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Abstract 
In most countries, the site-specific, precise application of N fertilizer in an optimal dose is one of the most challenging 
tasks for sustainable agriculture. Several recommendation systems have been proposed for N fertilizer as an alternative 
to the scarce and expensive soil experts. However, none of them exhibited an impressive performance. In this article, 
we have proposed a highly efficient optimal fuzzy system (OFS) with a novel architecture to recommend crop-specific 
optimal doses of N fertilizer based on site-specific soil and climatic data. In our proposed OFS, the fuzzy membership 
functions of each variable were replaced by the respective probability density functions, the rule base was redefined, 
and finally, conflict resolution was achieved using the probabilistic fuzzy logic controller approach. The output 
probability density function was optimized with the most popular whale optimization algorithm (WOA). Such an 
innovative approach to designing an N fertilizer recommendation system has never been well thought out so far. Our 
designed OFS was empirically validated in terms of four statistical metrics: the co-efficient of determination (R2), the 
Nash-Sutcliffe efficiency (NSE), the root means squared error (RMSE), and the mean absolute error (MAE) against three 
varieties of paddy and two varieties of potato cultivated in the Gangetic alluvial plain in West Bengal, India. It was 
further compared to the other latest N fertilizer recommendation systems designed for different crops worldwide. The 
study revealed that our system (with R2 ranging from 0.9628 to 0.9880) outperformed all other systems (with R2 
ranging from 0.1900 to 0.8400). 

Keywords: Fertilizer Recommendation System, Fuzzy Hybrid Systems, Nitrogen Fertilizer, Optimal Fuzzy System, 
Probability Density Function, Whale Optimization Algorithm. 
 

Introduction 
Soil nutrients provide the proper nourishment for 

the crops, leading to healthy and vigorous plant 

growth. Plants can reach their full potential and 

produce higher yields when adequate nutrients 

are available in the soil. Soil with nutrient 

deficiencies leads to stunted plant growth and 

lower crop productivity. Therefore, maintaining 

an adequate quantity of soil nutrients is crucial 

for improving crop productivity. However, over 

time, subsequent cultivation or inefficient 

fertilizer management strategies deplete the 

soil's nutrients. As a remedy, various chemical 

fertilizers are applied to the soil to restore the 

soil’s nutritional level for better crop yield. 

Nitrogen (N) is the foremost nutrient that boosts 

plant development and promotes yield growth 

(1). N deficiency slows crop growth, decreases the 

harvest index, and ultimately leads to a reduction 

in global production (2). On the other hand, the 

increasing application of N induces many serious 

environmental disorders, such as water 

eutrophication, inhalable particulate matter 

formation, etc., along with an adverse effect on 

farmers' health (3, 4). An adequate quantity of N 

fertilizer in the soil promotes strong vegetative 

development and healthy leaves. The site-specific 

precise application of N fertilizer is the only 

strategy capable of optimizing the overall use of N 

(5). Therefore, recommending the optimal dose of 

N fertilizers is very significant for growing 

healthy crops, increasing yields, and maintaining 

a sustainable environment (6). However, in most 

countries, due to the scarcity of soil experts and a 

lack of adequate knowledge, farmers apply N 

fertilizers at a higher dose than required, with the 

misconception that increased application of N 
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increases crop yields, which affects the 

sustainability of the agroecosystem and raises 

production costs (7). The earlier N 

recommendation approaches were based on soil 

N testing and plant tissue testing (8). Other 

physical and analytical methods have also been 

proposed in the literature (9). These methods 

required chemical analysis of the soil samples, 

comprehensive and precise knowledge of soil 

science, and extensive mathematical calculations, 

which are quite challenging tasks for rural 

smallholder cultivators. Several agricultural 

simulation models (ASMs) were recognized as 

useful tools in agricultural research to develop 

alternative strategies for fertility management 

and to quantify the relationships between crops, 

management practices, and the environment (10, 

11). The simulation precision of ASMs were 

further improved using remote sensing data for 

in-season crops and made them efficient for 

recommending N fertilizers (12). However, these 

models are plagued by some serious issues like 

data acquisition, assimilation algorithms, and 

model accuracy (13). As an alternative, 

researchers have developed various N fertilizer 

recommendation systems that heavily rely on 

machine learning (ML) strategies, providing a 

cutting-edge approach to handling challenging 

linear or non-linear problems. The application of 

ML techniques for recommending fertilizers was 

found to be highly viable for growing crop yields 

in corn production in China (14). Several ML-

based models were suggested for the N fertilizer 

recommendation, but most of them were 

designed using decision tree-based regressors. A 

simple regression model was proposed to 

recommend an economically optimum rate of N 

for corn using soil data and climatic parameters 

(15). Four regression models: linear regressor 

(LR), ridge regressor (RR), least absolute 

shrinkage and selection operator (LASSO) 

regressor, and gradient-boosted tree regressor 

(GBT) were designed for corn N fertilizer 

recommendation (16). Bayesian regressor (BR) 

and random forest (RF) regressor models were 

suggested for the recommendation of side 

dressing N rates in corn (17). For rice, two 

regressors, RF and support vector machine 

(SVM), were used for modelling in-season N 

topdressing rate recommendation (18). A 

comparative study was carried out with four ML 

techniques: SVM, RF, GBT, and RR, for a site-

specific recommendation of economically optimal 

N for canola (19). To select the most suitable 

model for recommending an economically 

optimum rate of N for corn, a performance 

analysis was conducted with eight regressor 

models, where the decision tree-based model was 

empirically found to be the best (20). To date, the 

highest accuracy was reported using an RF 

regressor with R2 = 0.8400 against corn (20). 

