

International Research Journal of Multidisciplinary Scope (IRJMS), 2025; 6(2): 896-918

Original Article | ISSN (O): 2582-631X DOI: 10.47857/irjms.2025.v06i02.03576

Utilizing Virtual Machine Introspection and Memory Forensics
to Identify Different Forms of Process Injection in a

Virtualized Environment
Darshan Tank1*, Miral Patel J2, Hasmukh Koringa P2, Divyesh Keraliya2,

Jaydeep Tadhani R1, Sunil Soni J1
1Department of Information Technology, Government Polytechnic, Rajkot, India, 2Department of Electronics and Communication,
Government Engineering College, Rajkot, India. *Corresponding Author’s Email: dmtank@gmail.com

Abstract
Sophisticated malware frequently employs advanced evasion techniques to remain undetected by traditional security
mechanisms. One of the most commonly used tactics is process injection, where malicious code is covertly inserted
into the address space of legitimate processes. This allows the malware to operate under the guise of trusted
applications, making detection significantly more challenging. In response to this issue, the present study introduces a
novel detection methodology that functions entirely outside the virtual machine (out-of-VM). This technique
leverages advanced memory introspection to identify and analyze different forms of process injection within
virtualized environments. Notably, the approach is agentless, meaning it does not require any software to be installed
within the guest VM, thereby eliminating the risk of the detection system itself being compromised or bypassed by the
malware. Instead, it analyzes memory from the hypervisor level, providing a more secure and isolated vantage point.
Experimental evaluations validate the effectiveness of the proposed method, demonstrating superior performance
when compared to existing detection frameworks. Specifically, the method achieves higher detection accuracy, with
more true positives and fewer false positives. It is capable of precisely identifying injected memory regions and
detecting a broader spectrum of malware types, thereby outperforming current state-of-the-art solutions across all
major evaluation metrics.

Keywords: Malware Detection, Memory Analysis, Process Injection, Security, Virtual Machine Introspection,
Volatility, Windows.

Introduction
Distributed computing has become a dominant

paradigm in recent years, with virtualization

serving as a critical foundation for cloud

computing. Virtual Machine Monitors (VMMs)

allow multiple virtual machines (VMs) to operate

on a single physical host, but this flexibility

introduces significant security risks. Virtual

machine security remains one of the primary

challenges in cloud infrastructure, as adversaries

often exploit VMs to gain unauthorized access to

virtualized environments. Traditional security

measures are insufficient against modern

malware, which has evolved to be more persistent

and adaptive. Among the tactics employed by

malware, process injection is a powerful method

for evading detection by concealing malicious

code within legitimate processes. Process

injection allows attackers to access system

resources, memory, and network assets of the

target process while gaining elevated privileges

(1). Numerous process injection techniques exist,

including Remote DLL Injection, Remote Thread

Injection, Hollow Process Injection, Reflective DLL

Injection, and others. Detecting process injection

within virtualized environments is particularly

challenging due to the lack of direct access to the

VMs’ physical memory. This study addresses this

gap by proposing an automated approach to

detect various process injection techniques in

virtualized systems. A tool named Hashtest has

been described in the GitHub repository (2),

which is designed to validate the integrity of in-

memory code through the use of hashes. A

dynamic malware analysis framework,

VEDefender, was introduced to detect dormant,

suspicious, or concealed processes in a monitored

virtual machine without modifying the guest OS

kernel on the host (3). A number of techniques

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,

and reproduction in any medium, provided the original work is properly cited.

(Received 20th December 2024; Accepted 23rd April 2025; Published 30th April 2025)

mailto:dmtank@gmail.com

Tank et al., Vol 6 ǀ Issue 2

897

exist for identifying process injection, including as

process monitoring, system calls, named pipes,

Windows API calls, events from DLL/PE files, and

more. To identify typical injection strategies, one

may examine API call grouping patterns as

OpenProcess → VirtualAllocEx →

WriteProcessMemory → CreateRemoteThread

(4). The method of malware analysis was

proposed, involving the monitoring of processes

running in a virtual system. In this approach, the

software within the virtual machine is monitored

using a virtual machine introspection method (5).

In addition, it was demonstrated that Virtual

Machine Introspection could identify malicious

processes in virtual machines by collecting system

call data from memory pages examined during VM

execution (6). Finding areas of memory in a

process' virtual address space that might be

injected is possible using a number of methods.

One such approach is Malfind, a popular

component of the Volatility memory analysis

system that can identify regions of memory that

have been artificially enhanced (7). Nevertheless,

the CreateRemoteThread → LoadLibrary function

cannot be used by Malfind to identify DLLs that

are injected into a process. Several methods of

process hollowing may be found with the help of

the Hollowfind plugin for Volatility (8). These

methods have several drawbacks, yet they are

nonetheless helpful. While Malfind has a high

probability of false positives, Hollowfind only

finds some of the potential host-based code

injection threats. Also, instead of finding malicious

memory addresses inside a process, Membrane

only displays the processes that are impacted (9).

