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Abstract 
 

Plant leaf disease identification and evaluation in a timely and accurate manner is crucial for efficient farming 
operations for crop yield optimization. Employing the most recent advances in technology, specifically the combination 
of deep learning and the Internet of Things (IoT), this paper offers an efficient approach to identifying plant diseases. 
We propose a transfer learning-based deep learning classification model which makes use of pre-trained models 
including Convolutional Neural Networks (CNN), AlexNet, Residual Networks (ResNet), InceptionV3, and Visual 
Geometry Group-16 (VGG-16). To provide wider accessibility, high-resolution images of tomato plant leaves displaying 
disease symptoms are gathered from a dataset and saved in cloud storage using Internet of Things devices. Following 
the image extraction from the cloud, images are preprocessed using data argumentation, normalization, color space 
conversion, background removal, and noise removal. Different tomato plant disease classes are classified using the pre-
trained models CNN, AlexNet, ResNet, InceptionV3, and VGG-16. The deep learning models' accuracy is increased using 
the transfer learning technique, which also reduces the workout duration. The VGG-16 model outperforms other models 
in the experiment, recognizing plant illnesses with an astounding accuracy of 93.7% on average, proving the efficacy of 
the suggested approach. This new approach may revolutionize the diagnosis of diseases affecting tomato plants and 
promote environmentally friendly agricultural practices. 
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Introduction
In modern agriculture, the ability to identify 

diseases in tomato leaves is essential for both 

early intervention and minimizing crop losses. 

Visual inspection is a useful method for identifying 

diseases in tomato plants since they can develop 

various diseases, such as blights, wilts, and fungal 

infections, which show up as unique visual signs 

on their leaves. Deep learning and machine 

learning techniques have become effective tools 

for automating the detection process in recent 

years (1). There are various ways to go about this 

endeavor. First, machine learning methods such 

as Support Vector Machines (SVMs) and decision 

trees can be trained on an image dataset that 

includes annotated images containing wholesome 

and damaged tomato leaves (2). Through the 

extraction of relevant data from the images, such 

as color, texture, and shape. These models are 

trained to differentiate between different 

diseases; on the other hand, CNN is a type of deep 

learning technique that excels at recognizing 

complex patterns in images and may be trained to 

identify specific disease signs. Their ability to 

distinguish between healthy and damaged leaves 

across various disease types has demonstrated 

impressive success. These techniques use 

complex algorithms to analyze multiple visual 

properties, including color, texture, and form, to 

distinguish between healthy and infected leaves. 

Datasets including pictures of both healthy and 

damaged leaves are used to train models. The 

model developed in this research uses CNN for 

assistance because working with images has 

advantages, especially when it comes to image 

categorization. Models are trained using datasets 

that contain images of both diseased and healthy 

leaves. In this paper, the model created takes the 

help of CNN due to the benefits of working with 

images, particularly in image categorization to 

produce customized outcomes. Table 1 (3) 

displays the proportion of agricultural loss caused 

by weeds, plant diseases, and pests on each  
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continent. Africa has the highest percentage of 

plant disease-related agricultural loss (15.6%), 

followed by Asia (14.2%) and South America 

(13.5%), according to the table.  

Numerous pathogens, including nematodes, 

bacteria, viruses, and parasitic plants, are the 

cause of plant diseases. All sections of a plant, 

including the stems, leaves, roots, fruits, and 

flowers, are vulnerable to infection. Crop yields, 

quality, and safety can all be impacted by plant 

diseases. In extreme circumstances, they may 

result in total crop failure. 
     

 Table 1: Agricultural Loss (%) Caused by Pests, Plant Disease and Weeds 

 

 
                                                                               Figure 1: Agricultural Loss (%) 
 

Numerous reasons can lead to plant disease, such 

as:  

• Plant diseases can spread quickly when a 

single crop is planted over a large area.  

• Variations in temperature and precipitation 

can increase the vulnerability of crops to 

disease.  

• Pests that are resistant to pesticides may 

emerge as a result of overuse. Plant disease 

management may become more challenging 

as a result.  

Oerke EC et al., (4) reported the agriculture loss 

(%) as shown in Figure 1. The graph indicates that, 

after pests, plant disease is the second-most 

leading cause of agricultural loss. Plant diseases 

account for 5% to 20% of agricultural losses in the 

Continents as shown on the graph. Numerous 

pathogens, including bacteria, viruses, and fungi, 

can cause a wide range of plant diseases. They can 

harm a plant's entire structure, including the roots, 

leaves, and fruits. Plant diseases have the power to 

destroy plants, drastically lower crop yields, and 

render food crops unmarketable. With its ability to 

train image-based models on large datasets of both 

healthy and diseased plant leaves, deep learning 

can also be applied to large-scale disease 

monitoring and analysis, which can help reduce 

overall loss and inform preventative measures (5). 

A more comprehensive diagram that demonstrates 

the relationship between plant disease detection 

and deep learning could incorporate images, 

accuracy metrics, and a simplified workflow that 

outlines the steps involved. 

In this section, we proposed to predict four tomato 

leaf diseases using pre-trained models such as 

CNN, AlexNet, ResNet, Inception V3, and VGG-16. 

The following list consists of four different diseases 

of Tomato leaf. 

Tomato Late Blight 
Though late blight, which is brought on by the 

Continent Agricultural loss (%) 

Pests Plant Disease Weeds Total 

Africa 16.7 15.6 16.6 48.9 

North America 10.2 9.6 11.4 31.2 

South America 14.4 13.5 13.4 41.3 

Asia 18.7 14.2 13.4 47.1 

Europe 10.2 9.8 8.3 28.2 
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fungus Phytophthora infestans, is rare, it can 

wreak havoc on tomato plants when it's cool and 

rainy (6). Either young (upper) or old (lower) 

leaves can be affected by late blight.  

