

International Research Journal of Multidisciplinary Scope (IRJMS), 2025; 6(2): 710-737

Original Article | ISSN (O): 2582-631X DOI: 10.47857/irjms.2025.v06i02.03365

The IntelliEstimator: Estimating Maintenance Cost and
Prediction of Software Quality, Reliability, and Maintenance

Using Stacking RFCXGB Classifier
Sreeramkumar T1*, O Rajalakshmi Karthika2, Jayapratha C3, J Naveen

Ananda Kumar4, Govindaprabhu GB5

1Department of Computer science, Madura College, Madurai, Tamilnadu, India, 2Madurai Kamaraj University College, Madurai,
Tamilnadu, India, 3Department of Computer Science and Engineering, Karpaga Vinayaga College of Engineering and Technology,
Madhuranthagam, Tamilnadu, India, 4Tekinvaderz LLC, Florida, USA, 5Department of Computer Science, MKU, Madurai. Tamil Nadu,
India. *Corresponding Author’s Email: tsreeramkumar31@gmail.com

Abstract
Maintaining software is critical, but it can be difficult to estimate quality, reliability, effort, and costs. To accurately
predict these key parameters, we propose ML-PEQRM, a novel machine-learning model. A model estimates software
quality and reliability based on code complexity, maintainability, and size. It also predicts maintenance costs. The
proposed ML-PEQRM model utilizes code complexity, maintainability, and size as input features to estimate software
quality, reliability, maintenance efforts, and costs. The dataset comprises 25 projects with 10,000 samples of code
changes and maintenance activities. A 70-30 split created training and test datasets. Conventional estimation
approaches have limitations including 25% average error, unreliable predictions, and resource inefficiency. Static code
attributes related to complexity and prior changes increasing complexity by 10% were most informative. Integrating
product and process data decreased maintenance costs by 25% and improved reliability by 20%. Novelty lies in
integrating essential metrics for maintenance cost estimation and deriving new metrics using machine learning. Static
code attributes and change metrics are identified as most significant features. Novel metrics further improve
performance. This makes valuable contributions by developing an accurate, practical model that organizations can
leverage to enhance planning and efficiency of software maintenance activities. By leveraging code complexity,
maintainability, and size as inputs, the ML-PEQRM model provides a data-driven approach improving accuracy and
reliability of quality, reliability, maintenance, and cost estimation to 99%. This enables optimization of maintenance
costs, reduction in downtime, and predictive maintenance. It allows development of predictive models to enhance the
accuracy of maintenance operations to 99%.

Keywords: Cost Estimation, MGFPA, Machine Learning, Random Forest, Stacking Classifier, Software Maintenance,
XGB.

Introduction
Software maintenance involves improving,

optimizing, and adapting applications after they

are deployed as part of the software development

lifecycle. A precise estimate of software quality,

reliability, effort, and maintenance costs ensures

project success, optimizes resources, and

maintains operational efficiency. Traditional

estimation models, like COCOMO, have

demonstrated significant limitations in providing

precise and consistent predictions. Modern

software systems are complex, and these models

fail to take these factors into account, creating

inaccurate forecasts and resource allocations. The

software industry continues to evolve, and

machine learning has become a promising

solution. Using historical data, machine learning

models can more accurately predict software

quality and reliability while optimizing

maintenance costs. However, there are significant

research gaps. Most existing models overlook key

quality factors, don't integrate product and

process metrics comprehensively, and rely on

limited datasets, so they can't generalize across

domains. The study introduces ML-PEQRM

(Machine Learning Predictive Estimation for

Quality, Reliability, and Maintenance), a novel

machine learning model. ML-PEQRM provides

precise estimates for software quality, reliability,

maintenance costs, and effort based on key

metrics. It provides interpretable predictions that

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,

and reproduction in any medium, provided the original work is properly cited.

(Received 30th November 2024; Accepted 23rd April 2025; Published 30th April 2025)

mailto:tsreeramkumar31@gmail.com

Sreeramkumar et al., Vol 6 ǀ Issue 2

711

support informed decision-making and optimizes

resource allocation. Its novelty lies in its holistic

approach to estimating software maintenance

parameters, which can be applied to various types

of projects. ML-PEQRM provides actionable

insights into quality, reliability, and cost

estimation, helping organizations optimize

maintenance workflows, reduce downtime, and

improve operational efficiency. Key challenges

addressed in this research include:

• The inability of traditional models to provide

reliable long-term estimates, as highlighted by

prior studies.

• The lack of integration between quality factors

and maintenance estimation, which limits the

applicability of existing machine learning

models.

• The need for a scalable, interpretable, and

practical tool for organizations to improve

software maintenance efficiency and cost

management.

This research makes several significant

contributions to the field of software maintenance,

focusing on improving the accuracy and reliability

of maintenance cost estimation and software

quality prediction. The primary contributions are

outlined as follows:

Development of the ML-PEQRM Model: The ML-

PEQRM (Predictive Estimation for Quality,

Reliability, and Maintenance) model is based on

machine learning. Based on code complexity,

maintainability, and project size, the model

delivers highly accurate predictions.

Integration of Product and Process Metrics: The

study introduces a comprehensive framework that

combines code smells, cyclomatic complexity,

coupling, and cohesion metrics with process

metrics. The model is able to capture intricate

relationships between these metrics, resulting in

more precise and interpretable predictions.

Introduction of Novel Metrics: The research

constructs and incorporates new metrics to

enhance the model's performance:

• Maintenance Index (MI): Quantifies the

maintainability of software based on various

density values such as abstraction density,

encapsulation density, and implementation

smell density.

• Quality Index (QI): Measures software quality

by averaging critical density values related to

completeness, documentation, and maintaina-

bility.

• Security Index (SI): Evaluates security features

using metrics like the density of protected

methods and encapsulation practices.

The ML-PEQRM model provides a more detailed

and actionable assessment of software quality and

maintenance needs through several advanced

techniques. One of the key enhancements is

Feature Engineering Using MGFPA, where feature

selection is optimized by employing a Modified

Global Flower Pollination Algorithm (MGFPA).

This technique refines the ranking of feature

importance, making the model both more accurate

and efficient in its predictions. Another significant

contribution is the Application of Stacking

Ensemble Techniques, which combines Random

Forest and XGBoost classifiers to further boost

predictive performance. This ensemble approach

achieves an impressive 99% accuracy, surpassing

traditional models and benchmarks in the field.

Finally, the model demonstrates its practical value

by enabling a Reduction in Maintenance Costs and

Increased Reliability. By incorporating the

proposed methodology, ML-PEQRM achieves a

25% reduction in maintenance costs and a 20%

improvement in reliability, showcasing its

effectiveness in real-world software development

and maintenance scenarios.

The study enables better planning, optimized

resource utilization, and improved decision-

making in software maintenance by addressing

these objectives. This research contributes to

advancing the field by offering an interpretable

and holistic approach to predictive maintenance.

Traditional software maintenance cost estimation

models, like COCOMO II and regression-based

techniques, fail to accurately predict software

quality, reliability, and maintenance costs across

diverse projects. They lack integration of critical

product and process metrics, rely on limited

datasets, and do not account for factors like code

smells, cyclomatic complexity, or maintainability,

which significantly impact project outcomes.

Existing machine learning approaches are often

too narrow or function as black-box systems,

making their predictions difficult to interpret and

apply in real-world scenarios. Integrating critical

software metrics with advanced feature selection

techniques and ensemble machine learning

algorithms will significantly improve the accuracy,

Sreeramkumar et al., Vol 6 ǀ Issue 2

712

reliability, and interpretability of maintenance cost

estimation models. The proposed ML-PEQRM

model, incorporating novel metrics like

Maintenance Index (MI), Quality Index (QI), and

Security Index (SI), will outperform existing

approaches.

• Reducing maintenance costs by at least 25%.

• Improving reliability metrics by 20%.

• Achieving a predictive accuracy of at least

99%, validated across diverse software

projects and datasets.

 This model will provide interpretable predictions,

addressing the limitations of traditional

approaches. It enabling more effective resource

allocation, cost management, and decision-making

in software maintenance. The datasets were

sourced from publicly available GitHub

repositories containing Java projects of varying

complexity, maintainability, and size. The dataset

includes 25 Java projects with 10,000 code

samples, capturing different types of code changes

and maintenance activities. Each project folder

contains Java files, classes, functions, and

identifiers, analyzed to extract various software

metrics. A full list of projects is available in the

study (Table 1), showcasing a variety of

application domains and software architectures.

The ML-PEQRM model achieved 99% accuracy in

estimating software quality, reliability, and

maintenance costs, significantly outperforming

COCOMO II and neural network-based methods. It

reduced maintenance costs by 25% and improved

reliability by 20% compared to traditional

methods. Validated with a dataset of 25 Java

projects and 10,000 code samples, the model

demonstrated robustness and scalability. The

integration of product and process metrics, along

with key indices like Quality Index (QI), Security

Index (SI), and Maintenance Index (MI), provided

interpretable and actionable predictions. The

Modified Global Flower Pollination Algorithm

(MGFPA) optimized feature importance rankings,

minimizing noise and over fitting. These results

confirm the model's effectiveness in advancing

software maintenance cost estimation, quality

assurance, and predictive reliability. By applying

machine learning to software maintenance

parameters, this project aims to develop an

accurate and reliable model that enhances

maintenance efficiency through data-driven

insights. It seeks to optimize resource allocation

and address the limitations of existing models by

learning from historical project data. A key

objective is to establish a comprehensive

framework for analyzing critical factors that

influence software quality, reliability,

maintenance, and cost. To ensure optimal

performance, suitable predictive machine learning

algorithms will be identified, and parameters will

be estimated using code metrics to develop a

cohesive and integrated model.

This work emphasizes its contribution to

strengthening maintenance planning at a practical

level by proposing a model that enhances industry

efficiency in a reliable and applicable way. It

improves accuracy through the integration of both

product and process metrics, and employs a

feature engineering approach to identify the most

significant features. The model is designed to

predict quality-focused outcomes in an

interpretable manner, offering clear insights for

decision-making. Additionally, it introduces a

novel approach to maintenance estimation, aiming

to advance the current state of the art in the field.

The primary research topic of this study is the

enhancement of cost estimation accuracy in

construction project management through the

integration of artificial intelligence and machine

learning techniques. The paper introduces the

"IntelliEstimator" framework, which leverages

predictive analytics, intelligent decision support,

and real-time data processing to address long-

standing challenges in traditional estimation

methods. This research is driven by the hypothesis

that incorporating AI/ML into the estimation

process significantly improves accuracy, reduces

human error, and increases efficiency. Therefore,

the study aims to evaluate whether the

IntelliEstimator framework provides a measurable

improvement over conventional cost estimation

approaches, particularly in dynamic and data-

intensive project environments. The research

contributes to the field by offering a practical,

scalable solution that blends domain knowledge

with computational intelligence. Section 2 reviews

the literature, identifying gaps in existing methods.

