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Abstract 
Precisely estimating crop yields is a critical aspect of agricultural planning, resource allocation, and food security. 
Satellite data integrated with machine learning algorithms have recently become a potential solution for predicting 
crop yield at local and global levels. The present study provides detailed investigation of satellite-based crop yield 
prediction using machine-learning algorithms. The proposed methodology integrates satellite imagery data with 
precipitation data. We use machine learning algorithms for predictive modelling, random forests, support vector 
machines, decision trees, linear regression, and k-nearest neighbour. Extensive investigations are conducted to examine 
the effectiveness of the proposed method. The study employs multi-year satellite imagery and corresponding crop yield 
data from various agricultural regions to develop predictive models. The models are trained and tested while 
considering temporal and spatial variations. Model accuracy and reliability are evaluated through performance metrics, 
including mean absolute error and root mean square error. The study’s findings indicate that using machine learning 
algorithms for satellite-based crop yield prediction yields a significant level of accuracy compared with standard 
techniques. According to the research conducted, it has been found that among all the methods that were implemented, 
the support vector machine method has shown better performance. Integrating satellite-based techniques and machine 
learning algorithms presents a viable and scalable approach to predicting crop yields. 
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Introduction 
In India, agriculture is biggest single segment 

contributor of the economy, 13.05% share of total 

Gross Domestic Product (GDP) and approximately 

55% of the total household are dependent on 

agriculture (1). In India, agriculture land area is 

approximately 60.3% of total land (2). In this study 

for the prediction Rajasthan state has been 

considered. In Rajasthan state, the agriculture 

contributes approximately 25% to the state’s GDP 

and employs 65% of the population (3). 

Agriculture land is 53% of total land where 75% 

land is rain fed and rest 25% is irrigated land. The 

population around the globe is projected to reach 

9.8 billion in 2050, and population in India is 

expected to reach 1.7 billion (4). The area of 

cultivation is limited, but the population is 

increasing worldwide which leads to unbalance 

the food supply and demand chain (5). To 

correspond to the demand and supply of the food 

without affecting environmental elements 

prediction of population and crop production in 

one way to handle the situation. Crop yield 

estimation in advance is useful in the developing 

countries where agriculture has major impact on 

the economy (6). Precise crop yield forecasting is 

critical for agricultural management, agronomic 

challenges, international crop commerce, national 

food policy, and the administration of irrigation 

and fertilization practices (7). The crop yield 

prediction at the farm scale assists farmers in 

making timely decision for forthcoming problems, 

such as choose different crop or give up a crop at 

the initial stage of growth (8-10). The researchers 

working in the respective domain are interested in 

development of a mathematical model for better 

prediction with limited data. These mathematical 

models consider environmental, climatic, soil, area 

and other datasets to and follow some 

fundamental protocol.  The traditional model with 

data from surveys and historical knowledge of 

prior years is valuable for a small field scale land, 

but it is difficult to estimate for the larger regions 

or countries. Recent advancement in the 

technology and data collection, processing and
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storage has been more efficient than before. 

Machine Learning (ML) has demonstrated its 

efficacy in data analysis and agricultural research, 

particularly in the areas of crop classification and 

yield prediction (11). The utilization of machine 

learning (ML) when combined with data analysis 

provides possibilities for enhanced 

comprehension and exploration of the agricultural 

domain. Machine learning techniques are known to 

be particularly effective in handling noisy data and 

are capable of revealing non-linear relationships. 

This, in turn, can assist farmers in making 

informed decisions by providing them with 

predictive capabilities. The algorithms improve 

the performance with the increase in the input 

data, thus, ML can process a huge amount of data 

and produce useful information (12).  Satellites 

cover large area and provide real time, multi 

temporal, and multi spectral data (13, 14). Satellite 

imagery can produce a tremendous amount of data 

for a crop model by verifying correlation between 

crop parameters and spectral reflectance. 

Remotely sensed data produced by satellite is most 

suitable choice for crop yield prediction because of 

its repetitiveness, and multi spectral information. 

The spectral features of plant canopies, allow 

different remote-sensing platforms to monitor 

vegetation dynamics and spatial and temporal 

variability. The identification of plant health and 

stress using satellite data is based on a significant 

relation between simple transformations of 

reflected red and near-infrared radiation. Several 

such transformations, defined as vegetation 

indices (VIs), are based on the distinct spectral 

signature of green vegetation in the red and near-

infrared parts of the spectrum and serve as the 

foundation for quantitative assessment of 

vegetation state using satellite data. 