Tomato Leaf Mold 
In humid greenhouses with inadequate air 

circulation, the fungus Fulvia fulva can produce 

leaf mold, which can lead to various issues. On 

lower leaves, this fungal disease manifests as fuzzy 

plenty of buff-colored spores on the underside and 

yellow spots on the top surface. As the disease 

spreads higher on the plant, these leaves begin to 

drop prematurely. 

Tomato Mosaic Virus (ToMV) 
ToMV is an RNA-based virus that infects plant 

species and is stable and extensively dispersed. 

Typically, it causes uneven ripening, brown wall or 

internal browning on some fruit kinds, and 

bending and mosaicking of the leaves (7). 

Tomato Yellow Leaf Curl Virus (TYLCV) 
The single genomic component of the monopartite 

tomato yellow leaf curl virus (TYLCV) is 

homologous to DNA-A of the bipartite 

begomoviruses. To infect a system, these single-

stranded viruses only need DNA-A (8). 

Thus, we present a deep learning-based transfer 

learning method with an integrated IoT approach 

to identify tomato plant diseases from leaf images. 

Using this technique, farmers can upload photos of 

their plants' leaves via a network connection or 

gather them directly in the field. The images are 

then safely saved in cloud storage. To predict 

diseases, a data analysis component retrieves 

these images from the cloud. To predict different 

tomato plant diseases, we use deep learning 

models in conjunction with transfer learning. The 

method minimizes the amount of data and the time 

needed for model testing and training. To predict 

tomato plant diseases, pre-trained models such as 

CNN, AlexNet, ResNet, Inception V3, and VGG-16 

are modified and improved. 

Findings are saved on cloud servers and can be 

accessed by researchers, farmers, and agricultural 

specialists for planning mitigation and diagnosis. 

Key contributions of this proposed method: 

• Applying transfer learning for efficiency: 

Pre-trained models reduce data 

requirements and speed up model 

development.  

• Deep learning for accurate diagnosis: This 

model offers high accuracy in identifying 

specific plant diseases.  

• Enhancing the effectiveness of the model by 

integrating IOT with the prediction model. 

Various deep-learning models and techniques 

have been discussed in this section. Several 

researches about deep learning models detecting 

diseases in plants have been done, and few of them 

have been discussed here. Tomato is a widely fruit 

grown in India. Diseases affect their growth and 

decrease their production in the market. In recent 

years Artificial Early disease detection in a variety 

of crops has been made possible in large part by 

artificial intelligence and machine learning.  

Agarwal et al., (9) used convolution neural 

networks to classify and detect diseases. This CNN 

model consists of eight layers: two fully connected 

layers, three max-pooling layers, and three 

convolutional layers. Nine distinct categories of 

illnesses have been classified by the authors. In the 

course of this study, 7000 images in all were 

examined. The accuracy ranged from 76% to 100% 

depending on the kind of illness. In this study, an 

average accuracy of 91.2% was reached. To 

compare performance, the same researchers also 

conducted tests.  

For VGG-16, the accuracy was 77.2%; for 

Mobilenet, it was 63.75%; and for Inception, it was 

63.4%.  LeNet, a CNN variant, was employed by 

Tiwari et al., (10) to identify and categorize 

illnesses in tomato leaves. They made use of 18160 

pictures from ten distinct classes. To expedite the 

training process, researchers in this experiment 

downsized every picture to 60 X 60 resolution. The 

convolutional, stimulation, pooling, and fully 

linked layers of the traditional CNN model are all 

present in LeNet. In addition, they have expanded 

the original LeNet design with new layers.  

This experiment yielded a 94% accuracy rate. 

Guerrero-Ibañez et al., (11) have used 4 

architectures of CNN to detect the leaf diseases. 

LeNet -2 Convolutional layers, VGG16 -13 

convolutional layers, ResNet50, and Extreme 

Inception (Xception) (36 convolutional layers). 

The researchers have used 14,903 images which 

belong to 9 different classes. Adding these many 

layers to their architecture is a complex task. As 

they added more convolutional layers, the overall 

complexity of these models increased (12).   Use of 

Random Forest Classification algorithm to classify 
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the healthy and diseased images. 

The Histogram of an Oriented Gradient (HOG) is 

used for feature extraction. A feature descriptor 

employed in computer vision and image 

processing for the recognition of objects is the 

Histogram of oriented gradients or HOG. The 

accuracy was 70.4%. Random Forest model 

accuracy was slightly better compared to other 

classification machine learning models. The author 

also used three-component descriptors – Hu 

moments, Haralick texture, and Color Histogram. 

Hu moments extract shape, Haralick texture 

extract texture, and color histogram represent the 

color distribution in an image.  

In comparison to conventional machine learning 

models, the use of Deep Learning models for plant 

disease detection and classification has 

demonstrated improved accuracy. A 

comprehensive review of the Deep Learning 

models used for detecting plant diseases is 

provided by the authors in their publication (13). 

All of the deep learning models from 2012 to 2018 

have their parameters, salient characteristics, and 

pros and cons mentioned. A breakdown of all the 

models' performance measures during these years 

is given.  A method based on the CNN and Learning 

Vector Quantization (LVQ) algorithms was 

presented in the paper (14). Learning Vector 

Quantization refers to a neural network that 

combines supervised and competitive learning. 

The average accuracy that the researchers were 

able to achieve was 86%. There were a total of five 

distinct classifications utilized. One for healthy 

leaves and four for leaf diseases. This research 

paper (15) describes a work in which the Resnet 

model has been used to classify plant diseases with 

leaf images using deep-learning approach. 

Therefore, it highlights the importance of 

agricultural productivity in India and the global 

food industry with a special focus on 

commodification as well as acknowledging disease 

detection challenges due to infrastructure scarcity. 