Section 3 details the methodology, including the

dataset, feature engineering techniques, and the

proposed ML-PEQRM model. Section 4 presents

the experimental setup, implementation

environment, selected features, performance

evaluation metrics, comparative analysis, key

Sreeramkumar et al., Vol 6 ǀ Issue 2

713

findings, and limitations. Section 5 concludes the

paper by summarizing contributions, highlighting

practical benefits, and suggesting future research

directions. The reviewed studies highlight

advancements in software quality, cost estimation,

and defect prediction, emphasizing innovative

methodologies and data-driven models. Various

aspects of software quality, team productivity, cost

estimation, and defect prediction were explored

using diverse metrics and methodologies. For

example, this work introduced the Team

Homogeneity Index (THI) to measure the impact of

team personality traits on software quality and

productivity during the SDLC, analysing team

dynamics and project outcomes with five metrics

(1). This novel work investigated the complexity of

Multi-Programming Language Codebases (MPLCs),

finding they significantly impact issue resolution

times and quality outcomes (2). This highlights the

need for effective management strategies in

heterogeneous codebases. Issues in MPLCs are

resolved 89% slower than in non-MPLCs, with over

90% of MPLCs using source files from two

programming languages. This study underscores

the importance of optimizing software quality

through better resource allocation and process

improvements. In a study a theoretical model

based on the most important factors of CKM

(Customer Knowledge Management) was

developed (3). To evaluate the proposed model,

survey questionnaires were distributed to

decision-makers in ES (Enterprise Software)

development companies. Three-year industry-

academy collaboration presents SVEVIA, a

framework for software quality assessment and

strategic decision support (4). A quality-cost-time

trade-off was identified by analysing the industrial

software quality management process. Methods

were developed for assessing, predicting, planning,

and optimizing product/process quality. Software

metrics based on development data can be used to

estimate software reliability (5). An analysis of

product and process metrics has the objective of

establishing a statistical relationship between

them. In the paper, non-parametric models such as

Artificial Neural Networks are suggested for

estimating the reliability of software and release

readiness based on past failure data. This study

incorporated considerations of imperfect

debugging, a variety of errors, and change points

during the testing process to extend the usefulness

of SRGM’s (6). A limit to testing athletic ability is

proposed, but with unlimited time, testing

becomes infinite and may not be feasible (7). This

method presents endless test execution work for

older models of Neural Heterogeneous Poisson

Process (NHPP) of Programming model

disappointment with proposed information for

preparing Artificial Neural Network (ANN). This

proposed an automated process of prioritizing bug

reports and selecting developers using fuzzy multi-

criteria decision-making (8). In the proposed

approach, the fuzzy Technique for Order of

Preference by Similarity to the Ideal Solution

(TOPSIS) method is combined with Bacterial

Foraging Optimization Algorithm (BFOA) and Bar

Systems (BAR) techniques to build a bug priority

queue. It aims to gather decisive and explicit

knowledge of bug reports by considering multi-

criteria inputs. Software maintenance projects

differ from other engineering projects because of

certain characteristics (9). The complexity and

failure rates of projects have increased. Software

projects need to be identified and monitored to

increase their chances of success. By combining

genetic algorithm (GA) and environmental

adaptation (EA) methods, It aimed to optimize

COCOMO coefficients for SCE. Based on the results,

it is determined that the EA algorithm can solve the

divergence problem of the genetic algorithm, as

well as optimize the COCOMO coefficients (10).

This study was proposed to address the difficulty

of estimating software development costs with

conventional methods (11). A reliable estimation

method is constructed by combining these steps

with machine learning approaches to identify the

necessary steps for computable entities that affect

software costs. With the help of formulae and an

online tool, It analyse and compare Boehm's

COCOMO model with Valerdi's COSYSMO model

(12). The COCOMO dataset was used for this

analysis, and the COSYSMO model was observed to

perform better in every aspect than the COCOMO

model. The work was proposed, which uses a

standard Turkish industry dataset to optimize the

parameters of the Constructive Cost Model II

(COCOMO-II) (13). The IEAM-RP was proposed to

predict the development effort (14). To test IEAM-

RP's effectiveness, NASA software projects are

used for the experiment. Using other method

references (such as Use Case Points) and mapping

non-functional requirements to the terms of

Sreeramkumar et al., Vol 6 ǀ Issue 2

714

reference, one past work proposed two core

phases. In addition, the second phase is to calculate

and compare the estimated effort and cost if the

original FP method was modified (15). This work

reviews the state of predictive maintenance (PdM)

within the context of Industry 4.0, focusing on the

integration of machine learning (ML) and

reasoning techniques (16). It provides an overview

of Digital Twin (DT)-based predictive maintenance

strategies. It explains how DTs, virtual replicas of

physical systems are used to monitor real-time

performance, predict failures, and plan

maintenance activities (17).

This work used genetic algorithms to optimize

software development cost estimation and it

addresses software factor's uncertainty and

ambiguity (18). The COCOMO II model formulas

were incorporated into the estimation of effort and

schedule time. Using NASA data, experiments

achieved 98.88% accuracy for scheduled time and

97.27% for effort estimation. This study shows

how genetic algorithms combined with parameter

fine-tuning can improve software cost

estimation. This work developed an Adaptive

Neuro-Fuzzy Inference System combining Ant

Colony Optimization (19). Various evolutionary

algorithms were compared. This model performed

software effort estimation on datasets like

Albrecht, Desharnais, and Kemerer. It provides

enhanced estimation capabilities for software

project managers.

This work proposed a two-stage framework for

agile cost estimation, linking development and

maintenance phases (20). The first stage focuses

on development, the second on maintenance, with

testing comprising 22% of the workload and

management tasks 13%. They also introduced five

paradigms for Nesma, a Function Point

Measurement method, enhancing the LSTM-CRF

model's accuracy and precision. However, the

quantity and quality of training samples and

labelled texts still need improvement. This work

focused on Nesma, a Function Point Measurement

method, introducing five paradigms to define

heuristic rules for splitting software into Pricing

and Measuring Objects (21). This approach

enhanced the LSTM-CRF model's accuracy and

precision using large-scale information projects as

training sets. However, the quantity and quality of

training samples and labelled texts still need

improvement compared to expert manual audits.

 This work proposed an MCDM-based framework

to evaluate Software Reliability Prediction models

using multiple accuracy measures (22). They

assessed ten models with a software failure

dataset and four performance measures,

identifying SOMFTS as the most suitable model.

The findings suggest the MCDM approach is

effective for selecting the best software reliability

prediction model. This work highlighted Software

Defect Prediction, focusing on software quality and

reliability (23). Various techniques have been used

to classify software as defective or non-defective

by analysing source code and development

processes. This study introduced a modified

isolation forest method for SDP, demonstrating its

effectiveness through experiments on five NASA

datasets. These studies highlight the importance of

interdisciplinary approaches in software

engineering, combining team dynamics, advanced

modelling, and optimization. However, gaps

remain in integrating these dimensions into a

unified framework that addresses both technical

and human factors. Future research should bridge

these areas to achieve comprehensive

improvements in software quality and

productivity.

A review of the literature reveals notable progress

in software maintenance cost estimation; however,

several critical shortcomings remain, which this

study aims to address. One major limitation is the

lack of holistic integration—many existing studies

focus on isolated components such as reliability or

effort prediction. While some recent studies (5, 7)

report high accuracy within specific domains, they

fall short of delivering comprehensive and

interpretable models. Another challenge is limited

generalizability; approaches like COCOMO-II

optimizations and neural networks depend heavily

on dataset-specific tuning, making them unsuitable

for diverse real-world scenarios. Additionally,

many machine learning-based models suffer from

interpretability issues, functioning as "black

boxes" that offer little insight into the reasoning

behind their predictions—an obstacle for

informed decision-making. Lastly, the insufficient

diversity of datasets used in prior research

restricts the models' applicability. Although some

studies show promise, they often rely on small,

domain-specific datasets and do not fully leverage

machine learning's capability to manage large-

scale, heterogeneous data. This research makes

Sreeramkumar et al., Vol 6 ǀ Issue 2

715

several significant contributions to the field of

software maintenance and cost estimation. It

introduces the ML-PEQRM model, which leverages

machine learning algorithms to uncover complex

relationships within data, leading to more reliable

estimates of software quality, reliability,

maintenance costs, and needs. By learning from a

public dataset, the model streamlines the

estimation process, resulting in outputs that are

both more accurate and interpretable.

Additionally, it reduces the need for manual

estimation, enabling project managers and

developers to allocate resources more efficiently.

The integration of novel feature selection

techniques further strengthens the model’s

decision-making capability and significantly

enhances the accuracy of estimates related to key

software attributes. To address these limitations,

this study proposes ML-PEQRM, a machine-

learning-based predictive model. The proposed

model balances accuracy, interpretability, and

generalizability by integrating static code metrics

and dynamic change metrics. The model is also

robust and scalable thanks to the use of ensemble

methods such as Random Forest and XGBoost.

Using these predictions, maintenance planning will

be guided more effectively, reducing maintenance

costs, improving reliability, and improving

reliability.

Methodology
As part of the proposed model, various metrics are

taken into account to estimate software reliability

and quality, such as cyclomatic complexity, code

coverage, and defect density. To estimate

maintenance and cost, the model also takes into

account factors such as the size of the team,

developer experience, and software complexity. In

addition, the proposed model can help software

development companies make better decisions

and improve their software development

processes, to improve software quality, reliability,

maintenance, and cost estimation. The study

provides the following key findings:

High Prediction Accuracy: ML-PEQRM

outperformed traditional methods such as neural

networks, COCOMO-II optimizations, and Flower

Pollination algorithms, which reported 85-98%

accuracy.

Cost and Reliability Improvements: Compared to

conventional methods, product and process

metrics reduced maintenance costs by 25% and

improved reliability by 20%. The model addresses

practical software maintenance challenges

effectively.

Effective Feature Engineering: MGFPA was used

for feature selection to identify the most important

factors affecting software maintenance. As a result,

computational time was reduced while accuracy

was maintained.

Interpretability of Predictions: ML-PEQRM

incorporates static code metrics, dynamic change

metrics, and novel feature engineering techniques

to provide interpretable predictions. As a result,

resource allocation and maintenance planning can

be improved.

Holistic Approach: Researchers developed a novel

approach to software cost estimation that

integrates software quality, reliability, and

maintenance factors.

Practical Applicability: Software developers and

project managers will find the model valuable as a

tool for estimating maintenance costs and

improving software reliability.

As a result of these findings, ML-PEQRM advances

the state-of-the-art for software maintenance cost

estimation, and offers a roadmap for future

research.

Extraction Layer
The layer includes the attainment of the dataset

with java projects containing java files, classes,

functions, identifiers, etc. which is acquired for

extracting the software metrics for the reliability,

security, quality, and maintenance of every project

that constructs the features set from the attained

dataset for the further prediction and estimation of

the maintenance cost. The first step in this

research is to extract the code from the project.

With the help of the Compilation Unit, the code is

converted into an abstract syntax tree. Based on

this tree, Class, and Method metrics as well as Code

smells can be calculated. After generating each

metric as a CSV file, the data is consolidated into

one file. Using this CSV dataset, pre-processing is

performed and Novel metrics are

constructed. Figure 1 shows the overall

architecture of the proposed work.

Sreeramkumar et al., Vol 6 ǀ Issue 2

716

Figure 1: The Flow of the Proposed Work (ML-PEQRM Architecture)

Dataset
The datasets were sourced from publicly available

GitHub repositories. These repositories contain

Java projects with varying levels of complexity,

maintainability, and size, providing a diverse

dataset for evaluation. It consists of 25 Java

projects (10,000 samples) from GitHub

repositories. It covers diverse application domains,

complexities, and architectures, ensuring model

robustness and generalizability. Proprietary

datasets were considered but lacked transparency

and accessibility. Smaller or homogeneous

datasets were rejected due to limited diversity.