However, there are two significant shortcomings 

of prior methodologies: such regressor-based 

systems require a large amount of data, which is 

challenging to acquire in a timely manner, and the 

results are very difficult to interpret, and their 

accuracy is comparatively very low (21).  On the 

contrary, fuzzy logic systems are the most 

comprehensive and flexible approach to use in the 

context of predicting the economically optimal 

rate of N fertilizer (22). However, a few systems 

were reported that employ fuzzy systems for 

recommending N fertilizer. A fuzzy system was 

suggested for N recommendation in Greece, 

where the sensitivity of the system against 

different input parameters was studied but did 

not report the accuracy of the system (23). 

Another system was designed for recommending 

the spatial variable application of N using soil, 

precipitation, and plant data (24). A fuzzy system 

was implemented that used soil properties such 

as electrical conductivity and soil organic matter 

as inputs (25). For recommending the optimum 

dose of N fertilizer for paddy fields in Malaysia, a 

fuzzy system was proposed that used aerial 

images captured by drones, and the input 

variables were suggested by the agricultural 

experts (26). To determine the land-specific exact 

fertilizer needs of eight crops in two agro-climatic 

zones in India, a fuzzy decision support system 

was developed to improve crop productivity with 

minimum consumption of fertilizer using 

exhaustive field measurements and laboratory 

analysis (27). A fuzzy logic control approach was 

used to design a fuzzy system to estimate nutrient 

levels and application timing for various growth 

stages of mango trees in Malaysia (28). As 

advancement, an improved version of the fuzzy 

system was developed using the type-II fuzzy set, 

which deals with fertilization by primary 

fertilizers and is applied to wheat cultivation in 

Pakistan (29). In addition to their few benefits, 
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the major drawback of such fuzzy systems is the 

need for trial and error in designing the 

appropriate membership functions, which results 

in lower precision due to non-optimal output 

(30). To achieve better accuracy with limited site-

specific data, the adoption of alternative 

strategies for designing an innovative fuzzy 

recommendation system for N fertilizer is highly 

significant. 

The aim of this paper is to propose a novel 

architecture of an optimal fuzzy system (OFS) to 

design an N fertilizer recommendation system 

with better accuracy using soil and climatic 

parameters. In our proposed system, the output 

fuzzy membership functions of a classical fuzzy 

system have been redefined in terms of 

probability density functions (p.d.f.) hybridized 

with the whale optimization algorithm (WOA) as 

the most popular nature-inspired optimization 

technique. Such an innovative approach has not 

been well thought out until now to achieve the 

optimal output of a fuzzy system. The 

performance of our designed system was 

empirically validated using four well-known 

performance metrics: the co-efficient of 

determination (R2), the Nash-Sutcliffe efficiency 

(NSE), the root mean squared error (RMSE), and 

the mean absolute error (MAE) against three 

paddy varieties and two potato varieties grown in 

the Gangetic alluvial plain in West Bengal, India. It 

was further compared to the other latest N 

fertilizer recommendation systems designed for 

other crops worldwide. The study revealed that 

our system outperformed all other systems in 

terms of R2 (ranging from 0.9628 to 0.9880). 
 

Methodology 
Theoretical Foundations 
Since our proposed OFS is an enhancement of the 

classical fuzzy system, the preliminary concepts of 

the classical fuzzy set and system are described for 

a short overview. Fuzzy set theory was first 

introduced by L. A. Zadeh to handle uncertainties 

in real-world and it is a precise logic of imprecision 

and approximate reasoning (31). It is the most 

comprehensive and flexible method to incorporate 

expert knowledge into a recommendation system 

and allows to implement the human reasoning in 

computers and makes precise inferences or 

predictions based on imprecise data, particularly 

where the mathematical model of a process does 

not exist. In fuzzy set theory, a parameter whose 

values are represented in linguistic terms is called 

a linguistic variable, and the linguistic terms are 

called fuzzy sets. A linguistic variable (e.g., 

temperature) is a word in a natural language and 

its attributes (e.g. low, medium, high) are a set of 

words called linguistic values. Each parameter 

(input and output) is given membership in several 

fuzzy sets. The membership functions are used in 

the fuzzy system for the appropriate transfer of 

numerical variables to linguistic variables. They 

specify the degree of membership of a variable in a 

fuzzy set. Membership close to zero implies weak 

membership, and a membership close to one 

implies strong membership of x in fuzzy set F. 

Triangular, trapezoidal, sigmoid, Gaussian, bell, 

and other functions are widely used in the design 

of fuzzy membership functions. The choices for 

these functions are context-dependent and 

subjective in nature. The classical fuzzy system 

consists of four basic components, a fuzzifier, the 

rule (knowledge) base, a decision-making logic 

(inference engine), and a defuzzifier (32). The first 

step in developing a fuzzy system is to construct 

appropriate fuzzy sets for the input and output 

variables. The fuzzifier converts the crisp inputs 

into membership values in all fuzzy sets. Because 

membership functions overlap, nonzero 

membership values exist in more than one fuzzy 

set. The rule base consists of a predefined set of if-

then rules dictating the outcome(s). The rules 

serve the purpose of mapping the input fuzzy sets 

to the output fuzzy sets. As a consequence of 

overlap in the fuzzy sets, multiple rules are likely 

to be activated by the same set of input variables.  

