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Abstract 
Maintaining software is critical, but it can be difficult to estimate quality, reliability, effort, and costs. To accurately 
predict these key parameters, we propose ML-PEQRM, a novel machine-learning model. A model estimates software 
quality and reliability based on code complexity, maintainability, and size. It also predicts maintenance costs. The 
proposed ML-PEQRM model utilizes code complexity, maintainability, and size as input features to estimate software 
quality, reliability, maintenance efforts, and costs. The dataset comprises 25 projects with 10,000 samples of code 
changes and maintenance activities. A 70-30 split created training and test datasets. Conventional estimation 
approaches have limitations including 25% average error, unreliable predictions, and resource inefficiency. Static code 
attributes related to complexity and prior changes increasing complexity by 10% were most informative. Integrating 
product and process data decreased maintenance costs by 25% and improved reliability by 20%. Novelty lies in 
integrating essential metrics for maintenance cost estimation and deriving new metrics using machine learning. Static 
code attributes and change metrics are identified as most significant features. Novel metrics further improve 
performance. This makes valuable contributions by developing an accurate, practical model that organizations can 
leverage to enhance planning and efficiency of software maintenance activities. By leveraging code complexity, 
maintainability, and size as inputs, the ML-PEQRM model provides a data-driven approach improving accuracy and 
reliability of quality, reliability, maintenance, and cost estimation to 99%. This enables optimization of maintenance 
costs, reduction in downtime, and predictive maintenance. It allows development of predictive models to enhance the 
accuracy of maintenance operations to 99%. 

Keywords: Cost Estimation, MGFPA, Machine Learning, Random Forest, Stacking Classifier, Software Maintenance, 
XGB. 
 

Introduction 
Software maintenance involves improving, 

optimizing, and adapting applications after they 

are deployed as part of the software development 

lifecycle. A precise estimate of software quality, 

reliability, effort, and maintenance costs ensures 

project success, optimizes resources, and 

maintains operational efficiency. Traditional 

estimation models, like COCOMO, have 

demonstrated significant limitations in providing 

precise and consistent predictions. Modern 

software systems are complex, and these models 

fail to take these factors into account, creating 

inaccurate forecasts and resource allocations. The 

software industry continues to evolve, and 

machine learning has become a promising 

solution. Using historical data, machine learning 

models can more accurately predict software 

quality and reliability while optimizing 

maintenance costs. However, there are significant 

research gaps. Most existing models overlook key 

quality factors, don't integrate product and 

process metrics comprehensively, and rely on 

limited datasets, so they can't generalize across 

domains. The study introduces ML-PEQRM 

(Machine Learning Predictive Estimation for 

Quality, Reliability, and Maintenance), a novel 

machine learning model. ML-PEQRM provides 

precise estimates for software quality, reliability, 

maintenance costs, and effort based on key 

metrics. It provides interpretable predictions that  
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support informed decision-making and optimizes 

resource allocation. Its novelty lies in its holistic 

approach to estimating software maintenance 

parameters, which can be applied to various types 

of projects. ML-PEQRM provides actionable 

insights into quality, reliability, and cost 

estimation, helping organizations optimize 

maintenance workflows, reduce downtime, and 

improve operational efficiency. Key challenges 

addressed in this research include: 

• The inability of traditional models to provide 

reliable long-term estimates, as highlighted by 

prior studies.  

• The lack of integration between quality factors 

and maintenance estimation, which limits the 

applicability of existing machine learning 

models.  

• The need for a scalable, interpretable, and 

practical tool for organizations to improve 

software maintenance efficiency and cost 

management. 

This research makes several significant 

contributions to the field of software maintenance, 

focusing on improving the accuracy and reliability 

of maintenance cost estimation and software 

quality prediction. The primary contributions are 

outlined as follows: 

Development of the ML-PEQRM Model: The ML-

PEQRM (Predictive Estimation for Quality, 

Reliability, and Maintenance) model is based on 

machine learning. Based on code complexity, 

maintainability, and project size, the model 

delivers highly accurate predictions. 

Integration of Product and Process Metrics: The 

study introduces a comprehensive framework that 

combines code smells, cyclomatic complexity, 

coupling, and cohesion metrics with process 

metrics. The model is able to capture intricate 

relationships between these metrics, resulting in 

more precise and interpretable predictions. 

Introduction of Novel Metrics: The research 

constructs and incorporates new metrics to 

enhance the model's performance: 

• Maintenance Index (MI): Quantifies the 

maintainability of software based on various 

density values such as abstraction density, 

encapsulation density, and implementation 

smell density. 

• Quality Index (QI): Measures software quality 

by averaging critical density values related to 

completeness, documentation, and maintaina-

bility. 

• Security Index (SI): Evaluates security features 

using metrics like the density of protected 

methods and encapsulation practices. 

The ML-PEQRM model provides a more detailed 

and actionable assessment of software quality and 

maintenance needs through several advanced 

techniques. One of the key enhancements is 

Feature Engineering Using MGFPA, where feature 

selection is optimized by employing a Modified 

Global Flower Pollination Algorithm (MGFPA). 

This technique refines the ranking of feature 

importance, making the model both more accurate 

and efficient in its predictions. Another significant 

contribution is the Application of Stacking 

Ensemble Techniques, which combines Random 

Forest and XGBoost classifiers to further boost 

predictive performance. This ensemble approach 

achieves an impressive 99% accuracy, surpassing 

traditional models and benchmarks in the field. 

Finally, the model demonstrates its practical value 

by enabling a Reduction in Maintenance Costs and 

Increased Reliability. By incorporating the 

proposed methodology, ML-PEQRM achieves a 

25% reduction in maintenance costs and a 20% 

improvement in reliability, showcasing its 

effectiveness in real-world software development 

and maintenance scenarios. 

The study enables better planning, optimized 

resource utilization, and improved decision-

making in software maintenance by addressing 

these objectives. This research contributes to 

advancing the field by offering an interpretable 

and holistic approach to predictive maintenance. 

Traditional software maintenance cost estimation 

models, like COCOMO II and regression-based 

techniques, fail to accurately predict software 

quality, reliability, and maintenance costs across 

diverse projects. They lack integration of critical 

product and process metrics, rely on limited 

datasets, and do not account for factors like code 

smells, cyclomatic complexity, or maintainability, 

which significantly impact project outcomes. 

Existing machine learning approaches are often 

too narrow or function as black-box systems, 

making their predictions difficult to interpret and 

apply in real-world scenarios. Integrating critical 

software metrics with advanced feature selection 

techniques and ensemble machine learning 

algorithms will significantly improve the accuracy, 
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reliability, and interpretability of maintenance cost 

estimation models. The proposed ML-PEQRM 

model, incorporating novel metrics like 

Maintenance Index (MI), Quality Index (QI), and 

Security Index (SI), will outperform existing 

approaches. 

• Reducing maintenance costs by at least 25%. 

• Improving reliability metrics by 20%. 

• Achieving a predictive accuracy of at least 

99%, validated across diverse software 

projects and datasets. 

 This model will provide interpretable predictions, 

addressing the limitations of traditional 

approaches. It enabling more effective resource 

allocation, cost management, and decision-making 

in software maintenance. The datasets were 

sourced from publicly available GitHub 

repositories containing Java projects of varying 

complexity, maintainability, and size. The dataset 

includes 25 Java projects with 10,000 code 

samples, capturing different types of code changes 

and maintenance activities. Each project folder 

contains Java files, classes, functions, and 

identifiers, analyzed to extract various software 

metrics. A full list of projects is available in the 

study (Table 1), showcasing a variety of 

application domains and software architectures.   

The ML-PEQRM model achieved 99% accuracy in 

estimating software quality, reliability, and 

maintenance costs, significantly outperforming 

COCOMO II and neural network-based methods. It 

reduced maintenance costs by 25% and improved 

reliability by 20% compared to traditional 

methods. Validated with a dataset of 25 Java 

projects and 10,000 code samples, the model 

demonstrated robustness and scalability. The 

integration of product and process metrics, along 

with key indices like Quality Index (QI), Security 

Index (SI), and Maintenance Index (MI), provided 

interpretable and actionable predictions. The 

Modified Global Flower Pollination Algorithm 

(MGFPA) optimized feature importance rankings, 

minimizing noise and over fitting. These results 

confirm the model's effectiveness in advancing 

software maintenance cost estimation, quality 

assurance, and predictive reliability. By applying 

machine learning to software maintenance 

parameters, this project aims to develop an 

accurate and reliable model that enhances 

maintenance efficiency through data-driven 

insights. It seeks to optimize resource allocation 

and address the limitations of existing models by 

learning from historical project data. A key 

objective is to establish a comprehensive 

framework for analyzing critical factors that 

influence software quality, reliability, 

maintenance, and cost. To ensure optimal 

performance, suitable predictive machine learning 

algorithms will be identified, and parameters will 

be estimated using code metrics to develop a 

cohesive and integrated model. 

This work emphasizes its contribution to 

strengthening maintenance planning at a practical 

level by proposing a model that enhances industry 

efficiency in a reliable and applicable way. It 

improves accuracy through the integration of both 

product and process metrics, and employs a 

feature engineering approach to identify the most 

significant features. The model is designed to 

predict quality-focused outcomes in an 

interpretable manner, offering clear insights for 

decision-making. Additionally, it introduces a 

novel approach to maintenance estimation, aiming 

to advance the current state of the art in the field. 

The primary research topic of this study is the 

enhancement of cost estimation accuracy in 

construction project management through the 

integration of artificial intelligence and machine 

learning techniques. The paper introduces the 

"IntelliEstimator" framework, which leverages 

predictive analytics, intelligent decision support, 

and real-time data processing to address long-

standing challenges in traditional estimation 

methods. This research is driven by the hypothesis 

that incorporating AI/ML into the estimation 

process significantly improves accuracy, reduces 

human error, and increases efficiency. Therefore, 

the study aims to evaluate whether the 

IntelliEstimator framework provides a measurable 

improvement over conventional cost estimation 

approaches, particularly in dynamic and data-

intensive project environments. The research 

contributes to the field by offering a practical, 

scalable solution that blends domain knowledge 

with computational intelligence. Section 2 reviews 

the literature, identifying gaps in existing methods. 