NDVI (Normalized Difference Vegetation Index) is 

defined as the difference between the near-

infrared (NIR) and red (RED) bands normalised by 

their sum calculated using equation 1: 

  𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                          [1] 

The primary drawback of NDVI is that it is affected 

by soil (brightness and colour), the environment 

(region covered by cloud and cloud shadow), and 

foliage canopy shadow. Another issue with NDVI is 

that it soon becomes saturated in dense vegetation 

(15). This is due to the non-linearity of the NDVI 

index. NDVI is useful for studying wide regions and 

getting an approximate indication of 

photosynthetic activity. Other indices with built-in 

feedback systems should be utilised for more 

qualitative examination. The Enhanced Vegetation 

Index (EVI) is the very commonly used alternative 

VI that eliminates few of the shortcomings of NDVI. 

The soil and atmosphere maintain a strong 

correlation by which reducing one will increase the 

other. To correct the impact of soil and atmosphere 

a feedback method was introduced (16). EVI 

compensates for some canopy background noise 

and Climatic variable, and it is more delicate in 

densely vegetated regions (17, 18). The equation 2 

describes the EVI: 

       
 𝐸𝑉𝐼=𝐺∗((𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝐶1∗𝑅𝐸𝐷−𝐶2∗𝐵𝐿𝑈𝐸+𝐿))
                     [2] 

C1 and C2 are coefficients that adjust for 

atmospheric resistance, G is gain factor and L 

corrects for soil background. The blue band on 

satellites rather contains noisy data and does not 

always have the highest data quality, hence EVI has 

limited utility. 

Soil-adjusted vegetation index, (SAVI) intends to 

decrease the impact of soil background on the 

vegetation signal by introducing a soil adjustment 

factor in the NDVI equation's denominator, (19): 
 𝑆𝐴𝑉𝐼=((𝑁𝐼𝑅−𝑅)

(𝑁𝐼𝑅+𝑅+𝐿))∗(1+𝐿)
                                       [3]                              

Where: L is an empirically calculated constant that 

minimises the vegetation index sensitivity to soil 

background reflectance change. When L is 0, SAVI 

equals NDVI. L is generally about 0.5 for moderate 

vegetation cover levels, R is red band and NIR is 

near infrared. The factor (1 + L) ensures that the 

SAVI range is the same as the NDVI range, namely 

[-1, +1]. 

In addition to NDVI, there is an easy-to-use 

vegetation index for vegetation identification 

known as CVI (Chlorophyll Vegetation Index) (20). 

The CVI is calculated by combining the NIR/green 

channel SR (Simple Ratio) with the red/green 

channel SR. This is done to reduce the 

susceptibility of plants with varying canopies. The 

CVI is based on two assumptions: 1. the NIR/green 

channel SR is very sensitive to leaf chlorophyll 

concentrations in the canopy cover and is 

unaffected by the LAI (Leaf Area Index); and 2. The 

LAI has no effect on the NIR/green channel SR. 3. 

The red/green SR channel indicates the relative 

density of vegetation and soil and may be used to 

normalise LAI and reduce the sensitivity of 
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vegetation structural parameters. The equation 4 

describes the CVI: 
 𝐶𝑉𝐼=𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁∗
𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁

                                                 [4] 

In satellite imagery, the Normalized Difference 

Water Index (NDWI) is utilized to identify open 

water areas (21).  The NDWI index is commonly 

compared to the Normalized Difference Moisture 

Index because it appropriately reflects moisture 

content. In fact, the two are computed and utilised 

in quite different ways.  The NDWI is computed 

using a visible green and near-

infrared combination, allowing it to measure small 

variations in the water content in leaves and water 

reservoirs. The equation 5 describes the NDWI: 

       𝑁𝐷𝑊𝐼 =
(𝐺𝑅𝐸𝐸𝑁−𝑁𝐼𝑅)

(𝐺𝑅𝐸𝐸𝑁+𝑁𝐼𝑅)
                       [5] 

The visible green frequencies increase the water 

surface's usual reflectivity. The near-infrared 

wavelengths emphasise terrestrial vegetation and 

soil characteristics while reducing water features' 

low reflectivity. A higher NDWI value signifies 

adequate moisture, whereas a low value signifies 

water stress. The dimensionless NDWI product 

ranges from -1 to +1 based on the hardwood 

content as well as the kind of vegetation and cover. 