Jared Atkinson's Get-InjectedThread.ps1

PowerShell script is another method; it checks all

running threads for evidence of memory injection

and terminates them if they do (10). In some

contexts, it could be hard to tell the difference

between malicious and authorized uses of

Windows API calls. As an example, most typical

applications do not need the use of

CreateRemoteThread, which is why many security

scanners detect it and may possibly discover the

suspicious DLL on disk (11). Analyses that look

for CreateRemoteThread calls from any process

often provide false positives. Code injection may

also be indicated by certain Windows API calls,

such as VirtualAllocEx and WriteProcessMemory,

which are used to manipulate the memory of

another process (11). A method for identifying

host-based code injection vulnerabilities in

memory dumps was developed and named Quincy

(12). The supervised machine learning-based

Quincy was made available as a Volatility plugin

and was made compatible with three versions of

Windows (12). To locate all executable pages

relevant to an investigation, a technique for

individual user-space processes was suggested

(13). Malware detection using API calls, recurrent

neural networks, and Long Short Term Memory

(LSTM) was proposed (14). Detection systems for

process injection can generate a large volume of

data, which may not be immediately useful for

defense unless collected under specific conditions

(15). Malware classification systems require a

substantial number of samples to function

effectively (16).

According to the AV-TEST Security Report

2016/17, the cybersecurity landscape witnessed a

significant escalation in the number of malware

samples, with over 640 million malicious

programs identified by the end of 2016,

underscoring the persistent and growing threat to

users worldwide (17). Kaspersky Lab’s annual

security bulletin also echoed these concerns,

reporting a substantial rise in cyberattacks,

including over 758 million malicious attacks from

online resources located in 203 countries and

territories throughout the year (18). Symantec’s

Internet Security Threat Report further

highlighted the increasing sophistication of

threats, noting the rise of zero-day vulnerabilities

and advanced persistent threats (APTs), along

with a marked surge in ransom ware attacks

targeting both individuals and organizations (19).

Among the advanced techniques employed by

threat actors, process injection remains a

prevalent method for evading detection and

maintaining persistence. Tools and techniques

such as those detailed in the InjectProc repository

illustrate the variety of process injection

strategies leveraged by attackers, including

remote thread injection, process hollowing, and

DLL injection, emphasizing the need for enhanced

defensive mechanisms against such low-level

exploits (20).

Finally, the aforementioned difficulties severely

restrict the effectiveness of the various

approaches and tools now available for

identifying process injection attacks in memory

Tank et al., Vol 6 ǀ Issue 2

898

dumps.mAs with any detection system,

adversaries may attempt to understand and

bypass the detection heuristics. To develop an

effective detection system, additional context is

still necessary. In this study, we present the VMI-

based Process Injection Detection (VMIPID)

approach to address the limitations of the

previously mentioned solutions. Process injection

is a long-standing tool in the arsenal of attackers,

enabling the manipulation of legitimate processes

or hiding malware’s presence. Current detection

frameworks are often limited in scope, unable to

adapt to modern injection techniques or reliably

identify malicious memory regions. To address

these limitations, this study presents an advanced

memory introspection technique that leverages

Virtual Machine Introspection (VMI) to analyze

live memory data in virtualized environments

dynamically. Here, we zero in on eight distinct

process injection implementations: Atom

Bombing, Thread Execution Hijacking, Reflective

DLL Injection, Portable Executable Injection,

Remote Thread Injection, and Asynchronous

Procedure Call (APC) Injection. A Volatility plugin

named ProcInjectionsFind was developed to detect

injected memory regions, with the code made

available in a public repository to facilitate

reproducibility (21).

Threat Model and Assumptions
Threat Model

Process injection vulnerabilities in virtualized

settings are the major emphasis of this study.

Malware continues to target Windows-based

systems in particular. Attacks on Infrastructure as

a Service (IaaS) cloud architecture, in which the

host operating system has little control over guest

systems, are assumed to occur within this scope.

Assumptions

Inter-VM attacks are not considered.

The hypervisor, cloud provider, and underlying

infrastructure are assumed to be secure.

Zero-filled or empty VAD regions are treated as

safe to reduce false positives.

Methodology
In order to examine virtual machine memory and

locate injected areas, the detection framework

incorporates the Volatility framework (22), the

KVM hypervisor (23), and the LibVMI library (24).