Section 3 details the methodology, including the 

dataset, feature engineering techniques, and the 

proposed ML-PEQRM model. Section 4 presents 

the experimental setup, implementation 

environment, selected features, performance 

evaluation metrics, comparative analysis, key 
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findings, and limitations. Section 5 concludes the 

paper by summarizing contributions, highlighting 

practical benefits, and suggesting future research 

directions. The reviewed studies highlight 

advancements in software quality, cost estimation, 

and defect prediction, emphasizing innovative 

methodologies and data-driven models. Various 

aspects of software quality, team productivity, cost 

estimation, and defect prediction were explored 

using diverse metrics and methodologies. For 

example, this work introduced the Team 

Homogeneity Index (THI) to measure the impact of 

team personality traits on software quality and 

productivity during the SDLC, analysing team 

dynamics and project outcomes with five metrics 

(1). This novel work investigated the complexity of 

Multi-Programming Language Codebases (MPLCs), 

finding they significantly impact issue resolution 

times and quality outcomes (2). This highlights the 

need for effective management strategies in 

heterogeneous codebases. Issues in MPLCs are 

resolved 89% slower than in non-MPLCs, with over 

90% of MPLCs using source files from two 

programming languages. This study underscores 

the importance of optimizing software quality 

through better resource allocation and process 

improvements. In a study a theoretical model 

based on the most important factors of CKM 

(Customer Knowledge Management) was 

developed (3). To evaluate the proposed model, 

survey questionnaires were distributed to 

decision-makers in ES (Enterprise Software) 

development companies. Three-year industry-

academy collaboration presents SVEVIA, a 

framework for software quality assessment and 

strategic decision support (4). A quality-cost-time 

trade-off was identified by analysing the industrial 

software quality management process. Methods 

were developed for assessing, predicting, planning, 

and optimizing product/process quality. Software 

metrics based on development data can be used to 

estimate software reliability (5). An analysis of 

product and process metrics has the objective of 

establishing a statistical relationship between 

them. In the paper, non-parametric models such as 

Artificial Neural Networks are suggested for 

estimating the reliability of software and release 

readiness based on past failure data. This study 

incorporated considerations of imperfect 

debugging, a variety of errors, and change points 

during the testing process to extend the usefulness 

of SRGM’s (6). A limit to testing athletic ability is 

proposed, but with unlimited time, testing 

becomes infinite and may not be feasible (7). This 

method presents endless test execution work for 

older models of Neural Heterogeneous Poisson 

Process (NHPP) of Programming model 

disappointment with proposed information for 

preparing Artificial Neural Network (ANN). This 

proposed an automated process of prioritizing bug 

reports and selecting developers using fuzzy multi-

criteria decision-making (8). In the proposed 

approach, the fuzzy Technique for Order of 

Preference by Similarity to the Ideal Solution 

(TOPSIS) method is combined with Bacterial 

Foraging Optimization Algorithm (BFOA) and Bar 

Systems (BAR) techniques to build a bug priority 

queue. It aims to gather decisive and explicit 

knowledge of bug reports by considering multi-

criteria inputs. Software maintenance projects 

differ from other engineering projects because of 

certain characteristics (9). The complexity and 

failure rates of projects have increased. Software 

projects need to be identified and monitored to 

increase their chances of success. By combining 

genetic algorithm (GA) and environmental 

adaptation (EA) methods, It aimed to optimize 

COCOMO coefficients for SCE. Based on the results, 

it is determined that the EA algorithm can solve the 

divergence problem of the genetic algorithm, as 

well as optimize the COCOMO coefficients (10). 

This study was proposed to address the difficulty 

of estimating software development costs with 

conventional methods (11). A reliable estimation 

method is constructed by combining these steps 

with machine learning approaches to identify the 

necessary steps for computable entities that affect 

software costs. With the help of formulae and an 

online tool, It analyse and compare Boehm's 

COCOMO model with Valerdi's COSYSMO model 

(12). The COCOMO dataset was used for this 

analysis, and the COSYSMO model was observed to 

perform better in every aspect than the COCOMO 

model. The work was proposed, which uses a 

standard Turkish industry dataset to optimize the 

parameters of the Constructive Cost Model II 

(COCOMO-II) (13). The IEAM-RP was proposed to 

predict the development effort (14). To test IEAM-

RP's effectiveness, NASA software projects are 

used for the experiment. Using other method 

references (such as Use Case Points) and mapping 

non-functional requirements to the terms of 
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reference, one past work proposed two core 

phases. In addition, the second phase is to calculate 

and compare the estimated effort and cost if the 

original FP method was modified (15). This work 

reviews the state of predictive maintenance (PdM) 

within the context of Industry 4.0, focusing on the 

integration of machine learning (ML) and 

reasoning techniques (16). It provides an overview 

of Digital Twin (DT)-based predictive maintenance 

strategies. It explains how DTs, virtual replicas of 

physical systems are used to monitor real-time 

performance, predict failures, and plan 

maintenance activities (17). 

This work used genetic algorithms to optimize 

software development cost estimation and it 

addresses software factor's uncertainty and 

ambiguity (18). The COCOMO II model formulas 

were incorporated into the estimation of effort and 

schedule time. Using NASA data, experiments 

achieved 98.88% accuracy for scheduled time and 

97.27% for effort estimation. This study shows 

how genetic algorithms combined with parameter 

fine-tuning can improve software cost 

estimation.  This work developed an Adaptive 

Neuro-Fuzzy Inference System combining Ant 

Colony Optimization (19). Various evolutionary 

algorithms were compared. This model performed 

software effort estimation on datasets like 

Albrecht, Desharnais, and Kemerer. It provides 

enhanced estimation capabilities for software 

project managers. 

This work proposed a two-stage framework for 

agile cost estimation, linking development and 

maintenance phases (20). The first stage focuses 

on development, the second on maintenance, with 

testing comprising 22% of the workload and 

management tasks 13%. They also introduced five 

paradigms for Nesma, a Function Point 

Measurement method, enhancing the LSTM-CRF 

model's accuracy and precision. However, the 

quantity and quality of training samples and 

labelled texts still need improvement. This work 

focused on Nesma, a Function Point Measurement 

method, introducing five paradigms to define 

heuristic rules for splitting software into Pricing 

and Measuring Objects (21). This approach 

enhanced the LSTM-CRF model's accuracy and 

precision using large-scale information projects as 

training sets. However, the quantity and quality of 

training samples and labelled texts still need 

improvement compared to expert manual audits. 

 This work proposed an MCDM-based framework 

to evaluate Software Reliability Prediction models 

using multiple accuracy measures (22). They 

assessed ten models with a software failure 

dataset and four performance measures, 

identifying SOMFTS as the most suitable model. 

The findings suggest the MCDM approach is 

effective for selecting the best software reliability 

prediction model. This work highlighted Software 

Defect Prediction, focusing on software quality and 

reliability (23). Various techniques have been used 

to classify software as defective or non-defective 

by analysing source code and development 

processes. This study introduced a modified 

isolation forest method for SDP, demonstrating its 

effectiveness through experiments on five NASA 

datasets.  These studies highlight the importance of 

interdisciplinary approaches in software 

engineering, combining team dynamics, advanced 

modelling, and optimization. However, gaps 

remain in integrating these dimensions into a 

unified framework that addresses both technical 

and human factors. Future research should bridge 

these areas to achieve comprehensive 

improvements in software quality and 

productivity. 

A review of the literature reveals notable progress 

in software maintenance cost estimation; however, 

several critical shortcomings remain, which this 

study aims to address. One major limitation is the 

lack of holistic integration—many existing studies 

focus on isolated components such as reliability or 

effort prediction. While some recent studies (5, 7) 

report high accuracy within specific domains, they 

fall short of delivering comprehensive and 

interpretable models. Another challenge is limited 

generalizability; approaches like COCOMO-II 

optimizations and neural networks depend heavily 

on dataset-specific tuning, making them unsuitable 

for diverse real-world scenarios. Additionally, 

many machine learning-based models suffer from 

interpretability issues, functioning as "black 

boxes" that offer little insight into the reasoning 

behind their predictions—an obstacle for 

informed decision-making. Lastly, the insufficient 

diversity of datasets used in prior research 

restricts the models' applicability. Although some 

studies show promise, they often rely on small, 

domain-specific datasets and do not fully leverage 

machine learning's capability to manage large-

scale, heterogeneous data. This research makes 
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several significant contributions to the field of 

software maintenance and cost estimation. It 

introduces the ML-PEQRM model, which leverages 

machine learning algorithms to uncover complex 

relationships within data, leading to more reliable 

estimates of software quality, reliability, 

maintenance costs, and needs. By learning from a 

public dataset, the model streamlines the 

estimation process, resulting in outputs that are 

both more accurate and interpretable. 

Additionally, it reduces the need for manual 

estimation, enabling project managers and 

developers to allocate resources more efficiently. 

The integration of novel feature selection 

techniques further strengthens the model’s 

decision-making capability and significantly 

enhances the accuracy of estimates related to key 

software attributes. To address these limitations, 

this study proposes ML-PEQRM, a machine-

learning-based predictive model. The proposed 

model balances accuracy, interpretability, and 

generalizability by integrating static code metrics 

and dynamic change metrics. The model is also 

robust and scalable thanks to the use of ensemble 

methods such as Random Forest and XGBoost. 

Using these predictions, maintenance planning will 

be guided more effectively, reducing maintenance 

costs, improving reliability, and improving 

reliability. 
 

Methodology 
As part of the proposed model, various metrics are 

taken into account to estimate software reliability 

and quality, such as cyclomatic complexity, code 

coverage, and defect density. To estimate 

maintenance and cost, the model also takes into 

account factors such as the size of the team, 

developer experience, and software complexity. In 

addition, the proposed model can help software 

development companies make better decisions 

and improve their software development 

processes, to improve software quality, reliability, 

maintenance, and cost estimation. The study 

provides the following key findings: 

High Prediction Accuracy: ML-PEQRM 

outperformed traditional methods such as neural 

networks, COCOMO-II optimizations, and Flower 

Pollination algorithms, which reported 85-98% 

accuracy. 

Cost and Reliability Improvements:  Compared to 

conventional methods, product and process 

metrics reduced maintenance costs by 25% and 

improved reliability by 20%. The model addresses 

practical software maintenance challenges 

effectively. 

Effective Feature Engineering: MGFPA was used 

for feature selection to identify the most important 

factors affecting software maintenance. As a result, 

computational time was reduced while accuracy 

was maintained. 

Interpretability of Predictions:  ML-PEQRM 

incorporates static code metrics, dynamic change 

metrics, and novel feature engineering techniques 

to provide interpretable predictions. As a result, 

resource allocation and maintenance planning can 

be improved. 

Holistic Approach:  Researchers developed a novel 

approach to software cost estimation that 

integrates software quality, reliability, and 

maintenance factors. 

Practical Applicability:  Software developers and 

project managers will find the model valuable as a 

tool for estimating maintenance costs and 

improving software reliability. 

As a result of these findings, ML-PEQRM advances 

the state-of-the-art for software maintenance cost 

estimation, and offers a roadmap for future 

research. 

Extraction Layer 
The layer includes the attainment of the dataset 

with java projects containing java files, classes, 

functions, identifiers, etc. which is acquired for 

extracting the software metrics for the reliability, 

security, quality, and maintenance of every project 

that constructs the features set from the attained 

dataset for the further prediction and estimation of 

the maintenance cost. The first step in this 

research is to extract the code from the project. 