High NDWI values imply that water content in the 

leaf is high. The NDWI rate decreases during 

instances of water stress. The rapid advancement 

of Remote Sensing technology establishes a strong 

technological foundation for the comprehensive 

use of Indian agriculture data. Satellite remote 

sensing techniques can offer resource managers 

with an effective and cost-effective method for 

obtaining real time data for natural resource 

development and management. ML provides a 

variety of strategies for recognising patterns and 

trends in massive data and has been proven to be 

significantly predictive. The use of Machine 

learning advancements in the Indian agriculture 

industry is quite low, and the majority of accessible 

data is not even digitised. Much processing is 

required before it can be used in machine learning 

applications. The structure of the research paper is 

outlined as follows:  

Section 1 introduces the overview of the research 

work with importance of Machine learning and 

remote sensing in agriculture, section 2 furnishes 

the literature survey to the study. section 3, 

methods and materials, focuses on the study area, 

data collection, pre-processing, vegetation index 

extraction from the remote sensing, and 

methodologies implemented on the data. Section 4 

is focusing on the result and discussion, and 

section 5 concludes the research. The progress of 

machine learning algorithms has improved yield 

estimation (22). In a research study, multi-spectral 

and multi-temporal satellite images were used to 

predict crops using a variety of ML models. The 

comparison of random forest with multiple linear 

regressions conducted to estimate the crop yield at 

global scale (23). For model training and testing, 

authors used agricultural yield data from several 

sources and provinces: The first three are the 

gridded worldwide wheat grain yield, the second is 

the maize production from US, and the third is the 

potato and maize silage production in the north-

eastern coast region. Random Forest was proven 

to be very competent of forecasting crop yields. 

The correlation between a number of factors, 

including yearly rainfall data, cultivation area, and 

food price, and associated impacts on rice crop 

production is conduced and is identified using 

regression analysis (24). The Results indicate that 

moderate variation in data features, each of which 

is clearly relevant to crop productivity. 

Implementing the Regression Analysis yields the 

affected value R2 = 0.7. This R2 result 

demonstrates conclusively that all the data 

variables have an average effect of 70% on crop 

yield. The study could be expanded by including 

the minimum support price, weather conditions, 

soil parameters, and others that affect crop yields, 

as well as using different data mining and 

statistical methods to examine yield variables. 

Sequential minimal optimization (SMO) classifier 

was used on the Maharashtra state dataset (25). 

The Indian Government's openly accessible data 

were the source of the dataset used to forecast the 

rice crop production. The study focuses on all the 

important factors for crop yield prediction for 

kharif season for four years. Various validation 

matrices were used in the research to validate the 

results. The study compares SMO approach with 

other techniques and the findings demonstrate 

that other implemented techniques performed 

better than SMO classifier. Rainfall, temperature, 

area and season were considered as features to 

predict the crop in India (26). Linear regression, 

random forest, artificial neural networks, logistic 

regression and XGBoost were implemented and 

among all random forest perform better than all 

the algorithms. A study primarily emphasis on 
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estimation of significant kharif crops in 

Visakhapatnam, Andhra Pradesh (27). In this 

study, researchers primarily forecast the volume of 

rainfall using Memory Augmented Neural 

Networks (MANNs), and afterwards, utilising the 

rainfall data and the region allocated to that 

specific crop, authors predict the volume of main 

kharif crops produced using support vector 

regression (SVR). Appropriate agricultural 

strategies may be developed by utilising the 

MANNs-SVR technique in order to boost crop 

production. According to the comparison, the 

suggested technique beats previous machine 

learning algorithms in forecasting the kharif crop 

production. Another research was conducted on 

the same objective and results indicates that 

random forest performs better on temperature, 

rainfall, humidity, pH., and crop name as features 

(28). Machine learning algorithms were used for 

soil classification, crop yield prediction and 

fertilizer recommendation using 5 years data of 

multiple crops (29). Random forest performed 

better for soil classification with 86% accuracy and 

support vector machine provided better results for 

crop yield prediction with 99% accuracy. In a 

study, authors used weather data, soil data, agro-

management data and crop data from 2016 to 

2019 of study region Shinkiari to predict the crop 

(30). Authors implemented machine learning 

algorithms and Mean Absolute Error (MAE), Mean 

Squared Error (MSE) and Root Mean Squared 

Error (RMSE) were utilized to evaluate the 

performance of the models. Among all the applied 

models XGBoost regressor performed better with 

RMSE as 0.15 t/ha. Principal component method 

was used to examine the impact of climate change 

on strawberry crop (31). The evaluation of 

connections between climatic characteristics and 

strawberry production can provide valuable 

information as well as timely demonstration of 

yield predictions that can be used for the benefit of 

strawberry growers. The findings of the 

experiments demonstrated a significant 

association between climate variables and 

strawberry yield, providing a foundation for yield 

prediction with a lead time of three to five months. 