With SGD optimization, the accuracy is as high as 

87.5% using ResNet for classifying plant diseases 

in this work. The authors introduce layer-wise 

fine-tuning and later propose contributions 

toward disease detection via this new ground of 

visual recognition accommodated through the 

rapid growth in technology. In the paper (16), the 

study utilized fine-tuned pre-trained CNNs, namely 

VGG16, ResNet, and Inception, in detecting 

diseases of plant leaves. The training set consisted 

of 5,000 images: 3,500 healthy and 1,500 diseased 

leaves. The dataset was pre-processed for quality 

and agreement. The accuracy of the models 

achieved was at a maximum of 99.35% when 

tested on Plant Village data, but it went down to 

31% on differently conditioned images. The 

advantages of the approach were high accuracy, 

rapid classification suitable for mobile 

applications, and general applicability across 

species and diseases. However, the model 

performance degraded in the presence of varied 

image conditions and could classify only the 

upright leaf orientation type on a uniform 

background. The comparisons of various methods 

discussed above are given in Table 2. 
 

Methodology 
We designed an automated system that involves 

taking images of the tomato leaves using a 

Raspberry Pi HQ camera connected to an NVIDIA 

Jetson Nano GPU processor, processing the images 

using Transfer learning-based deep learning 

models, and recording the results on the Cloud to 

create an efficient, reasonably priced, and easily 

deployable solution. The images are preprocessed 

using data argumentation, normalization, color 

space conversion, background removal, and noise 

removal are performed. Then the images are 

classified using pre-trained deep learning models 

such as CNN, AlexNet, ResNet, Inception V3, and 

VGG net.  These models are already pre-trained 

and used for the classification of tomato leaf 

diseases.  It classifies the leaf as normal, leaf late 

blight, Tomato mold leaf, and yellow virus leaf. The 

proposed method is shown in Figure 2. In this 

section, we proposed a data pre-processing 

architecture for the Plant disease detection model, 

we use deep learning models which are 

particularly good at extracting complex patterns 

from image data, making them well-suited for 

plant disease detection. 

However, to fully utilize raw images, we require 

careful preprocessing to unlock their full potential.  

Here's an In-Depth Look at Some Important 

Methods. 

Image Augmentation  

A common problem in deep learning is data 

scarcity. Augmentation artificially enlarges the 

dataset with diverse variations of existing images, 

enhancing model generalizability and preventing 

over fitting. Techniques like Rotation, flip, scaling, 
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cropping, color jittering, noise addition, and elastic 

deformations are common methods (17) applied 

to leaves.  For the proposed method, 

argumentation such as Enhanced image, height, 

width shift, rotation, shearing and, horizontal flips 

are applied. 
 

Table 2:  Comparison of different Methods for Tomato Leaf Detection 

 

 

Data Normalization  
Standardized input values are frequently assumed 

by deep learning algorithms. By scaling pixel 

intensities to a standard range (such as 0–1 or 

mean–standard deviation), normalization 

promotes convergence and increases training 

stability (18). The dataset images are n normalized 

for further processing  

Color Space Conversion  
Certain features specific to a disease can be 

emphasized by converting Red Green Bule (RGB) 

images to other color spaces. HSV highlights 

saturation and hue, which helps identify illnesses 

based on color. We used CIELAB a color perception 

tool that helps identify subtle symptoms (19).  

 

 

Segmentation and Background 

Removal  
Plant diseases rarely affect the entire image. 

Isolating the relevant region (i.e., leaf) through 

techniques like thresholding, level sets, or deep 

learning-based segmentation methods improves 

disease detection accuracy by focusing on the 

affected area (20). Hence segmentation using the 

thresholding method is performed on the given 

dataset images 

Noise Reduction and Filtering  
Confusion in Deep learning models can arise from 

noise introduced during acquisition or 

transmission. Techniques like Gaussian filtering, 

median filtering, and bilateral filtering smoothen 

images while preserving edges crucial for disease 

identification (21). In the proposed method, we 

applied Gaussian filtering to remove noises. 

Reference Model Data Accuracy Advantages Disadvantages 

Agarwal et al., 

(9) 

CNN (8 layers: 2 

fully connected, 

3 max-pooling, 3 

convolutional) 

7000 images, 9 

categories 

76%-100% 

(average 

91.2%) 

High average 

accuracy, 

effective for 

multiple disease 

categories 

Limited data, 

varied accuracy 

depending on 

diseases 

Tiwari et al., 

(10) 

LeNet (CNN 

variant) 

18,160 images, 

10 classes 

94% High accuracy, 

efficient 

training with 

downsampled 

images 

Limited to specific 

resolution, may not 

generalize well 

Guerrero-

Ibañez et al., 

(11) 

LeNet, VGG-16, 

ResNet50, 

Xception 

14,903 images, 

9 classes 

93.25% (VGG-

16) 

Extensive use of 

different 

architectures, 

high accuracy 

Increasing 

complexity with 

more layers, high 

computational cost 

Bhise et al.,  

(12) 

ResNet Not specified 87.5% (SGD 

optimization) 

High accuracy 

with SGD 

optimization, 

potential for 

fine-tuning 

Infrastructure 

challenges for 

disease detection 

Saleem et al., 

(13) 

ResNet50 5,000 images Validation: 

91%, Testing: 

89% 

High precision 

for some 

diseases, 

improved 

performance 

with data 

augmentation 

Difficult to 

distinguish visually 

similar diseases, 

needs larger 

dataset and field 

validation 

 



 
Angulakshmi et al.,                                                                                                                                       Vol 5 | Issue 3  

364  

 

Figure 2:  Proposed Method 
 

Transfer Learning 
Apply learned models to huge ImageNet, such as 

VGG16 or ResNet. datasets to leverage pre-learned 

features and accelerate training, especially with 

limited data (22). In the proposed method we have 

applied 5 pre-trained networks and compared 

their results by carefully selecting and applying 

these data preprocessing techniques, we can 

prepare our image data for optimal performance in 

deep learning-based plant disease detection 

models. Experimentation and evaluation are key to 

finding the best approach for our specific needs. 