With the help of the Compilation Unit, the code is 

converted into an abstract syntax tree.  Based on 

this tree, Class, and Method metrics as well as Code 

smells can be calculated. After generating each 

metric as a CSV file, the data is consolidated into 

one file. Using this CSV dataset, pre-processing is 

performed and Novel metrics are 

constructed.  Figure 1 shows the overall 

architecture of the proposed work. 
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Figure 1: The Flow of the Proposed Work (ML-PEQRM Architecture) 

 

Dataset 
The datasets were sourced from publicly available 

GitHub repositories. These repositories contain 

Java projects with varying levels of complexity, 

maintainability, and size, providing a diverse 

dataset for evaluation. It consists of 25 Java 

projects (10,000 samples) from GitHub 

repositories. It covers diverse application domains, 

complexities, and architectures, ensuring model 

robustness and generalizability. Proprietary 

datasets were considered but lacked transparency 

and accessibility. Smaller or homogeneous 

datasets were rejected due to limited diversity. 

This selection ensures the model is tested in 

realistic and varied maintenance scenarios, 

enhancing its practical value. Each project folder 

includes Java files, classes, functions, and 

identifiers, which were analyzed to extract various 

software metrics. A list of projects is available in 

the study (Table 1), showcasing a variety of 

application domains and software architectures. 
 

Table 1: Sample Datasets (List of Projects) 

S.No. Project Name 

1 Anasthase_TintBrowser 

2 billthefarmer_tuner 

3 budowski_budoist 

4 czlee_debatekeeper 

5 devonjones_PathfinderOpenReference 

6 eolwral_OSMonitor 

7 fython_Blackbulb 

8 gsantner_markor 
 

A selection of 25 Java projects, comprising 10,000 

code samples, was made to ensure a diverse 

representation across project size (small, medium, 

and large-scale applications), code complexity 

(from simple to highly intricate codebases), and 

maintenance activity (frequent updates versus 
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long-term stable projects). Each project folder 

included Java source files, classes, functions, and 

identifiers, which were extracted and examined 

through static code analysis techniques. The 

resulting data was then processed to generate 

software metrics, which were used as labeled data 

for training the ML-PEQRM model. Through the 

analysis of static code, historical commit logs, and 

defect tracking data, quality, reliability, and 

maintenance costs were determined. A Quality 

Index (QI) was computed based on key software 

metrics, including abstraction density, 

encapsulation density, code smells, and software 

structure. Calculating the Quality Index involves 

the following formula: 

𝑄𝐼 =
(𝐴𝐷 + 𝐸𝐷 + 𝐼𝑆𝐷 + 𝑆𝐷)

4
[1] 

where, an abstraction density (AD) value 

represents how abstract the software design is, 

Data hiding and encapsulation density are 

measured using ED (Encapsulation Density), the 

Implementation Smell Density (ISD) is used to 

measure bad coding practices and Smell Density 

(SD): An indicator of the number of smells detected 

per unit of code. Software quality is measured by 

the QI score. Projects are categorised as: 

● The highest quality (QI ≥ 40) 

● Medium Quality (30 ≤ QI < 40) 

● Low Quality (QI < 30) 

A Reliability Index (RI) was calculated based on 

historical data on defect rates and failures. Based 

on the following formula:  

𝑅𝐼 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒 (𝐿𝑂𝐶)
[2] 

A GitHub issue tracker and commit log were used 

to extract failure data. There was a lower reliability 

when there were more bug-fix commits. Based on 

the RI values, projects were classified as follows: 

High Reliability (RI < 0.01), Medium Reliability 

(0.01 ≤ RI < 0.05) and Low Reliability (RI ≥ 0.05). 

According to the code complexity, developer effort, 

and historical maintenance activity, the 

maintenance cost was estimated. Based on the cost 

estimation, the following steps were taken: 

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 =

(
𝐿𝑂𝐶×𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝐶𝑌𝐶𝐿𝑂)

400
) ×

Average Developer Salary +

Base Maintenance Cost [3] 

 

 

Feature Building Layer 
The key factors that affect software quality, 

reliability, and maintenance are identified when 

computing features for cost estimation. Software 

development and maintenance cost prediction is 

also made by quantifying these factors. It is 

possible to estimate the cost of software 

maintenance by taking into account the following 

relevant features. 

Class Features 
An individual software class or module's quality 

and maintainability are assessed based on its class 

features. By analyzing these metrics, developers 

and project managers can identify areas that 

require improvement and prioritize their efforts, 

giving them valuable insight into the complexity, 

size, and potential issues of a class. Cohesion and 

coupling are some features shared among most 

classes. There ares also features such as lines of 

code, complexity, and cyclomatic complexity.  

Methods Features 
Within software engineering, methods features are 

used to evaluate individual methods and functions 

in terms of quality, complexity, and 

maintainability. A developer or project manager 

can use these metrics to identify areas for 

improvement and optimize the software 

development process by understanding the 

performance, size, and potential issues of a 

method. 

Software Code Smells 
The concept of a code smell refers to problems in 

source code that are not bugs or strictly technical 

errors. There will be no change in the way the code 

compiles and works. The term software code smell 

refers to those symptoms that indicate a poorly 

designed or implemented program. In addition to 

Long Methods, Large Classes, and Duplicate Code, 

there are many other code smells.  Code smells 

slow down the process of processing an output, 

increase the chances of failure and errors, and 

make the software more likely to contain bugs. It 

increases technical debt to have smelly code. Code 

smells, as their name suggests, indicate deeper 

problems. A problem can be found by finding 

something easy, like classes with data but no 

behaviour. Depending on the design standards set 

by an organization, code smells differ from project 

to project. 
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Halstead Features 
In the Halstead complexity metric, a program is not 

run but its complexity is measured without it being 

run. A metric is a way of identifying and evaluating 

measurable software properties through static 

testing. Tokens are extracted from the source code 

after it has been analyzed. A few statistics about 

the program, such as its vocabulary, length, 

volume, difficulty, etc. These statistics are then 

used to calculate the Halstead complexity metric. 

The metric is used to measure the difficulty of the 

program and its quality.  

Other Smells 
Developing software with "code smells" may 

impact maintainability, readability, and 

extensibility. Insufficient modularization results in 

tightly coupled modules, high complexity, and 

challenging maintenance issues. Testing and 

updating are difficult due to monolithic classes, 

overloaded interfaces, and dense dependencies. 

Broken hierarchies occur in inheritance trees 

where "IS-A" relationships are unclear, causing 

unnecessary dependencies.  Cyclic Dependent 

Modularization describes modules with circular 

dependencies, complicating isolated reasoning and 

creating ripple effects. Wide Hierarchy refers to 

broad, shallow inheritance trees with too many 

subclasses. It derives directly from a generic base, 

lacking meaningful abstraction. Lastly, Deficient 

Encapsulation points to poor attribute and method 

protection. The private methods and attributes are 

unnecessarily accessible, undermining software 

security and integrity.  

Other Metrics 
Decoupling Impact (DI) measures the extent to 

which components can operate independently, 

enhancing system resilience. Interface Size (IS) 

addresses overly large interfaces that lack 

cohesion, which complicates understanding and 

maintenance. Weighted Method Count (WMC) 

reflects class complexity and testability, while 

Number of Methods (NOM) shows class size and 

Single Responsibility Principle violations. 

Response for Class (RFC) measures method 

response complexity, and Depth of Inheritance 

Tree (DIT) highlights inheritance structure depth 

and abstraction levels. Number of Implemented 

Interfaces (NII) and Coupling Between Objects 

(CBO) examine dependency patterns; high 

coupling limits modularity and flexibility. Maximal 

Call Indirection (MCI) assesses call chain depth, 

affecting readability, and Number of Variable 

Fields (NOVF) tracks mutable class fields. Tight 

Class Cohesion (TCC) indicates class purpose focus, 

while Number of Subclasses (NSUB) shows class 

reuse and specialization. Degree of Class 

Interdependency (DOI) examines class coupling 

impact, and Maintenance Index (MI) provides a 

maintainability scale, from low (0-9) to high (20-

100), encouraging a modular, low-complexity 

design for reduced maintenance needs. 

Refining Layer (Consolidation & Pre-

Processing) 
Feature Consolidation 

Feature consolidation is a crucial preprocessing 

step that simplifies a dataset, reduces 

dimensionality, and improves the performance of 

machine learning models by grouping related 

features together. This process also helps remove 

redundant information, enhancing 

interpretability. Several techniques can be used for 

feature consolidation. For instance, categorical 

features with similar information, like 'city', 'state', 

and 'country', can be combined into a single 

'location' feature. Numerical features can also be 

summarized; for example, 'net income' can be 

derived by combining 'total revenue' and 'profit'. 

Additionally, feature extraction allows for the 

creation of new features using mathematical or 

statistical methods—such as generating an 'area' 

feature by multiplying 'length' and 'width'. These 

techniques streamline the dataset, making it more 

efficient and easier to interpret, which ultimately 

boosts the performance of machine learning 

models. 

Missing Value and Duplicate Value 

Computation 

Several different ways can be used to represent 

missing values, such as blank cells, null values, or 

NaN values (not a number). A data set with missing 

values can cause significant bias and inaccurate 

results during data analysis and modeling. In large 

databases with a large number of records, 

duplicate records are a common data quality issue. 

Thus, 'deduplication', or removing duplicates, 

becomes an essential part of many applications. In 

the data analysis and machine learning processes, 

data deduplication plays a vital role in avoiding 

substantial biases. This work makes no use of 

missing or duplicate values in the dataset. 
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Remove Unused Column and Data Encoding 

 Preparing data for analysis or machine learning 

involves a crucial pre-processing phase, during 

which unwanted or irrelevant columns are 

removed from the dataset. This step is essential to 

ensure the quality and efficiency of the analysis or 

modeling task. Columns may need to be removed 

for several reasons: they may contain missing or 

irrelevant data that cannot be used effectively; 

they might hold redundant information that adds 

no value; or they may simply not contribute 

meaningfully to the task at hand. Additionally, 

columns containing sensitive or confidential data 

are often excluded to maintain privacy and 

compliance with data protection standards. 

 

Table 2: Unwanted Columns  

  No  Features 

1 MRD 

2 NOAM 

3 NOL_C 

4 NOL_M 

5 NOMR_C 

6 NOMR_M 

7 LD 
 

Table 2 shows the seven columns that need to 

delete from the dataset. Because those columns 

contain the value, only zero. 

Novel Feature Generation 

To improve the performance of a machine-learning 

model, new features are constructed from existing 

raw data, also known as feature engineering or 

feature extraction. To construct novel features, a 

data scientist must have a solid understanding of 

the problem domain and the characteristics of the 

data. Dimensionality reduction, feature selection, 

scaling, normalization, and transformation of 

features are among the techniques used in this 

process. The goal of novel feature construction is 

to identify patterns and relationships in data and 

remove irrelevant information and noise. Machine 

learning models with this feature can become 

more accurate, robust, and generalizable to new 

data sets. 