In order to provide assistance to farmers 

introduced a crop yield prediction model that 

makes use of data mining methodologies known as 

Random Forest and regression tree (32). The 

approach that has been suggested is effective for 

forecasting sugarcane disease far in advance and is 

also helpful in providing suggestions to improve 

crop productivity. Authors discovered that the 

projected results from the RF algorithm are 

extremely near to the real values, and when 

compared to decision tree, RF gives better results 

in forecasting sugarcane crop disease. These 

observations were based on the findings of the 

experiments that were carried out. Remote sensing 

is an efficient tool for determining the 

identification, traits, and growth potential of 

essentially all crops (33, 34). Crop behaviour is 

determined by the crop's nature, interactions with 

solar radiation and other climatic conditions, and 

the presence of chemical nutrients and water 

inside the host medium (35). NDVI, EVI and land 

surface temperature (LST) were used as data 

features and implements machine learning and 

deep learning algorithms at municipality level for 

soybean yield prediction (36). The research 

identified the prediction accuracy of the model in 

middle of the season. The results show that long 

short-term memory outperforms all the other 

models with mean absolute error of 0.42 mg/ha. 

The study describes the integration of satellite and 

climate data improves the prediction accuracy. A 

study was conducted on three countries and five 

different crops data of approximately twenty years 

(37). The study presents a generic methodology 

highlighting reusability, accuracy and modularity 

and tests the workflow on thirteen different case 

studies. The authors suggested with more data 

addition and more predictive features can improve 

the overall prediction framework. Grassland 

biomass of two intensive agricultural grassland 

fields was used in Ireland for estimation using 

multiple models (38). In situ measurements, 

measured on weekly basis, were utilised for model 

development for the first analysis area 

(Moorepark) over a period of 12 years and the 

second analysis area (Grange) over a period of 6 

years. All three machine learning models were 

provided five vegetation indicators. Model 

assessment showed that the adaptive neuro-fuzzy 

inference system (ANFIS) achieved better with 

RMSE Moorepark = 11.07; RMSE Grange = 15.35 

biomass estimation than the Artificial Neural 

Network (ANN) and Multiple Linear Regression 

(MLR).  Deep learning techniques and remote 

sensing data were implemented for the 

development and model execution (39). This 
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model has been used to forecast the soya bean crop 

in Argentina and Brazil. The findings of the 

research indicate that the proposed approach 

obtained a level of precision in forecast of the soya 

bean crop yield that is comparable to that reached 

by the existing methods. Exciting developments 

have been made in the domain of transfer learning 

that have the potential to enhance prediction 

performance in regions that lack complete data. 

These regions, in particular, stand to benefit from 

a reliable crop forecast tool that is both affordable 

and affordable. A study acquired data to forecast 

irrigation recommendations in addition to 

monitoring and regulating the crop (40). A dataset 

was specifically created by combining information 

gathered from soil-sensors distributed across four 

primary plots, by meteorological department, and 

from physical irrigation records. On this dataset, 

several regression and classification techniques 

were employed to train models that could predict 

the weekly irrigation pattern suggested by the 

agronomic. To identify the factors that consistently 

increased prediction accuracy, eight distinct 

subsets of parameters were used in the model 

development process. Gradient Boosted 

Regression Trees, which had an accuracy of 93%, 

and Boosted Tree Classifier, which had an accuracy 

of 95%, were found to be the top regression and 

classification models, respectively (on the test-

set). Moreover, data that weren't improving the 

model's prediction rate were highlighted. The 

resultant model can make irrigation planning more 

easily for agronomists. A study explores ability to 

estimate agricultural productivity is crucial for 

global food security, and crop price forecasting can 

help farmers escape price crash (41). This research 

examines the application of remote sensing data 

and deep learning algorithms to forecast 

agricultural yields and farmer pricing. It is 

discovered that the introduced ensemble of 

Convolutional Neural Network- Long Short-Term 

Memory (CNN-LSTMs) is the good at predicting 

annual soybean yields. With a 31% improvement 

in average Root Mean Square Error, it exceeds 

methods described in the literature (RMSE). Crop 

yield prediction is influenced by various 

agronomic factors such as soil characterises, 

irrigation practices, and pest management. 

Machine learning models can improve predictive 

accuracy by integrating these factors. 