In this section, we proposed five transfer learning 

based Deep learning models.  

CNN 
Deep learning neural network architectures such 

as convolutional networks are utilized primarily in 

the field of recognizing patterns in images (23). A 

prime instance of an artificial neural network is 

CNN. Three layers comprise a traditional Artificial 

Neural Network (ANN): input, hidden, and output. 

Convolutional, non-linearity, pooling, and fully 

connected layers make up the layers of a CNN that 

resemble this. A great deal of tasks requiring 

image-driven pattern recognition is handled by 

CNNs.  Benefits CNN can automatically recognize 

and determine pertinent aspects in images one key 

component of the strategy is that the networks 

have been developed to automatically adjust to the 

spatial arrangement of features the subject learns 

and pull relevant characteristics from the images 

dynamically translation invariance ability to 

recognize translation invariance a technique that 

aids in confirming the presence of illnesses 

unrelated to leaf orientation. 

Natural Language Processing (NLP), computer 

vision, and image classification are a few additional 

applications for CNN (24). Agarwal M and Others 

(9) have reported the CNN architecture is shown in 

Figure 3. We must first decide on our model's 

architecture. Our data is input in 256*256 format 

with three channels. We have five distinct classes 

altogether, thus five is the total amount of output 

classes that we have set. The structure of our 

model consists of pooling and convolutional layers. 

Initially, a 3 × 3 convolutional layers of 32 filters is 

present. A 2 × 2 max pooling layer follows this. This 

minimizes the size by highlighting things at a lower 

level. This structure is repeated twice to add 

maximum pooling layers of size 2 × 2 and 

convolutional layers containing 64 and 128 filters, 
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respectively, to deepen our model. A flattening 

layer is applied to the resultant feature map to 

convert it into a flat vector. A thick, covert coating 

of Next, a 128-neuron hidden (dense) layer is 

introduced. This layer improves generalization 

and enriches the learned characteristics. Lastly, the 

output layer uses the softmax activation function 

to compute the likelihoods between classes using 

four neurons. To teach our model, we must 

ascertain the ideal metrics and function. We 

employ the Rectified Adam optimization technique 

in this paper. This approach facilitates the more 

effective use of gradients by dynamically adjusting 

the learning rate. Additionally, because categorical 

cross-entropy is frequently employed in multiclass 

classification tasks, it is utilized as the loss of 

function during training.

 

Figure 3: The Architecture of CNN Based on Agarwal et al., (9). 
 

ResNet  
In the proposed method, ResNet employs skip 

connections, which function as informational 

"magic highways," to counteract vanishing 

gradients. These shortcuts guarantee that 

important visual cues about healthy and diseased 

plant tissues reach the diagnosis station (final 

layers), unlike regular roads (convolutional layers) 

where details can be lost. Consider the analysis of 

leaf images. While regular models may find it 

difficult to retain subtle color changes that are 

layered deeply, ResNet's shortcuts allow it to learn 

intricate disease patterns while retaining essential 

fundamental information. Because of this, ResNet 

is an effective method for detecting plant diseases 

early and accurately, which could save crops and 

livelihoods. To achieve this, we have limited the 

batch size to 32, and the output classes to 5 (the 

total number of qualified individuals). We gave 

ourselves some leeway in determining the total 

amount of input channels, which will be 

determined by the various experiments we carried 

out. Padshetty et al., (25) used ResNet Architecture 

as shown in Figure 4. The proposed method used 

the same architecture. 
 

 

Figure 4: The architecture of ResNet based on Padshetty et al., (25) 
 

Benefits: It was one of the models that first 

demonstrated the competitiveness of deep 

learning in image classification. It is deep enough 

to capture the deeper patterns involved in leaf 
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diseases. It utilizes the ReLU activation function, 

enabling quicker training and solving the 

vanishing gradient problem. It is included to 

maximize the use of GPU processing for faster 

training. 

Alexnet  
The science of computer vision was greatly 

enhanced by the groundbreaking CNN architecture 

known as AlexNet, which was first introduced in 

2012. The network, which was created by Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 

was essential to deep learning's success in image 

recognition   applications first, second, third, and 

fourth layers, which are then followed by the 

pooling layer and the three fully-connected layers 

in the fifth layer. During the back-propagation 

optimization process for the AlexNet architecture, 

convolutional kernels are retrieved by using the 

Stochastic Gradient Descent (SGD) technique to 

optimize the entire cost function. In general, the 

pooling layers work on the convolved feature 

corresponds to aggregate the data within the 

specified neighborhood window using a max 

pooling operation or an average pooling operation. 

The convolutional layers behave on the feature 

maps that are supplied with the slipping 

convolutional kernels in order to produce the 

convolved feature maps. Some of the useful 

techniques, such as the dropout regularization 

method and the Rectified Linear Units (ReLU) the 

non-linear layer, are responsible for AlexNet's 

success. A rectifier with a half-wave function called 

the ReLU can greatly speed up training and avoid 

overfitting. The dropout technique, which is 

typically used in the fully connected layers of the 

AlexNet architecture, can be thought of as a type of 

normalization by stochastically lowering the 

number of input cells or hidden neurons to zero in 

order to lessen the co-adaptations of the neurons 

(26). One unique feature of AlexNet was that its 

activation functions were ReLU. ReLU made it 

possible to solve the vanishing gradient issue, 

which sped up training convergence. By 

normalizing the responses of nearby neurons, 

Local Response Normalization (LRN), which was 

incorporated into the first two convolutional 

layers, improved the network's capacity for 

generalization. Figure 5 shows architecture of 

Alexnet as used by Chen et al., (27), applied to the 

proposed method.  