Ratio of WMCDIT 

To calculate the novel feature ratio of WMCDIT, the 

Weighted Method Per Class (WMC) was divided by 

the Depth of the Inheritance Tree (DIT). 

𝑊𝑀𝐶𝐷𝐼𝑇 =
𝑊𝑀𝐶

𝐷𝐼𝑇
                           [4] 

This computes the ratio of Weighted Method per 

Class (WMC) to Depth of Inheritance Tree (DIT). 

WMC reflects class complexity based on its number 

of methods, while DIT measures its depth in the 

inheritance hierarchy. A high WMCDIT value 

suggests that a deeply inherited class has many 

methods. It potentially increases maintenance 

difficulty. This metric helps identify classes where 

structural depth and behavioral complexity may 

pose maintenance challenges. 

Ratio of WMCNAMM 

This ratio is calculated by dividing Weighted 

Method per Class (WMC) by the Number of 

Accessor and Mutated Methods (NAMM).   

𝑊𝑀𝐶𝑁𝐴𝑀𝑀 = 𝑊𝑀𝐶/𝑁𝐴𝑀𝑀               [5] 

CYLODensity 

Software systems are measured by their 

cyclomatic density, which measures how complex 

they are. The number of decision points in the 

system is divided by the number of executable 

statements (NOC) in the project. 

𝐶𝑌𝐿𝑂𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐶𝑦𝑐𝑙𝑜/𝐿𝑂𝐶                  [6] 

Cyclomatic Density quantifies decision-making 

complexity (CYCLO) relative to the total Lines of 

Code (LOC). A high value indicates code that is 

overly complex for its size, reducing 

maintainability and increasing defect risk. 

Computation Complexity Density 

The computational complexity density of a 

software system is a measure of algorithm 

complexity or method complexity. The complexity 

of a program is calculated by dividing the number 

of computations (such as loops or conditional 

statements) by the number of lines of code. 

𝐶𝐶𝐷 = 𝐶𝐶/𝐿𝑂𝐶                                                   [7] 

Abstraction Density (AD) 

Software abstraction density measures the degree 

to which software systems are abstracted. A 

software component or module abstracts from the 

rest of the system the complexity of its 

implementation. 
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𝐴𝐷 = (𝐼𝐴 + 𝑀𝐹𝐴 + 𝑈𝑁𝐴 + 𝑈𝑈𝐴)/4            [8] 

Implementation Smell Density (ISD) 

A software system's implementation smell density 

is a metric used to measure the density of 

implementation code smells. Code smells are 

calculated by dividing the total number of 

implementations by the number of smells. To 

reduce the number of implementation code smells, 

software developers and managers can measure 

implementation smell density and prioritize their 

efforts. 

𝐼𝑆𝐷 = (𝐵𝑀 + 𝐼𝑆𝑀 + 𝐶𝐶 + 𝐶𝑀 + 𝐸𝐶𝐶 + 𝐿𝑀 + 𝐿𝑃𝐿 + 𝐿𝑆 + 𝑀𝐷)/9                   [9] 

Implementation Smell Density (ISD) measures the 

occurrence of implementation smells like Broken 

Modularization (BM), Complex Conditionals (CC), 

and Long Methods (LM). A high ISD value indicates 

poorly implemented, hard-to-maintain code. These 

metric highlights problematic areas, helping 

developers prioritize refactoring. 

Smell Density (SD) 

In order to calculate the smell density, one divides 

the total number of code smells by their size. In 

addition, it can assist in assessing the impact of 

code refactoring efforts and tracking the evolution 

of software quality over time. 

𝑆𝐷 = (𝐴𝐷 + 𝐸𝐷 + 𝐼𝑆𝐷)/3                      [10] 

Depth Inheritance Complexity Density (DICD) 

A class hierarchy's depth in inheritance complexity 

density (DICD) is measured by combining DIT and 

CD. Class complexity is calculated by dividing its 

depth in the inheritance hierarchy, i.e., CD/DIT. 

Feature Engineering Layer 
This metaheuristic optimization algorithm is based 

on the pollination behavior of flowers and uses the 

global flower pollination algorithm (GFPA). This 

algorithm identifies the optimal solution based on 

the pollination process of flower pollinators in the 

problem space. Although the original GFPA has 

some limitations, such as slow convergence and 

the possibility of being trapped in local optima, it is 

still a useful tool. To address existing limitations, a 

Modified Global Flower Pollination Algorithm 

(MGFPA) has been proposed, featuring 

enhancements aimed at improving the 

performance of the original algorithm. Several key 

modifications have been introduced. First, Chaotic 

Initialization uses a chaotic map to generate the 

initial population, ensuring greater diversity and 

reducing the risk of premature convergence. 

Second, an Adaptive Mutation operator 

dynamically adjusts the step size based on 

population diversity and convergence rate, 

enabling more effective exploration of the search 

space. Third, Exclusivity ensures that the best 

solution found is preserved and carried forward to 

future generations, helping to maintain solution 

quality throughout the search. Finally, Dynamic 

Parameter Control allows parameters such as 

mutation rate and step size to be adjusted in real 

time, based on the algorithm's ongoing 

performance, enhancing adaptability and overall 

optimization efficiency. Using the basic global 

pollination (BGP) or heuristic bound search space 

(HBSS) mechanisms, the modified global flower 

pollination algorithm (MGFPA) explores the search 

space of the problem domain. It is equally likely 

that both mechanisms will be selected during 

evolution. By using the information of two 

randomly selected parents, HBSS narrows the 

search space to a certain area, as shown in 

Equation: 

𝑥
𝑖+1

𝑖𝑗
= ((𝑥𝑡

𝑎𝑗
, 𝑥𝑡

𝑏𝑗
)  − 𝑚𝑖𝑛 (𝑥𝑡

𝑎𝑗
, 𝑥𝑡

𝑏𝑗
)) . 𝑟2 + 𝑚𝑖𝑛 (𝑥𝑡

𝑎𝑗
, 𝑥𝑡

𝑏𝑗
) [11] 

where 𝑥𝑡

𝑖𝑗
 represents the jth variable of ith solution 

vector at t iteration, 𝑥𝑡
𝑎 and𝑥𝑡

𝑏 are two randomly 

selected solutions, and r1,r2 represent the uniform 

random distribution between [0,1]. According to 

the current population's experience, HBSS focuses 

on the most promising areas of the search space. 

The algorithm needs to be explored throughout the 

search space to avoid being trapped in local 

minima. Using the pseudocode shown in Algorithm 

1, it can summarize the steps that make up the 

mgFPAcan. 

 

Algorithm MGFPA () 

Input: n – Population Size 

Output: Fs – Selected Features 

1. Initialize the population randomly within the search space 
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2. While the stopping criterion is not met 

3. Sort the population in descending order of fitness 

4. Generate n1, n2, and n3, which are indices of three random solutions in the population 

5. For each solution in the population 

6. Generate a new solution by modifying the solution according to the following equation 

7. new_solution = solution + F * (best_solution - solution + A * (solution - population[n1]) + A * (solution 

- population[n3])) 

8. Evaluate the fitness of the new solution. 

9. If the fitness of the new solution is better than the fitness of the current solution, replace the current 

solution with the new solution. 

10. Update the global best solution found so far. 

11. Update the flower pollen distribution based on the global best solution. 

12. Return the global best solution found. 

End 

Algorithm 1: Modified Global Flower Pollination Algorithm (MGFPA)  
 

Table 3: Parameter for the Modified Global Flower Pollination Feature Selection 

Parameter Description Default Value 

N Population size (number of candidate solutions) 50 

T Maximum number of iterations (generations) 10 

P Switch probability between global and local pollination 0.8 

beta Parameter for Lévy flight distribution (affects step size) 1.5  

gamma Scaling factor for Lévy flight step size 0.01 

thres Threshold for binary conversion (used to discretize solutions) 0.5 

lb Lower bound of the search space 0  

ub Upper bound of the search space 1  

dim Dimensionality of the problem (number of features in xtrain) 110 

X Population matrix (candidate solutions in continuous space) Initialized randomly 

Xbin Binary representation of the population 0.5 

Xgb Global best solution (continuous) Updated based on 

fitness 

fitG Best fitness value  Initially set to infinity 

curve Convergence curve (records best fitness over generations) Updated per iteration 
 

Table 3 shows the parameters for the Modified 

Global Flower Pollination Algorithm (MGFPA). In 

MGFPA, population size and mutation rate were 

tuned to balance exploration and exploitation. An 

adaptive mutation rate was applied to dynamically 

adjust search intensity based on convergence 

trends, with a population size of 50 to maintain 

sufficient diversity. 

MGFPA was chosen for feature selection due to its 

ability to overcome limitations of standard 

methods. It improves convergence speed and 

avoids local optima using chaotic initialization, 

adaptive mutation, and dynamic parameter 

control. SFFS was rejected for its inefficiency, 

taking 275 seconds compared to MGFPA’s 2.6 

seconds. NDFS, though faster, lacked precision in 

handling interdependent features. MGFPA offers 

speed, robustness, and scalability, making it ideal 

for optimizing feature selection in software 

maintenance tasks. 

Prediction Layer 
Using this work, it is possible to determine which 

ML methods are applicable to software Quality, 

reliability and cost estimation. Furthermore, the 

process of assessing and comparing the scored 

results among the ML methods used will help 

identify the most appropriate ML with the least 

error rate. As part of the prediction model, the 

features set are used to classify the software 

metrics. The dataset is split into 70-30% as 

training and testing set. To make predictions, the 

work uses the following Class Construction and 

classifiers. A metric designed to quantify the 

maintainability of software projects, the 
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Maintenance Index (MI), was used to classify 

software maintenance needs. Three key metrics of 

software complexity are considered in the 

computation of the MI score: Volume (VOL), 

Cyclomatic Complexity (CC), and Lines of Code 

(LOC). Here is the formula for calculating MI: 
 

𝑀𝐼 = 171 − 5.2 ∗  𝑉𝑂𝐿 − 0.23 ∗  𝐶𝐶 −  16.2 ∗  𝐿𝑂𝐶 ∗  100/171    …… [12] 

Where VOL (Volume): Defines the complexity and 

structure of the software, CC (Cyclomatic 

Complexity): Indicates the difficulty in testing and 

maintaining the control flow of the program and 

LOC (Lines of Code): Defines the amount of source 

code and the amount of maintenance required. A 

threshold value of 15 represents the average MI 

across all projects, and the dataset is grouped 

according to the MI score. Here is how the 

classification rule works: 

● If MI ≤ 15, the project is categorized as Class 0 

('A'), indicating low maintainability (i.e., more 

effort is required for maintenance). 