When more than one rule is activated, the decision-

making logic resolves conflicts between rules and 

constructs the resulting output membership 

function, representing the decision to be taken. 

The strengths of the activated rules and the 

membership values of the output variables in the 

output fuzzy sets are used to construct the output 

membership function (33). 

Our Proposed Optimal Fuzzy System 
The classical fuzzy systems suffer from some major 

limitations (30). To overcome these shortcomings, 

we have proposed a novel architecture of an 

advanced fuzzy system, where the probabilistic 

view of fuzzy methods has been incorporated. The 

vagueness represented by a fuzzy membership 

function can be modelled probabilistically by 
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distributions over intended meanings, and the 

advantages of replacing fuzzy membership values 

with probabilities were well justified in the 

literature (34-37). Therefore, instead of fuzzy 

membership, the probability of a variable being a 

member of a given class was well thought out. In 

our OFS, (i) the fuzzy membership function of each 

linguistic term corresponding to a fuzzy set of a 

variable is replaced by a p.d.f. that classifies the 

input into respective classes (33), (ii) the rule base 

is redefined, and (iii) the conflict resolution is 

made by optimizing the p.d.f. of the output variable 

using the most popular meta-heuristic whale 

optimization algorithm (WOA). To avoid 

complexity, the data space of each input variable is 

classified into three classes: low (l), medium (m), 

and high (h). Researchers may consider more 

classes based on the nature of the variables and 

their data spaces in an application domain. For an 

input variable x, the probabilities of a data point (x 

= x0) in the respective classes are defined by three 

triangular p.d.f.s, as defined by equations [1], [2], 

and [3]. 

 

𝑃𝑙(𝑥0)  =  {

1, 𝑥0 = 𝑥𝑚𝑖𝑛                 
𝑥𝑚𝑖𝑑 − 𝑥0
𝑥𝑚𝑖𝑑 − 𝑥𝑚𝑖𝑛

, 𝑥𝑚𝑖𝑛 < 𝑥0 < 𝑥𝑚𝑖𝑑  

0, 𝑥0 = 𝑥𝑚𝑖𝑑                 

                                                                           [1] 

𝑃𝑚(𝑥0) =

{
 
 

 
 

0, 𝑥0 = 𝑥𝑚𝑖𝑛               
𝑥0 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑖𝑑 − 𝑥𝑚𝑖𝑛

, 𝑥𝑚𝑖𝑛 < 𝑥0 < 𝑥𝑚𝑖𝑑

𝑥𝑚𝑎𝑥 − 𝑥0
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑑

, 𝑥𝑚𝑖𝑑 < 𝑥0 < 𝑥𝑚𝑎𝑥

0, 𝑥0 ≥ 𝑥𝑚𝑎𝑥                

                                                                           [2] 

𝑃ℎ(𝑥0) =  {

0, 𝑥0 <= 𝑥𝑚𝑖𝑑             
𝑥0 − 𝑥𝑚𝑖𝑑
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑑

,  𝑥𝑚𝑖𝑑 < 𝑥0 < 𝑥𝑚𝑎𝑥

1, 𝑥0 = 𝑥𝑚𝑎𝑥                 

                                                                           [3] 

        Where xmin and xmax are the minimum and maximum values of x observed in its data space, and xmid = 

(xmax − xmin)/ 2. The choice of three triangular p.d.f.s holds the basic condition of probability: 

∑ 𝑃(𝑐𝑙𝑎𝑠𝑠 𝑖 ; 𝑥 = 𝑥0
𝑖=𝑙,𝑚,ℎ

) = 1    ∶  ∀𝑥0                                                                                            [4] 

Therefore, the probability Pi(x0) of an input data point x0 being classified in the class i is defined by:  

𝑃𝑖(𝑥0) = 𝑃(𝑐𝑙𝑎𝑠𝑠 𝑖 ; 𝑥 = 𝑥0)                                                                                                              [5] 
 

During the coding process, the categorization 

probabilities Pi(x0): (i = l, m, h) of an input data point 

x0 are computed. Similarly, for multiple inputs, the 

categorization probabilities of all the inputs are 

obtained. The rule base consists of a collection of ‘if-

then’ rules nearly identical to a fuzzy rule base. 