Figure 1 shows the overall layout of our suggested

detection architecture. Once installed and set up

on the host system, KVM acts as a hypervisor or

Virtual Machine Monitor (VMM), supervising

virtual machines that run guest operating systems

like Windows 7, Windows 8.1, or Windows 10. For

low-level insights, the LibVMI package allows

access to the memory of a running virtual

machine. We install the Volatility framework

(version 2.6.1) and the LibVMI Python bindings

(version 3.4) on the host operating system. When

used in tandem, these instruments dissect

dynamic malware. For the purpose of conducting

memory forensic analyses in real-time, our

suggested solution makes use of Virtual Machine

Introspection (VMI).

Figure 1: The Architecture of Proposed Framework

Tank et al., Vol 6 ǀ Issue 2

899

Use of this virus allows attackers to compromise

Windows virtual computers using process

injection vulnerabilities. Shortly after the

injection, a dump file is generated to capture the

exact state of the virtual machine's core memory

for further examination. On the other hand, you

may use the LibVMI Python bindings to directly

access the memory of a running VM and examine

it for signs of process injection immediately. In

order to locate memory areas that have been

injected by process injection, the VMI-based

Process Injection Detection (VMIPID) model was

developed. By employing Volatility, a free and

open-source memory forensics tool, we were able

to test the model with both real-life virtual

computers and memory snapshots that included

malware.

Research Approach
Numerous techniques exist for inserting and

executing malicious code into running processes.

The allocation of memory inside the victim

process's address space is a common

characteristic across process injection techniques,

which use various execution styles and effect the

victim process's memory-resident data structures

and API calls differently. Malware often inserts

itself into a process's virtual address space by

creating a new memory area, also known as a

Virtual Address Descriptor (VAD). This research

suggests a new way to find possible injected

memory in a victim process's virtual address

space. For the purpose of identifying code

injection, the proposed detection approach

thoroughly checks all currently operating

processes' memory regions. An add-on for

Volatility called ProcInjectionsFind uses specially

designed algorithms to identify different forms of

process injection in virtualized settings. Following

are the steps to identify Suspicious Processes.

Table 1: Identifying Suspicious Processes

Input: VM's Primary Memory or A Memory Image that Has Been Compromised with Malware

Output: A List of Suspicious Processes with the Process-Thread Id

1: Examine all running processes

2: List process’ handles in each running process

3: Refine process’ handles of type ‘THREAD’

4: Examine a thread that isn't being handled or produced by the process it's running in (*)

5: Update the suspicious process list with the thread's handle PID and TID

(*) Step 4 exempted the thread’ handles of the following

• Handles produced by csrss.exe

• Handles produced by its parent process

• In addition to its own operation and the processes that were started before it, csrss.exe is

involved in the creation of every process and thread (25).

• A parent process may legitimately create a handle of type THREAD in its child process

Table 2: Lists the Proposed Techniques for Detection

Algorithm 1: "Remote DLL Injection Via Createremotethread And Load library" Detection

Input: VM's primary memory OR a memory image that has been compromised with malware

Output: Indicate the injected process ID, process name, full DLL name, and associated VAD information

1: With the use of the procedures in Table 1, identify suspicious processes

2: Make the following checks for each thread listed in the suspicious processes list

3: Link the thread to the relevant VAD 🡪 Verify the file's mapping on the disc 🡪 Thread is mapped to

kernel32.dll

4: Look for the LoadLibrary (or LoadLibraryEx) API method during thread execution.

5: Connect DLLs to the thread (which is in charge of injecting the malicious DLL) by tying the load time of

the DLL to the thread's creation time using a predetermined time period, and add it to the list of suspect

DLLs

6: Verify if the injected DLL has a corresponding entry in the process' IAT, i.e., No entry for the injected

DLL exists in the process' IAT

7: Mark the DLL and the associated memory area as suspect

8: Dump the complete VAD associated with a suspicious memory area

Tank et al., Vol 6 ǀ Issue 2

900

9: Verify injection by comparing the dumped VAD with VirusTotal score

Algorithm 2: “Thread execution hijacking” detection

Input: VM's primary memory OR a memory image that has been compromised with malware.

Output: Show different characteristics for each injected memory region.

1: Check all running processes.

2: List every thread in each running process.

3: Discovered thread id in the list of suspicious processes.

4: Check if a thread is suspended, i.e., 'Waiting' is the thread's State and 'Suspended' is the Wait Reason.

5: Run the following memory region (VAD) check by traversing the process' VADs.

● Any VAD region which marked as private carries the VadS tag and executes permission.

6: Mark the corresponding area of memory as suspicious.

7: Dump the complete VAD associated with a suspicious memory area.

8: Verify injection by comparing the dumped VAD with VirusTotal score.