Benefits: ResNet utilizes residual connections, 

thereby making the training of much deeper 

networks possible by solving the vanishing 

gradient problem.   Capable of training much 

deeper networks such as 50, 101, or 152 layers, 

which are potentially good at grasping very 

intricate datasets.   They aid in the training of 

deeper networks by adding short-circuit 

connections. This implies that shortcut paths to 

some layers are available so that the degradation 

problem can be alleviated. Performance: The 

network exhibits high performance in most cases 

across a range of image classification benchmarks. 
 

 
Figure 5: Architecture of AlexNet Based on Chen et al., (27) 

              

VGG-16 
In the proposed methodology, VGG-16, known for 

its deep architecture, utilizes a sequential 

arrangement of convolutional layers followed by 
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max-pooling layers, culminating in fully connected 

layers. This structured design enables the model to 

capture intricate features of plant images, essential 

for accurate disease detection. Unlike some 

traditional models, VGG-16's approach enhances    

feature learning, ensuring that subtle color 

changes indicative of plant diseases is effectively 

retained during the training process. With its well-

defined architecture, VGG-16 stands as a robust 

tool for early and accurate plant disease detection, 

contributing significantly to crop preservation and 

agricultural sustainability. Figure 6 shows the 

architecture of VGG16 as proposed by Alatawi et 

al., (28). The same type is used in the proposed 

method An RGB image with a preset dimension of 

224 by 224 is the input for the Cov1 layer. After 

passing through an array of convolution (conv.) 

layers, the image is processed through filters 

having an extremely tiny receptive field 3×3, which 

is sufficient to capture left/right, up/down, and 

center concepts. As a linear transformation on the 

source channels, each of the configurations 

additionally makes use of 1×1 convolution filters. 

For three-by-three convolution layers, the amount 

of padding corresponds to one pixel, and the 

convolution stride stays constant at one pixel. The 

convolution layer's input's spatial padding is made 

to preserve the depth of field even after the 

convolution.  Five classes are finally classified. 

Benefits: VGG 16 is Very simple and uniform 

architecture where only 3x3 convolution layers are 

stacked up one after another. High and enough to 

realize complicated characteristics (16 layers).  

Makes it easier for understanding and applying 

with the same use of small convolution filters. 

Inception-V3 

In the proposed method, Inception V3, developed 

by Google, stands out for its intricate design, 

incorporating inception modules that capture 

multi-scale features within images. To minimize 

the size of the data, the Inception module provided 

by the Inception Neural Network employs 

maximum pooling and filters of varying sizes (29). 

This architecture has proven to be highly effective 

in the domain of plant disease detection, 

showcasing remarkable capabilities in the early 

and accurate identification of various diseases. 

Better optimization methods, lower computing 

costs, a more complex neural network, and 

increased efficiency are all features of Inception 

V3. The utilization of Inception advanced feature 

extraction capabilities enhances its ability to 

discern subtle visual cues, contributing to precise 

disease diagnosis. Its robustness lies in the diverse 

set of features captured by the inception modules, 

facilitating the extraction of both global and local 

information from leaf images. Studies use the 

versatility and robustness of Inception V3, 

positioning it as a pivotal tool in advancing the field 

of plant disease detection and precision 

agriculture.  The author Saritha et al., (29) 

proposed an Inception Net as shown in Figure 7. 

We have used the same architecture in the 

proposed method. 

Benefits: InceptionV3 optimally facilitate the 

capturing of multi-scale features by the use of 

parallel convolutional layers that are processing 

different filter sizes.  InceptionV3 can achieve high 

performance with comparatively fewer 

parameters when compared to other networks of 

similar depth. Auxiliary classifiers are 

incorporated in the model to counter the vanishing 

gradient problem and improve convergence. 
      

 
Figure 6: Architecture of VGG-16 Based on Alatawi et al., (28)



 
Angulakshmi et al.,                                                                                                                                       Vol 5 | Issue 3  

368  

Figure 7: Architecture of Inception V3 Based on Saritha et al., (30) 
 

Comparative Summary 
CNN is the basic block to perform classification of 

images in just the right order of complexity as well 

as efficiency. AlexNet may be used for relatively 

simpler problems and where we have the 

minimum available computational resources. 

While, ResNet will be suitable for very complex and 

deep networks in which it can be trained over the 

very deep models without degradation. It is also 

efficient in capturing multi-scale features using 

fewer parameters. VGG-16 is inherently a simple 

and a deeper one but containing more parameters 

than InceptionV3 (30). 

Criteria for Selection of models 
Image Classification Task: These models have 

shown strong capabilities of correctly classifying 

an object and a scene that appears in an image, 

which would also be robust in this task of 

recognizing plant diseases from leaf images. 

Transfer Learning Capability: All these models 

have, so to say, the qualities of being pre-trained on 

large datasets, for instance, on ImageNet. Its 

training features that can also be transferred and 

fine-tuned to learn specifically from our small 

dataset regarding tomato plant disease images.  

Depth and complexity: Architectures such as 

ResNet and InceptionV3 are very deep by design, 

with novelties such as residual connections in the 

case of ResNet and inception modules for the 

InceptionV3 architecture; thus, they can 

encapsulate detail and fine patterns extracted from 

the images. They are going to be helpful in 

extracting subtle differences between healthy and 

diseased leaf patterns of a plant. 

Computational Efficiency: While deeper models 

such as ResNet and InceptionV3 outperform 

models such as VGG-16 and AlexNet have an 

architecture that is relatively simple yet shows 

effectiveness. This trade-off in complexity must 

ensure that performance is developed within the 

bounds of computational efficiency, especially 

during model deployment on resource-

constrained devices or in IoT environments. 