However, instead of fuzzy linguistic terms, class 

labels are used. Suppose x and y are two input 

variables and z is the output variable,  

 

then the structure of the rule is defined as: 

𝑖𝑓 (𝐶𝑙𝑎𝑠𝑠 𝑖;  𝑥 = 𝑥0) 𝐴𝑁𝐷 (𝐶𝑙𝑎𝑠𝑠 𝑖;  𝑦 = 𝑦0) 𝑡ℎ𝑒𝑛 (𝐶𝑙𝑎𝑠𝑠 𝑖; 𝑧)                                                                             [6]  

 

Where i represents the class labels (low, medium, 

high), and x0 and y0 are the input data points of x 

and y, respectively. Similar to the method adopted 

for input label classification, the output variable z 

is also classified into three labels: low (l), medium 

(m), and high (h), as defined by equations [1], [2], 

and [3]. In the conflict resolution stage, the class 

probabilities Pi(x0) and Pi(y0) for input values x0 

and y0 are computed for each rule. The class 

probabilities are then multiplied together for 

each output function under the assumption of 

independence of classification (38), and the 

output p.d.f. for the n-th rule is given by: 

 

𝑃𝑛(𝑧) =  ∑ ∑ ∑ 𝑃𝑖(𝑥0) 𝑃𝑗(𝑦0)𝑃𝑘(𝑧)                                                                                             [7]𝑖=𝑙,𝑚,ℎ𝑗=𝑙,𝑚,ℎ𝑘=𝑙,𝑚,ℎ      
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When r rules are activated simultaneously for 

input values x0 and y0, the resulting p.d.f. of the 

output variable z is obtained by: 

𝑃(𝑧) =  ∑𝑃𝑛(𝑧)                                                      [8]

𝑟

𝑛=1

 

For more than two input variables, the conflict 

resolution is made by calculating the class 

probabilities of all the input variables and then 

multiplying them with the mean of the 

corresponding p.d.f. of the output variable z. The 

mean of output z is a weighted average of the mean 

of the zi’s weighted by the probabilities Pi’s. Thus, 

the output crisp value zn is given by: 

𝑧𝑛 = ∑ ∑ ∑ 𝑃𝑖(𝑥0) 𝑃𝑗(𝑦0)𝛼𝑘(𝑧)

𝑖=𝑙,𝑚,ℎ𝑗=𝑙,𝑚,ℎ𝑘=𝑙,𝑚,ℎ

                 [9]   

Where αl, αm, and αh are the means of the three 

p.d.f.s, Pl (z), Pm (z), and Ph (z) of the output 

variable z. 

Equation [9] defines that using the correlation 

product encoding method, the value (zn) of the 

output variable z can be obtained in terms of the 

class probabilities of the input variables and the 

mean values αl, αm, and αh of the output p.d.f.s, Pl (z), 

Pm (z), and Ph (z). The class probabilities of all the 

input variables are obtained using equations [1], 

[2], and [3]. However, in order to get the optimal 

output Zn, precise determination of the values of αl, 

αm, and αh is a challenging problem in such decision-

making systems designed using fuzzy probabilistic 

controller approaches. The optimization process is 

capable of solving this problem. Several 

applications of different optimization algorithms 

for designing fuzzy logic systems have been 

reported in the literature (39-42). We attempted 

different nature-inspired algorithms to get the 

optimum value of the output zn where the WOA 

outperformed the others. An outstanding 

performance of WOA has already been recognized 

in diverse domains to solve optimization problems 

including handwritten Arabic optical character 

recognition (43), imagery segmentation (44), 

battlefield simulation (45) etc. However, the 

application of the WOA for designing an OFS has 

never been reported yet. The WOA can mimic the 

hunting strategy of humpback whales (46). These 

whales hunt fish using a technique known as 

bubble net feeding. The bubble net feeding strategy 

primarily employs two distinct strategies: 

surrounding the prey (target) and subsequently 

narrowing the circle towards it, and spiral assault. 

The algorithm proceeds by applying various 

permutations of whale position to reach the final 

global maxima (46). Initially, we considered 25 

whales distributed over the search space. The value 

of maximum iteration was set to 500, and the 

values of lower and upper bounds were set to 0 and 

1500, respectively.  The standard reference value of 

the N fertilizer (NSTCR) was calculated using the soil 

test crop response (STCR) method (47). The STCR 

method suggests the exact quantity of fertilizer 

required for a particular variety of crop (48). The 

Indian Council for Agricultural Research (ICAR) 

recognized this model as a standardized method 

with the main objective of helping the farmers 

achieve the target yield to its full potential through 

the application of the optimum quantity of 

fertilizers. The standard reference value (NSTCR) 

was considered the target, and the coefficient of 

determination (R2) was used as the fitness function 

for optimization. The major advantages of R2 are 

that it is dimensionless, stable, and bound between 

0 and 1 (49). 

System Validation 
In order to validate the performance of our OFS in 

field applications, it was implemented against 

three varieties of paddy (IET-4094, IET-4097, and 

BORO-4789) and two varieties of potato (Kufri 

Jyoti High Yielding (KJ-HY) and Kufri Jyoti Low 

Yielding (KJ-LY)), cultivated as the major crops in 

the study area comprising of three districts, 

Burdwan, Hooghly, and Nadia in the state of West 

Bengal, India. The average yield rates of paddy and 

potato in this area are 3194 and 35848 kg/ha, 

respectively (50). The description of the study 

area, the source and nature of the field data, and 

the empirical results are discussed below.  

Study Area 
The three districts, Burdwan, Hooghly, and Nadia, 

are situated in the Gangetic alluvial plain in West 

Bengal and spread over 7024 sq. km. between 

latitudes 22.47°N and 23.82°N and longitudes 

86.80°E and 88.69°E, as presented in Figure 1.  
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Figure 1: Study Area 

 

This region was considered for study because it is 

one of the most agriculturally productive areas of 

the state, having approximately 69% of the land 

under cultivation (51), the main source of 

livelihood for the majority of the people in this 

region is agriculture, this area has a diverse 

fertilizer consumption index from low to high (Z-

score ranging from -0.323 to 1.765) (52), this area 

consists of varied soil types such as clayey, clayey 

loam, loamy, loamy sandy, and gravelly loam (51), 

paddy and potato are the two major cash crops of 

this area, and nearly 1.1783 and 0.2239 million 

hectares are under cultivation for paddy and 

potato, respectively (53). The diversified 

characteristics of this region further inspired us to 

select this area for study. 