Algorithm 3: To recognize the following injection type

a. Remote thread injection using b. PE injection CreateRemoteThread

c. Reflective DLL injection d. Hollow process injection

e. APC injection f. Atom Bombing

Input: VM's primary memory OR a memory image that has been compromised with malware.

Output: Show different characteristics for each injected memory region.

1: Check all running processes.

2: List every thread in each running process.

3: Get the Win32StartAddress attribute's entry point for the thread

4: At the thread's entry point, implement the subsequent injection filters

● Any process thread that did not have a file object was mapped to a VAD

● The memory is committed and any thread in the process is mapped to a VAD with a file object, but the

kind of file object is not an IMAGE FILE

● Any thread in the process that is mapped to a VAD that has an executable file object that is distinct

from the image file for the loaded process

● Any thread in the loaded process that is mapped to a VAD that contains an identical exe file object, but

a thread is suspended, i.e., 'Waiting' is the thread's State and 'Suspended' is the Wait Reason

5: Analyse VADs for processes

6: Implement the subsequent injection filters to the VAD area

● Any VAD area that represents a memory-mapped file (type _MMVAD (Vad) or _MMVAD_LONG (VadL)),

but the fields VadImageMap and Image are not set in the Vad Type and Control Flag fields, respectively

● Any VAD region having the characteristics: VadS tag, execute permission, private, committed,

memory-resident, and VadNone type

7: Dump the complete VAD associated with a suspicious memory area

8: Verify injection by comparing the dumped VAD with VirusTotal score

The proposed approach determines whether a

running process is the result of process injection

by analyzing its threads and memory segments.

Table 2 outlines the proposed techniques for

detecting process injection. The detection

techniques outlined in Tables 1 and 2 have been

integrated into a single Volatility plugin/module

named ProcInjectionsFind, which can be executed

from the Volatility command line. This module

conducts multiple tests to identify malicious or

injected memory regions and provides detailed

information about each identified memory region

that aligns with the rules defined by the proposed

methods. The ProcInjectionsFind plugin can

analyze either a Windows memory image or the

memory of a live virtual machine to identify signs

of process injection. It examines the threads and

memory regions of each process to detect

anomalies. The described methods have been

successfully applied to both memory snapshots

and live virtual machines infected with malware,

and the results have been verified.

https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/

Tank et al., Vol 6 ǀ Issue 2

901

Figure 2: Workflow for the Proposed System

Our proposed framework, illustrated in Figure 2,

operates in three stages: input, process, and

output. In the input stage, the framework accepts

either an infected memory image or the live

memory of an active virtual machine. This input is

then analyzed in the process stage by the

ProcInjectionsFind module, which examines

memory regions for signs of injection. In the

output stage, the module displays various

properties of each identified injected memory

location, providing detailed insights into potential

process injection activities.

Experimental Setup
An outline of our experimental apparatus is given

in this section. All of the research takes place on a

host machine using the settings listed in Table 3.

Ubuntu 16.04.6 LTS is installed and configured

using KVM to set up the virtualization

environment.

Table 3: Setups for Test Platforms

Host OS Ubuntu 16.04.6 LTS

Host OS Type 64-bit

Linux Kernel Linux 4.15.0-74-generic

Architecture X86_64

Processor Intel(R) CoreTM i5-8265U CPU @ 1.60GHz x 8

Disk 1 TB

Number of cores and threads 4 and 8

Physical memory (RAM) 8 GB

Hypervisor (VMM) KVM

Virtual Machine – 1 OS – Windows 7, vCPU - 1

Memory – 2 GB, Storage – 40 GB

Virtual Machine – 2 OS – Windows 8.1, vCPU - 1

Memory – 2 GB, Storage – 40 GB

Virtual Machine – 3 OS – Windows 10, vCPU - 1

Memory – 2 GB, Storage – 40 GB

Tools / Framework used LibVMI python bindings (version-3.4) and

Volatility framework (version-2.6.1)

(Both are open-source tools)

Tank et al., Vol 6 ǀ Issue 2

902

The IaaS cloud model is used to simulate a

possible assault setting. Running Windows 7,

Windows 8.1, and Windows 10 in guest mode

resulted in the creation of three separate virtual

machines. The Volatility framework and the

LibVMI Python bindings are two examples of the

open-source technologies that we use in our

studies. Dynamic malware analysis and the

extraction of higher-level semantic information

from live memory data inside the virtual

machines were accomplished using the Volatility

framework and the Virtual Machine Introspection

(VMI) application LibVMI.

Malware Hiding Technique Covered in

this Work
The Virtual Address Descriptor's (VAD)

protection field just displays the initial protection

that was specified when memory was allocated.