Community and Tool Support: These models 

include a rich community, meaning well-

documented implementations and pre-trained 

weights exist. This in turn makes it easier to bring 

the models from paper to real-world 

implementations. 

Experimentation and Benchmarking: Most 

prior works and benchmarks have used these 

models in the past as baselines or reference points, 

making the comparison and validation of result 

much easier. 

Therefore, these five models are selected to use in 

plant leaf disease identification: CNN, AlexNet, 

ResNet, InceptionV3, and VGG-16. The reason is 

that they have been proven best in problems of 

image classification, via transfer learning; for 

handling complicated features in the image, they 

are less resource-intensive in terms of 

computation; at last, they are very well supported 

by the community together with benchmarking in 

similar applications. These models together 

contribute to an accurate and effective framework 

for identification and diagnosis of diseases in 

tomato plants using deep learning techniques. 
 

Results 
We utilized the images from camera obtained using 

IOT model which comprises images of various 
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tomato plant diseases and healthy leaves. The 

dataset consists of three classes: Diseased Tomato 

Plants (Tomato late blight, Tomato mold leaf, 

Tomato mosaic virus and Tomato yellow leaf curl 

virus), Healthy Tomato Plants (Tomato leaf). 

10,182 images total from camera shows tomato 

leaves in four different disease- and healthy-class 

categories. This dataset includes samples of leaves 

with varying degrees of disease infection as well as 

a broad range of diseases. It is clear that there is an 

imbalance in the dataset from Table 3's 

distribution of sample numbers across classes, 

where there are noticeably different sample counts 

for each class. The maximum number of samples 

associated with the Yellow Leaf Curl Virus disease 

is 5357, while the minimum number of samples 

associated with the Mosaic Virus disease is 373. 
   

Table 3: Distribution of Samples in the Dataset 

Class Label Sample Count 

Late Blight 1909 

Leaf Mold 952 

Yellow Leaf Curl Virus 5357 

Tomato Mosaic Virus 373 

Healthy 1591 

Total 10182 
 

 

All images were standardized to a resolution of 

256x256 pixels. During the training phase, 90% of 

the dataset was used for training the deep learning 

model, while the remaining 10% was reserved for 

testing. Additionally, validation was performed on 

the training dataset using a 10% validation split. 

Cross- validation with k=5 using stratified k-fold 

was employed to ensure robust model evaluation. 

Figure 8 shows different types of tomato leaves 

with disease.  

The following indicators were used to assess the 

effectiveness of the suggested plant disease 

detection approach. 

Accuracy  

This metric, which is computed as the ratio of 

correctly classified observations to total 

observations is used to evaluate how accurate 

the model's predictions are overall. The 

Equation [1] gives it formula to calculate it 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠+𝑇𝑟𝑢𝑒𝑁𝑒𝑔

𝑇𝑟𝑢𝑒𝑃𝑜𝑠+𝑇𝑟𝑢𝑒𝑁𝑒𝑔+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔
   [1] 

Whereas True Pos, for instance, a true positive in 

the context of plant disease detection happens 

when the model accurately classifies a diseased 

plant leaf as such. 

True Neg, An illustration of a true negative in plant 

disease detection is when the model accurately 

classifies a leaf of a healthy plant as healthy. 

 False Pos, An illustration of a false positive in plant 

disease detection is when a healthy plant leaf is 

mistakenly classified as diseased by the model 

(Type I error). 

False Neg, An illustration of a false negative in plant 

disease detection is when a Type II error causes the 

model to mistakenly classify a diseased plant leaf 

as healthy. 

Specificity 
The specificity (which is correct Negative Rate): 

Specificity gauges how well the algorithm can 

distinguish between all real, healthy plant cases 

and identify healthy plants. The Equation [2] gives 

the formula to calculate it. 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒𝑁𝑒𝑔 

𝑇𝑟𝑢𝑒𝑁𝑒𝑔+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠
          [2] 

Precision 
Precision can be defined as the proportion of all 

favorably forecasted leaves by the system to the 

accurately predicted disease-affected leaves. The 

Equation [3] gives the formula to calculate it. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠
             [3] 

Sensitivity or Recall     
Sensitivity is defined as the percent of correctly 

forecast leaves with illness compared to the overall 

instances that were positive of the test case The 

Equation [4] gives the formula to calculate it. 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔
           [4] 

F1-Score 
Recall and accuracy can be balanced by one 
measure dubbed the F1-scoring system, which is 
the harmonic mean of the two measurements. The 
Equation [5] gives the formula to calculate it. 
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
            [5] 
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Figure 8: Different Type of Tomato Leaf Disease 

 

Table 4:  The Result of the Proposed Method without Argumentation 
 

Method                                               Accuracy  

Tomato late 

blight 

Tomato leaf 

mold 

Tomato Mosaic 

Virus 

Tomato Yellow Leaf 

Curl Virus 

CNN 0.754 0.762 0.741 0.751 

AlexNet 0.768 0.789 0.763 0.773 

ResNet 0.787 0.807 0.785 0.790 

Inception V3 0.805 0.823 0.802 0.804 

VGG-16 0.819 0.838 0.819 0.818 
 

 
Figure 9 (a-f):  Image Argumentations 

 

By evaluating these metrics, we can assess the 

effectiveness and performance of the deep learning 

model in accurately detecting plant diseases and 

distinguishing them from healthy plants and 

anomalies. 
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Results without Image Augmentation 
The proposed method used metric accuracy for 

analysis of the experimental results without image 

argumentation techniques. Following Table 4 

shows the result of the proposed method without 

argumentation. 

Argumentation 
Augmentation of images analysis was needed in 

this experiment to ascertain how the volume of 

data affected the accuracy of the model that was 

developed. The model's performance was 

compared to and without augmentation in order to 

undertake experiments. Tests were carried out 

using constant hyper parameters. The number of 

nodes needed for the layer that is hidden is 

indicated by the hidden units. This unit is in the 

middle of the number of output and input nodes. 