Data Collection 
The five parameters; the nitrogen content of the 

soil (N), the measure of the soil acidity (pH), the 

electrical conductivity of the soil (EC), the soil 

organic carbon (OC), and the average rainfall (Ra) 

were considered the input variables of the OFS. 

The performance was validated using authentic 

datasets containing all these input parameters for 

the study area. The dataset of soil parameters was 

collected from the Soil Health Card Data repository 

provided by the Department of Agriculture and 

Farmers Welfare, Government of India (54). A total 

of 922, 9042, and 1599 samples were collected 

from three districts: Burdwan, Hooghly, and Nadia, 

respectively. The dataset for average rainfall was 

collected from the Climate Research Unit, 

University of East Anglia, UK dataset (version 4.07) 

(55). All the data collected from these two sources 

were merged together to make a single dataset.  

Probability Density Functions  
The p.d.f.s of each of the five input variables (N, pH, 

EC, OC, and Ra) were constructed from the dataset. 

Three triangular p.d.f.s, defined by equations [1-3], 

determined the class probabilities (Pi) of data 

points to classify in the respective classes (low, 

medium, and high). For the existing dataset, the 

shape of the p.d.f.s of each input variable and the 

output variable NR, their degree of overlap, and data 

spaces are presented in Figures 2(A-F). 

 

     
Figure 2A: The p.d.f.s of Soil Nitrogen (N)                Figure 2B: The p.d.f.s of soil pH (pH)               
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Figure 2C: The p.d.f.s of electrical conductivity 

(EC) 

Figure 2D: The p.d.f.s of organic carbon (OC) 

    
Figure 2E: The p.d.f.s of average rainfall (Ra) Figure 2F: The p.d.f.s of the recommended N (NR)  

 

Rule Base 
The rule base consists of rules with an antecedent-

consequent or if-then structure. The antecedent (if 

part) is formed by all possible combinations of 

premises obtained from five input variables with 

three class labels (low, medium, and high). The 

premises are combined using a union operator 

(AND). The consequent part is obtained by the class 

probability of the output variable. For five input 

variables, a complete set of 125 rules was framed.  

As the rule base contains the complete set of all 

possible rules, the dependency on rule 

optimization by a human expert is circumvented. 

For example, the structure of a rule for five input 

variables, N, pH, EC, OC, and Ra, is defined as:  
 

𝑖𝑓 (𝐶𝑙𝑎𝑠𝑠 𝑖;  𝑁) 𝐴𝑁𝐷 (𝐶𝑙𝑎𝑠𝑠 𝑗; 𝑝𝐻) 𝐴𝑁𝐷 (𝐶𝑙𝑎𝑠𝑠 𝑗; 𝐸𝐶) 𝐴𝑁𝐷 (𝐶𝑙𝑎𝑠𝑠 𝑖; 𝑂𝐶) 𝐴𝑁𝐷  

 (𝐶𝑙𝑎𝑠𝑠 𝑗; 𝑅𝑎) 𝑡ℎ𝑒𝑛 (𝐶𝑙𝑎𝑠𝑠 𝑘; 𝑁𝑅)                                                                                                  [10] 

Where i, j, and k define any one of the class labels from low, medium, or high, and NR is the output variable. 

The output p.d.f. for the above rule is given by: 

𝑃(𝑁𝑅) = ∑ ∑ ∑ 𝑃𝑖(𝑁) 𝑃𝑗(𝑝𝐻)𝑃𝑗(𝐸𝐶)𝑃𝑖(𝑂𝐶)𝑃𝑗(𝑅𝑎)𝑃𝑘(𝑁𝑅)

𝑖=𝑙,𝑚,ℎ𝑗=𝑙,𝑚,ℎ𝑘=𝑙,𝑚,ℎ

                            [11] 

    If r rules are activated simultaneously, then the resulting p.d.f. of the output variable NR is obtained by: 

𝑃(𝑁𝑅) =  ∑𝑃𝑛(𝑁𝑅)                                                                                                                            [12]

𝑟

𝑛=1

 

 

Performance Metrics Used for 

Validation 
A significant part of the model-building process is 

the evaluation of the performance of the model. 