An adversary might take advantage of this by first

creating memory without the WRITE or EXECUTE

privileges, and then changing the protection to

permit these rights for the region of memory that

contains malicious code. It is common for

malicious executables to deliberately modify the

memory section's security from READONLY to

EXECUTE_READWRITE. The VirtualProtectEx API

method, which lets you change the protection of a

memory area in a process's virtual address space,

is used to accomplish this adjustment (26).

Results and Discussion
ProcInjectionsFind is a standalone Volatility

plugin/module that integrates the detection

techniques outlined in Tables 1 and 2. It can be

executed directly from the Volatility command

prompt. This module performs a series of tests to

detect malicious or injected memory regions and

provides detailed information about each region

that meets the criteria defined by the proposed

detection techniques. The proposed VMIPID

model analyzes the memory of a virtual machine

in real-time, inspecting the memory of each active

process for signs of injected code. The model

classifies each memory region as either benign or

malicious based on its findings. To detect

malicious or injected memory regions, the model

performs a series of rigorous tests.

Table 4: Metrics for Evaluation Definition

Measures Definition

True Positive (TP) The number of correctly identified injected memory regions.

False Positive (FP) The number of incorrectly identified injected memory regions.

True Negative (TN) The number of correctly identified benign memory regions.

False Negative (FN) The number of incorrectly identified benign memory regions.

Metric Formula

Accuracy (TP + TN) / (TP + FP + TN + FN)

Detection Rate TP / (TP + TN + FP + FN)

F1-Score 2 * (P * R) / (P + R)

False Positive Rate (FPR) FP / (FP + TN)

Precision (P) TP / (TP + FP)

Recall (R) TP / (TP + FN)

The effectiveness of the proposed VMIPID model

was evaluated using multiple assessment metrics,

including Accuracy, Detection Rate, F1-Score,

False Positive Rate (FPR), Precision (P), and

Recall (R). The definitions of these metrics are

provided in Table 4.

Evaluation Using Process Injection

PoCs

Process injection techniques were implemented

using the Proofs of Concept (PoCs) outlined in

Table 5. Where necessary, minor modifications

were made to the original authors' code to ensure

it was build- and run-ready. The source code was

compiled using Microsoft Visual Studio

Community 2017, Version 15.9.37. Additionally,

Table 5 includes the PoCs for the malware

concealment method described in Section 5.2.

Tank et al., Vol 6 ǀ Issue 2

903

Table 5: Evaluation Using Process Injection PoCs

Sr

No

Process Injection

Techniques

PoCs Used

1 Remote DLL injection ● Methods for injecting. The Evil Bit's Injection on GitHub (27).

● Methods for Injecting Processes. secrary/InjectProc on GitHub

(20).

● DLL injection methods number seven.

fdiskyou/injectAllTheThings on GitHub (28).

● Windows Injection for Processes. Some basic process injection

methods for the Windows platform may be found in the

following GitHub repository: CptGibbon/Windows-Process-

Injection (29).

2 Remote thread injection ● Methods for injecting. The Evil Bit's Injection on GitHub (27).

3 PE injection ● Methods for injecting. The Evil Bit's Injection on GitHub (27).

● Windows Injection for Processes. Some basic process injection

methods for the Windows platform may be found in the

following GitHub repository: CptGibbon/Windows-Process-

Injection (29).

● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30).

4 Reflective DLL injection ● DLL Injection via Reflection. Stephen Lester's Reflective DLL

Injection on GitHub (31).

● DLL injection methods number seven.

fdiskyou/injectAllTheThings on GitHub (28).

● Tools for Submitting Code. master/f-block/DFRWS-USA-2019

tools in DFRWS-USA-2019 on GitHub (30).

5 Hollow process injection ● Hollowing out the process. GitHub repository:

m0n0ph1/Process-Hollowing (32)

● Methods for injecting. The Evil Bit's Injection on GitHub (27).

● Windows Injection for Processes. Some basic process injection

methods for the Windows platform may be found in the

following GitHub repository: CptGibbon/Windows-Process-

Injection (29).

● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30).

6 Thread execution

hijacking

● Methods for injecting. The Evil Bit's Injection on GitHub (27).

● Windows Injection for Processes. Some basic process injection

methods for the Windows platform may be found in the

following GitHub repository: CptGibbon/Windows-Process-

Injection (29).

7 APC injection ● Methods for injecting. The Evil Bit's Injection on GitHub (27).

● Methods for Injecting Processes. secrary/InjectProc on GitHub

(20).

8 AtomBombing ● Bombing using atomic weapons. New Windows Code Injection

Tool Available at BreakingMalwareResearch/atom-bombing on

GitHub (33).

● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30).

