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Abstract 
 

Histopathology is the study of cellular structures, tissues and their abnormalities to diagnose a wide range of 
diseases, with a primary focus on cancer. The recent innovations and advancements in image analysis techniques and 
machine learning enable the histopathologists to automate the process of detection and classification of diseases 
observed in histopathology images. Traditional visual analysis by pathologists, though skilled, is slow and prone to 
inconsistencies. By utilizing advanced techniques, such as Convolutional Neural Networks, this project aims to 
revolutionize disease classification and management in histopathology. Researchers are now using convolutional 
neural networks and other algorithms to accurately segment tissues, extract key features, and even predict cancer 
diagnosis and treatment response. These automated methods hold immense potential for faster, more precise cancer 
diagnosis and personalized care. The proposed model LuCoNet is a Convolution Neural Network Architecture that 
uses the publicly available dataset comprises 25,000 histopathological JPEG images, initially sourced from HIPAA-
compliant datasets. It includes 750 lung tissue images and 500 colon tissue images, augmented to expand the dataset. 
This study underscores the transformative potential of deep learning in histopathology image analysis, promising 
enhanced diagnostic accuracy and personalized treatment strategies. The performance of LuCoNet was compared 
with other models evaluated in the literature survey and LuCoNet performed extremely well in prediction with 
98.5%, 0.986, 0.988, and 0.984 for accuracy, Precision, Recall and F1-Score measures. 

Keywords: Cancer Tissues, Colon Cancer, Convolutional Neural Network, Deep Learning, Histopathology, Lung 
Cancer. 
 

Introduction
Histopathology is the study and diagnosis method 

that, involves microscopic examination of tissue 

samples to detect abnormalities indicative of 

various diseases, foremost among them being 

cancer. For centuries, the diagnosis of diseases 

like cancer has dependent on the skilled eyes of 

pathologists seeing the tissue samples through 

microscopes to detect abnormalities. While their 

expertise remains irreplaceable, this traditional 

approach presents inherent limitations. Visual 

assessment of diseases carried out by 

histopathologists can be time-consuming, 

vulnerable to inter-observer variability, and 

prone to subjectivity, potentially leading to 

misdiagnosis and missed opportunities for early 

intervention. The advanced algorithms in Deep 

Learning models emerges as a transformative 

force, poised to revolutionize histopathological 

analysis and leads to more accurate disease 

detection and personalized care. The complex 

relationship between massive datasets of 

digitized tissue images and advanced algorithms 

known as Convolution Neural Networks (CNNs) 

recolonize the more accurate disease detection 

possible in this field. These algorithms explore the 

details at microscopic levels, meticulously 

scrutinizing cell morphology, tissue architecture, 

and subtle visual cues that hold the key to disease 

differentiation. Through rigorous training on 

meticulously labeled datasets, CNNs develop 

automatic feature extraction capabilities, 

recognizing complex patterns indicative to 

diseases, surpassing human performance in 

certain tumors classifications. This enables 

offering data-driven insights and enhancing 

diagnostic accuracy, scalable, stable and efficient 

clinical decision-making in pathology. The 

implications  
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of this technological leap are profound. With deep 

learning algorithms taking lead in medical field, 

diagnoses become quicker, potentially enabling 

earlier treatment initiation and improved patient 

outcomes. Automation streamlines the analysis 

workflow, alleviating the bottleneck of manual 

microscopy and reducing inter-observer 

discrepancies. Moreover, these algorithms pave 

the way for personalized medicine by analyzing 

individual tumors features to predict response to 

specific therapies, tailoring treatment plans and 

solutions to each patient's unique needs. In 

essence, deep learning empowers us to transition 

from a subjective, resource-intensive field to a 

data-driven, objective discipline, transforming the 

landscape of histopathological analysis and 

ultimately, the future of cancer diagnosis and 

treatment. The proposed work LuCoNet aims to 

develop precise methods for early disease 

detection, enabling timely intervention and 

improved prognosis. LucoNet refines the existing 

methods and implementing automated analysis 

tools to streamline diagnosis and reduce 

pathologist workload. It employs data-driven 

analysis to predict patient response to therapies 

and optimize treatment strategies. This research 

focuses on data-driven solutions that can be 

broadly implemented to diagnose lung and colon 

cancer and benefit a wider population of patients. 