● If MI > 15, the project is categorized as Class 1 

('B'), indicating high maintainability (i.e., 

relatively easier to maintain). 

There are 17 training projects and 8 testing 

projects in the dataset, which is split into 70% for 

training and 30% for testing. The classification 

helps the machine learning model identify difficult-

to-maintain projects effectively. Furthermore, 

those that will be easier to maintain, thus allowing 

for more reliable estimations of future software 

maintainability. In the field of machine learning, 

stacking is one of the most widely used and best-

performing ensemble techniques. A voting 

ensemble is similar to a machine learning 

ensemble in that weights are also assigned to two 

layers of models: ground models and meta models. 

It is because of this that Stacking performs best 

among all the ensemble techniques used in 

machine learning. There are many similarities 

between stacking and voting. A voting ensemble 

uses multiple machine-learning algorithms to 

accomplish the same task. After training, it takes 

the results from each machine learning algorithm, 

which are trained on the same data. When the 

regression problem or most frequent classification 

problem is being solved, the final output will be the 

mean of the ground model results, where each 

ground model result has the same weight. In 

stacking, the same thing occurs. The interpretation 

of the model is only based on a new layer of the 

model. Machine learning algorithms are used as a 

basis for Stacking, but a meta-model is also added 

as a layer. In contrast to voting ensembles, this 

model assigns different weights to the ground 

models based on the prediction task being 

performed through stacking. A Linear Regression 

meta-model is the second layer of this dataset D, as 

well as two machine learning ground models, the 

Random Forest, and the XGBoost. Dataset D will be 

fed to each ground model by the model now. A 

trained ground model can predict the test dataset 

after being trained on the same dataset. As soon as 

the ground models are introduced, it will train the 

meta-model Linear Regression using the 

prediction data from each ground model. Stacking 

algorithms introduce meta-models, assign weights 

to ground models, and consider their output final 

as the final output. A meta-model is trained on the 

ground model outputs from the test data when 

stacking; using the ground model outputs as 

training data. Taking a look at the model in this 

case, it can be seen the same data is used multiple 

times, indicating that the output data from the 

ground models are already exposed to the whole 

model and are used again during meta-model 

training. A model that performs well on training 

data will perform poorly when tested against 

unknown or unknown data. 

There is potential overfitting (P) in these 

ensembles, and it can use the K-fold approach to 

tackle this problem is K=f (P). So in the K fold 

sampling, the step would be to split the dataset into 

training 𝑆1 = 𝐷𝑇𝑟𝑎𝑖𝑛 and testing sets 𝑆2 = 𝐷 − 𝑆1. 

In this case, the dataset can be easily divided into 

training and testing sets using the train_test_split 

module. The second step involves determining the 

value of K, which is the value of the equal split of 

the data. The Extreme Gradient Boosting 

algorithm, or XGBoost, is a fast and efficient 

classifier for gradient-boosting ensemble. A 

gradient boosting algorithm is one of the most 

popular algorithms for predictive modeling since it 

is often the most effective in classification and 

regression projects. Generally, gradient boosting 

takes a long time to train a model, and large 

datasets exacerbate the problem. With XGBoost, 

several techniques are introduced that 

dramatically accelerate gradient boosting and 

often result in better model performance overall. 
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Additionally, more than just gradient boosting can 

be supported by the core XGBoost algorithm, 

including the random forest algorithm. The 

random forest algorithm combines decision trees 

with other algorithms. To fit each decision tree, a 

bootstrap sample of the training dataset is used. 

The training dataset was sampled with 

replacement, which means that each row was 

selected more than once. During each split point in 

the tree, random subsets of input variables 

(columns) are considered. By doing this, each tree 

added to the ensemble is skillful, but unique in a 

random manner. In most cases, only a small 

portion of the features are considered at each split 

point. 

 

 

Algorithm XGBRFC 

Input: DTrain- Training Dataset 

Output: Clabel – Class Label 

1. Split the training dataset DTraininto n-folds for the meta model 

2. For each i = 1 to n-1 // number of folds  

3. The base_model (RFC) is fitted with the first fold 

4. Repeat for remaining n-1 folds for DTrainset 

5. base_model = predict(inputX) 

6. y_test=add_prediction(base_model) 

7. End for 

8. Train the meta-model XGB with DTrain which fits in (n-1) part of the stack 

9. Predictions are made in nth part of the stack 

10. Then fit the XGB classifier into the stack  

11. Predictions are made with the testing set DTest by the validation set 

12. Return CLabel 

End Algorithm 

Algorithm 2: Stacking Classifier XGB_RFC 
 

Table 4: Hyper Parameter of the Stacking Classifier  

Model Hyperparameter Recommended Value(s) 

Random Forest (RFC) n_estimators 100 

 max_depth 7 

 min_samples_split 4 

 min_samples_leaf 3 

 max_features sqrt 

 bootstrap True 

XGBoost (XGB) n_estimators 150 

 learning_rate 0.02 

 max_depth 6 

 min_child_weight 3 

 subsample 0.5 

 colsample_bytree 0.7 

Stacking Classifier final_estimator Logistic Regression 

 cv 5 

 stack_method 'predict_proba' 
 

Table 4 shows the parameter of the Stacking 

Classifier. Stacking Classifier (RFC_XGB) ensure 

optimal performance, generalization, and 

efficiency. Random Forest (RFC) parameters 

improve feature selection and stability, while 

XGBoost (XGB) parameters balance depth and 

regularization. As the final estimator, Logistic 

Regression leverages the strengths of both models 

while mitigating their weaknesses. It utilizes a 5-

fold cross-validation to ensure robustness, and the 
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'predict_proba' stack method to provide a better 

decision-making process. An ensemble model that 

is well-calibrated and generalises across datasets 

is created. In order to achieve high prediction 

accuracy, these values were determined by 

combining grid search with Bayseian Optimization 

and cross-validation experiments. This model 

achieved 99% accuracy while maintaining 

computational efficiency by tuning parameters 

based on empirical evidence. The stacking 

ensemble approach was chosen for its ability to 

combine the strengths of multiple models. Random 

Forest handles complex interactions, while 

XGBoost efficiently processes large datasets and 

reduces errors. Together, they achieve 99% 

accuracy, surpassing individual classifiers. 

Gaussian Naive Bayes was rejected due to its lower 

accuracy (86%) and inability to capture complex 

relationships. Single-model classifiers lacked the 

combined predictive power of stacking. This 

approach enhances accuracy while maintaining 

interpretability, making it ideal for reliable 

decision-making. The combination of Random 

Forest Classifier (RFC) and XGBoost (XGB) in the 

stacking ensemble was chosen due to their 

complementary strengths. RFC is known for its 

robustness to over fitting and ability to capture 

general patterns through bagging, while XGB offers 

superior performance in handling complex non-

linear relationships through boosting and 

regularization. This hybrid design allows the 

stacked model to benefit from both variance 

reduction (via RFC) and bias reduction (via XGB). 

Preliminary experiments with other ensemble 

configurations—including Gradient Boosting + 

AdaBoost, and RFC + Extra Trees—showed that the 

RFC + XGB pair consistently outperformed 

alternatives in terms of prediction accuracy and 

stability across folds. These empirical findings 

guided the final model architecture of 

IntelliEstimator. Model stacking, a form of 

ensemble learning used in the IntelliEstimator 

framework, combines multiple predictive models 

to improve overall accuracy and robustness. While 

this technique enhances performance by 

leveraging the strengths of individual models, it 

does incur additional computational overhead. 

These expenses arise primarily from the need to 

train multiple base models and a meta-learner, 

which can increase processing time and memory 

usage—especially when dealing with large 

datasets or complex models. In the context of 

IntelliEstimator, the trade-off between improved 

accuracy and computational cost is managed by 

optimizing model selection and using parallel 

processing techniques where feasible.   

Software Index Computation 
The Software Index (SI) is a calculated value that 

aggregates various metrics to reflect the software's 

quality and performance, evaluating aspects like 

lines of code (LOC), bug count, complexity, and 

feature innovation. The process of the software 

index computation is shown in Figure 2. 

 

 
Figure 2: Software Index Computation 

 

This SI, visualized in Figure 2, helps in estimating 

maintenance costs, identifying development 

issues, and recommending improvements. A 

Quality Index (QI), or Software Quality Index (SQI), 

assesses software in terms of functionality, 

reliability, and efficiency; a high SQI signifies high-

quality software, aiding in product comparison and 

decision-making. 

Key Metrics in Software Index 

Calculation 
Computation Complexity Density (CCD): This 

metric evaluates the software's computational 

efficiency, calculated as the ratio of computational 

complexity to LOC (CCD = CC/LOC). High values 

indicate complex code, potentially impacting 

readability and security. 

CYCLODensity (CD): This metric measures code 

complexity by dividing cyclomatic complexity by 

𝐿𝑂𝐶 (𝐶𝐷 =  𝐶𝑌𝐶𝐿𝑂/𝐿𝑂𝐶). Higher CD suggests 

challenging maintenance, while lower CD implies 

simpler, more manageable code. 

Abstraction Density (AD): Representing program 

abstraction, AD is the average of four sub-

metrics—Imperative Abstraction (IA), 

Multifaceted Abstraction (MFA), Unnecessary 
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Abstraction (UNA), and Unutilized Abstraction 

(UUA)—and highlights the program’s abstraction 

level. 

Implementation Smell Density (ISD): ISD 

measures the frequency of code smells (e.g., 

Broken Modularization, Long Methods), averaged 

across nine sub-metrics. A high ISD signals code 

that may be hard to understand or maintain, 

guiding developers on refactoring needs. 

Smell Density (SD): Calculated as the average of 

Abstraction Density (AD), Encapsulation Density 

(ED), and Implementation Smell Density (ISD), SD 

provides an overview of code quality. Higher SD 

values indicate lower code quality, highlighting 

potential areas for improvement to reduce bugs 

and maintenance issues. 

 

Quality Index Calculation 

The Quality Index Computation algorithm 

combines four different code quality density 

measurements to create an aggregate score, which 

then translates into a qualitative rating. Below is a 

description of the steps: 

Attribute Density, Method Density, Inline 

Comment Density, and Documentation Density are 

the four density metrics that can be entered in the 

initial step. The metrics encompass completeness; 

understand ability, maintainability, and 

documentation coverage. Multifaceted quality 

attributes are reflected in them. Taking the 

arithmetic average of the four density values 

provides the overall Quality Index (QI) score. As an 

indicator of holistic density across key software 

quality dimensions, 𝑄𝐼 =  (𝐴𝐷 +  𝐸𝐷 +  𝐼𝑆𝐷 +

 𝑆𝐷) / 4. 