Environmental factors such as climate change and 

sustainable resources utilization are crucial to 

ensure long-term sustainability. The combination 

of data containing multiple satellite indices, 

environmental data, and temperature data to 

estimate the crop in China is also used in the 

studies (42). When developing models for 

predicting yield, one linear regression approach, 

two machine learning (ML) methods, and three ML 

methods were used. According to the findings, the 

individual machine learning approaches 

performed better than the linear regression 

methods. Furthermore, the ML ensemble model 

increased the performance of the single ML 

models. In addition, models with a greater number 

of inputs had superior performance. Additionally, 

the amalgamation of remote sensing data and 

environmental data demonstrated stronger yield 

prediction ability than separate inputs.  
 

Methodology 
Research has shown that machine learning 

techniques can be highly effective in dealing with 

noisy data and are capable of revealing non-linear 

relationships. Machine Learning (ML) has been 

found to be highly effective and widely adopted for 

predicting crop yield. It is hypothesized that there 

exists a significant correlation between climate 

data and satellite data, with potential overlapping 

effects. In this study, satellite and climate data 

features were integrated to predict crop yields in 

Rajasthan, India. The study utilized a variety of 

sources to gather data, such as annual crop 

plantation area, crop yield data, climatic data, and 

satellite data. To gain a comprehensive 

understanding of the data, it was necessary to 

integrate the different sources of information. 
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Figure 1: Area of the Study (43) 

 

Study Area  
The present study concentrated on predicting 

wheat yield in the Rajasthan region extending from 

27° 23' 28.5972'' N and 73° 25' 57.4212'' E, (Figure 

1) which contribute over 7.49% of the country's 

wheat production. Wheat is usually sown in the 

winter (November–December) and harvested in 

the spring (March–April) (31) (Figure 1). The 

region relies significantly on precipitation for 

agriculture, with 6.661 million hectares irrigated 

and 11.688 million hectares rainfed, with an 

average rainfall of 56 cms, fluctuating between 15 

and 90 cms (44, 45). 

Data Sources  
Satellite captures the data beyond the range of the 

human eye, and we gain access to other 

information in the other ranges of electromagnetic 

spectrum like infrared. Satellite interprets or 

captures these ranges and opens the unseen 

secrets of earth for the better interpretation. The 

true state of crop becomes evident with the help of 

vegetation indices. Agriculture domain is one of 

the main consumers of earth remote sensing 

services which uses space monitoring techniques 

and unmanned devices. 

Five distinct vegetation indices were obtained 

from the satellite data, namely the NDVI, EVI, SAVI, 

CVI, and NDWI. These indices were utilized to 

estimate the dynamics of above-ground vegetation 

in relation to biomass and photosynthesis. The five 

vegetation indices (VIs) were obtained from 

Landsat 7 and Landsat 8 collection 1. The spatial 

resolution of the data was 30m, and the temporal 

resolution was 16 days. The utilization of Landsat 

8 satellite enhances the potential of acquiring 

cloud-free data across the globe. The 

characteristics of both the satellites have been 

described in table 1. The band comparison of both 

the satellites is represented in Figure 2.   
 

Table 1: Satellite Landsat 7 and Landsat 8 Characteristics 

Satellite Landsat 7 and Landsat 8 

Sensors Operational Land Imager sensor, Thermal Infrared Sensor and 

Enhanced Thematic Mapper Plus 

Cycle 16-day repeat cycle 

Resolution  30-metre 

Bands used  Near Infrared, Blue, Red, Green 
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Figure 2: Band Comparison of the Landsat 7 and Landsat 8 (46) 

 

The research focuses on the rabi season in 

Rajasthan, which spans from October to March. 

During this period, the cultivation of essential 

crops such as wheat, barley, mustard, and pulses 

takes place, which plays a crucial role in shaping 

the agricultural landscape of the region. Rainfall 

data is an essential factor for crop yield in 

Rajasthan due to arid to semi-humid climate (47). 

The adverse impacts of global climate change on 

agricultural output are manifest through extreme 

temperatures and unusually low rainfall (48). 

Annual rainfall throughout the state differs 

considerably. The majority of Rajasthan's monthly 

precipitation falls between July and August. We 

identified the rainfall for the prediction of crop 

yield. We acquired the data from 

https://www.indiawaterportal.org/met_data for 

each district from 2010 to 2020. Table 2 describes 

the sample features of data.  