The ultimate aim is to revolutionize disease 

diagnosis and treatment, providing clinicians with 

powerful tools for earlier intervention, 

personalized care, and improved patient 

outcomes. A number of solutions based on 

Machine Learning models and Deep Learning 

models are employed in predicting and classifying 

Cancer from histopathological images. Following 

literature survey presents various computer 

vision methods and AI based algorithm use for 

cancer prediction. Guleria et al., (1) propose a 

novel approach for cancer detection using 

histopathology images. Their method combines 

CNNs for feature extraction and reconstruction 

with a denoising Variation Auto Encoders (VAE), 

achieving 73% accuracy. This promising two-

stage approach holds advantages like improved 

accuracy, generalizability, and potential 

applicability to other cancers, but faces challenges 

in training complexity, feature interpretation, and 

limited data. Liu et al., (2) review paper dives 

deep into the burgeoning field of deep learning in 

computational histopathology, offering a 

comprehensive roadmap rather than a specific 

model. By meticulously surveying a diverse range 

of algorithms, including CNNs, Recurrent Neural 

Networks (RNN), and VAEs they paint a vivid 

picture of how deep learning tackles various 

histopathology tasks like disease detection, 

grading, and prognosis prediction. However, as a 

review, it deliberately refrains from focusing on a 

singular method or delving into in-depth 

algorithm performance comparisons. Moscalu et 

al., (3) cast their net wide in this review paper, 

illuminating the vibrant landscape of image 

analysis and predictive modelling within digital 

pathology. Steering clear of proposing a specific 

algorithm, they instead paint a detailed panorama 

of diverse techniques like image segmentation, 

feature extraction, and machine learning models 

(CNNs, random forests). However, similar to 

Ashraf et al. the broader focus comes at the cost of 

in-depth analysis of individual algorithms and 

their specific performance nuances. Gurcan et al., 

(4) work lays the groundwork for understanding 

histopathological image analysis, offering a 

comprehensive overview of the field's techniques 

and models. They achieved an impressive 93% 

accuracy in distinguishing tumour from normal 

tissue in breast cancer images. Muller et al., (5) 

take a multifaceted approach to pancreatic cancer 

prognosis prediction by leveraging multimodal 

fusion of histopathological image features and 

gene expression data using deep learning. This 

innovative method outperforms single-modality 

models, achieving a remarkable 92% accuracy in 

patient survival prediction. Balermpas et al., (6) 

adopted a personalized medicine approach to 

head and neck cancer treatment by developing a 

model based on deep learning algorithm that 

predicts patient response to neoadjuvant therapy. 

This model trained using a large dataset of 

histopathology images and clinical data and 

achieves an impressive 80% accuracy in 

predicting complete pathological response. Kinkel 

et al., (7) proposed a wide net in their review 

paper, meticulously exploring the landscape of 

histopathological image analysis for 

endometriosis diagnosis. Rather than proposing a 

specific algorithm, they take a critical vantage 

point, dissecting and evaluating various image 

analysis and machine learning methods employed 

in this domain. Kalaivani et al., (8) take aim at 
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early lung cancer detection through a deep 

learning-powered approach analyzing chest 

radiographs. Their innovative CNN architecture 

dissects images into different regions, focusing on 

potential tumour nodules, and achieves 

impressive results: 95% accuracy score for cancer 

detection and 85% of accuracy score for subtype 

classification. Ali et al., (9) showcased the 

potential for computational pathology in early 

Colorectal Cancer (CRC) detection. Their review 

delves into various image analysis and machine 

learning approaches, highlighting the promising 

ability of deep learning models to identify 

precancerous lesions and polyps. Dongmei et al., 

(10) proposed a complex model for personalized 

medicine in melanoma by delving into the world 

of machine learning for predicting recurrence and 

survival.  Their comprehensive review analyses 

various studies employing diverse data sources – 

histopathology images, clinical data, and gene 

expression profiles – to fuel machine learning 

models and improve prognostication. Bakrania et 

al., (11) comprehensive review illustrated 

computational pathology's impact on prostate 

cancer. They meticulously explore diverse image 

analysis and machine learning techniques, 

showcasing their potential applications in 

diagnosis, grading, and risk assessment.  The 

research conducted by Qiu et al., (12) investigated 

the effectiveness of combining machine learning 

techniques with computed tomography (CT) 