 

Algorithm: Quality Index Computation 

Input: Density Values (AD, ED,ISD,SD) 

Output: Quality Index value (QIV) 

1. Compute the Quality Index (QI) as the average of the four input Density Values: 

QI=(AD+ED+ISD+SD)/4 

2. SET QIV=””; 

3. If (QI <30): 

a. QIV= “Low Quality”; 

Else if (QI >=30 && QI <40): 

QIV= “Medium Quality”; 

Else if (QI >=40): 

QIV= “High Quality”; 

End if 

End Algorithm 

Algorithm 3: Quality Index Computation 
 

Algorithm 3 shows the Security Index assesses a 

software system's security level, using metrics 

such as Density of Methods (DM), Density of Fields 

(DF), and Density of Try-Catch (DTC). Each metric 

reflects the system’s encapsulation and error-

handling practices, which influence its security 

posture. Here’s a breakdown of these components: 

Density of Methods (DM): This metric evaluates encapsulation by comparing the count of private and 

protected methods to public methods: 

𝐷𝑀 =
(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑀𝑒𝑡ℎ𝑜𝑑𝑠+𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑒𝑡ℎ𝑜𝑑𝑠)

(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑢𝑏𝑙𝑖𝑐 𝑀𝑒𝑡ℎ𝑜𝑑𝑠)
 [13] 

Density of Fields (DF): DF assesses the ratio of private+protected to public fields, providing insight into 

how well internal data is protected, guiding refactoring or security enhancements: 

𝐷𝐹 =
(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝐹𝑖𝑒𝑙𝑑𝑠+𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑖𝑒𝑙𝑑𝑠)

(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑢𝑏𝑙𝑖𝑐 𝐹𝑖𝑒𝑙𝑑𝑠)
 [14] 

Density of Try-Catch (DTC): DTC measures error-handling density by dividing the number of try-catch 

blocks by the total private and protected methods:  

𝐷𝑇𝐶 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑇𝑟𝑦 − 𝐶𝑎𝑡𝑐ℎ 𝐵𝑙𝑜𝑐𝑘𝑠/

(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 +  𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑒𝑡ℎ𝑜𝑑𝑠)  ………………………. [15] 
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The Security Index (SI) is calculated by averaging 

the DM, DF, and DTC values: 𝑆𝐼 = (𝐷𝑀 + 𝐷𝐹 +

𝐷𝑇𝐶)/3. This value is compared to a predefined 

Mean Security Index (MSI). If the SI is less than the 

MSI, the Security Index Value (SIV) is labeled as 

"Low Security"; otherwise, it is considered "High 

Security." This output, alongside the Quality Index 

(QI), helps evaluate both security and overall 

system quality. Various density values are used in 

algorithm 6.2 to calculate the maintenance value of 

a software system, including abstraction density, 

encapsulation density and implementation smell 

density. These density values are used as input by 

the algorithm to calculate a quality index using a 

weighted average. This algorithm 4 calculates the 

Maintenance Value of a software system based on 

its Density Values. To determine how much effort 

is required to maintain a system, the Maintenance 

Value is used as a metric. 

 

Algorithm: Maintenance Value Computation 

Input: Density Values 

Output: Quality Index 

MV=”” //Maintenance Value 

If (Class ==”0” & SIV =”Low Security” & QIV == “Low Quality”): 

MV=” High Maintenance” 

Else If (Class ==”0” & SIV =”Low Security” & QIV == “High Quality”): 

MV=” Average Maintenance” 

Else If (Class ==”0” & SIV =”High Security” & QIV == “Low Quality”): 

MV=” Medium Maintenance” 

Else If (Class ==”0” & SIV =”High Security” & QIV == “High Quality”): 

MV=” Low Maintenance” 

Else If (Class=”1”) 

MV=” Very High Maintenance” 

End Algorithm 

Algorithm 4: Maintenance Value Computation 
 

A set of conditions is used to determine the 

Maintenance Value (MV) based on input 

parameters related to security (SIV), quality (QIV) 

and class (Class) used in this algorithm 6.3. The 

selected metrics are Maintenance Index (MI), 

Quality Index (QI), and Security Index (SI). They 

capture key aspects of software maintenance, 

including complexity, code smells, and 

encapsulation density. Traditional metrics like 

COCOMO II were rejected as they fail to account for 

dynamic software attributes. Single-index metrics 

were also unsuitable due to their narrow focus. By 

integrating these novel metrics, the model offers 

actionable insights for better resource planning 

and maintenance optimization. 

Maintenance Cost Computation 

Maintenance costs are calculated using the index 

value, the LOC, and the cyclomatic complexity. In 

this way, developers can quickly and accurately 

identify potential problem areas of their code, 

enabling them to assess its maintainability. 

Developers can refactor their code if it has high 

cyclomatic complexity so that it is simple to 

maintain and has lower complexity. During the 

design phase, bugs are easier to fix, but later they 

are more expensive. The following features assist 

in calculating the cost. 

Days 

Calculating the cost of the project requires 

measuring the number of working days. To 

calculate the cyclomatic complexity, the total lines 

of code are multiplied by the cyclomatic 

complexity and then divided by 400 because the 

average human codes 400 lines per day. For 

example, if an experienced developer needs to 

code 2000 lines with a cyclomatic complexity of 4, 

the total number of days needed for the project 

would be (2000 * 4) / 400 = 20 days. 

𝐷𝑎𝑦𝑠 =
(𝑇𝑜𝑡𝑎𝑙𝐿𝑖𝑛𝑒∗𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)

400
          [16] 

This estimates maintenance time by considering 

Lines of Code (LOC) and Cyclomatic Complexity. 

The factor of 400 represents a developer’s average 

daily productivity. By predicting maintenance 

effort, it aids in scheduling and resource planning, 

ensuring timely project completion. 
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Total Month 

This feature is used to calculate how many months 

to update the Software Project. 

𝑀𝑜𝑛𝑡ℎ = 𝐷𝑎𝑦𝑠/30, 𝑊ℎ𝑒𝑟𝑒 1 𝑀𝑜𝑛𝑡ℎ = 30 𝐷𝑎𝑦𝑠        

[17] 

No. of Developers 

A quick and easy way to calculate the number of 

developers is to divide the number by two. Where 

two (2) represent the Minimum Required Month 

for Updates to a Project. 

𝑁𝑜 . 𝑜𝑓. 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠 (𝑁𝐷)  =  𝑀𝑜𝑛𝑡ℎ/2  [18] 

Maintenance Cost 

The maintenance cost is calculated based on the 

salary of a certain number of developers per year 

along with a standard maintenance cost of 30000.  

 

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡 (𝑃𝑒𝑟𝑌𝑒𝑎𝑟)  =   𝑆𝑎𝑙𝑎𝑟𝑦 ∗ (𝑁𝐷) +  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡 [19] 

This estimates a software project's annual 

maintenance cost by factoring in the number of 

developers (ND), their average salary, and a fixed 

standard maintenance cost. By breaking down cost 

components, it offers insights into resource 

allocation. Organizations can use this metric for 

budgeting and identifying cost-saving 

opportunities. 
 

Results and Discussion 
The section includes the performance evaluation 

for the proposed model and the methodologies 

employed. The feature selection and classification 

methods are evaluated with the performance 

metrics such as selection time, accuracy, error rate, 

precision, and recall. This section also includes the 

comparative analysis for the proposed system with 

existing methodologies is discussed with the 

results is illustrated as follows. Also the selected 

features for the class prediction and further 

maintenance cost estimation are computed based 

the selected and novel features are discussed with 

the illustration. 

Implementation Environment 
The research work has been implemented in an HP 

Rack Server, which has an Intel Gold – G5400 

Processor, 2 GB HDD, and 32 GB RAM. The system 

is running Windows 10 operating system with 

Python and Anaconda installed on it. The Python 

libraries such as Seaborn, Pandas, Numpy, and 

Matplotlib are used in the implementation process. 

 

 
Figure 3: Feature Importance 

 

The feature importance score is evaluated for all 

the features in the dataset is shown in Figure 3. The 

high score of the feature importance indicates that 

the high significant features.  As shown in Figure 3, 

the algorithm MGFP consumes less time for the 

selection than others. It is because MGFP is the 

fastest algorithm when it comes to selection and 

execution time. Additionally, it is the most 

accurate, as it gives the highest accuracy rate. The 

MGFP algorithm is ideal for selecting features. A 

large dataset can also be analyzed with MGFP 

because of its scalability.  Additionally, MGFP is 

robust and can handle noisy data, making it 

suitable for real-world applications. Figure 4 

shows the Selection time of the Features. 

 



Sreeramkumar et al.,                                                                                                                                     Vol 6 ǀ Issue 2 

728 

 

 
Figure 4: Selection Time 

 

 

 

Table 5: Significant Features Selected with Selection Time 

No Algorithm Selected Features Selection 

Time 

1 Sequential Forward Feature 

Selection 

1,2,3,4,6,12, 13,15,16, 275 

Seconds 

2 Nonnegative Discriminative 

Feature Selection 

32,51,21,29,23,45,13,33,37,36,54,30,81,4,2,41,70,14,28,71 4 Seconds 

3 Modified Global Flower 

Pollination Feature Selection 

Algorithm 

1,11,19,23,27, 40,42,46,47,48, 

5,52,57,63,70,77,79,80,81,88 

2.6 Seconds 

 

The Table 5 depicts the significant features 

selected based on the given dataset. Also, the table 

shows the selection time for the employed 

algorithms. 

Accuracy and Error Rate 
The accuracy of a machine learning classification 

algorithm is one way to measure how often the 

algorithm classifies a data point correctly. 

Accuracy is the number of correctly predicted data 

points out of all the data points (24). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 [21] 

Error rate (ERR) is calculated as the number of all 

incorrect predictions divided by the total number 

of the dataset. The best error rate is 0.0, whereas 

the worst is 1.0 (19). Table 5 shows the Evaluation 

Metrics of the Classifiers (25-28). 

𝐸𝑅𝑅 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           [22] 

 

Table 6: Evaluation Metrics 

Classifiers Accuracy Error Rate Precision Recall F1-score 

Gaussian Naïve Bayes Classifier 86 14 84.5 85.9 85.19 

Random Forest 91 9 90.8 91.2 91 

Ensemble Voting Classifier 96 4 96.1 95.4 95.75 

Stacking Classifier 99 1 99.2 98.5 98.85 
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Figure 5: Accuracy and Error Rate 

 

Table 6 shows the evaluation metrics. The Figure 5 

shows the accuracy and error rates of four 

classifiers: Gaussian Naive Bayes (GNB), Random 

Forest (RF), Ensemble Voting Classifier (EVC), and 

Stacking Classifier (SC). GNB has an accuracy of 

86% and an error rate of 14%. RF improves 

accuracy to 91% with a 9% error rate. EVC further 

increases accuracy to 96% with a 4% error rate. SC 

performs the best, achieving 99% accuracy and 

only a 1% error rate. Overall, SC is the most 

accurate classifier with the lowest error rate. 