This selection ensures the model is tested in

realistic and varied maintenance scenarios,

enhancing its practical value. Each project folder

includes Java files, classes, functions, and

identifiers, which were analyzed to extract various

software metrics. A list of projects is available in

the study (Table 1), showcasing a variety of

application domains and software architectures.

Table 1: Sample Datasets (List of Projects)

S.No. Project Name

1 Anasthase_TintBrowser

2 billthefarmer_tuner

3 budowski_budoist

4 czlee_debatekeeper

5 devonjones_PathfinderOpenReference

6 eolwral_OSMonitor

7 fython_Blackbulb

8 gsantner_markor

A selection of 25 Java projects, comprising 10,000

code samples, was made to ensure a diverse

representation across project size (small, medium,

and large-scale applications), code complexity

(from simple to highly intricate codebases), and

maintenance activity (frequent updates versus

Sreeramkumar et al., Vol 6 ǀ Issue 2

717

long-term stable projects). Each project folder

included Java source files, classes, functions, and

identifiers, which were extracted and examined

through static code analysis techniques. The

resulting data was then processed to generate

software metrics, which were used as labeled data

for training the ML-PEQRM model. Through the

analysis of static code, historical commit logs, and

defect tracking data, quality, reliability, and

maintenance costs were determined. A Quality

Index (QI) was computed based on key software

metrics, including abstraction density,

encapsulation density, code smells, and software

structure. Calculating the Quality Index involves

the following formula:

𝑄𝐼 =
(𝐴𝐷 + 𝐸𝐷 + 𝐼𝑆𝐷 + 𝑆𝐷)

4
[1]

where, an abstraction density (AD) value

represents how abstract the software design is,

Data hiding and encapsulation density are

measured using ED (Encapsulation Density), the

Implementation Smell Density (ISD) is used to

measure bad coding practices and Smell Density

(SD): An indicator of the number of smells detected

per unit of code. Software quality is measured by

the QI score. Projects are categorised as:

● The highest quality (QI ≥ 40)

● Medium Quality (30 ≤ QI < 40)

● Low Quality (QI < 30)

A Reliability Index (RI) was calculated based on

historical data on defect rates and failures. Based

on the following formula:

𝑅𝐼 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒 (𝐿𝑂𝐶)
[2]

A GitHub issue tracker and commit log were used

to extract failure data. There was a lower reliability

when there were more bug-fix commits. Based on

the RI values, projects were classified as follows:

High Reliability (RI < 0.01), Medium Reliability

(0.01 ≤ RI < 0.05) and Low Reliability (RI ≥ 0.05).

According to the code complexity, developer effort,

and historical maintenance activity, the

maintenance cost was estimated. Based on the cost

estimation, the following steps were taken:

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 =

(
𝐿𝑂𝐶×𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝐶𝑌𝐶𝐿𝑂)

400
) ×

Average Developer Salary +

Base Maintenance Cost [3]

Feature Building Layer
The key factors that affect software quality,

reliability, and maintenance are identified when

computing features for cost estimation. Software

development and maintenance cost prediction is

also made by quantifying these factors. It is

possible to estimate the cost of software

maintenance by taking into account the following

relevant features.

Class Features
An individual software class or module's quality

and maintainability are assessed based on its class

features. By analyzing these metrics, developers

and project managers can identify areas that

require improvement and prioritize their efforts,

giving them valuable insight into the complexity,

size, and potential issues of a class. Cohesion and

coupling are some features shared among most

classes. There ares also features such as lines of

code, complexity, and cyclomatic complexity.

Methods Features
Within software engineering, methods features are

used to evaluate individual methods and functions

in terms of quality, complexity, and

maintainability. A developer or project manager

can use these metrics to identify areas for

improvement and optimize the software

development process by understanding the

performance, size, and potential issues of a

method.

Software Code Smells
The concept of a code smell refers to problems in

source code that are not bugs or strictly technical

errors. There will be no change in the way the code

compiles and works. The term software code smell

refers to those symptoms that indicate a poorly

designed or implemented program. In addition to

Long Methods, Large Classes, and Duplicate Code,

there are many other code smells. Code smells

slow down the process of processing an output,

increase the chances of failure and errors, and

make the software more likely to contain bugs. It

increases technical debt to have smelly code. Code

smells, as their name suggests, indicate deeper

problems. A problem can be found by finding

something easy, like classes with data but no

behaviour. Depending on the design standards set

by an organization, code smells differ from project

to project.

Sreeramkumar et al., Vol 6 ǀ Issue 2

718

Halstead Features
In the Halstead complexity metric, a program is not

run but its complexity is measured without it being

run. A metric is a way of identifying and evaluating

measurable software properties through static

testing. Tokens are extracted from the source code

after it has been analyzed. A few statistics about

the program, such as its vocabulary, length,

volume, difficulty, etc. These statistics are then

used to calculate the Halstead complexity metric.

The metric is used to measure the difficulty of the

program and its quality.

Other Smells
Developing software with "code smells" may

impact maintainability, readability, and

extensibility. Insufficient modularization results in

tightly coupled modules, high complexity, and

challenging maintenance issues. Testing and

updating are difficult due to monolithic classes,

overloaded interfaces, and dense dependencies.

Broken hierarchies occur in inheritance trees

where "IS-A" relationships are unclear, causing

unnecessary dependencies. Cyclic Dependent

Modularization describes modules with circular

dependencies, complicating isolated reasoning and

creating ripple effects. Wide Hierarchy refers to

broad, shallow inheritance trees with too many

subclasses. It derives directly from a generic base,

lacking meaningful abstraction. Lastly, Deficient

Encapsulation points to poor attribute and method

protection. The private methods and attributes are

unnecessarily accessible, undermining software

security and integrity.

Other Metrics
Decoupling Impact (DI) measures the extent to

which components can operate independently,

enhancing system resilience. Interface Size (IS)

addresses overly large interfaces that lack

cohesion, which complicates understanding and

maintenance. Weighted Method Count (WMC)

reflects class complexity and testability, while

Number of Methods (NOM) shows class size and

Single Responsibility Principle violations.

Response for Class (RFC) measures method

response complexity, and Depth of Inheritance

Tree (DIT) highlights inheritance structure depth

and abstraction levels. Number of Implemented

Interfaces (NII) and Coupling Between Objects

(CBO) examine dependency patterns; high

coupling limits modularity and flexibility. Maximal

Call Indirection (MCI) assesses call chain depth,

affecting readability, and Number of Variable

Fields (NOVF) tracks mutable class fields. Tight

Class Cohesion (TCC) indicates class purpose focus,

while Number of Subclasses (NSUB) shows class

reuse and specialization. Degree of Class

Interdependency (DOI) examines class coupling

impact, and Maintenance Index (MI) provides a

maintainability scale, from low (0-9) to high (20-

100), encouraging a modular, low-complexity

design for reduced maintenance needs.

Refining Layer (Consolidation & Pre-

Processing)
Feature Consolidation

Feature consolidation is a crucial preprocessing

step that simplifies a dataset, reduces

dimensionality, and improves the performance of

machine learning models by grouping related

features together. This process also helps remove

redundant information, enhancing

interpretability. Several techniques can be used for

feature consolidation. For instance, categorical

features with similar information, like 'city', 'state',

and 'country', can be combined into a single

'location' feature. Numerical features can also be

summarized; for example, 'net income' can be

derived by combining 'total revenue' and 'profit'.

Additionally, feature extraction allows for the

creation of new features using mathematical or

statistical methods—such as generating an 'area'

feature by multiplying 'length' and 'width'. These

techniques streamline the dataset, making it more

efficient and easier to interpret, which ultimately

boosts the performance of machine learning

models.

Missing Value and Duplicate Value

Computation

Several different ways can be used to represent

missing values, such as blank cells, null values, or

NaN values (not a number). A data set with missing

values can cause significant bias and inaccurate

results during data analysis and modeling. In large

databases with a large number of records,

duplicate records are a common data quality issue.

Thus, 'deduplication', or removing duplicates,

becomes an essential part of many applications. In

the data analysis and machine learning processes,

data deduplication plays a vital role in avoiding

substantial biases. This work makes no use of

missing or duplicate values in the dataset.

Sreeramkumar et al., Vol 6 ǀ Issue 2

719

Remove Unused Column and Data Encoding

 Preparing data for analysis or machine learning

involves a crucial pre-processing phase, during

which unwanted or irrelevant columns are

removed from the dataset. This step is essential to

ensure the quality and efficiency of the analysis or

modeling task. Columns may need to be removed

for several reasons: they may contain missing or

irrelevant data that cannot be used effectively;

they might hold redundant information that adds

no value; or they may simply not contribute

meaningfully to the task at hand. Additionally,

columns containing sensitive or confidential data

are often excluded to maintain privacy and

compliance with data protection standards.

Table 2: Unwanted Columns

 No Features

1 MRD

2 NOAM

3 NOL_C

4 NOL_M

5 NOMR_C

6 NOMR_M

7 LD

Table 2 shows the seven columns that need to

delete from the dataset. Because those columns

contain the value, only zero.

Novel Feature Generation

To improve the performance of a machine-learning

model, new features are constructed from existing

raw data, also known as feature engineering or

feature extraction. To construct novel features, a

data scientist must have a solid understanding of

the problem domain and the characteristics of the

data. Dimensionality reduction, feature selection,

scaling, normalization, and transformation of

features are among the techniques used in this

process. The goal of novel feature construction is

to identify patterns and relationships in data and

remove irrelevant information and noise. Machine

learning models with this feature can become

more accurate, robust, and generalizable to new

data sets.

Ratio of WMCDIT

To calculate the novel feature ratio of WMCDIT, the

Weighted Method Per Class (WMC) was divided by

the Depth of the Inheritance Tree (DIT).

𝑊𝑀𝐶𝐷𝐼𝑇 =
𝑊𝑀𝐶

𝐷𝐼𝑇
 [4]

This computes the ratio of Weighted Method per

Class (WMC) to Depth of Inheritance Tree (DIT).

WMC reflects class complexity based on its number

of methods, while DIT measures its depth in the

inheritance hierarchy. A high WMCDIT value

suggests that a deeply inherited class has many

methods. It potentially increases maintenance

difficulty. This metric helps identify classes where

structural depth and behavioral complexity may

pose maintenance challenges.

Ratio of WMCNAMM

This ratio is calculated by dividing Weighted

Method per Class (WMC) by the Number of

Accessor and Mutated Methods (NAMM).

𝑊𝑀𝐶𝑁𝐴𝑀𝑀 = 𝑊𝑀𝐶/𝑁𝐴𝑀𝑀 [5]

CYLODensity

Software systems are measured by their

cyclomatic density, which measures how complex

they are. The number of decision points in the

system is divided by the number of executable

statements (NOC) in the project.

𝐶𝑌𝐿𝑂𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐶𝑦𝑐𝑙𝑜/𝐿𝑂𝐶 [6]

Cyclomatic Density quantifies decision-making

complexity (CYCLO) relative to the total Lines of

Code (LOC). A high value indicates code that is

overly complex for its size, reducing

maintainability and increasing defect risk.

Computation Complexity Density

The computational complexity density of a

software system is a measure of algorithm

complexity or method complexity. The complexity

of a program is calculated by dividing the number

of computations (such as loops or conditional

statements) by the number of lines of code.