texture analysis to differentiate and classify 

Pancreatic and Ductal Adenocarcinoma PDAC 

with different grades. The researchers developed 

a computational model that extracts textural 

features from contrast-enhanced CT images and 

utilizes machine learning algorithms to predict 

different grades of tumours.  Verghese et al., (13) 

discussed the potential of Artificial Intelligence 

(AI) to automate routine tasks and find new 

biomarkers that can help with diagnosis. 

However, they also acknowledge the challenges of 

integrating AI into clinical settings, including 

issues related to how it works regulations. Zeune 

et al., (14) recommended autoencoding 

convolutional neural networks which identified 

Circulating Tumor Cells (CTC) in cancer blood cell 

images. They used advanced visualization 

techniques in their model.     96%  of accuracy was 

achieved by this model and the performance has 

surpassed the performance of existing state-of-

the-art manual counts. Tiwari et al., and Moen et 

al., (15, 16) uses deep learning models for 

detection and classification of the cancer cells into 

its various classes. The performance achieved by 

the models showed better performance with the 

compared existing models. Khalil et al., (17) 

proposed a deep learning model to detect blood 

cell diseases and their classifications with 

accuracy achieved as 98.00%. Khouani et al., (18) 

paper presents a novel approach for automatically 

identifying White Blood Cells (WBC) in the images 

of peripheral blood and bone marrow. The results 

were promising and achieved an accuracy of 

95.73%. Garg et al., (19), Masud et al., (20), 

Talwar et al., (21) evaluated different deep 

learning models using the same dataset as used by 

LuCoNet proposed in this paper and hence were 

used in our analysis to compare the performance 

metrics. From the above literature survey, it is 

evident that the computational pathology's 

remarkable potential across diverse applications, 

with promising results in automated tumor 

detection, personalized treatment prediction, and 

early cancer diagnosis. Deep learning models are 

pushing the boundaries of accuracy in image 

analysis, but challenges remain in ensuring data 

accessibility, model interpretability, and 

generalizability across varied datasets and clinical 

settings. Despite these hurdles, the potential for 

faster, more objective, and potentially more 

accurate analysis offers a glimpse into a future 

where AI empowers personalized medicine and 

improves patient outcomes in numerous domains 

of pathology. 
 

Methodology 
 The proposed LuCoNet model uses the publicly 

available Kaggle dataset for predicting Lung and 

Colon Cancer disease using histopathological 

images.  Five distinct categories of cancer images 

totally constituting 25000 histopathological 

images (22) are used. The image dataset has three 

categories for Lung Cancer images and two 

categories for Colon images. All images are 768 x 

768 pixels in size and are in jpeg file format. The 

class labels and the number of images available in 

respective classes are given in Table 1. Some 

sample images of each class are shown in Figure 

1. 
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Table 1:  Class Labels and Number of Images in Dataset 
 

Class name Number of images 

Benign Lung Tissue 5000 

Lung Adenocarcinomas 5000 

Lung Squamous Cell Carcinomas 5000 

Benign Colon Tissue 5000 

Colon Adenocarcinomas 5000 

 

 

 
Figure 1: Sample Images from Histopathology Dataset 

 

The chosen LuCoNet architecture draws 

inspiration from the VGGNet (Visual Geometry 

Group) design, renowned for its effectiveness in 

various image classification tasks. VGGNet utilizes 

a series of convolutional blocks, stacked upon one 

another, to progressively extract increasingly 

complex features from the input images. These 

features, akin to building blocks, ultimately 

contribute to the model's capacity to distinguish 

healthy and diseased tissue samples. The 

proposed LuCoNet architecture for image 

classification is structured with an input layer 

expecting images of size 224x224 pixels with 

three channels denoting RGB colour. The model 

comprises four convolutional blocks, each 

containing two convolutional layers with 3x3 

kernels and activation function as Rectified Linear 

Unit (ReLU). The first two blocks employ 64 

filters, while the subsequent blocks use 128, 256, 

and 512 filters, respectively. Max Pooling (2x2) 