Adam is an optimization method that is a 

development of the recently popularized 

stochastic gradient descent in deep learning. The 

CNN algorithm, a transfer-learning method, was 

used in this investigation. In order to minimize the 

length of the training process, a low epoch value 

was chosen. 30,000 images were obtained with 

image augmentation, compared to around 10, 

1820 without image augmentation. Models lacking 

image augmentation scored lower and were 

consequently less adept at identifying visual 

patterns since there was less variance in the 

training data. Each pixel in the image is translated 

by a constant factor in both the horizontal and 

vertical directions to achieve height and width 

shifting. In our instance, a random selection from 

the range [0, 0.2] was made for the constant factor. 

The RGB values of the closest pixels are filled in the 

empty spaces while shifting, discarding the pixels 

that cross the boundary. The results of performing 

a width shift and a height shift are shown in Figure 

9(b) and 9(c), respectively. 

The image's centre pixel is taken into 

consideration when rotating an image. The 

rotation angle in our instance was selected at 

random from a range of [-20, 20] degrees. Rotation 

has an effect, as seen in Figure 9(d). Shearing is 

done by using a shearing factor to move each pixel 

in a fixed direction by a quantity proportional to its 

distance from the bottom-most pixels in the image. 

Random selections were made from the possible 

values [0, 0.2] for the shearing factor. Figure 9(e) 

illustrates the effect of shearing. To turn an image 

horizontally, the pixels must be mirrored in 

relation to the centroid parallel to the x-axis. Figure 

9(f) shows the outcome of flipping something 

horizontally. Table 5 shows the hyperparameters 

of Image Argumentation taken for the proposed 

methods. Table 6 shows the results of healthy 

tomato leaf classification and its comparison with 

other models. It can be inferred VGG-16 provide 

better accuracy compare to other models. Table 7 

shows the results of Tomato late blight disease leaf 

classification and its comparison with other 

models. It can be inferred VGG-16 provide better 

accuracy compare to other models. Table 8 shows 

the results of Tomato mold leaf disease 

classification and its comparison with other 

models. Table 9 shows the results of Tomato 

mosaic virus disease classification and its 

comparison with other models. Table 10 shows the 

results of Tomato yellow leaf curl virus 

classification and its comparison with other 

models. From the experimental analysis, it found 

the VGG-16 produce better results compared to 

other methods. It is better because VGG model has 

high ability to extract higher level features from 

images. This leads to higher accuracy. As the 

number of levels with fewer kernels rose, non-

linearity also grew, which is a positive trend in 

deep learning. Nevertheless, the computationally 

demanding and vast number of parameters 

associated with VGG-16 present a drawback. We 

have compared the VGG16 which provides better 

accuracy for healthy leave detection with 3 other 

methods and the result shown in the Table 11.  
  

Table 5:  Hyper-parameters of Image 

Argumentation 

                   Hyper-parameter 

Hidden units                              128 

Optimizer                                Adams 

Epoch                                         40 

Batch Size                                  32 
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Table 6: Comparison of Different Models for Healthy Tomato Leaf Classification  

Model          Accuracy   Sensitivity   Specificity   Precision   F1 Score 

CNN            0.865      0.822                  0.893         0.885       0.852 

AlexNet        0.876      0.841                  0.912         0.905       0.872 

ResNet         0.898      0.876                  0.921         0.917       0.896 

Inception V3   0.915      0.892                  0.928         0.925       0.908 

VGG-16         0.937     0.907                  0.947         0.945       0.926 
 

Table 7: Comparison of Different Models for Plant Disease-Tomato Late Blight 

Model          Accuracy   Sensitivity   Specificity   Precision   F1 Score 

CNN            0.872      0.909                  0.888         0.891       0.899 

AlexNet        0.899      0.928                  0.905         0.907       0.917 

ResNet         0.915      0.934                  0.917         0.919       0.927 

Inception V3   0.927      0.945                  0.931         0.932       0.939 

VGG-16         0.942      0.956                  0.949         0.949       0.951 
 

Table 8: Comparison of Different Models for Plant Disease –Tomato Mold Leaf 

Model          Accuracy   Sensitivity 

(Recall)  

 Specificity   Precision   F1 Score 

CNN            0.856      0.818                  0.879         0.872       0.842 

AlexNet        0.879      0.832                  0.918         0.910       0.868 

ResNet         0.904      0.892                  0.926         0.924       0.906 

Inception V3   0.921      0.908                  0.934         0.932       0.919 

VGG-16         0.935      0.921                  0.946         0.944       0.932 
 

Table 9: Comparison of Different Models for Plant Disease –Tomato Mosaic Virus 

Model          Accuracy   Sensitivity  Specificity   Precision   F1 Score 

CNN            0.879      0.906                  0.890         0.891       0.896 

AlexNet        0.900      0.926                  0.908         0.910       0.917 

ResNet         0.916      0.938                  0.919         0.921       0.929 

Inception V3   0.928      0.947                  0.933         0.933       0.939 

VGG-16         0.942      0.958                  0.948         0.947       0.948 
 

Table 10: Comparison of Different Models for Plant Disease –Tomato Yellow Leaf Curl Virus 

Model          Accuracy   Sensitivity  Specificity   Precision   F1 Score 

CNN            0.863      0.817                  0.887         0.878       0.843 

AlexNet        0.883      0.830                  0.920         0.912       0.869 

ResNet         0.907      0.897                  0.928         0.926       0.911 

Inception V3   0.922      0.921                  0.935         0.934       0.923 

VGG-16         0.966      0.923                  0.942         0.941       0.932 
 

Table 11: Comparison of Proposed Method with Existing Works 

Reference Paper Proposed Methods Accuracy 

 (12) ResNet  87.5% 

 (9) CNN (8 layers: 2 fully connected, 3 max-pooling, 3 

convolutional) 