𝐶𝐶𝐷 = 𝐶𝐶/𝐿𝑂𝐶 [7]

Abstraction Density (AD)

Software abstraction density measures the degree

to which software systems are abstracted. A

software component or module abstracts from the

rest of the system the complexity of its

implementation.

Sreeramkumar et al., Vol 6 ǀ Issue 2

720

𝐴𝐷 = (𝐼𝐴 + 𝑀𝐹𝐴 + 𝑈𝑁𝐴 + 𝑈𝑈𝐴)/4 [8]

Implementation Smell Density (ISD)

A software system's implementation smell density

is a metric used to measure the density of

implementation code smells. Code smells are

calculated by dividing the total number of

implementations by the number of smells. To

reduce the number of implementation code smells,

software developers and managers can measure

implementation smell density and prioritize their

efforts.

𝐼𝑆𝐷 = (𝐵𝑀 + 𝐼𝑆𝑀 + 𝐶𝐶 + 𝐶𝑀 + 𝐸𝐶𝐶 + 𝐿𝑀 + 𝐿𝑃𝐿 + 𝐿𝑆 + 𝑀𝐷)/9 [9]

Implementation Smell Density (ISD) measures the

occurrence of implementation smells like Broken

Modularization (BM), Complex Conditionals (CC),

and Long Methods (LM). A high ISD value indicates

poorly implemented, hard-to-maintain code. These

metric highlights problematic areas, helping

developers prioritize refactoring.

Smell Density (SD)

In order to calculate the smell density, one divides

the total number of code smells by their size. In

addition, it can assist in assessing the impact of

code refactoring efforts and tracking the evolution

of software quality over time.

𝑆𝐷 = (𝐴𝐷 + 𝐸𝐷 + 𝐼𝑆𝐷)/3 [10]

Depth Inheritance Complexity Density (DICD)

A class hierarchy's depth in inheritance complexity

density (DICD) is measured by combining DIT and

CD. Class complexity is calculated by dividing its

depth in the inheritance hierarchy, i.e., CD/DIT.

Feature Engineering Layer
This metaheuristic optimization algorithm is based

on the pollination behavior of flowers and uses the

global flower pollination algorithm (GFPA). This

algorithm identifies the optimal solution based on

the pollination process of flower pollinators in the

problem space. Although the original GFPA has

some limitations, such as slow convergence and

the possibility of being trapped in local optima, it is

still a useful tool. To address existing limitations, a

Modified Global Flower Pollination Algorithm

(MGFPA) has been proposed, featuring

enhancements aimed at improving the

performance of the original algorithm. Several key

modifications have been introduced. First, Chaotic

Initialization uses a chaotic map to generate the

initial population, ensuring greater diversity and

reducing the risk of premature convergence.

Second, an Adaptive Mutation operator

dynamically adjusts the step size based on

population diversity and convergence rate,

enabling more effective exploration of the search

space. Third, Exclusivity ensures that the best

solution found is preserved and carried forward to

future generations, helping to maintain solution

quality throughout the search. Finally, Dynamic

Parameter Control allows parameters such as

mutation rate and step size to be adjusted in real

time, based on the algorithm's ongoing

performance, enhancing adaptability and overall

optimization efficiency. Using the basic global

pollination (BGP) or heuristic bound search space

(HBSS) mechanisms, the modified global flower

pollination algorithm (MGFPA) explores the search

space of the problem domain. It is equally likely

that both mechanisms will be selected during

evolution. By using the information of two

randomly selected parents, HBSS narrows the

search space to a certain area, as shown in

Equation:

𝑥
𝑖+1

𝑖𝑗
= ((𝑥𝑡

𝑎𝑗
, 𝑥𝑡

𝑏𝑗
) − 𝑚𝑖𝑛 (𝑥𝑡

𝑎𝑗
, 𝑥𝑡

𝑏𝑗
)) . 𝑟2 + 𝑚𝑖𝑛 (𝑥𝑡

𝑎𝑗
, 𝑥𝑡

𝑏𝑗
) [11]

where 𝑥𝑡

𝑖𝑗
 represents the jth variable of ith solution

vector at t iteration, 𝑥𝑡
𝑎 and𝑥𝑡

𝑏 are two randomly

selected solutions, and r1,r2 represent the uniform

random distribution between [0,1]. According to

the current population's experience, HBSS focuses

on the most promising areas of the search space.

The algorithm needs to be explored throughout the

search space to avoid being trapped in local

minima. Using the pseudocode shown in Algorithm

1, it can summarize the steps that make up the

mgFPAcan.

Algorithm MGFPA ()

Input: n – Population Size

Output: Fs – Selected Features

1. Initialize the population randomly within the search space

Sreeramkumar et al., Vol 6 ǀ Issue 2

721

2. While the stopping criterion is not met

3. Sort the population in descending order of fitness

4. Generate n1, n2, and n3, which are indices of three random solutions in the population

5. For each solution in the population

6. Generate a new solution by modifying the solution according to the following equation

7. new_solution = solution + F * (best_solution - solution + A * (solution - population[n1]) + A * (solution

- population[n3]))

8. Evaluate the fitness of the new solution.

9. If the fitness of the new solution is better than the fitness of the current solution, replace the current

solution with the new solution.

10. Update the global best solution found so far.

11. Update the flower pollen distribution based on the global best solution.

12. Return the global best solution found.

End

Algorithm 1: Modified Global Flower Pollination Algorithm (MGFPA)

Table 3: Parameter for the Modified Global Flower Pollination Feature Selection

Parameter Description Default Value

N Population size (number of candidate solutions) 50

T Maximum number of iterations (generations) 10

P Switch probability between global and local pollination 0.8

beta Parameter for Lévy flight distribution (affects step size) 1.5

gamma Scaling factor for Lévy flight step size 0.01

thres Threshold for binary conversion (used to discretize solutions) 0.5

lb Lower bound of the search space 0

ub Upper bound of the search space 1

dim Dimensionality of the problem (number of features in xtrain) 110

X Population matrix (candidate solutions in continuous space) Initialized randomly

Xbin Binary representation of the population 0.5

Xgb Global best solution (continuous) Updated based on

fitness

fitG Best fitness value Initially set to infinity

curve Convergence curve (records best fitness over generations) Updated per iteration

Table 3 shows the parameters for the Modified

Global Flower Pollination Algorithm (MGFPA). In

MGFPA, population size and mutation rate were

tuned to balance exploration and exploitation. An

adaptive mutation rate was applied to dynamically

adjust search intensity based on convergence

trends, with a population size of 50 to maintain

sufficient diversity.

MGFPA was chosen for feature selection due to its

ability to overcome limitations of standard

methods. It improves convergence speed and

avoids local optima using chaotic initialization,

adaptive mutation, and dynamic parameter

control. SFFS was rejected for its inefficiency,

taking 275 seconds compared to MGFPA’s 2.6

seconds. NDFS, though faster, lacked precision in

handling interdependent features. MGFPA offers

speed, robustness, and scalability, making it ideal

for optimizing feature selection in software

maintenance tasks.

Prediction Layer
Using this work, it is possible to determine which

ML methods are applicable to software Quality,

reliability and cost estimation. Furthermore, the

process of assessing and comparing the scored

results among the ML methods used will help

identify the most appropriate ML with the least

error rate. As part of the prediction model, the

features set are used to classify the software

metrics. The dataset is split into 70-30% as

training and testing set. To make predictions, the

work uses the following Class Construction and

classifiers. A metric designed to quantify the

maintainability of software projects, the

Sreeramkumar et al., Vol 6 ǀ Issue 2

722

Maintenance Index (MI), was used to classify

software maintenance needs. Three key metrics of

software complexity are considered in the

computation of the MI score: Volume (VOL),

Cyclomatic Complexity (CC), and Lines of Code

(LOC). Here is the formula for calculating MI:

𝑀𝐼 = 171 − 5.2 ∗ 𝑉𝑂𝐿 − 0.23 ∗ 𝐶𝐶 − 16.2 ∗ 𝐿𝑂𝐶 ∗ 100/171 …… [12]

Where VOL (Volume): Defines the complexity and

structure of the software, CC (Cyclomatic

Complexity): Indicates the difficulty in testing and

maintaining the control flow of the program and

LOC (Lines of Code): Defines the amount of source

code and the amount of maintenance required. A

threshold value of 15 represents the average MI

across all projects, and the dataset is grouped

according to the MI score. Here is how the

classification rule works:

● If MI ≤ 15, the project is categorized as Class 0

('A'), indicating low maintainability (i.e., more

effort is required for maintenance).

● If MI > 15, the project is categorized as Class 1

('B'), indicating high maintainability (i.e.,

relatively easier to maintain).

There are 17 training projects and 8 testing

projects in the dataset, which is split into 70% for

training and 30% for testing. The classification

helps the machine learning model identify difficult-

to-maintain projects effectively. Furthermore,

those that will be easier to maintain, thus allowing

for more reliable estimations of future software

maintainability. In the field of machine learning,

stacking is one of the most widely used and best-

performing ensemble techniques. A voting

ensemble is similar to a machine learning

ensemble in that weights are also assigned to two

layers of models: ground models and meta models.

It is because of this that Stacking performs best

among all the ensemble techniques used in

machine learning. There are many similarities

between stacking and voting. A voting ensemble

uses multiple machine-learning algorithms to

accomplish the same task. After training, it takes

the results from each machine learning algorithm,

which are trained on the same data. When the

regression problem or most frequent classification

problem is being solved, the final output will be the

mean of the ground model results, where each

ground model result has the same weight. In

stacking, the same thing occurs. The interpretation

of the model is only based on a new layer of the

model. Machine learning algorithms are used as a

basis for Stacking, but a meta-model is also added

as a layer. In contrast to voting ensembles, this

model assigns different weights to the ground

models based on the prediction task being

performed through stacking. A Linear Regression

meta-model is the second layer of this dataset D, as

well as two machine learning ground models, the

Random Forest, and the XGBoost. Dataset D will be

fed to each ground model by the model now. A

trained ground model can predict the test dataset

after being trained on the same dataset. As soon as

the ground models are introduced, it will train the

meta-model Linear Regression using the

prediction data from each ground model. Stacking

algorithms introduce meta-models, assign weights

to ground models, and consider their output final

as the final output. A meta-model is trained on the

ground model outputs from the test data when

stacking; using the ground model outputs as

training data. Taking a look at the model in this

case, it can be seen the same data is used multiple

times, indicating that the output data from the

ground models are already exposed to the whole

model and are used again during meta-model

training. A model that performs well on training

data will perform poorly when tested against

unknown or unknown data.

There is potential overfitting (P) in these

ensembles, and it can use the K-fold approach to

tackle this problem is K=f (P). So in the K fold

sampling, the step would be to split the dataset into

training 𝑆1 = 𝐷𝑇𝑟𝑎𝑖𝑛 and testing sets 𝑆2 = 𝐷 − 𝑆1.

In this case, the dataset can be easily divided into

training and testing sets using the train_test_split

module. The second step involves determining the

value of K, which is the value of the equal split of

the data. The Extreme Gradient Boosting

algorithm, or XGBoost, is a fast and efficient

classifier for gradient-boosting ensemble. A

gradient boosting algorithm is one of the most

popular algorithms for predictive modeling since it

is often the most effective in classification and

regression projects. Generally, gradient boosting

takes a long time to train a model, and large

datasets exacerbate the problem. With XGBoost,

several techniques are introduced that

dramatically accelerate gradient boosting and

often result in better model performance overall.