for spatial down-sampling. Following the 

convolutional layers, the feature maps are 

flattened into a vector, and three dense layers 

follow with 256, 64, and an output size matching 
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the number of classes for softmax-based multi-

class classification. LuCoNet is compiled using the 

hyper parameters with Optimizer as Adamax, 

0.001 of learning rate and the loss function as 

categorical cross entropy. This architecture draws 

inspiration from the VGGNet design, employing 

repeated convolutional blocks to progressively 

capture hierarchical features for robust image 

classification. Figure 2 shows LuCoNet - the 

proposed model with the following layers in the 

architecture. 

 

 
Figure 2: Architecture Diagram of LuCoNet 

 

 

Convolutional Layer  

Convolutional Layer fundamental building block 

that performs convolution operations on the input 

dataset with the help of learnable filters or 

kernels. This helps detect patterns and features. 

LuCoNet employs a total of 13 convolutional 

layers, stacked sequentially. This allows the model 

to learn features of increasing complexity, 

progressively capturing detailed and nuanced 

information crucial for accurate classification 

Activation Function (ReLU)  

Activation functions are used to learn complex 

relationships in the given data and decide 

whether to activate a neuron or not based on the 

input. They introduce non-linearity into the 

architectural model once the convolution 

operations are over. 

 

 

Pooling Layer 

Often Max Pooling or Average Pooling are used.  

This layer reduces the size of the input feature 

map, thus reducing computational complexity and 

focusing only on essential features. 

Flattening Layer 

Transforms the convolutional and pooling layers' 

3D output into a 1D vector in order to get it ready 

for input into the fully connected layers that 

follow. 

Fully Connected (Dense) Layer 

They are Layers of traditional neural network in 

which every neuron in the preceding and 

subsequent layers is coupled to every other 

neuron. These layers use the learned 

characteristics to conduct classification. 

The following hyper parameters are used in the 

LuCoNet model training and Optimization: 
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Optimizer: LuCoNet utilises the Adamax 

optimizer, an advanced variant of the popular 

Adam optimizer. During training process, Adamax 

optimizer adjusts the learning rate adaptively for 

each parameter, ensuring efficient convergence 

and potentially leading to improved model 

performance compared to traditional optimizers. 

Learning Rate: The initial learning rate for the 

optimizer is set to 0.001. This value controls the 

step size taken by the optimizer during training, 

balancing the speed of convergence with the risk 

of over fitting. 

Loss Function: LuCoNet employs categorical 

cross-entropy as the loss function. This metric 

quantifies the difference between the model's 

predicted probability distribution and the true 

labels (benign or malignant) associated with each 

image. Minimizing this loss function during 

training guides the model towards better 

classification performance. 

Different layers of LucoNet are shown in Figure 3 

and the complete architecture including input 

parameter size, and output size for the same are 

shown in Table 2. 
 

Table 2: LuCoNet Model Summary 
 

Layer (type) Output Shape Param # 

LuCoNet (Conv2D) (None, 224, 224, 64) 1792 

LuCoNet_1 (Conv2D) (None, 224, 224, 64) 36928 

max_pooling2d (MaxPooling2D) (None, 112, 112, 64) 0 

LuCoNet_2 (Conv2D) (None, 112, 112, 128) 73856 

LuCoNet_3 (Conv2D) (None, 112, 112, 128) 147584 

max_pooling2d_1 
(MaxPooling2D) 

(None, 56, 56, 128) 0 

LuCoNet_4 (Conv2D) (None, 56, 56, 256) 295168 

LuCoNet_5 (Conv2D) (None, 56, 56, 256) 590080 

LuCoNet_6 (Conv2D) (None, 56, 56, 256) 590080 

max_pooling2d_2 
(MaxPooling2D) 

(None, 56, 56, 256) 0 

LuCoNet_7 (Conv2D) (None, 28, 28, 256) 1180160 

LuCoNet_8 (Conv2D) (None, 28, 28, 512) 2359808 

LuCoNet_9 (Conv2D) (None, 28, 28, 512) 2359808 

max_pooling2d_3 
(MaxPooling2D) 