The performance was evaluated in terms of four 

well-accepted statistical metrics: the coefficient of 

determination (R2), the Nash-Sutcliffe efficiency 

(NSE), the root mean squared error (RMSE), and 

the mean absolute error (MAE). R2 and NSE assess 

the correctness of the model, while RMSE and MAE 

project the errors in the predictions. The definition 

of these four metrics is provided in (56): 

 

𝑅2 =
[∑ 𝑁𝑅𝑖

𝑛
𝑖=1 − 𝑁𝑅̅̅̅̅ (𝑁𝑆𝑇𝐶𝑅𝑖 − 𝑁𝑆𝑇𝐶𝑅̅̅ ̅̅ ̅̅ ̅)]2

∑ 𝑁𝑅𝑖
𝑛
𝑖=1 − 𝑁𝑅̅̅̅̅

2
∑ (𝑛
𝑖=1 𝑁𝑆𝑇𝐶𝑅𝑖 −𝑁𝑆𝑇𝐶𝑅̅̅ ̅̅ ̅̅ ̅)2

                                                                             [13] 

𝑁𝑆𝐸 = 1 −
∑ (𝑁𝑅𝑖

𝑛

𝑖=1
− 𝑁𝑆𝑇𝐶𝑅̅̅ ̅̅ ̅̅ ̅)2

∑ (𝑁𝑅𝑖
𝑛

𝑖=1
−𝑁𝑅̅̅ ̅̅ )

2
                                                                                                   [14] 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑∑(𝑁𝑅𝑖 − 𝑁𝑆𝑇𝐶𝑅𝑖)

2

𝑛

𝑖=1

𝑛

𝑖=1

                                                                                            [15] 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑁𝑅𝑖 − 𝑁𝑆𝑇𝐶𝑅𝑖|

𝑛

𝑖=1

                                                                                                              [16] 

Where NRi is the recommended dose of nitrogen 

and NSTCRi is the reference value of nitrogen for i-th 

record in the dataset. 𝑁𝑅̅̅̅̅   is the mean of the 

recommended doses of nitrogen, 𝑁𝑆𝑇𝐶𝑅 ̅̅ ̅̅ ̅̅ ̅̅ is the mean 

of the reference values of nitrogen, and n is the 

total of records in the dataset. The outcome of the 

convergence study of the optimization is presented 

by means of the convergence graphs, where the 

horizontal axis represents the number of iterations 

and the vertical axis defines the values of the 

fitness function (R2). The convergence graphs for 

five crops are presented in Figures 3 (A-E).  
 

 
 

Figure 3A: Convergence Plot for Paddy (IET-4094) Figure 3B: Convergence Plot for Paddy (IET-4097) 

Figure 3C: Convergence Plot for Paddy  

(BORO-4789) 

 

Figure 3D: Convergence Plot for Potato (KJ-HY) 

 

 

 

 

 

 

 

 

 

 

Figure 3E: Convergence Plot for Potato (KJ-HY) 
 

The maximum number of iterations was set to 500, 

and the lower and upper limits of the search space 

of WOA were set to 0 and 1500, respectively. The 

convergence graphs depict that the values of R2 

gradually converged towards optimum values with 

an increasing number of iterations, and the values 

of the fitness function (R2), and finally, at 

saturation, the best possible values were achieved.  
 

Results 
To study the performance of the system, it was 

deployed against three varieties of paddy (IET-
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4094, IET-4097, and BORO-4789) and two 

varieties of potato (KJ-HY and KJ-LY). The doses of 

the N fertilizer (NR) recommended by our 

proposed OFS were compared with the reference 

values of N fertilizer (NSTCR) for each of the five 

targeted crops using four popular and well 

accepted metrics (R2, NSE, RMSE, and MAE). Table 

1 summarizes the empirical values of these four 

metrics obtained against five crops. 

 

Table 1:  Empirical Values of Four Metrics Obtained against Five Crops 

Crops R2 NSE RMSE (kg/ha)     MAE (kg/ha) 

Paddy (IET-4094) 0.9650 0.9627 12.4229 8.5884 

Paddy (IET-4097) 0.9628 0.9581 9.5839 6.5011 

Paddy (BORO-4789) 0.9685 0.9616 55.2985 40.4300 

Potato (KJ-HY) 0.9880 0.9876 12.6227 6.9934 

Potato (KJ-LY) 0.9810 0.9810 12.3918 6.3800 
 

For comprehensive visualization, several easy-to-

understand graphical tools have been suggested in 

the literature. Among them, the scatter plots and 

box plots are very popular and widely used. The 

scatter plots are very useful graphical tools for 

projecting the relationship between two variables 

within the same interval. The two-dimensional 

data points scattered within the coordinate space 

help to determine the strength of the correlation 

between the two variables. The box plot is another 

graphical representation of statistical information 

about two or more variables placed side-by-side. 

On the other hand, a box plot typically displays the 

median along with the upper and lower hinge 

points, or boundaries, of the data points. The upper 

and lower hinges are indicated by whiskers or end 

markers, and any value beyond these points is 

treated as an outlier. The box plots help in 

visualizing the central tendency and variability of 

two or more groups of variables and facilitate to 

understand the relationship between them. In 

addition to Table 1, Figures 4 and 5 present the 

scatter plots and box plots that represent the 

system recommended doses of N fertilizer (NR) 

against the reference values of N fertilizer (NSTCR). 