Sreeramkumar et al., Vol 6 ǀ Issue 2

723

Additionally, more than just gradient boosting can

be supported by the core XGBoost algorithm,

including the random forest algorithm. The

random forest algorithm combines decision trees

with other algorithms. To fit each decision tree, a

bootstrap sample of the training dataset is used.

The training dataset was sampled with

replacement, which means that each row was

selected more than once. During each split point in

the tree, random subsets of input variables

(columns) are considered. By doing this, each tree

added to the ensemble is skillful, but unique in a

random manner. In most cases, only a small

portion of the features are considered at each split

point.

Algorithm XGBRFC

Input: DTrain- Training Dataset

Output: Clabel – Class Label

1. Split the training dataset DTraininto n-folds for the meta model

2. For each i = 1 to n-1 // number of folds

3. The base_model (RFC) is fitted with the first fold

4. Repeat for remaining n-1 folds for DTrainset

5. base_model = predict(inputX)

6. y_test=add_prediction(base_model)

7. End for

8. Train the meta-model XGB with DTrain which fits in (n-1) part of the stack

9. Predictions are made in nth part of the stack

10. Then fit the XGB classifier into the stack

11. Predictions are made with the testing set DTest by the validation set

12. Return CLabel

End Algorithm

Algorithm 2: Stacking Classifier XGB_RFC

Table 4: Hyper Parameter of the Stacking Classifier

Model Hyperparameter Recommended Value(s)

Random Forest (RFC) n_estimators 100

 max_depth 7

 min_samples_split 4

 min_samples_leaf 3

 max_features sqrt

 bootstrap True

XGBoost (XGB) n_estimators 150

 learning_rate 0.02

 max_depth 6

 min_child_weight 3

 subsample 0.5

 colsample_bytree 0.7

Stacking Classifier final_estimator Logistic Regression

 cv 5

 stack_method 'predict_proba'

Table 4 shows the parameter of the Stacking

Classifier. Stacking Classifier (RFC_XGB) ensure

optimal performance, generalization, and

efficiency. Random Forest (RFC) parameters

improve feature selection and stability, while

XGBoost (XGB) parameters balance depth and

regularization. As the final estimator, Logistic

Regression leverages the strengths of both models

while mitigating their weaknesses. It utilizes a 5-

fold cross-validation to ensure robustness, and the

Sreeramkumar et al., Vol 6 ǀ Issue 2

724

'predict_proba' stack method to provide a better

decision-making process. An ensemble model that

is well-calibrated and generalises across datasets

is created. In order to achieve high prediction

accuracy, these values were determined by

combining grid search with Bayseian Optimization

and cross-validation experiments. This model

achieved 99% accuracy while maintaining

computational efficiency by tuning parameters

based on empirical evidence. The stacking

ensemble approach was chosen for its ability to

combine the strengths of multiple models. Random

Forest handles complex interactions, while

XGBoost efficiently processes large datasets and

reduces errors. Together, they achieve 99%

accuracy, surpassing individual classifiers.

Gaussian Naive Bayes was rejected due to its lower

accuracy (86%) and inability to capture complex

relationships. Single-model classifiers lacked the

combined predictive power of stacking. This

approach enhances accuracy while maintaining

interpretability, making it ideal for reliable

decision-making. The combination of Random

Forest Classifier (RFC) and XGBoost (XGB) in the

stacking ensemble was chosen due to their

complementary strengths. RFC is known for its

robustness to over fitting and ability to capture

general patterns through bagging, while XGB offers

superior performance in handling complex non-

linear relationships through boosting and

regularization. This hybrid design allows the

stacked model to benefit from both variance

reduction (via RFC) and bias reduction (via XGB).

Preliminary experiments with other ensemble

configurations—including Gradient Boosting +

AdaBoost, and RFC + Extra Trees—showed that the

RFC + XGB pair consistently outperformed

alternatives in terms of prediction accuracy and

stability across folds. These empirical findings

guided the final model architecture of

IntelliEstimator. Model stacking, a form of

ensemble learning used in the IntelliEstimator

framework, combines multiple predictive models

to improve overall accuracy and robustness. While

this technique enhances performance by

leveraging the strengths of individual models, it

does incur additional computational overhead.

These expenses arise primarily from the need to

train multiple base models and a meta-learner,

which can increase processing time and memory

usage—especially when dealing with large

datasets or complex models. In the context of

IntelliEstimator, the trade-off between improved

accuracy and computational cost is managed by

optimizing model selection and using parallel

processing techniques where feasible.

Software Index Computation
The Software Index (SI) is a calculated value that

aggregates various metrics to reflect the software's

quality and performance, evaluating aspects like

lines of code (LOC), bug count, complexity, and

feature innovation. The process of the software

index computation is shown in Figure 2.

Figure 2: Software Index Computation

This SI, visualized in Figure 2, helps in estimating

maintenance costs, identifying development

issues, and recommending improvements. A

Quality Index (QI), or Software Quality Index (SQI),

assesses software in terms of functionality,

reliability, and efficiency; a high SQI signifies high-

quality software, aiding in product comparison and

decision-making.

Key Metrics in Software Index

Calculation
Computation Complexity Density (CCD): This

metric evaluates the software's computational

efficiency, calculated as the ratio of computational

complexity to LOC (CCD = CC/LOC). High values

indicate complex code, potentially impacting

readability and security.

CYCLODensity (CD): This metric measures code

complexity by dividing cyclomatic complexity by

𝐿𝑂𝐶 (𝐶𝐷 = 𝐶𝑌𝐶𝐿𝑂/𝐿𝑂𝐶). Higher CD suggests

challenging maintenance, while lower CD implies

simpler, more manageable code.

Abstraction Density (AD): Representing program

abstraction, AD is the average of four sub-

metrics—Imperative Abstraction (IA),

Multifaceted Abstraction (MFA), Unnecessary

 Project

Historical & Novel
Features Consolidation

 Density
 Index

Sreeramkumar et al., Vol 6 ǀ Issue 2

725

Abstraction (UNA), and Unutilized Abstraction

(UUA)—and highlights the program’s abstraction

level.

Implementation Smell Density (ISD): ISD

measures the frequency of code smells (e.g.,

Broken Modularization, Long Methods), averaged

across nine sub-metrics. A high ISD signals code

that may be hard to understand or maintain,

guiding developers on refactoring needs.

Smell Density (SD): Calculated as the average of

Abstraction Density (AD), Encapsulation Density

(ED), and Implementation Smell Density (ISD), SD

provides an overview of code quality. Higher SD

values indicate lower code quality, highlighting

potential areas for improvement to reduce bugs

and maintenance issues.

Quality Index Calculation

The Quality Index Computation algorithm

combines four different code quality density

measurements to create an aggregate score, which

then translates into a qualitative rating. Below is a

description of the steps:

Attribute Density, Method Density, Inline

Comment Density, and Documentation Density are

the four density metrics that can be entered in the

initial step. The metrics encompass completeness;

understand ability, maintainability, and

documentation coverage. Multifaceted quality

attributes are reflected in them. Taking the

arithmetic average of the four density values

provides the overall Quality Index (QI) score. As an

indicator of holistic density across key software

quality dimensions, 𝑄𝐼 = (𝐴𝐷 + 𝐸𝐷 + 𝐼𝑆𝐷 +

 𝑆𝐷) / 4.

Algorithm: Quality Index Computation

Input: Density Values (AD, ED,ISD,SD)

Output: Quality Index value (QIV)

1. Compute the Quality Index (QI) as the average of the four input Density Values:

QI=(AD+ED+ISD+SD)/4

2. SET QIV=””;

3. If (QI <30):

a. QIV= “Low Quality”;

Else if (QI >=30 && QI <40):

QIV= “Medium Quality”;

Else if (QI >=40):

QIV= “High Quality”;

End if

End Algorithm

Algorithm 3: Quality Index Computation

Algorithm 3 shows the Security Index assesses a

software system's security level, using metrics

such as Density of Methods (DM), Density of Fields

(DF), and Density of Try-Catch (DTC). Each metric

reflects the system’s encapsulation and error-

handling practices, which influence its security

posture. Here’s a breakdown of these components:

Density of Methods (DM): This metric evaluates encapsulation by comparing the count of private and

protected methods to public methods:

𝐷𝑀 =
(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑀𝑒𝑡ℎ𝑜𝑑𝑠+𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑒𝑡ℎ𝑜𝑑𝑠)

(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑢𝑏𝑙𝑖𝑐 𝑀𝑒𝑡ℎ𝑜𝑑𝑠)
 [13]

Density of Fields (DF): DF assesses the ratio of private+protected to public fields, providing insight into

how well internal data is protected, guiding refactoring or security enhancements:

𝐷𝐹 =
(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝐹𝑖𝑒𝑙𝑑𝑠+𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑖𝑒𝑙𝑑𝑠)

(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑢𝑏𝑙𝑖𝑐 𝐹𝑖𝑒𝑙𝑑𝑠)
 [14]

Density of Try-Catch (DTC): DTC measures error-handling density by dividing the number of try-catch

blocks by the total private and protected methods:

𝐷𝑇𝐶 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑇𝑟𝑦 − 𝐶𝑎𝑡𝑐ℎ 𝐵𝑙𝑜𝑐𝑘𝑠/

(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 + 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑒𝑡ℎ𝑜𝑑𝑠) ………………………. [15]

Sreeramkumar et al., Vol 6 ǀ Issue 2

726

The Security Index (SI) is calculated by averaging

the DM, DF, and DTC values: 𝑆𝐼 = (𝐷𝑀 + 𝐷𝐹 +

𝐷𝑇𝐶)/3. This value is compared to a predefined

Mean Security Index (MSI). If the SI is less than the

MSI, the Security Index Value (SIV) is labeled as

"Low Security"; otherwise, it is considered "High

Security." This output, alongside the Quality Index

(QI), helps evaluate both security and overall

system quality. Various density values are used in

algorithm 6.2 to calculate the maintenance value of

a software system, including abstraction density,

encapsulation density and implementation smell

density. These density values are used as input by

the algorithm to calculate a quality index using a

weighted average. This algorithm 4 calculates the

Maintenance Value of a software system based on

its Density Values. To determine how much effort

is required to maintain a system, the Maintenance

Value is used as a metric.

Algorithm: Maintenance Value Computation

Input: Density Values

Output: Quality Index

MV=”” //Maintenance Value

If (Class ==”0” & SIV =”Low Security” & QIV == “Low Quality”):

MV=” High Maintenance”

Else If (Class ==”0” & SIV =”Low Security” & QIV == “High Quality”):

MV=” Average Maintenance”

Else If (Class ==”0” & SIV =”High Security” & QIV == “Low Quality”):

MV=” Medium Maintenance”

Else If (Class ==”0” & SIV =”High Security” & QIV == “High Quality”):

MV=” Low Maintenance”

Else If (Class=”1”)

MV=” Very High Maintenance”

End Algorithm

Algorithm 4: Maintenance Value Computation

A set of conditions is used to determine the

Maintenance Value (MV) based on input

parameters related to security (SIV), quality (QIV)

and class (Class) used in this algorithm 6.3. The

selected metrics are Maintenance Index (MI),

Quality Index (QI), and Security Index (SI). They

capture key aspects of software maintenance,

including complexity, code smells, and

encapsulation density. Traditional metrics like

COCOMO II were rejected as they fail to account for

dynamic software attributes. Single-index metrics

were also unsuitable due to their narrow focus. By

integrating these novel metrics, the model offers

actionable insights for better resource planning

and maintenance optimization.