(None, 28, 28, 512) 0 

LuCoNet_10 (Conv2D) (None, 14, 14, 512) 2359808 

LuCoNet_11 (Conv2D) (None, 14, 14, 512) 2359808 

LuCoNet_12 (Conv2D) (None, 14, 14, 512) 2359808 

max_pooling2d_4 
(MaxPooling2D) 

(None, 7, 7, 512) 0 

flatten (Flatten) (None, 25088) 0 

dense (Dense) (None, 256) 6422784 
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dense_1 (Dense) (None, 64) 16448 

dense_2 (Dense) (None, 5) 325 

 

 

Figure 3: Proposed LuCoNet Architecture 
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Results and Discussion 
In this study, we implemented LuCoNet, a custom 

Convolutional Neural Network (CNN) for multi-

class classification of lung and colon cancer 

images dataset. We trained the model on Kaggle 

using the T4 GPU.  The model utilised 13 

convolutional layers with ReLU as activation 

functions, achieving a test accuracy score of 98% 

and a loss of 0.075. LuCoNet gave an average 

precision of 98.6%, average recall of 98.8%, 

average f1-score of 0.984 and average support of 

500. Categorical cross-entropy served as the loss 

function, guiding the model towards optimal class 

discrimination. Furthermore, the performance of 

LuCoNet was compared to the performances of 

already published pre-trained models namely 

ResNet50, VGG16, NASNet Mobile models. While 

further comparisons with pre-trained models and 

evaluations of metrics like sensitivity and 

specificity are warranted, the initial results 

suggest the potential of this architecture for 

accurate cancer classification tasks, paving the 

way for further optimization and exploration. 

Furthermore, our proposed model outperformed 

the models of other published papers that used 

the same dataset. These were also subsequently 

compared, and LuCoNet outperformed them in 

different aspects.  

For each of the models stated, evaluation metrics 

and classification reports were printed, and their 

performances were observed. Model’s 

performance is evaluated and assessed using the 

evaluation metrics that presents quantitative 

measures. These metrics provide insight into how 

well the model is performing and are crucial for 

comparing different models or fine-tuning their 

parameters. Accuracy as our primary evaluation 

metric, along with precision, recall, f1-score and 

support are employed to assess the model’s 

performance. 

Accuracy: This represents percentage of correctly 

categorized occurrences in the dataset, as a 

percentage of all instances, is called accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  [1] 

Precision: This metric measures the quality of 

positive predictions produced by the model. It  

 

 

 

denotes the percentage of true positives out of all 

positive predications.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 [2] 

Recall: The model's capacity to correctly identify 

positive samples out of all actual correct samples 

in the dataset. It is otherwise known as sensitivity 

or true positive rate. The ratio of true predictions 

to the total of correct true and false predictions is 

computed as Recall measure. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  [3] 

F1 Score:  It uses Precision and Recall to assess 

the model’s performance. High score for F1 

indicates better performance of the model 

whereas low score for F1 score means poor 

performance. It is calculated as 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  [4] 

Support : The number of occurrences of each class 

in the dataset is known as Support. It provides 

context for the performance metrics and helps 

understand the distribution of classes in the 

dataset. 

These evaluation metrics play crucial roles in 

assessing the performance of classification 

models and provide insights into different aspects 

of their effectiveness in making predictions. 

Table 3 contains the overall evaluation metrics for 

LuCoNet. The values of precision, recall, f1-score 

and support for each of the 5 different classes are 

shown. The performance of LuCoNet is shown in 

Figure 4, 5, 6 and 7.  For the various epochs, 

performance in accuracy (both training and 

validation processes) as well as obtained loss is 

plotted in Figure 4 and Figure 5 respectively. A 

graph that displays a classification model's 

performance across all classification thresholds is 

called a Receiver Operating Characteristic (ROC) 

curve. Figure 6 illustrates the ROC curve for 

LuCoNet, comparing the true positive rate and 

false positive rates. Figure 7 shows the confusion 

matrix that contains the value of true and 

predicted labels. LuCoNet performs incredibly 

well with low loss and high validation accuracy 

for this specific task of multi class cancer 

classification. LuCoNet gave a training accuracy of 

99.8% and both test and validation accuracies 

above 98.5%. 
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Table 3: Evaluation Metrics of LuCoNet  