76%-100% (average 

91.2%) 

 (10) LeNet (CNN variant) 92% 

 proposed VGG 16  93.7% 
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Discussion 
In addition, the original dataset has a class 

imbalance, as was previously mentioned. Diverse 

approaches have been taken on this problem in the 

body of current literature. Under sampling and/or 

oversampling specific classes has been the most 

popular approach to address the problem. It has its 

own shortcomings even though it somewhat 

balances the dataset. It is possible that some of the 

challenging images for particular classes—which 

might include important information the model 

needs to learn—will be eliminated by under 

sampling. Eventually, this reduces the model's 

generalizability. By employing diverse data 

augmentation methods, oversampling generates 

multiple marginally distinct renditions of the 

source photos. If augmentation is carried out prior 

to the dataset being split into train, validation, and 

test sets, it could, nevertheless, bring minute 

deviations from the training set into the test set. An 

overestimation of the system's accuracy will result 

from the model's propensity to correctly 

categorize the other variants in the test set as it 

obtains experience classifying one version of the 

image during training.  We decided to carry out 

data augmentation while runtime since each 

choice offers benefits and drawbacks Accuracy, 

sensitivity, and specificity were mostly higher 

across all tasks for models employing 

augmentation in comparison to those not 

employing augmentation. Across all tasks, models 

with and without augmentation were more 

accurate, sensitive, and specific. In comparison to 

using or not using augmentation, other models 

were consistently outperformed by VGG-16 model. 

However, the difference was more pronounced 

with augmentation since VGG-16 has shown that it 

could better capture complex features using 

additional data. Data augmentation will immensely 

help in enhancing the model efficacy, this is mostly 

true where the dataset is limited. Augmentation 

has an impact of increasing the variability and 

richness of training data; hence better 

generalization and robustness in model 

predictions take place. 

Applications and Challenges 
In practical terms, our fresh deep computing model 

for tomatoes leaf illness detection presents both 

advantages and difficulties in real-world 

agricultural environments. If the system has been 

put into location it will be able to spot such 

circumstances in their early phases allowing for 

quick action to be taken to stop the spread and 

lessen the impact on crop harvests. This will 

enhance labor and time savings while adhering to 

precision agriculture practices by providing 

farmers with practical guidance on enhancing 

yields through the use of diverse computer devices. 

To reduce yield loss and choose the optimal 

agricultural techniques, disease knowledge should 

be kept on a cloud-based digital platform. This is 

especially useful in areas where plant diseases 

result in significant food losses. 

Nevertheless, for the computerized system to 

succeed, there are some problems associated with 

it that should be resolved. A significant amount of 

training data is crucial for model performance; 

however, getting a varied dataset that covers 

different conditions and diseases is problematic. 

Connectivity to the internet, computational 

resources, and IoT devices might be required for 

successful implementation of technical 

infrastructures which may pose hurdles, 

particularly in small-scale or resource-constrained 

farms. The initial costs as well as ongoing expenses 

related to this technology could also be too high for 

certain farmers who may not adopt this technology 

because they do not trust digital tools or are 

unfamiliar with them. 

Consequently, the model will need to be adjusted 

and retrained as per various types of tomatoes, 

growing conditions and new strains of diseases. 

There is also the issue of regulation and ethics on 

data privacy that needs to be discussed in terms of 

technology use in farming. This means that this 

model should be able to scale up and across 

different kinds of farming environments through 

careful consideration for its fit with existing 

agricultural practices and workflows. However, 

there are some unsolved problems such as 

technological collaboration between technologists, 

agronomists, farmers, investment in 

infrastructure, training among others all which are 

vital towards overcoming herculean task barriers 

or surmounting challenges posed by modern 

technologies available in agriculture 

Future Works 
In subsequent research, we plan to create an online 

tool that will help farmers diagnose illnesses and 

choose appropriate treatments from a distance, 

according to the effectiveness findings. In our 

application, we would employ the VGG16 model 
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since it offers the most accuracy compared to the 

other models. Before executing the model to 

ascertain whether the tomato plants are healthy or 

unhealthy, we will develop a web application that 

runs on local host and gathers pictures of plants 

from clients whether they are diseased or not. 
 

Conclusion 

In this work, we combined IoT integration with 

deep learning models based on transfer learning to 

forecast several plant diseases. The deep learning 

models used include VGG-16, Inception V3, 

AlexNet, ResNet, and CNN. Utilizing pre- trained 

data from these models has significantly enhanced 

the accuracy and efficiency of the system while 

reducing the prediction time for plant disease 

detection using transfer learning. Integration of 

Medical IoT with deep learning has facilitated 

quick and accurate prediction of tomato plant 

diseases. Among all the models, VGG-16 

demonstrated the highest accuracy of 93.7% 

for     Healthy     Tomato leaf, 94.2% for Tomato late 

blight, 93.4% for Tomato mold leaf, 94.2% for 

Tomato mosaic virus and 96.6% for Tomato yellow 

leaf curl virus 
 

Abbreviations 
IOT: Internet of Things 

CNN: Convolutional Neural Networks 

ResNet: Residual Network 

VGG-16: Visual Geometry Group-16 

SVMs: Support Vector Machines 

ToMV: Tomato Mosaic Virus  

TYLC: Tomato Yellow Leaf Curl Virus  

Xception: Extreme Inception 

HOG: Histogram of an Oriented Gradient 

LVQ: Learning Vector Quantization 

RGB: Red Green Bule 

ANN: Artificial Neural Network 

NLP: Natural Language Processing 

SGD: Stochastic Gradient Descent 

ReLU: Rectified Linear Units 

LRN: Local Response Normalization 
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