Malware Hiding Technique

1 PE injection ● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30)

Tank et al., Vol 6 ǀ Issue 2

904

2 Reflective DLL injection ● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30)

3 Hollow process injection ● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30)

● Process hollowing using several methods using KSLSample.vmem

(34)

Table 6: Process Injection Detection Methods are compared to the Current Methods

Sr Process Injection Techniques Compared With

1 Remote DLL injection FindDLLInj (35)

2 Hollow process injection Malfind (36), Hollowfind (37), Threadmap

(38), Malfofind (39)

3 Thread execution hijacking, remote thread injection,

malicious code injection, atomic bombing, and

reflective DLL injection

Malfind (36)

Table 6 presents a comparison of various process

injection detection methodologies with the

proposed approach. This study utilized several

Volatility commands to detect malware in

Windows memory images, including Malfind (36),

Hollowfind (37), Threadmap (38), Malfofind (39),

Vadinfo (40), Impscan (41), and Volshell (42).

Experimental Findings
This section presents the experimental findings of

the proposed VMIPID model. The performance of

the framework was evaluated using multiple

assessment metrics, including Accuracy, Detection

Rate, F1-Score, False Positive Rate (FPR),

Precision, and Recall. A series of experiments

were conducted to assess the model’s

effectiveness, followed by a comparison with

existing methodologies from the literature. The

results demonstrate the model's ability to detect

process injection techniques effectively,

highlighting its advantages over traditional

approaches. Detailed results and analysis are

provided in the following subsections.

Figure 3: A List of the Host's Active VMs

Figure 4: Injecting PE into the Win10_VM

Tank et al., Vol 6 ǀ Issue 2

905

One can see all of the host's currently running

virtual machines in Figure 3. Figure 4 shows how

PE injection is done on the Windows 10 virtual

system using the Proofs of Concept (PoCs) from

Table 5. The injection instance is initialized by

launching the target process, wordpad.exe. Figure

4 shows the injection command.

Figure 5 displays the results of taking a memory

snapshot of win10_VM using the 'virsh dump'

command after PE injection. This document

explains how to use the ProcInjectionsFind

Volatility module to automatically identify the

different process injection mechanisms. Both the

memory of a virtual machine and a memory image

infected with malware (PE injection) are

subjected to the ProcInjectionsFind plugin (Figure

6 and Figure 7).

Figure 5: Acquiring the Live Win10_VM Memory Image

Figure 6: ProcinjectionsFind Plugin Execution on a Memory Image (Win10_VM) With Malware (PE

Injection)

Figure 7: ProcinjectionsFind Plugin Execution on the Memory of a Running Win10_VM

Tank et al., Vol 6 ǀ Issue 2

906

Figure 6 illustrates the execution of the

ProcinjectionsFind plugin on a memory image

(win10_VM) containing malware through PE

injection. Figure 7 demonstrates the execution of

the ProcinjectionsFind plugin on the live memory

of a running win10_VM. Details on the

injected/victim process's VADs, disassembly, and

hex-dump are published at the base address of the

VAD by the ProcInjectionsFind plugin. We may

further check the findings or do additional

research by dumping an injected memory area to

disk, which is made possible by the plugin.

The ProcInjectionsFind Volatility plugin was tested

on 75 different malware-infected memory images

(25 images obtained from each of the three virtual

machines), as shown in Figure 8. The results

confirm that the plugin operates as expected.

Figure 8: Evaluation Metrics and Detection Methods are compared

Tank et al., Vol 6 ǀ Issue 2

907

Figure 9A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind &

Procinjectionsfind) on the Win7_VM Environment

Figure 9B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Malfind &

Procinjectionsfind) on the Win7_VM Environment

Figure 10A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win7_VM Environment

Tank et al., Vol 6 ǀ Issue 2

908

Figure 10B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win7_VM Environment

Figure 11A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind &

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win7_VM Environment

Figure 11B: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the

Win7_VM Environment

Tank et al., Vol 6 ǀ Issue 2

909

Figure 12A: Comparative Evaluation of Accuracy for Memory Forensics Tools (Malfind &

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win7_VM Environment

Figure 12B: Comparative Evaluation of Accuracy for Memory Forensics Tools (Hollowfind, Malfind,

Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win7_VM

Environment

Figure 13A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind &

Procinjectionsfind) on the Win8.1_VM Environment

Tank et al., Vol 6 ǀ Issue 2

910

Figure 13B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Malfind &

Procinjectionsfind) on the Win8.1_VM Environment

Figure 14A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win8.1_VM Environment

Figure 14B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win8.1_VM Environment

Tank et al., Vol 6 ǀ Issue 2

911

Figure 15A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind &

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win8.1_VM Environment

Figure 15B: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the

Win8.1_VM Environment

Figure 16A: Comparative Evaluation of Accuracy for Memory Forensics Tools (Malfind &

