spread and
lessen the impact on crop harvests. This will
enhance labor and time savings while adhering to
precision agriculture practices by providing
farmers with practical guidance on enhancing
yields through the use of diverse computer devices.
To reduce yield loss and choose the optimal
agricultural techniques, disease knowledge should
be kept on a cloud-based digital platform. This is
especially useful in areas where plant diseases
result in significant food losses.

Nevertheless, for the computerized system to
succeed, there are some problems associated with
it that should be resolved. A significant amount of
training data is crucial for model performance;
however, getting a varied dataset that covers
different conditions and diseases is problematic.
Connectivity to the internet,
resources, and IoT devices might be required for
successful implementation of  technical
infrastructures which may pose hurdles,
particularly in small-scale or resource-constrained

computational

farms. The initial costs as well as ongoing expenses
related to this technology could also be too high for
certain farmers who may not adopt this technology
because they do not trust digital tools or are
unfamiliar with them.

Consequently, the model will need to be adjusted
and retrained as per various types of tomatoes,
growing conditions and new strains of diseases.
There is also the issue of regulation and ethics on
data privacy that needs to be discussed in terms of
technology use in farming. This means that this
model should be able to scale up and across
different kinds of farming environments through
careful consideration for its fit with existing
agricultural practices and workflows. However,
there are some unsolved problems such as
technological collaboration between technologists,
agronomists, farmers, in
infrastructure, training among others all which are

investment

vital towards overcoming herculean task barriers
or surmounting challenges posed by modern
technologies available in agriculture

Future Works

In subsequent research, we plan to create an online
tool that will help farmers diagnose illnesses and
choose appropriate treatments from a distance,
according to the effectiveness findings. In our
application, we would employ the VGG16 model
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since it offers the most accuracy compared to the
other models. Before executing the model to
ascertain whether the tomato plants are healthy or
unhealthy, we will develop a web application that
runs on local host and gathers pictures of plants
from clients whether they are diseased or not.

Conclusion

In this work, we combined IoT integration with
deep learning models based on transfer learning to
forecast several plant diseases. The deep learning
models used include VGG-16, Inception V3,
AlexNet, ResNet, and CNN. Utilizing pre- trained
data from these models has significantly enhanced
the accuracy and efficiency of the system while
reducing the prediction time for plant disease
detection using transfer learning. Integration of
Medical IoT with deep learning has facilitated
quick and accurate prediction of tomato plant
diseases. Among all the models, VGG-16
demonstrated the highest accuracy of 93.7%
for Healthy Tomato leaf, 94.2% for Tomato late
blight, 93.4% for Tomato mold leaf, 94.2% for
Tomato mosaic virus and 96.6% for Tomato yellow
leaf curl virus

Abbreviations

IOT: Internet of Things

CNN: Convolutional Neural Networks
ResNet: Residual Network

VGG-16: Visual Geometry Group-16
SVMs: Support Vector Machines
ToMV: Tomato Mosaic Virus

TYLC: Tomato Yellow Leaf Curl Virus
Xception: Extreme Inception

HOG: Histogram of an Oriented Gradient
LVQ: Learning Vector Quantization
RGB: Red Green Bule

ANN: Artificial Neural Network

NLP: Natural Language Processing
SGD: Stochastic Gradient Descent
ReLU: Rectified Linear Units

LRN: Local Response Normalization
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