 

 
      Figure 4A: Scatter Plot for Paddy (IET-4094)         Figure 4B: Scatter Plot for Paddy (IET-4097) 
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      Figure 4C: Scatter Plot for Paddy (BORO-4789)       Figure 4D: Scatter Plot for Potato (KJ-HY) 

 
                                                          Figure 4E: Scatter Plot for Potato (KJ-LY) 
 

 
               Figure 5A: Box Plot for Paddy (IET-4094)       Figure 5B: Box Plot for Paddy (IET-4097) 

 
              Figure 5C: Box Plot for Paddy (BORO-4789)   Figure 5D: Box Plot for Potato (KJ-HY) 



Sarkar et al.,                                                                                                                                                    Vol 6 ǀ Issue 2 

498 

 

 
Figure 5E: Box Plot for Potato (KJ-LY) 

 

The coefficient of correlation (R2) is a popular 

regression metric used to measure the degree of 

collinearity between the actual and recommended 

doses of an output variable (57). The values of R2 

range from 0 to 1, and a higher value of R2 indicates 

better performance of a system (49). It is evident 

from Table 1 that, when measured in terms of R2, 

the best performance was reported against potato 

(KJ-HY) (with R2 = 0.9880). On the other hand, the 

least performance was observed against paddy 

(IET-4097) (with R2 = 0.9628). A lower but 

comparable value of R2 was obtained for potato 

(KJ-LY). Comparatively lower performances were 

achieved for other two crops, paddy (IET-4094) 

and paddy (BORO-4789), in terms of R2. The 

results of the experiment reveal that the system 

performed exceptionally well in terms of 

percentage (96.28 to 98.80%). The maximum 

variation in performances for five different crops 

was negligible (only 2.61%), which signifies the 

robustness of our proposed system. Nash-Sutcliffe 

efficiency (NSE) is another dimensionless metric 

that incorporates measurement uncertainty and 

provides a clear indication of how well the output 

values match the reference values (57). Similar to 

R2, the values of NSE range from 0 to 1 and have the 

same significance as R2. When measured in terms 

of NSE, an identical ranking of system 

performances was observed against potato (KJ-

HY), potato (KJ-LY), and paddy (IET-4094). 

However, the paddy (BORO-4789) secured the 

fourth position, followed by the paddy (IET-4094). 

In terms of NSE, the performance of the system is 

very substantial (ranging from 95.81 to 98.76%), 

and the maximum variation in performance was 

observed to be only 2.95%. Root mean squared 

error (RMSE) and mean absolute error (MAE) are 

standard and well-established error metrics used 

for performance analysis. RMSE and MAE have the 

same unit as the output variable and are very 

convenient to interpret the errors in the 

recommendation (57). The lowest value of RMSE 

(9.5839 kg/ha) was observed for paddy (IET-

4094), whereas, the highest value of RMSE 

(55.2985 kg/ha) was achieved against paddy 

(BORO-4789). In terms of RMSE, a nearly equitable 

performance was reported against the other three 

crops: paddy (IET-4094), potato (KJ-HY), and 

potato (KJ-LY). We observed an exact identical 

ranking in system performances against these five 

crops, based on MAE data.  For other crops, except 

paddy (BORO-4789), the maximum differences in 

RMSE and MAE were 3.0388 and 2.2084 kg/ha, 

respectively. This observation indicates that, in 

most cases, the system is very reliable. It is 

interesting to note that in the higher range of NSTCR, 

the recommended doses (NR) for paddy (IET-

4094) were higher than the reference values of 

NSTCR, as shown in Figure 4(A). It signifies that the 

system's performance degrades at the higher 

range of NSTCR. A possible reason is that a negative 

skewness is observed in the dataset for the two 

input variables, pH and Ra, which might adversely 

affect the optimization process at the higher range 

of NSTCR. A similar observation is also reflected in 

the scatter plots of paddy (BORO-4789), potato 

(KJ-HY) and potato (KJ-LY), as presented in Figures 

4(C-E). However, the scatter plot obtained for 

paddy (IET-4097) is somewhat different due to 

some unknown reason.  Hopefully, our future 

research will be able to investigate the root cause. 

In most cases, the system’s limitation was that, at 

the higher ranges, it recommended higher doses of 

N fertilizer (NR) than the reference values of N 
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fertilizer (NSTCR). A similar observation is also 

validated by the box plots (Figures 5(A-E)). Our 

future attempt will be to overcome this limitation 

by better tuning the optimization parameters. The 

scatter plots and box plots (Figures 4 and 5) reveal 

that the doses of N fertilizer recommended by our 

proposed system are consistent with the standard 

doses suggested by STCR (48). We studied the 

efficiency of our system with four other 

optimization techniques, such as Particle Swarm 

Optimization (PSO), Ant-lion Optimization (ALO), 

Grey Wolf Optimization (GWO), and Firefly 

Optimization (FFO). The empirical values of the 

fitness function (R2) obtained against five crops for 

each of the four optimization techniques are 

presented in Table 2. 
 

Table 2: The Empirical Values of the Fitness Function (R2) Obtained against Five Crops for Each 

Optimization Technique 

   Optimization Techniques       Crops R2 

Particle Swarm Optimization Paddy (IET-4094) 0.9430 

 Paddy (IET-4097) 0.9387 

 Paddy (BORO-4789) 0.9432 

 Potato (KJ-HY) 0.9612 

 Potato (KJ-LY) 0.9634 

Ant-lion Optimization Paddy (IET-4094) 0.9601 

 Paddy (IET-4097) 0.9587 

 Paddy (BORO-4789) 0.9571 

 Potato (KJ-HY) 0.9652 

 Potato (KJ-LY) 0.9675 

Grey Wolf Optimization Paddy (IET-4094) 0.9629 

 Paddy (IET-4097) 0.9605 

 Paddy (BORO-4789) 0.9570 

 Potato (KJ-HY) 0.9811 

 Potato (KJ-LY) 0.9705 

Firefly Optimization Paddy (IET-4094) 0.9547 

 Paddy (IET-4097) 0.9563 

 Paddy (BORO-4789) 0.9592 

 Potato (KJ-HY) 0.9689 

 Potato (KJ-LY) 0.9681 
 

Table 2 reveals that the values of the fitness 

function (R2) obtained using the other four popular 

optimization techniques were less than those 

obtained using the Whale Optimization Algorithm 

as presented in Table 1. This observation 

demonstrates why WOA was the optimal selection 

for this application.  
 