Maintenance Cost Computation

Maintenance costs are calculated using the index

value, the LOC, and the cyclomatic complexity. In

this way, developers can quickly and accurately

identify potential problem areas of their code,

enabling them to assess its maintainability.

Developers can refactor their code if it has high

cyclomatic complexity so that it is simple to

maintain and has lower complexity. During the

design phase, bugs are easier to fix, but later they

are more expensive. The following features assist

in calculating the cost.

Days

Calculating the cost of the project requires

measuring the number of working days. To

calculate the cyclomatic complexity, the total lines

of code are multiplied by the cyclomatic

complexity and then divided by 400 because the

average human codes 400 lines per day. For

example, if an experienced developer needs to

code 2000 lines with a cyclomatic complexity of 4,

the total number of days needed for the project

would be (2000 * 4) / 400 = 20 days.

𝐷𝑎𝑦𝑠 =
(𝑇𝑜𝑡𝑎𝑙𝐿𝑖𝑛𝑒∗𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)

400
 [16]

This estimates maintenance time by considering

Lines of Code (LOC) and Cyclomatic Complexity.

The factor of 400 represents a developer’s average

daily productivity. By predicting maintenance

effort, it aids in scheduling and resource planning,

ensuring timely project completion.

Sreeramkumar et al., Vol 6 ǀ Issue 2

727

Total Month

This feature is used to calculate how many months

to update the Software Project.

𝑀𝑜𝑛𝑡ℎ = 𝐷𝑎𝑦𝑠/30, 𝑊ℎ𝑒𝑟𝑒 1 𝑀𝑜𝑛𝑡ℎ = 30 𝐷𝑎𝑦𝑠

[17]

No. of Developers

A quick and easy way to calculate the number of

developers is to divide the number by two. Where

two (2) represent the Minimum Required Month

for Updates to a Project.

𝑁𝑜 . 𝑜𝑓. 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠 (𝑁𝐷) = 𝑀𝑜𝑛𝑡ℎ/2 [18]

Maintenance Cost

The maintenance cost is calculated based on the

salary of a certain number of developers per year

along with a standard maintenance cost of 30000.

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡 (𝑃𝑒𝑟𝑌𝑒𝑎𝑟) = 𝑆𝑎𝑙𝑎𝑟𝑦 ∗ (𝑁𝐷) + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡 [19]

This estimates a software project's annual

maintenance cost by factoring in the number of

developers (ND), their average salary, and a fixed

standard maintenance cost. By breaking down cost

components, it offers insights into resource

allocation. Organizations can use this metric for

budgeting and identifying cost-saving

opportunities.

Results and Discussion
The section includes the performance evaluation

for the proposed model and the methodologies

employed. The feature selection and classification

methods are evaluated with the performance

metrics such as selection time, accuracy, error rate,

precision, and recall. This section also includes the

comparative analysis for the proposed system with

existing methodologies is discussed with the

results is illustrated as follows. Also the selected

features for the class prediction and further

maintenance cost estimation are computed based

the selected and novel features are discussed with

the illustration.

Implementation Environment
The research work has been implemented in an HP

Rack Server, which has an Intel Gold – G5400

Processor, 2 GB HDD, and 32 GB RAM. The system

is running Windows 10 operating system with

Python and Anaconda installed on it. The Python

libraries such as Seaborn, Pandas, Numpy, and

Matplotlib are used in the implementation process.

Figure 3: Feature Importance

The feature importance score is evaluated for all

the features in the dataset is shown in Figure 3. The

high score of the feature importance indicates that

the high significant features. As shown in Figure 3,

the algorithm MGFP consumes less time for the

selection than others. It is because MGFP is the

fastest algorithm when it comes to selection and

execution time. Additionally, it is the most

accurate, as it gives the highest accuracy rate. The

MGFP algorithm is ideal for selecting features. A

large dataset can also be analyzed with MGFP

because of its scalability. Additionally, MGFP is

robust and can handle noisy data, making it

suitable for real-world applications. Figure 4

shows the Selection time of the Features.

Sreeramkumar et al., Vol 6 ǀ Issue 2

728

Figure 4: Selection Time

Table 5: Significant Features Selected with Selection Time

No Algorithm Selected Features Selection

Time

1 Sequential Forward Feature

Selection

1,2,3,4,6,12, 13,15,16, 275

Seconds

2 Nonnegative Discriminative

Feature Selection

32,51,21,29,23,45,13,33,37,36,54,30,81,4,2,41,70,14,28,71 4 Seconds

3 Modified Global Flower

Pollination Feature Selection

Algorithm

1,11,19,23,27, 40,42,46,47,48,

5,52,57,63,70,77,79,80,81,88

2.6 Seconds

The Table 5 depicts the significant features

selected based on the given dataset. Also, the table

shows the selection time for the employed

algorithms.

Accuracy and Error Rate
The accuracy of a machine learning classification

algorithm is one way to measure how often the

algorithm classifies a data point correctly.

Accuracy is the number of correctly predicted data

points out of all the data points (24).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 [21]

Error rate (ERR) is calculated as the number of all

incorrect predictions divided by the total number

of the dataset. The best error rate is 0.0, whereas

the worst is 1.0 (19). Table 5 shows the Evaluation

Metrics of the Classifiers (25-28).

𝐸𝑅𝑅 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 [22]

Table 6: Evaluation Metrics

Classifiers Accuracy Error Rate Precision Recall F1-score

Gaussian Naïve Bayes Classifier 86 14 84.5 85.9 85.19

Random Forest 91 9 90.8 91.2 91

Ensemble Voting Classifier 96 4 96.1 95.4 95.75

Stacking Classifier 99 1 99.2 98.5 98.85

Sreeramkumar et al., Vol 6 ǀ Issue 2

729

Figure 5: Accuracy and Error Rate

Table 6 shows the evaluation metrics. The Figure 5

shows the accuracy and error rates of four

classifiers: Gaussian Naive Bayes (GNB), Random

Forest (RF), Ensemble Voting Classifier (EVC), and

Stacking Classifier (SC). GNB has an accuracy of

86% and an error rate of 14%. RF improves

accuracy to 91% with a 9% error rate. EVC further

increases accuracy to 96% with a 4% error rate. SC

performs the best, achieving 99% accuracy and

only a 1% error rate. Overall, SC is the most

accurate classifier with the lowest error rate.

Figure 6: Precision and Recall

The Figure 6 shows the precision and recall

percentages for four classifiers: Gaussian Naive

Bayes (GNB), Random Forest (RF), Ensemble

Voting Classifier (EVC), and Stacking Classifier

(SC). GNB has a precision of 84.5% and recall of

85.9%. RF improves with 90.8% precision and

91.2% recall. EVC further increases these to 96.1%

precision and 96.4% recall. SC performs the best,

achieving 99.2% precision and 98.5% recall.

Overall, the Stacking Classifier has the highest

precision and recall among all classifiers.

Sreeramkumar et al., Vol 6 ǀ Issue 2

730

Figure 7: F1-Score

Figure 8: Calibration Plot of the Classifiers

The Figure 7 illustrates the accuracy and error rate

for the classifiers while prediction. The stacking

classifier gives high accuracy rate of 99% than

others and provides less error rate of 1% while

prediction.

Calibration plots are an important diagnostic tool

for evaluating the predictive performance of

machine learning classification models. They help

assess how calibrated a model's predicted

probabilities are compared to the true

probabilities. Figure 8 depicts the calibration plots

for all the classifiers with the mean predicted

probability value. The Figure 8 illustrates the

average positive prediction results for the

evaluated dataset, highlighting the effectiveness of

the proposed approach. Through an integrated

feature engineering strategy, the ML-PEQRM

model achieves higher accuracy than the

commonly reported 85–98% range in existing

literature. Unlike prior studies that primarily

focused on effort estimation, such as works (10,

11), this model expands parameter tuning by

incorporating product quality factors.

Additionally, ML-PEQRM supports interpretable

predictions, which enhances resource planning

compared to traditional black-box models (16).

Notably, the model demonstrates a 25% reduction

in maintenance costs when compared to

conventional methods that neglected quality

aspects. By integrating quality, reliability,

maintenance, and cost dimensions, it offers a more

comprehensive and practical estimation

framework than previous models that focused

solely on effort.

Sreeramkumar et al., Vol 6 ǀ Issue 2

731

Comparative Analysis
The proposed ML-PEQRM system is aimed at

estimating costs based on quality. The purpose of

this work is to estimate costs based on quality,

reliability, and maintenance indexes. This work

improves the quality of the project by identifying

and computing software metrics and software

code smells. After integrating essential software

metrics, the novel metrics and features will be

computed to enhance the machine-learning model

for maintenance index prediction. Based on the

quality and security index, the model would be able

to estimate maintenance. For predicting quality

and security index for the project, the selected

features and the novel features are incorporated

into the machine learning, which provides better

results for cost estimation than other methods.

This research achieves 99% accuracy in estimating

software quality, reliability, maintenance needs,

and costs using the proposed ML-PEQRM model.

This outperforms the 85-98% accuracy range

reported across similar studies on software cost

estimation models (10, 11, 16). Specifically, the

hybrid HACO-BA algorithm for COCOMO-II

optimization attained 98% accuracy (10). The

Flower Pollination Algorithm for COCOMO-II

achieved improved error metrics but lacks

accuracy results (11). A neural network approach

reached 97% accuracy for a NASA dataset (16). In

comparison, the feature engineering and stacking

ensemble approach in ML-PEQRM enhances

generalizability across projects. The integrated

product and process metrics address limitations in

(10,11) that focus only on tuning estimation

parameters. Key results show a 25% reduction in

maintenance costs and a 20% improvement in

reliability versus conventional methods. This

demonstrates the value of ML-PEQRM's quality-

driven approach unlike existing model

optimization techniques. The study provides a

more holistic estimation encompassing quality,

reliability, maintenance, and costs. In contrast,

prior work (16) focused solely on development

effort prediction. The interpretable data-driven

predictions also enable optimized resource

planning.

Table 7: Comparative Analysis with Various Work(s)

Model Technique Used Accuracy Key Results Limitations

ML-PEQRM

(Proposed)

Stacking ensemble

of XGBoost and

Random Forest

99%

25% reduced

maintenance costs,

20% improved

reliability

Evaluated on limited

datasets

COCOMO II (10)
Hybrid ACO-BA

algorithm
98%

Tuned coefficients,

improved DNN

training

Not compared to

original COCOMO II,

specific datasets

Flower Pollination

(11)

Flower Pollination

Algorithm
-

Lower errors than Bat

Algorithm

No accuracy reported,

lacks evaluation

across projects

Neural Network

(16)
Neural Network 97%

Effort prediction for

NASA data

Only development

effort, not

maintenance

Table 7 shows the comparisons to recent literature

highlight the superior accuracy achieved by the

proposed model. ML-PEQRM advances the state-

of-the-art through its novel focus on product

quality factors and integrated feature engineering.

The results validate the effectiveness of machine

learning for enhancing software maintenance

planning and efficiency.