 

Table 2: The Final Integrated Data with Satellite and Statistical Data 

District 

Name 

Crop 

Year 
Season Rainfall (mm) NDVI EVI SAVI CVI NDWI 

AJMER 2015 Rabi 412.5 0.2091 0.51 0.4623 0.2134 0.4511 

AJMER 2016 Rabi 534.8 0.2801 0.79 0.4817 0.2973 0.4798 

AJMER 2017 Rabi 483.4 0.2736 0.65 0.4759 0.2941 0.4674 

AJMER 2018 Rabi 426.66 0.2698 0.73 0.4861 0.2843 0.4743 

AJMER 2019 Rabi 747.5 0.2842 0.85 0.4986 0.2987 0.4876 

AJMER 2020 Rabi 436.5 0.2861 0.21 0.4609 0.2991 0.4532 

JAIPUR 2015 Rabi 359.05 0.2791 0.1 0.4862 0.2857 0.4753 

JAIPUR 2016 Rabi 555.81 0.2784 0.11 0.4985 0.2833 0.4878 

JAIPUR 2017 Rabi 319.9 0.2753 0.29 0.4874 0.2798 0.4763 

JAIPUR 2018 Rabi 520.71 0.2832 0.2 0.4991 0.2972 0.4888 

JAIPUR 2019 Rabi        688.9 0.2856 0.65 0.5091 0.2987 0.4967 

JAIPUR 2020 Rabi        545.7 0.289 0.57 0.5172 0.2992 0.4996 

UDAIPUR 2015 Rabi        647.5 0.2843 0.1 0.4809 0.2978 0.4714 

UDAIPUR 2016 Rabi        832.54 0.2891 0.12 0.4908 0.299 0.4882 

UDAIPUR 2017 Rabi        829.7 0.2866 0.61 0.4841 0.2983 0.4737 
 

The datasets were divided into two parts initially. 

The split was done for training as well as testing of 

the system. This also helps the algorithm to run on 

our less powerful machine with considerable 

efficiency. The data were split into 70 and 30 for 

training and testing respectively and the same 

process was followed to achieve higher accuracy. 

Therefore, this ratio was used in the final model. 
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The objective of the study is to predict the crop 

yield prediction in Rajasthan region using machine 

learning techniques. Therefore, we have developed 

a framework for current study region using 

machine learning algorithms. Cross-validation 

strategies are utilized for the evaluation of 

machine learning algorithms. Error evaluation is 

used to determine the optimal model, where a 

lower error value implies a better model fit. The 

machine learning model's performance was 

evaluated by calculating the Mean Absolute Error 

(MAE), and Root-mean-square Error (RMSE), 

between the observed and predicted agricultural 

yield.  RMSE permits evaluating the standard 

deviation of the error for a typical 

individual observation as compared to any sort of 

"total error." In data science, RMSE is used as a 

heuristic for training models and to assess the 

accuracy of trained models (49). RMSE is 

computed using the equation 6, given as: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑛

𝑗=1  (𝑤𝑗 − ŵ𝑗)2                [6] 

Where 𝑤 indicates predicted value, ŵ represents 

measured value, and 𝑛 is the predicted values. 

MAE is best practice for calculating the average 

extent of errors in a prediction set excluding their 

direction. MAE is the mean of test sample’s 

absolute difference between the estimated and 

actual values of the when all individual differences 

are given equal weight. MAE is computed using the 

equation 7, given as: 

 𝑀𝐴𝐸 =
1

𝑛
∑𝑛

𝑗=1 |𝑤𝑗 − ŵ𝑗|                          [7] 

Where 𝑤 denotes predicted value, ŵ signifies 

measured value, and 𝑛 is the predicted values. 
 

Results and Discussion 
The forecast of crops is a difficult but essential task 

for the effective management of available 

resources. The ability to accurately forecast 

agricultural yields has significant implications for 

crop insurance, harvest management, and strategic 

planning. Since remote sensing techniques provide 

real time and accurate information about the more 

extensive land covers, the data gathered through 

this method is perfect for crop forecasting. The 

agricultural industry analyses drought 

stress, categorises cropland cover, and forecasts 

production with the assistance of data obtained via 

remote sensing. The yield of the crop is dependent 

on a number of elements, including the 

temperature and amount of precipitation 

experienced throughout the growing season, as 

well as the management of the soil, the use of 

fertilisers, and other climate data. Numerous VIs, 

such as NDVI, EVI, LAI, SAVI, and others, which 

have been used to predict crop yields, are in 

addition to the many types of information which 

are significantly provided by remote sensing. 

Numerous investigations have shown that remote 

sensing data can effectively provide quantitative 

insights into agricultural yield, and enhanced 

models have been developed to evaluate crop yield 

with greater precision. The rate of crop growth is a 

key factor in determining the expected yield. In 

order to determine the progression of plant 

growth and development, process-based models 

take into account a wide variety of agricultural, 

environmental, and other management methods. 