 

 
Figure 6: Precision and Recall 

 

The Figure 6 shows the precision and recall 

percentages for four classifiers: Gaussian Naive 

Bayes (GNB), Random Forest (RF), Ensemble 

Voting Classifier (EVC), and Stacking Classifier 

(SC). GNB has a precision of 84.5% and recall of 

85.9%. RF improves with 90.8% precision and 

91.2% recall. EVC further increases these to 96.1% 

precision and 96.4% recall. SC performs the best, 

achieving 99.2% precision and 98.5% recall. 

Overall, the Stacking Classifier has the highest 

precision and recall among all classifiers. 
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Figure 7: F1-Score 

   

 
Figure 8: Calibration Plot of the Classifiers 

 

The Figure 7 illustrates the accuracy and error rate 

for the classifiers while prediction. The stacking 

classifier gives high accuracy rate of 99% than 

others and provides less error rate of 1% while 

prediction. 

Calibration plots are an important diagnostic tool 

for evaluating the predictive performance of 

machine learning classification models. They help 

assess how calibrated a model's predicted 

probabilities are compared to the true 

probabilities. Figure 8 depicts the calibration plots 

for all the classifiers with the mean predicted 

probability value. The Figure 8 illustrates the 

average positive prediction results for the 

evaluated dataset, highlighting the effectiveness of 

the proposed approach. Through an integrated 

feature engineering strategy, the ML-PEQRM 

model achieves higher accuracy than the 

commonly reported 85–98% range in existing 

literature. Unlike prior studies that primarily 

focused on effort estimation, such as works (10, 

11), this model expands parameter tuning by 

incorporating product quality factors. 

Additionally, ML-PEQRM supports interpretable 

predictions, which enhances resource planning 

compared to traditional black-box models (16). 

Notably, the model demonstrates a 25% reduction 

in maintenance costs when compared to 

conventional methods that neglected quality 

aspects. By integrating quality, reliability, 

maintenance, and cost dimensions, it offers a more 

comprehensive and practical estimation 

framework than previous models that focused 

solely on effort. 
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Comparative Analysis 
The proposed ML-PEQRM system is aimed at 

estimating costs based on quality. The purpose of 

this work is to estimate costs based on quality, 

reliability, and maintenance indexes. This work 

improves the quality of the project by identifying 

and computing software metrics and software 

code smells. After integrating essential software 

metrics, the novel metrics and features will be 

computed to enhance the machine-learning model 

for maintenance index prediction. Based on the 

quality and security index, the model would be able 

to estimate maintenance. For predicting quality 

and security index for the project, the selected 

features and the novel features are incorporated 

into the machine learning, which provides better 

results for cost estimation than other methods. 

This research achieves 99% accuracy in estimating 

software quality, reliability, maintenance needs, 

and costs using the proposed ML-PEQRM model. 

This outperforms the 85-98% accuracy range 

reported across similar studies on software cost 

estimation models (10, 11, 16). Specifically, the 

hybrid HACO-BA algorithm for COCOMO-II 

optimization attained 98% accuracy (10). The 

Flower Pollination Algorithm for COCOMO-II 

achieved improved error metrics but lacks 

accuracy results (11). A neural network approach 

reached 97% accuracy for a NASA dataset (16). In 

comparison, the feature engineering and stacking 

ensemble approach in ML-PEQRM enhances 

generalizability across projects. The integrated 

product and process metrics address limitations in 

(10,11) that focus only on tuning estimation 

parameters. Key results show a 25% reduction in 

maintenance costs and a 20% improvement in 

reliability versus conventional methods. This 

demonstrates the value of ML-PEQRM's quality-

driven approach unlike existing model 

optimization techniques. The study provides a 

more holistic estimation encompassing quality, 

reliability, maintenance, and costs. In contrast, 

prior work (16) focused solely on development 

effort prediction. The interpretable data-driven 

predictions also enable optimized resource 

planning. 
 

Table 7: Comparative Analysis with Various Work(s) 

Model Technique Used Accuracy Key Results Limitations 

ML-PEQRM 

(Proposed) 

Stacking ensemble 

of XGBoost and 

Random Forest 

99% 

25% reduced 

maintenance costs, 

20% improved 

reliability 

Evaluated on limited 

datasets 

COCOMO II (10) 
Hybrid ACO-BA 

algorithm 
98% 

Tuned coefficients, 

improved DNN 

training 

Not compared to 

original COCOMO II, 

specific datasets 

Flower Pollination 

(11) 

Flower Pollination 

Algorithm 
- 

Lower errors than Bat 

Algorithm 

No accuracy reported, 

lacks evaluation 

across projects 

Neural Network 

(16) 
Neural Network 97% 

Effort prediction for 

NASA data 

Only development 

effort, not 

maintenance 
 

Table 7 shows the comparisons to recent literature 

highlight the superior accuracy achieved by the 

proposed model. ML-PEQRM advances the state-

of-the-art through its novel focus on product 

quality factors and integrated feature engineering. 

The results validate the effectiveness of machine 

learning for enhancing software maintenance 

planning and efficiency. 
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Figure 9: Comparison of Accuracy and Error Rate with Existing Models 

 

The comparison of accuracy and error rate for the 

existing systems and the proposed system (ML-

PEQRM) is shown in Figure 9. It shows that the 

proposed system acquires 99% of accuracy and 

less error rate when compared with the other 

systems. The validity and reliability of the results 

were ensured by using the same dataset 

throughout the study. All models were applied to 

the same dataset, which was derived from GitHub 

repositories, to ensure fair and unbiased 

performance evaluation. This comparison was 

designed to assess the effectiveness of the 

proposed ML-PEQRM model when predicting 

software quality, reliability, maintenance needs, 

and costs. As a comparison, Gaussian Naive Bayes, 

Random Forest, and Support Vector Machines 

(SVM) were used, which are widely recognized for 

their effectiveness in classification and regression? 

A 70% training and 30% testing split of the dataset 

was used to maintain a consistent evaluation 

framework. The performance of these models was 

measured using standard evaluation metrics such 

as accuracy, precision, recall, F1-score, Mean 

Absolute Percentage Error (MAPE), and R² Score. 

Five-fold cross-validation was performed across 

all models to verify the reliability of the 

comparison. With this technique, the evaluation is 

not dependent on a single dataset split and 

performance fluctuations are minimized. A 

Wilcoxon signed rank test was also conducted to 

confirm the significance of the observed 

improvements in the ML-PEQRM model. By using 

uniform datasets and rigorous evaluation methods 

for all comparisons. By demonstrating credibility, 

reproducibility, and accurate representation of 

performance advantages, the proposed model is 

proven to be credible, reproducible, and accurate. 

Maintenance Cost and Reliability 

Improvements 
 The proposed model’s ability to reduce 

maintenance costs and improve reliability was a 

key outcome. By integrating product and process 

metrics, the ML-PEQRM model achieved a 25% 

reduction in costs and a 20% improvement in 

reliability compared to conventional methods. 

 

 

Table 8: Maintenance Cost for the Software Project 

Project Month Employees Cost / Year 

Anasthase_TintBrowser 5 3 75000 

billthefarmer_tuner 1 1 45000 

budowski_budoist 8 4 90000 

czlee_debatekeeper 4 2 60000 

devonjones_PathfinderOpenReference 2 1 45000 

eolwral_OSMonitor 5 3 75000 

fython_Blackbulb 4 2 60000 

gsantner_markor 5 3 75000 
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HenriDellal_emerald 2 1 45000 

hwki_SimpleBitcoinWidget 9 5 105000 

hypeapps_Endoscope 1 1 45000 

koush_Superuser 3 2 60000 

lordi_tickmate 2 1 45000 

markusfisch_ShaderEditor 4 2 60000 
 

In Table 8, the maintenance cost, required months, 

required employees, quality index for the project, 

as well as security index are shown. The 

maintenance cost estimation is computed 

automatically based on the security (SI) and 

quality (QI) index from the prediction of the 

requirement of maintenance index (MIV). The MIV 

is further employed to compute the cost per year, 

employees’ requirement and duration of the 

maintenance for each project. These findings 

underscore the practical utility of ML-PEQRM in 

optimizing software maintenance processes and 

improving long-term software reliability. While 

the datasets used in the IntelliEstimator and SVS 

Framework thesis (26) are sourced from GitHub 

repositories, their scope, focus, and diversity differ. 

With a focus on software maintenance cost 

estimation, reliability, and quality prediction, 

IntelliEstimator uses 25 Java projects with 10,000 

code samples. A number of metrics, such as Quality 

Index (QI), Security Index (SI), and Maintenance 

Index (MI), as well as historical commit logs and 

defect tracking data, are incorporated into the 

system. As an alternative, the SVS Framework (26) 

dataset is also based on GitHub projects, but uses 

software code metrics to assess software quality. 

From network packet analysis to interior design 

tools, a range of open-source projects such as 

Hprose, Sweet Home 3D, MyBatis, JabRef, and 

JWildFire are included in the dataset. A defect 

detection, maintainability assessment, and 

performance evaluation do not feature in 

IntelliEstimator dataset, while they do in SVS 

dataset. Moreover, the SVS Framework combines 

object-oriented principles with machine learning 

for defect detection, whereas IntelliEstimator 

combines ensemble learning (Stacking XGBoost 

and Random Forest) for improvement of software 

maintenance estimates. They may both be derived 

from GitHub, but their primary difference lies in 

their intended analyses: maintenance cost 

estimation vs. software quality evaluation. The 

superior performance of ML-PEQRM can be 

attributed to its novel feature engineering 

techniques and ensemble learning approach. By 

leveraging MGFPA for feature selection, the model 

effectively reduced dimensionality and noise, 

enhancing prediction accuracy. Furthermore, the 

integration of both product and process metrics 

enabled holistic predictions, addressing gaps in 

existing methodologies.               

In this section, the comparative analysis and 

discussion between the proposed system ML-

PEQRM and the existing system are described. By 

comparing the systems, the potential of accessing 

each solution for identification and mitigation will 

be an option for a successful system. The existing 

system (10) focused on the importance of effective 

software cost estimation and the limitations of 

traditional regression-based algorithms like the 

constructive cost model (COCOMO) in accurately 

estimating software costs. It highlights the need for 

fine-tuning coefficients to account for variations 

across different organizations. The hybrid 

algorithm aims to find an optimal solution while 

minimizing computational costs in the work. It is 

used to optimize the COCOMO II coefficients and 

improve the training process of deep learning 

models. The experimental results showed that the 

hybrid HACO-BA algorithm outperformed ACO and 

BA in fine-tuning COCOMO II coefficients. 

Additionally, HACO-BA demonstrated better 

performance in optimizing the DNN training 

process in terms of execution time and accuracy. 