Sreeramkumar et al., Vol 6 ǀ Issue 2

732

Figure 9: Comparison of Accuracy and Error Rate with Existing Models

The comparison of accuracy and error rate for the

existing systems and the proposed system (ML-

PEQRM) is shown in Figure 9. It shows that the

proposed system acquires 99% of accuracy and

less error rate when compared with the other

systems. The validity and reliability of the results

were ensured by using the same dataset

throughout the study. All models were applied to

the same dataset, which was derived from GitHub

repositories, to ensure fair and unbiased

performance evaluation. This comparison was

designed to assess the effectiveness of the

proposed ML-PEQRM model when predicting

software quality, reliability, maintenance needs,

and costs. As a comparison, Gaussian Naive Bayes,

Random Forest, and Support Vector Machines

(SVM) were used, which are widely recognized for

their effectiveness in classification and regression?

A 70% training and 30% testing split of the dataset

was used to maintain a consistent evaluation

framework. The performance of these models was

measured using standard evaluation metrics such

as accuracy, precision, recall, F1-score, Mean

Absolute Percentage Error (MAPE), and R² Score.

Five-fold cross-validation was performed across

all models to verify the reliability of the

comparison. With this technique, the evaluation is

not dependent on a single dataset split and

performance fluctuations are minimized. A

Wilcoxon signed rank test was also conducted to

confirm the significance of the observed

improvements in the ML-PEQRM model. By using

uniform datasets and rigorous evaluation methods

for all comparisons. By demonstrating credibility,

reproducibility, and accurate representation of

performance advantages, the proposed model is

proven to be credible, reproducible, and accurate.

Maintenance Cost and Reliability

Improvements
 The proposed model’s ability to reduce

maintenance costs and improve reliability was a

key outcome. By integrating product and process

metrics, the ML-PEQRM model achieved a 25%

reduction in costs and a 20% improvement in

reliability compared to conventional methods.

Table 8: Maintenance Cost for the Software Project

Project Month Employees Cost / Year

Anasthase_TintBrowser 5 3 75000

billthefarmer_tuner 1 1 45000

budowski_budoist 8 4 90000

czlee_debatekeeper 4 2 60000

devonjones_PathfinderOpenReference 2 1 45000

eolwral_OSMonitor 5 3 75000

fython_Blackbulb 4 2 60000

gsantner_markor 5 3 75000

Sreeramkumar et al., Vol 6 ǀ Issue 2

733

HenriDellal_emerald 2 1 45000

hwki_SimpleBitcoinWidget 9 5 105000

hypeapps_Endoscope 1 1 45000

koush_Superuser 3 2 60000

lordi_tickmate 2 1 45000

markusfisch_ShaderEditor 4 2 60000

In Table 8, the maintenance cost, required months,

required employees, quality index for the project,

as well as security index are shown. The

maintenance cost estimation is computed

automatically based on the security (SI) and

quality (QI) index from the prediction of the

requirement of maintenance index (MIV). The MIV

is further employed to compute the cost per year,

employees’ requirement and duration of the

maintenance for each project. These findings

underscore the practical utility of ML-PEQRM in

optimizing software maintenance processes and

improving long-term software reliability. While

the datasets used in the IntelliEstimator and SVS

Framework thesis (26) are sourced from GitHub

repositories, their scope, focus, and diversity differ.

With a focus on software maintenance cost

estimation, reliability, and quality prediction,

IntelliEstimator uses 25 Java projects with 10,000

code samples. A number of metrics, such as Quality

Index (QI), Security Index (SI), and Maintenance

Index (MI), as well as historical commit logs and

defect tracking data, are incorporated into the

system. As an alternative, the SVS Framework (26)

dataset is also based on GitHub projects, but uses

software code metrics to assess software quality.

From network packet analysis to interior design

tools, a range of open-source projects such as

Hprose, Sweet Home 3D, MyBatis, JabRef, and

JWildFire are included in the dataset. A defect

detection, maintainability assessment, and

performance evaluation do not feature in

IntelliEstimator dataset, while they do in SVS

dataset. Moreover, the SVS Framework combines

object-oriented principles with machine learning

for defect detection, whereas IntelliEstimator

combines ensemble learning (Stacking XGBoost

and Random Forest) for improvement of software

maintenance estimates. They may both be derived

from GitHub, but their primary difference lies in

their intended analyses: maintenance cost

estimation vs. software quality evaluation. The

superior performance of ML-PEQRM can be

attributed to its novel feature engineering

techniques and ensemble learning approach. By

leveraging MGFPA for feature selection, the model

effectively reduced dimensionality and noise,

enhancing prediction accuracy. Furthermore, the

integration of both product and process metrics

enabled holistic predictions, addressing gaps in

existing methodologies.

In this section, the comparative analysis and

discussion between the proposed system ML-

PEQRM and the existing system are described. By

comparing the systems, the potential of accessing

each solution for identification and mitigation will

be an option for a successful system. The existing

system (10) focused on the importance of effective

software cost estimation and the limitations of

traditional regression-based algorithms like the

constructive cost model (COCOMO) in accurately

estimating software costs. It highlights the need for

fine-tuning coefficients to account for variations

across different organizations. The hybrid

algorithm aims to find an optimal solution while

minimizing computational costs in the work. It is

used to optimize the COCOMO II coefficients and

improve the training process of deep learning

models. The experimental results showed that the

hybrid HACO-BA algorithm outperformed ACO and

BA in fine-tuning COCOMO II coefficients.

Additionally, HACO-BA demonstrated better

performance in optimizing the DNN training

process in terms of execution time and accuracy.

The proposed DNN approach achieved an accuracy

of approximately 98%, while traditional neural

networks (NN) achieved up to 85% accuracy on

the same datasets. Also in the work (11), a Flower

Pollination Algorithm (FPA) is proposed to

optimize the parameters of the Constructive Cost

Model II (COCOMO-II) using a standard Turkish

industry dataset. The FPA is a metaheuristic

algorithm inspired by the pollination behavior of

flowers. It aims to find the optimal solution for

parameter optimization in the COCOMO-II model.

Experimental results demonstrate that the

Sreeramkumar et al., Vol 6 ǀ Issue 2

734

proposed FPA algorithm outperforms existing

approaches like the Bat algorithm and the original

COCOMO-II in terms of Manhattan distance (MD)

and mean magnitude of relative errors (MMRE).

This indicates that the FPA algorithm provides

better estimations, improving the accuracy of cost

estimation for software projects. From the analysis

some of the limitations are attained based on the

existing systems: The COCOMO II solutions may

have been evaluated on specific datasets or

industry settings, limiting their generalize ability

to other scenarios. The work primarily focuses on

optimizing COCOMO II coefficients and improving

the training process of deep learning models.

However, it does not provide a thorough

comparison of the cost estimation performance

between the proposed algorithms and traditional

methods like COCOMO II. Such a comparison would

help assess the actual improvement achieved by

the proposed solutions. As compared with

COCOMO-II optimizations, the ML-PEQRM model

demonstrated better scalability. A black-box

approach lacks explainability, while interpretable

metrics provide stakeholders with actionable

insights. An analysis of the model's predictive

capability was conducted using a combination of

classification and regression metrics. A

combination of precision, recall, F1-score, and

overall classification accuracy was used to evaluate

software quality, reliability, and maintenance

needs. On the basis of extracted software

attributes, the model classified projects into

predefined quality and reliability classes. In the

estimation of maintenance costs, which is a

continuous variable, the accuracy was determined

by the mean absolute percentage error (MAPE)

and the coefficient of determination (R2 Score).

This metric reduces the risk of errors caused by

overestimation or underestimations by ensuring

estimated costs closely match actual values. For

maintenance cost prediction, the ML-PEQRM

model demonstrated a near-perfect correlation

between predicted and actual values, achieving an

accuracy rate of 99% in classification tasks and a

MAPE of 1.5% with an R2 Score of 0.99. This claim

was validated using a 5-fold cross-validation,

which ensured generalizability. Additionally,

comparisons with baseline models, such as

Gaussian Nave Bayes (86% accuracy) and Random

Forest (91% accuracy), further support the

proposed approach's superiority. When tested on

previously unknown software projects, the model

maintained an accuracy of 98% or higher. Thus, the

99% accuracy claim can be justified based on

extensive experimental validation, rigorous

evaluation metrics, and comparative performance

assessment, demonstrating the ML-PEQRM model

is reliable and effective in predicting software

quality and maintenance.

In recent years, several studies have introduced

innovative methods for estimating software

maintenance costs. Despite their advancements in

specific areas, these methods often lack

generalizability, interpretability, or holistic

metrics. ML-PEQRM addresses these gaps and is

compared with the following recent works: The

ML-PEQRM model presents substantial

improvements over recent methods in software

cost and maintenance estimation. For instance, the

Genetic Algorithm for Software Development Cost

Estimation (18) achieved high accuracy by

reducing uncertainty in development cost factors.

However, it was limited in scope, focusing solely on

development costs and excluding essential

maintenance metrics and process data. ML-PEQRM

addresses these limitations by integrating both

product and process metrics, enabling more

accurate predictions of software quality, reliability,

and maintenance costs. Additionally, the model

leverages a stacking ensemble technique to

enhance predictive accuracy, reaching up to 99%.

Similarly, the Ant Colony Optimization with Fuzzy-

Neural Networks (19) demonstrated improved

training efficiency and prediction accuracy for

effort estimation. Despite its strengths, the model

lacked interpretability and was not tested in

comprehensive maintenance contexts. ML-PEQRM

overcomes these issues by incorporating

interpretable machine learning techniques and a

rich set of metrics, delivering actionable insights

and greater applicability in real-world scenarios.

The Two-Stage Life Cycle and Cost Estimation

Framework (20) linked development and

maintenance phases, offering a lifecycle-oriented

perspective. However, it fell short in feature

engineering, particularly concerning software

quality and reliability. ML-PEQRM extends this

framework by integrating the Modified Global

Flower Pollination Algorithm (MGFPA) and

introducing novel metrics such as abstraction

Sreeramkumar et al., Vol 6 ǀ Issue 2

735

density and dynamic change metrics, achieving

superior results across diverse software domains.

Researchers also proposed an LSTM-CRF-Based

Paradigm for software cost estimation (21).

Although effective in its specific context, the model

operated as a black box and was limited to cost

estimation, neglecting reliability and maintenance

considerations. ML-PEQRM surpasses this by

offering a broader and more transparent

framework that includes quality, reliability, and

maintenance cost predictions, ensuring

generalizability across varied datasets. Lastly, the

Multi-Criteria Decision-Making (MCDM)

Framework focused on software reliability

prediction using multi-metric accuracy evaluation

(22). While it demonstrated robust decision-

making capabilities, it did not include

maintainability metrics or estimate maintenance

costs. ML-PEQRM fills this gap by incorporating a

comprehensive metric set, including the Quality &

Security Index, and delivers high predictive

accuracy (99%) along with practical value for real-

world software project planning.

Strengths and Limitations
Strengths: The ML-PEQRM model demonstrates

exceptional performance with a 99% accuracy

rate, surpassing the typical 85%-98% accuracy

range of neural networks and traditional

estimation techniques. It takes a holistic approach

by combining static code metrics with dynamic

change metrics, providing a comprehensive model

for estimating software quality, reliability,

maintenance needs, and associated costs. The

study also achieved impressive results, including a

25% reduction in maintenance costs and a 20%

improvement in reliability. Its scalability allows

the model to efficiently handle large datasets and

accommodate diverse project types, making it

suitable for a wide range of real-world scenarios.