Despite this, they do not account for all of the 

factors that have a substantial statistical impact on 

crop output and do not reflect all of them. Utilizing 

satellite images, remote sensing compiles Real 

time information on agricultural fields. The 

satellite images do not include any mistakes made 

by humans, and they are readily available without 

charge in accordance with open information 

strategies. However, satellite data only gives 

indirect views of agricultural yields. Because of 

this, relying on statistical models to get yield 

predictions from satellite observations is 

necessary. As predictors, statistical models make 

use of climatological parameters as well as the 

outcomes of the methodologies that came before 

them. Machine learning is extensively used to 

extract data from satellite photos for the purpose 

of making agricultural decisions. These judgments 

involve both the input variable and the 

independent variable. Machine learning is a 

technique that enables a system to acquire the 

ability to perform a specific task by learning from 

the input data provided. The system can learn to 

generate the desired output based on the input 

data it receives. In contrast to simulation crop 

models, the present study aims to investigate a 

different approach. Machine learning has many 

advantages over traditional approaches, including 

a shorter runtime, the need for less data storage, 

and the absence of a requirement for prior expert 

knowledge. ML begins by extracting the features at 

the beginning of the process, and then uses those 

characteristics to achieve various tasks such as 

crop prediction, categorization, or weed detection. 
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In present study, we experimented using remote 

sensing, and climate data using machine learning 

algorithms for prediction of crop yield. Results of 

the experiment are presented and discussed in this 

chapter. To predict the crop yield using satellite 

data in the Rajasthan region and analyze 

vegetation categories using a calculated vegetation 

index. In the research work, the authors 

implemented machine learning techniques, Linear 

Regression, Random Forest, Decision Tree Support 

Vector Machine, and K-Nearest Neighbor, along 

with remote sensing data for feature extraction.  

For vegetation index calculation, the satellite 

images were processed in the form of raster data 

with band wise and with the assistance of 

coordinate reference system we transformed the 

raster data into a matrix. The bands were further 

converted into float value to get the numerical 

value which produces the pixel wise matrix. We 

have used 5 X 5 block and the maximum value of 

the pixel from block was selected. In case of invalid 

data warning were generated. The process has 

been briefed in the Figure 3. 

  

 
Figure 3: Grid Wise Representation of Raster Data Processing (50) 

 

The data frames of vegetation indices were 

analysed by processing the satellite images for 

each month individually. The vegetation indices 

values for each month were compiled into a single 

data frame, followed by data classification to gain 

insights into the distribution of crop health. 

Proposed Framework 
The proposed framework indicating the process of 

the study, the first step determines the data 

collection from multiple sources. The satellite 

images are used to extract the vegetation indices; 

the extracted vegetation indices are normalized. 

Identified machine learning algorithms were 

implemented on the various sets of input 

combinations of climate and satellite data. The 

execution of the model was evaluated using MAE 

and RMSE metrics. The top performing model 

amongst the entire implemented model is 

identified. The Proposed framework predicts crop 

yield which is based remote sensing data of 

Rajasthan state in India.  
 

 
Figure 4: Flow Diagram to Predict Crop Yield Using Multisource Data 
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The designed framework is trained using support 

vector machine and generates improved results 

than other machine learning algorithms. To 

investigate the ability of framework Haryana state 

of India has been identified as the validation 

region. The data of Haryana region was collected 

from 2013 to 2017 from http://data.icrisat.org/dl

d/src/crops.html for validating the proposed 

framework (51). Satellite images were used to 

extract the vegetation indices, such as the NDVI, 

EVI, SAVI CVI, and NDWI, and all the VIs were 

combined with the rainfall data of the same region. 

Figure 4 describes the process of crop yield 

prediction using multi source data. In this study 

Linear regression, Decision tree, random forest, K 

NN and support vector machine methods are 

implemented. The performance of all the models 

was compared with the help of evaluation metrics 

RMSE and MAE. MAE has no preference for either 

little or large faults. RMSE is utilised in situations 

in which it is permissible to accept little errors, but 

significant errors must be penalised and reduced 

to the greatest extent possible. While 

implementing the models the data was split for 

testing and training the model, 70% of the was 

used for training and 30% data for testing. In 

decision tree the maximum depth was selected as 

three whereas three in random forest and number 

of trees were hundred. Support vector regression 

used radial basis function kernel, the tuneable 

parameter, epsilon, was set to 0.1, and the 

Regularization parameter was ten. Table 3 shows 

the comparison of all the models performance. 

Decision tree regression has the lowest 

performance with 0.30 t/ha RMSE and 0.23 t/ha 

MAE, whereas support vector machine performs 

better than all the other model with 0.26 t/ha 

RMSE and 0.19 t/ha MAE.  