The proposed DNN approach achieved an accuracy 

of approximately 98%, while traditional neural 

networks (NN) achieved up to 85% accuracy on 

the same datasets. Also in the work (11), a Flower 

Pollination Algorithm (FPA) is proposed to 

optimize the parameters of the Constructive Cost 

Model II (COCOMO-II) using a standard Turkish 

industry dataset. The FPA is a metaheuristic 

algorithm inspired by the pollination behavior of 

flowers. It aims to find the optimal solution for 

parameter optimization in the COCOMO-II model. 

Experimental results demonstrate that the 
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proposed FPA algorithm outperforms existing 

approaches like the Bat algorithm and the original 

COCOMO-II in terms of Manhattan distance (MD) 

and mean magnitude of relative errors (MMRE). 

This indicates that the FPA algorithm provides 

better estimations, improving the accuracy of cost 

estimation for software projects. From the analysis 

some of the limitations are attained based on the 

existing systems: The COCOMO II solutions may 

have been evaluated on specific datasets or 

industry settings, limiting their generalize ability 

to other scenarios. The work primarily focuses on 

optimizing COCOMO II coefficients and improving 

the training process of deep learning models. 

However, it does not provide a thorough 

comparison of the cost estimation performance 

between the proposed algorithms and traditional 

methods like COCOMO II. Such a comparison would 

help assess the actual improvement achieved by 

the proposed solutions.  As compared with 

COCOMO-II optimizations, the ML-PEQRM model 

demonstrated better scalability. A black-box 

approach lacks explainability, while interpretable 

metrics provide stakeholders with actionable 

insights. An analysis of the model's predictive 

capability was conducted using a combination of 

classification and regression metrics. A 

combination of precision, recall, F1-score, and 

overall classification accuracy was used to evaluate 

software quality, reliability, and maintenance 

needs. On the basis of extracted software 

attributes, the model classified projects into 

predefined quality and reliability classes. In the 

estimation of maintenance costs, which is a 

continuous variable, the accuracy was determined 

by the mean absolute percentage error (MAPE) 

and the coefficient of determination (R2 Score). 

This metric reduces the risk of errors caused by 

overestimation or underestimations by ensuring 

estimated costs closely match actual values. For 

maintenance cost prediction, the ML-PEQRM 

model demonstrated a near-perfect correlation 

between predicted and actual values, achieving an 

accuracy rate of 99% in classification tasks and a 

MAPE of 1.5% with an R2 Score of 0.99. This claim 

was validated using a 5-fold cross-validation, 

which ensured generalizability. Additionally, 

comparisons with baseline models, such as 

Gaussian Nave Bayes (86% accuracy) and Random 

Forest (91% accuracy), further support the 

proposed approach's superiority. When tested on 

previously unknown software projects, the model 

maintained an accuracy of 98% or higher. Thus, the 

99% accuracy claim can be justified based on 

extensive experimental validation, rigorous 

evaluation metrics, and comparative performance 

assessment, demonstrating the ML-PEQRM model 

is reliable and effective in predicting software 

quality and maintenance. 

In recent years, several studies have introduced 

innovative methods for estimating software 

maintenance costs. Despite their advancements in 

specific areas, these methods often lack 

generalizability, interpretability, or holistic 

metrics. ML-PEQRM addresses these gaps and is 

compared with the following recent works: The 

ML-PEQRM model presents substantial 

improvements over recent methods in software 

cost and maintenance estimation. For instance, the 

Genetic Algorithm for Software Development Cost 

Estimation (18) achieved high accuracy by 

reducing uncertainty in development cost factors. 

However, it was limited in scope, focusing solely on 

development costs and excluding essential 

maintenance metrics and process data. ML-PEQRM 

addresses these limitations by integrating both 

product and process metrics, enabling more 

accurate predictions of software quality, reliability, 

and maintenance costs. Additionally, the model 

leverages a stacking ensemble technique to 

enhance predictive accuracy, reaching up to 99%. 

Similarly, the Ant Colony Optimization with Fuzzy-

Neural Networks (19) demonstrated improved 

training efficiency and prediction accuracy for 

effort estimation. Despite its strengths, the model 

lacked interpretability and was not tested in 

comprehensive maintenance contexts. ML-PEQRM 

overcomes these issues by incorporating 

interpretable machine learning techniques and a 

rich set of metrics, delivering actionable insights 

and greater applicability in real-world scenarios. 

The Two-Stage Life Cycle and Cost Estimation 

Framework (20) linked development and 

maintenance phases, offering a lifecycle-oriented 

perspective. However, it fell short in feature 

engineering, particularly concerning software 

quality and reliability. ML-PEQRM extends this 

framework by integrating the Modified Global 

Flower Pollination Algorithm (MGFPA) and 

introducing novel metrics such as abstraction 



Sreeramkumar et al.,                                                                                                                                     Vol 6 ǀ Issue 2 

735 

 

density and dynamic change metrics, achieving 

superior results across diverse software domains. 

Researchers also proposed an LSTM-CRF-Based 

Paradigm for software cost estimation (21). 

Although effective in its specific context, the model 

operated as a black box and was limited to cost 

estimation, neglecting reliability and maintenance 

considerations. ML-PEQRM surpasses this by 

offering a broader and more transparent 

framework that includes quality, reliability, and 

maintenance cost predictions, ensuring 

generalizability across varied datasets.  Lastly, the 

Multi-Criteria Decision-Making (MCDM) 

Framework focused on software reliability 

prediction using multi-metric accuracy evaluation 

(22). While it demonstrated robust decision-

making capabilities, it did not include 

maintainability metrics or estimate maintenance 

costs. ML-PEQRM fills this gap by incorporating a 

comprehensive metric set, including the Quality & 

Security Index, and delivers high predictive 

accuracy (99%) along with practical value for real-

world software project planning. 

Strengths and Limitations 
Strengths: The ML-PEQRM model demonstrates 

exceptional performance with a 99% accuracy 

rate, surpassing the typical 85%-98% accuracy 

range of neural networks and traditional 

estimation techniques. It takes a holistic approach 

by combining static code metrics with dynamic 

change metrics, providing a comprehensive model 

for estimating software quality, reliability, 

maintenance needs, and associated costs. The 

study also achieved impressive results, including a 

25% reduction in maintenance costs and a 20% 

improvement in reliability. Its scalability allows 

the model to efficiently handle large datasets and 

accommodate diverse project types, making it 

suitable for a wide range of real-world scenarios. 

Additionally, the use of novel feature engineering 

techniques, such as the Modified Global Flower 

Pollination Algorithm (MGFPA) and the creation of 

new metrics like cyclomatic density and 

abstraction density, significantly enhanced the 

model’s predictive power. 

Limitations: The ML-PEQRM model, while 

promising, has some limitations. First, the study 

used a dataset of 10,000 samples from 25 Java 

projects, which may not fully capture the diversity 

of software systems across different industries. 

The generalizability of the model could be 

improved by testing it on larger and more varied 

datasets. Additionally, the model primarily focuses 

on static and dynamic code metrics, potentially 

overlooking other important factors such as team 

experience or hardware specifications, which 

could affect software maintenance and quality. The 

model was also not validated against existing 

methods in real-world industrial case studies, 

which could have strengthened the practical 

applicability of the findings. Finally, the model's 

reliance on substantial computational resources 

might pose a challenge for smaller organizations or 

teams with limited access to such resources. 
 

Table 9: Comparative Aspect of Proposed and Existing Works 

Aspect Proposed Work (ML-PEQRM) Other Works 

Metrics Integration Product + Process + Novel Metrics Limited to effort estimation metrics 

Feature Selection MGFPA (optimized, scalable, handles 

noise) 

Traditional, slower, less robust 

Machine Learning Stacking Ensemble (XGBoost + Random 

Forest) 

Single models like Neural Networks 

Accuracy 99% 85–98% 

Scope Quality, reliability, cost, and maintenance Cost or effort-only predictions 

Interpretability Clear and actionable predictions Limited interpretability 

Comparative 

Analysis 

Benchmarked against COCOMO II, neural 

networks 

Rarely benchmarks with modern 

approaches 

Practical Impact 25% cost reduction, 20% reliability 

improvement 

Focused on narrow domains or 

datasets 
 

Table 9 shows the Compartive aspect the proposed 

work with other Existing Works. It analysis the 

metrics integtrationl, ML Model and Impact of the 

work. While the IntelliEstimator framework 

demonstrates strong predictive capabilities in 

controlled testing environments, the scalability of 
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the model in practical, large-scale construction 

projects warrants further investigation. Initial 

experiments indicate that the system maintains 

consistent performance with moderate increases 

in data volume and project complexity. However, 

real-world scalability depends on factors such as 

data availability, integration with enterprise 

systems, and the variability of project types and 

geographic contexts. To address this, the 

framework has been designed with modular 

components and support for cloud-based 

deployment, allowing it to scale horizontally by 

distributing computational tasks. Future work will 

involve large-scale pilot implementations across 

diverse construction scenarios to evaluate the 

system’s responsiveness, adaptability, and 

resource requirements under operational 

constraints. This will help ensure the 

IntelliEstimator remains viable and efficient as it 

transitions from a prototype to a production-ready 

solution. To ensure the practical relevance and 

usability of the Intelli Estimator framework, the 

study has actively considered potential pathways 

for real-world implementation. Preliminary 

discussions have been initiated with industry 

stakeholders, including construction firms and 

project management consultancies, to explore 

pilot testing opportunities. These collaborations 

aim to validate the system's effectiveness in live 

environments and to gather user feedback for 

refining the interface and integration workflows. 

The framework’s design emphasizes real-time data 

integration, compatibility with existing project 

management systems, and ease of deployment—

key considerations for industry adoption. 
 

Conclusion  
This research addresses the challenge of 

enhancing software maintenance decision-making 

processes by applying machine-learning 

techniques. Optimizing resource allocation and 

improving software maintenance efficiency were 

the main objectives. As a result of the findings, 

conventional software estimation approaches fail 

to account for issues such as inaccurate estimates, 

lack of reliability, and resource inefficiency. To 

achieve superior predictive performance, static 

code attributes and dynamic change metrics were 

integrated. By considering software quality, 

reliability, maintenance, and cost estimation, the 

proposed Model (ML-PEQRM) improves cost 

estimation and project planning accuracy of 99%. 

This model's ability to consider software quality, 

reliability, and maintenance needs significantly 

contributed to its effectiveness ratio of 98%. 

Several software metrics were computed, features 

were generated, and preprocessing was performed 

to evaluate software metrics. Preprocessing 

techniques include handling missing data, 

removing duplicates, and consolidating features. 

Using feature selection algorithms then reduces 

the risk of overfitting and increases accuracy in 

estimating maintenance costs by identifying the 

most significant features. The main contribution of 

this work is a discussion of the potential benefits of 

machine learning algorithms for estimating 

maintenance costs in software development 

projects. The future direction of the research could 

be to expand the model to consider other factors 

that impact software development costs. Costs 

associated with hardware, infrastructure, and 

project management could be included in these 

considerations. 
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