Additionally, the use of novel feature engineering

techniques, such as the Modified Global Flower

Pollination Algorithm (MGFPA) and the creation of

new metrics like cyclomatic density and

abstraction density, significantly enhanced the

model’s predictive power.

Limitations: The ML-PEQRM model, while

promising, has some limitations. First, the study

used a dataset of 10,000 samples from 25 Java

projects, which may not fully capture the diversity

of software systems across different industries.

The generalizability of the model could be

improved by testing it on larger and more varied

datasets. Additionally, the model primarily focuses

on static and dynamic code metrics, potentially

overlooking other important factors such as team

experience or hardware specifications, which

could affect software maintenance and quality. The

model was also not validated against existing

methods in real-world industrial case studies,

which could have strengthened the practical

applicability of the findings. Finally, the model's

reliance on substantial computational resources

might pose a challenge for smaller organizations or

teams with limited access to such resources.

Table 9: Comparative Aspect of Proposed and Existing Works

Aspect Proposed Work (ML-PEQRM) Other Works

Metrics Integration Product + Process + Novel Metrics Limited to effort estimation metrics

Feature Selection MGFPA (optimized, scalable, handles

noise)

Traditional, slower, less robust

Machine Learning Stacking Ensemble (XGBoost + Random

Forest)

Single models like Neural Networks

Accuracy 99% 85–98%

Scope Quality, reliability, cost, and maintenance Cost or effort-only predictions

Interpretability Clear and actionable predictions Limited interpretability

Comparative

Analysis

Benchmarked against COCOMO II, neural

networks

Rarely benchmarks with modern

approaches

Practical Impact 25% cost reduction, 20% reliability

improvement

Focused on narrow domains or

datasets

Table 9 shows the Compartive aspect the proposed

work with other Existing Works. It analysis the

metrics integtrationl, ML Model and Impact of the

work. While the IntelliEstimator framework

demonstrates strong predictive capabilities in

controlled testing environments, the scalability of

Sreeramkumar et al., Vol 6 ǀ Issue 2

736

the model in practical, large-scale construction

projects warrants further investigation. Initial

experiments indicate that the system maintains

consistent performance with moderate increases

in data volume and project complexity. However,

real-world scalability depends on factors such as

data availability, integration with enterprise

systems, and the variability of project types and

geographic contexts. To address this, the

framework has been designed with modular

components and support for cloud-based

deployment, allowing it to scale horizontally by

distributing computational tasks. Future work will

involve large-scale pilot implementations across

diverse construction scenarios to evaluate the

system’s responsiveness, adaptability, and

resource requirements under operational

constraints. This will help ensure the

IntelliEstimator remains viable and efficient as it

transitions from a prototype to a production-ready

solution. To ensure the practical relevance and

usability of the Intelli Estimator framework, the

study has actively considered potential pathways

for real-world implementation. Preliminary

discussions have been initiated with industry

stakeholders, including construction firms and

project management consultancies, to explore

pilot testing opportunities. These collaborations

aim to validate the system's effectiveness in live

environments and to gather user feedback for

refining the interface and integration workflows.

The framework’s design emphasizes real-time data

integration, compatibility with existing project

management systems, and ease of deployment—

key considerations for industry adoption.

Conclusion
This research addresses the challenge of

enhancing software maintenance decision-making

processes by applying machine-learning

techniques. Optimizing resource allocation and

improving software maintenance efficiency were

the main objectives. As a result of the findings,

conventional software estimation approaches fail

to account for issues such as inaccurate estimates,

lack of reliability, and resource inefficiency. To

achieve superior predictive performance, static

code attributes and dynamic change metrics were

integrated. By considering software quality,

reliability, maintenance, and cost estimation, the

proposed Model (ML-PEQRM) improves cost

estimation and project planning accuracy of 99%.

This model's ability to consider software quality,

reliability, and maintenance needs significantly

contributed to its effectiveness ratio of 98%.

Several software metrics were computed, features

were generated, and preprocessing was performed

to evaluate software metrics. Preprocessing

techniques include handling missing data,

removing duplicates, and consolidating features.

Using feature selection algorithms then reduces

the risk of overfitting and increases accuracy in

estimating maintenance costs by identifying the

most significant features. The main contribution of

this work is a discussion of the potential benefits of

machine learning algorithms for estimating

maintenance costs in software development

projects. The future direction of the research could

be to expand the model to consider other factors

that impact software development costs. Costs

associated with hardware, infrastructure, and

project management could be included in these

considerations.

Abbreviations
None.

Acknowledgement
None.

Author Contributions
The corresponding author confirm sole

responsibility for the following: study conception

and design, data collection, analysis and

interpretation of results, and manuscript

preparation.

Conflict of Interest
None.

Ethics Approval
Not applicable.

Funding
No Funding.

References
1. Qamar N, Malik AA. A Quantitative Assessment of the

Impact of Homogeneity in Personality Traits on
Software Quality and Team Productivity. IEEE
Access. 2022;10(1):122092–122111.

2. Li Z, Qi X, Yu Q, Liang P, Mo R, Yang C. Exploring
multi-programming-language commits and their

Sreeramkumar et al., Vol 6 ǀ Issue 2

737

impacts on software quality: An empirical study on
Apache projects. J Syst Softw. 2022;194(1):1-18.

3. Jagtap M, Katragadda P, Satelkar P. Software
Reliability: Development of Software Defect
Prediction Models Using Advanced Techniques.
Annu Reliab Maintainab Symp (RAMS). 2022;1(1):1–
7.

4. Huang YS, Chiu KC, Chen WM. A software reliability
growth model for imperfect debugging. J Syst Softw.
2022;188(1):1–15.

5. Li L. Software Reliability Growth Fault Correction
Model Based on Machine Learning and Neural
Network Algorithm. Microprocess Microsyst.
2021;80(2):1–10.

6. Gupta C, Inácio PRM, Freire MM. Improving software
maintenance with improved bug triaging. J King Saud
Univ Comput Inf Sci. 2022;34(10):8757–8764.

7. Gandomani TJ, Dashti M, Nafchi MZ. Hybrid Genetic-
Environmental Adaptation Algorithm to Improve
Parameters of COCOMO for Software Cost
Estimation. Int Conf Distrib Comput High Perform
Comput (DCHPC). 2022;1(1):82–85.

8. Akhbardeh F, Reza HA. A Survey of Machine Learning
Approach to Software Cost Estimation. IEEE Int Conf
Electro Inf Technol (EIT). 2021;1(1):405–408.

9. Yadav N, Gupta N, Aggarwal M, Yadav A. Comparison
of COSYSMO Model with Different Software Cost
Estimation Techniques. Int Conf Issues Challenges
Intell Comput Tech (ICICT). 2019;1(1):1–5.

10. Ullah B, Wang J, Sheng J, Long M. A Novel Technique
of Software Cost Estimation Using Flower Pollination
Algorithm. Int Conf Intell Comput Autom Syst
(ICICAS). 2019;3(1):654–658.

11. Hassan CAU, Khan MS, Irfan R, Iqbal J, Hussain S,
Ullah SS, Alroobaea R, Umar F. Optimizing Deep
Learning Model for Software Cost Estimation Using
Hybrid Meta-Heuristic Algorithmic Approach.
Comput Intell Neurosci. 2022;20(1):1–20.

12. Ralhan C, Malik A. A Study of Software Clone
Detection Techniques for Better Software
Maintenance and Reliability. Int Conf Comput Sci
(ICCS). 2021;2(1):249–253.

13. Hardt R. A software maintenance-focused process
and supporting toolset for academic environments.
IEEE Int Conf Softw Maint Evol (ICSME).
2020;1(1):360–370.

14. Rojek I, Jasiulewicz-Kaczmarek M, Piechowski M,
Mikołajewski D. An Artificial Intelligence Approach
for Improving Maintenance to Supervise Machine
Failures and Support Their Repair. Appl Sci.
2023;13(8):137-141.

15. Ren Y. Optimizing Predictive Maintenance with
Machine Learning for Reliability Improvement.
ASME J Risk Uncertain Part B. 2021;7(3):3–20.

16. Dalzochio J, Kunst R, Pignaton E, Binotto A, Sanyal S,
Favilla J, Barbosa J. Machine learning and reasoning
for predictive maintenance in Industry 4.0: Current
status and challenges. Comput Ind. 2020;123(1):1-
15.

17. Zhong D, Xia Z, Zhu Y, Duan J. Overview of predictive
maintenance based on digital twin technology.
Heliyon. 2023;9(4):1–10.

18. Amarif M, Owaydat S. An Optimal Optimization of
Software Development Cost Estimation Using

Genetic Algorithm. IEEE Int Maghreb Meet Conf Sci
Tech Autom Control Comput Eng (MI-STA).
2024;1(1):654–659.

19. Afshari M, Gandomani TJ. Enhancing Software Effort
Estimation with Ant Colony Optimization Algorithm
and Fuzzy-Neural Networks. Int Conf Distrib Comput
High Perform Comput (DCHPC). 2024;1(1):1–6.

20. Zhu X, Fu B, Lu Y, Lin T, Lv X, Wu Y. A Kind of 2-Stage
Software Life Cycle and Cost Estimation Framework
in Agile Methodology from a System Engineering
Perspective. IEEE Int Conf Softw Eng Artif Intell
(SEAI). 2024;1(2):188–193.

21. Zhu X, Fu B, Lu Y, Lin T, Lv X, Wu Y. A Kind of
Paradigm-Based Software Cost Estimation Method
Using LSTM-CRF. IEEE Int Conf Softw Eng Artif Intell
(SEAI). 2023;1(3):22–27.

22. Kumar A, Singh AK, Garg A. A Novel Framework to
Evaluate Software Reliability Prediction Models
Using Multi-Criteria Decision-Making. Int Conf
Reliab Infocom Tech Optim (ICRITO). 2024;1(1):1–5.

23. Ding Z, Mo Y, Pan Z. A Novel Software Defect
Prediction Method Based on Isolation Forest. Int
Conf Qual Reliab Risk Maint Saf Eng (QR2MSE).
2019;2(1):882–887.

24. Govindaprabhu GB, Sumathi M. Ethno medicine of
Indigenous Communities: Tamil Traditional
Medicinal Plants Leaf detection using Deep Learning
Models. Procedia Comput Sci. 2024;235(1):1135–
1144.

25. Govindaprabhu GB, Sumathi M. Safeguarding
Humans from Attacks Using AI-Enabled (DQN) Wild
Animal Identification System. Int Res J Multidiscip
Scope (IRJMS). 2024;5(3):285–302.

26. Visagan AR, Sumathi M. A Framework for Software
Quality Enhancement through Data Mining.
Shodhganga. 2019.
https://shodhganga.inflibnet.ac.in/handle/10603/
347294.

27. Govindaprabhu GB, Sumathi M, Neyvasagam S,
Kumar NAJ. Bridging AI and ecology: CILNN and XAI
for acoustic-based prediction of dangerous wild
animals. Int Res J Multidiscip Scope (IRJMS).
2025;6(1):1280–1298.

28. Mahalakshmi Priya R, Sumathi M. Impact of
microorganisms on food spoilage and human health:
A comprehensive review of advances in
identification using image processing and artificial
intelligence techniques. Int Res J Multidiscip Scope
(IRJMS). 2025;6(1):1299–1316.