Diseases Precision Recall f1-score Support 

Colon Adenocarcinoma 0.99 1.00 0.99 500 

Colon Benign Tissue 1.00 0.99 0.99 500 

Lung Adenocarcinoma 0.98 0.96 0.97 500 

Lung Benign Tissue 1.00 1.00 1.00 500 

Lung Squamous Cell Carcinoma 0.96 0.99 0.97 500 

accuracy   0.99 2500 

macro avg 0.99 0.99 0.99 2500 

weighted avg 0.99 0.99 0.99 2500 

 

 
 

Figure 4: Training and Validation Accuracy of LuCoNet 

 

 
 

Figure 5: Training and Validation loss of LuCoNet 
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Figure 6: ROC Curve for LuCoNet  

 

Figure 7: Confusion Matrix of LuCoNet Model 

   Table 4: Comparing the Evaluation Metrics of LuCoNet with each of the Pre-Trained Models 

 

Model [Reference] Accuracy Precision Recall F1-score 

LuCoNet 98.5% 0.986 0.988 0.984 

VGG16 [19] 98% 0.975 0.975 0.98 

ResNet50 [19] 97% 0.965 0.965 0.96 

NASNetMobile [19] 96% 0.965 0.965 0.97 
 

Table 5: Comparing LuCoNet with Performance of Published Models on the Same Dataset 

Model [Reference] Accuracy Precision Recall F1-score 

LuCoNet 98.5% 98.6% 98.8% 98.4% 

CNN[20] 96.33% 96.39% 96.37% 96.38% 

CNN[21] 97.2% 97.33% 97.33% 97.33% 
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Figure 8: Bar Chart Comparing Accuracy of LuCoNet with Pre-Trained Models 

 

Figure 9: Bar Chart Comparing Accuracy of LuCoNet with Published Models 

 

LuCoNet’s performance was also compared to the 

performance of other proposed models from 

published papers that used the same dataset in 

Table 4. LuCoNet performed amazingly well 

compared to the other models. The performance 

against published models from other papers is 

done in Table 5. 

The results for the same are plotted in Figure 8 

and 9. In Figure 8 we can observe the validation 

accuracy of LuCoNet compared to pre-trained 

models, and in Figure 9 all evaluation metrics are 

plotted in a bar chart. 
 

Conclusion 
LuCoNet, a novel deep learning model, 

demonstrates exceptional performance in 

detecting lung and colon cancers. Its high 

accuracy extends beyond training data, holding 

strong during validation, minimizing the risk of 

false positives or negatives - critical factors in 

medical decision-making, particularly for life-

altering chronic diseases like cancer. LuCoNet's 

minimal loss function ensures robust 

classification across a broad spectrum of cancers, 

with a single model capable of identifying and 

differentiating diverse cancer cell types and 

severities. This model achieved a test accuracy 

and validation accuracy above 98.5% and a loss of 

0.075. LuCoNet also gave an average precision of 

98.6%, average recall of 98.8%, average f1-score 

of 0.984 and average support of 500. This 

versatility eliminates the need for multiple 

specialised models, streamlining the diagnostic 

process. Furthermore, LuCoNet's inherent 

adaptability allows for further refinement through 

training on additional datasets, continuously 

enhancing its accuracy and generalizability. 

Ultimately, LuCoNet has the potential to 

revolutionize cancer diagnosis by assisting 

pathologists in labs, expediting accurate detection 
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and enabling earlier intervention, potentially 

improving patient outcomes. 
 

Abbreviation 
AI: Artificial Intelligence  

CNN: Convolutional Neural Networks  

CRC: Colorectal Cancer  

RNN: Recurrent Neural Networks  

VAE: Variation Auto Encoders  

PDAC: Pancreatic and Ductal Adenocarcinoma 

VGGNet: Visual Geometry Group 

CTC: Circulating Tumor Cells  

WBC: White Blood Cells 

ReLU: Rectified Linear Unit  
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