Discussion 
Our proposed system was compared with the 

existing nitrogen guidance systems, which were 

designed using various conventional agronomic 

models such as linear regressor, ridge regressor, 

gradient boosted trees, least absolute shrinkage 

and selection operator (LASSO), support vector 

regressor, etc., to solve N fertilizer 

recommendation problems for different crops 

worldwide. The conventional models whose 

performance was evaluated in terms of R2 were 

selected for a fair comparison.  The targeted crops, 

the conventional models used, and the reported 

values of R2 were available from the respective 

papers and are summarized in Table 3. The 

findings of the comparative study are presented in 

Figure 6 using a comparative graph representing 

the R2 values of the different models of various N 

fertilizer recommendation systems. 

 

Table 3: Details of the Conventional Models Used, the Targeted Crops, and the Reported R2 

Models     Designed by Conventional models used Targeted crops R2 

Model-1 
Qin et al. (16) 

Linear regressor Corn  0.1900 

Model-2 Ridge regressor Corn  0.3500 
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Model-3 Gradient boosted trees Corn  0.3700 

Model-4 LASSO Corn  0.4200 

Model-5 Puntel et al. (15) Quadratic regressor Corn  0.4500 

Model-6 Zhang et al. (18) Support vector regressor Rice  0.6800 

Model-7 Random forest regressor Rice  0.7200 

Model-8 Ransom et al. (20) Random forest regressor Corn  0.8400 

Model-9 Sarkar et al. 

(proposed OFS) 

Optimized fuzzy model Paddy (IET-4094) 0.9650 

Model-10  Paddy (IET-4097) 0.9628 

Model-11  Paddy (BORO-4789) 0.9685 

Model-12  Potato (KJ-HY) 0.9880 

Model-13  Potato (KJ-LY) 0.9810 

 

 
Figure 6:  Comparative Graph 

 

The comparative graph depicts that in terms of R2, 

Model-12 was the best-performing model (with R2 

= 0.9880), and Model-1 was the worst. The Model-

13 was the second-best (with R2 = 0.9810), 

whereas the Model-11 secured the third position, 

followed by the Model-9 and the Model-8. The 

values of R2 for the rest of the systems were very 

small and were not comparable with others. The 

overall performance of our designed OFS (with R2 

ranging from 0.9628 to 0.9880) is better than other 

systems (with R2 ranging from 0.1900 to 0.8400).  

The results depicted in Figure 6 confirm the 

superiority of our proposed system over all other 

existing systems designed for N fertilizer 

recommendations. 
 

Conclusion 
Site-specific application of N fertilizer in an 

optimal dose is one of the significant challenges in 

precision agriculture. Several machine learning-

based systems have been proposed as an 

alternative to soil scientists for N fertilizer 

recommendations. Nevertheless, one of the major 

drawbacks of these systems is their low precision. 

In this study, we have proposed an innovative 

optimal fuzzy system that can recommend the 

precise dose of N fertilizer. A nature-inspired 

meta-heuristic optimization algorithm has 

overwhelmed the painful trial-and-error methods 

of obtaining the optimal output of a classical fuzzy 

system. We have proposed a unique architecture 

for a highly effective optimal fuzzy system, 

combining it with the whale optimization 

algorithm to recommend the ideal dose of N 

fertilizer. Empirical studies using field data 

revealed that our proposed system with high 

accuracy outperformed all the existing systems. 

The significant contribution of our proposed 

system is that it can recommend the precise dose 

of N fertilizer based on the site-specific soil and 

climatic parameters while sidestepping the 

intervention of expensive and scarce soil scientists. 

Hopefully, such a system will benefit farmers by 

applying N fertilizer at an optimal dose to achieve 

their best yield, conserve the agroecosystem, and 

ultimately promote sustainable agriculture. 
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Abbrevations 
ASM: Agricultural simulation model, BR: Bayesian 

regressor, EC: Electrical conductivity, GBT: 

Gradient-boosted tree, ICAR: Indian Council for 

Agricultural Research, KJ-HY: Kufri Jyoti High 

Yielding, KJ-LY: Kufri Jyoti Low Yielding, LASSO: 

Least absolute shrinkage and selection operator, 

LR: Linear regression, MAE: Mean absolute error, 

ML: Machine learning, N: Nitrogen, NR: 

Recommended nitrogen, NSE: Nash-Sutcliffe 

efficiency, NSTCR: Standard reference value, OC: 

Organic carbon, OFS: Optimal fuzzy system, p.d.f.: 

Probability density functions, Ra: Average rainfall, 

RF: Random forest, RMSE: Root means squared 

error, RR: Ridge regressor, STCR: Soil test crop 

response, SVM: Support vector machine, WOA: 

Whale optimization algorithm 
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