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win8.1_VM Environment

Tank et al., Vol 6 ǀ Issue 2

912

Figure 16B: Comparative Evaluation of Accuracy for Memory Forensics Tools (Hollowfind, Malfind,

Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win8.1_VM

Environment

Figure 17A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind &

Procinjectionsfind) on the Win10_VM Environment

Figure 17B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Malfind &

Procinjectionsfind) on the Win10_VM Environment

Tank et al., Vol 6 ǀ Issue 2

913

Figure 18A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win10_VM Environment

Figure 18B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win10_VM Environment

Figure 19A: Comparative Evaluation of Precision & Recall for Memory Forensics Tools (Finddllinj &

Procinjectionsfind) on the Win10_VM Environment

Tank et al., Vol 6 ǀ Issue 2

914

Figure 19B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Finddllinj &

Procinjectionsfind) on the Win10_VM Environment

Figure 20A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind &

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win10_VM Environment

Figure 20B: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind,

Malfind, Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the

Win10_VM Environment

Tank et al., Vol 6 ǀ Issue 2

915

Figure 21A: Comparative Evaluation of Accuracy for Memory Forensics Tools (Malfind &

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win10_VM Environment

Figure 21B: Comparative Evaluation of Accuracy for Memory Forensics Tools (Hollowfind, Malfind,

Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win10_VM

Environment

The calculated results, as shown in Figure 8, are

graphically represented in Figures 9 to 21. To

identify and dump an injected memory location,

we utilize the ProcInjectionsFind plugin.

VirusTotal, a powerful and freely available online

malware scanner, can be used to determine

whether an executable file is malicious or safe. It

offers a free service that uses multiple antivirus

engines to scan suspicious files (43). Another free

tool, Hybrid Analysis, employs a unique

methodology to identify and analyze unknown

threats (44). To validate our findings, we can

submit the file hash to VirusTotal or Hybrid

Analysis (online malware scanners) and hash the

memory area identified as injected, as shown in

Figure 22.

Figure 22: Calculating Suspected File Hash

Tank et al., Vol 6 ǀ Issue 2

916

Figure 23: Using Hybrid Analysis to Analyse a Suspicious Memory Area (44)

Figure 24: Using Virus Total to Analyze a Suspicious Memory Area (43)

In Figure 23, Hybrid Analysis is used to analyze

the file hash of the injected memory areas, while

Figure 24 shows the same process performed

with VirusTotal. Both online malware scanners

flagged the file as malicious.

This study focuses on the identification of eight

distinct process injection techniques. In the

future, additional process injection techniques

could be incorporated, and malware hiding

methods not covered in this study could be

explored. A created plugin was tested against

various Windows-based virtual machines,

including Windows 7, Windows 8.1, and Windows

10. The plugin’s compatibility and compliance

with different Windows operating systems may be

evaluated. The Volatility plugin ProcInjectionsFind

may be integrated with existing process injection

detection plugins and ported to Rekall, a widely

used memory forensic framework (45). The

proposed framework could also be applied to

virtual machines running Linux or Mac OS.

Conclusion
In this article, we analyzed and evaluated eight

different process injection techniques. The

experimental results demonstrate the strong

potential of the proposed methods, yielding

several valuable insights. Across all three virtual

machines (Win7, Win8.1, and Win10), the VMIPID

model consistently achieves excellent

performance across all evaluation metrics. It

delivers a 100% positive predictive value,

Tank et al., Vol 6 ǀ Issue 2

917

completeness, F1-score, and accuracy, along with

a 0% false-positive rate on each VM. Compared to

existing solutions, the experimental data show

that the proposed model outperforms others in

accuracy, F1-score, and true positive rates while

minimizing false positives. Overall, the framework

identifies a broader range of malware types and

surpasses previous models in every evaluation

criterion discussed. Additionally, the

ProcInjectionsFind module is designed to

automatically detect the process injection

techniques explored in this study, saving

identified injected memory locations to disk for

further analysis.

Abbreviations
VM: Virtual Machine, VMM: Virtual Machine

Monitor, API: Application Programming Interface,

DLL: Dynamic Link Library, PE: Portable

Executable, APC: Asynchronous Procedure Call,

VAD: Virtual Address Descriptor, PoC: Proof of

Concept, TP: True Positive, FP: False Positive, TN:

True Negative, FN: False Negative, FPR: False

Positive Rate, P: Precision, R: Recall, LSTM: Long

Short-Term Memory, KVM: Kernel-based Virtual

Machine, IaaS: Infrastructure as a Service.

Acknowledgement
I would like to express my sincere gratitude to Dr.

Akshai Aggarwal and Dr. Nirbhay Kumar Chaubey

for his constant guidance, continuous support,

and valuable inputs.

Author Contributions
The author confirms sole responsibility for the

manuscript preparation.