The Figure 5 represents the comparison of all the 

models using bar graph which discovers that 

random forest and KNN have performed very well 

and the RMSE and MAE values are very close to 

SVM. Figure 6 is the line graph representation of 

the results obtained on vegetation indices 

extracted from satellite imagery. RMSE and MAE 

are represented using blue and orange color. 
 

Table 3: Performance Comparison of Machine Learning Algorithms for Crop Yield Prediction 

Algorithm RMSE MAE 

Linear Regression 0.272 0.216 

Decision Tree 0.303 0.234 

Random Forest 0.273 0.213 

K-Nearest Neighbour  0.276 0.205 

Support Vector Machine 0.268 0.195 
 

 

 
Figure 5: The RMSE and MAE Evaluation Metrics Value of All the Machine Learning Models 
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Figure 6: Representation of the Results Obtained on Vegetation Indices Extracted from Satellite Imagery 

 

As using satellite images that are of great size, 

more computational time is required, Overall, 

Support vector regression outperforms all of the 

other machine learning methods with RMSE of 

0.26 t/ha. Figure 6 illustrates the comparison of all 

the implemented algorithms. Five machine 

learning algorithms were implemented to predict 

the crop yield of Haryana region. Random forest 

and support vector machine showed better results 

than other algorithms, however overall support 

vector machine gave promising results in Haryana 

state dataset.  

Random forest presents RMSE as 0.31 t/ha, and 

MAE as 0.25 t/ha whereas support vector machine 

provides RMSE as 0.28 t/ha and MAE as 0.24 t/ha. 

So overall, support vector machine performs 

better than all the other techniques. The 

experiment shows that as we add more data the 

performance of the model can be increased, but the 

climatic condition of each state/region is different 

which affects the bands value and overall predict. 

Table 4 shows the framework performance on 

Haryana data.   

 

Table 4: The Machine Learning Model Performance on Haryana Dataset 

Algorithm RMSE MAE 

Linear Regression 0.47 0.38 

Decision Tree 0.32 0.26 

Random Forest 0.31 0.25 

K-Nearest Neighbour  0.34 0.29 

Support Vector Machine 0.28 0.24 
 

 
Figure 7: Line Graph of Performance Comparison of Machine Learning Algorithms 

 

The Figure 7 shows the implementation of all the 

applied machine learning models. To assess the 

efficacy of the proposed machine learning models, 

the study region was changed, Rajasthan to 

Haryana State for result validation. The varied 

climatic and soil conditions of Rajasthan offered a 

strong basis for training, whereas the agricultural 

environment of Haryana acted as a testing ground 

for model generalization. The findings 

demonstrated that the Support Vector Machine 

(SVM) consistently surpassed other techniques in 

both states. The current study may support data 
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driven decision for the various stakeholders in 

agriculture. The farmers can take advantage from 

the predictive insights of the model for planting 

planning and harvesting schedule. The 

agribusinesses may utilise the yield prediction for 

supply chain management and additionally 

policymakers can incorporate this approach into 

food security frameworks to enhance resource 

allocation. Although, machine learning algorithms 

have potential and has given promising results in 

the agriculture domain it still faces challenges in 

practical implementation. The unavailability of 

high-quality datasets especially on small scale 

farms may impact the model’s ability to predict.  
 

Conclusion 
In India, agriculture employs over half of the 

population and contributes 15–16% of the GDP. In 

the study, crop yield prediction was performed 

using remote sensing data using five machine 

learning techniques, including, linear regression, 

decision tree, random forest, K nearest neighbour 

and support vector machine. The authors focused 

on distinguishing regions of a satellite image and 

then finding normalised difference vegetation 

index and improved vegetation index values. They 

found that vegetation of the same crop field 

fluctuates throughout the months and that we may 

anticipate crop development in that area by 

computing. The results report that support vector 

machine performs better compared to other 

techniques. The support vector machine 

performed better with 0.268 t/ha RMSE and 0.195 

t/ha MAE. The results showed that machine 

learning methods can use data from more than one 

source to make accurate yield estimates. Machine 

learning models can efficiently extract data, 

however due to their internal black-box, model 

uncertainty increases. So, in the future, 

researchers might be able to make more accurate 

predictions by combining machine learning with a 

model of crop growth. It has also been suggested 

that a more extensive collection of characteristics 

might be learned during the process of modelling; 

for instance, in addition to remote sensing data and 

climate data, soil data can be employed to train the 

machine learning model in order to achieve a 

higher level of precision. The present work can be 

extended in the future, and additional data such as 

soil properties, pesticides data, satellite extracted 

sun induced chlorophyll fluorescence data may 

enhance the model’s performance.  
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