Conflict of Interest
The author declares that there is no conflict of

interest.

Ethics Approval
Not applicable.

Funding
No specific grant received from any funding

agencies.

References
1. Red Canary. Process Injection - Threat Detection

Report. 2025. https://redcanary.com/threat-
detection-report/techniques/process-injection/

2. White A. Hashtest Volatility Plugin. 2013.
https://github.com/a-white/Hashtest

3. Zhang S, Meng X, Wang L, Xu L, Han X. Secure
virtualization environment based on advanced
memory introspection. Security and
Communication Networks. 2018; 2018(Article ID
9410278):16.
https://doi.org/10.1155/2018/9410278

4. Qiao Y, Yang Y, He J, Tang C, Liu Z. CBM: free,
automatic malware analysis framework using API
call sequences. InKnowledge Engineering and
Management: Proceedings of the Seventh
International Conference on Intelligent Systems and
Knowledge Engineering, Beijing, China. (ISKE
2012). Springer Berlin Heidelberg. 2012 Dec: 225-
236.

5. Li C, Xiang Y, Shi J. A model of dynamic malware
analysis based on VMI. In Algorithms and
Architectures for Parallel Processing: ICA3PP
International Workshops and Symposiums,
Zhangjiajie, China, November 18-20, 2015, Springer
International Publishing. 2015; Proceedings
15:465-475.

6. Kumara MA, Jaidhar CD. Virtual machine
introspection based spurious process detection in
virtualized cloud computing environment. In 2015
international conference on futuristic trends on
computational analysis and knowledge
management (ABLAZE). IEEE. 2015:309-315.

7. Volatility Foundation. The Volatility Framework.
2016. http://www.volatilityfoundation.org

8. Monnappa KA. Detecting deceptive process
hollowing techniques using hollowfind volatility
plugin. 2016. https://cysinfo.com/detecting-
deceptivehollowing-techniques/

9. Pék G, Lázár Z, Várnagy Z, Félegyházi M, Buttyán L.
Membrane: A posteriori detection of malicious code
loading by memory paging analysis. In: ESORICS.
LNCS. 2016; 9878:199–216.

10. Hosseini A. Ten process injection techniques: A
technical survey of common and trending process
injection techniques. 2017.
https://www.elastic.co/blog/ten-process-injection-
techniques-technical-survey-common-and-
trending-process

11. Atkinson J, Desimone J. Taking hunting to the next
level: Hunting in memory. SANS Threat Hunting
Summit 2017. Get-InjectedThread.ps1.
https://gist.github.com/jaredcatkinson/23905d345
37ce4b5b1818c3e6405c1d2

12. Barabosch T, Bergmann N, Dombeck A, and Padilla
E. Quincy: Detecting host-based code injection
attacks in memory dumps. In Detection of
Intrusions and Malware, and Vulnerability
Assessment: 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Springer
International Publishing. 2017; Proceedings
14:209-229.

13. Block F, Andreas D. Windows memory forensics:
Detecting (un) intentionally hidden injected code by
examining page table entries. Digital Investigation.
2019:29: S3-S12.

14. Mathew J, Ajay Kumara MA. API call based malware
detection approach using recurrent neural
network—LSTM. In Intelligent Systems Design and
Applications: 18th International Conference on
Intelligent Systems Design and Applications (ISDA

https://doi.org/10.1155/2018/9410278

Tank et al., Vol 6 ǀ Issue 2

918

2018) held in Vellore, India. Springer International
Publishing. 2018 December 6-8; 1:87-99.

15. MITRE ATT&CK. Process Injection, Technique
T1055.
https://attack.mitre.org/techniques/T1055/

16. Microsoft. Microsoft Malware Classification
Challenge (BIG 2015). 2015.
https://www.kaggle.com/c/malware-classification

17. AVTEST. The AV-TEST Security Report 2016/17.
2017. https://www.av-
test.org/fileadmin/pdf/security_report/AV-
TEST_Security_Report_2015-2016.pdf

18. Garnaeva M, Sinitsyn F, Namestnikov Y, Makrushin
D, Liskin A. Overall statistics for
2016.https://kasperskycontenthub.com/securelist/
files/2016/12/Kaspersky_Security_Bulletin_2016_S
tatistics_ENG.pdf

19. Symantec. Internet Security Threat Report 21.
https://www.symantec.com/content/dam/symant
ec/docs/reports/istr-21-2016-en.pdf

20. Secrary. Process Injection Techniques. GitHub –
secrary/InjectProc.
https://github.com/secrary/InjectProc

21. Tank D. ProcInjectionsFind. GitHub –
darshantank/ProcInjectionsFind.
https://github.com/darshantank/ProcInjectionsFin
d

22. Volatility Foundation. Volatility.
http://www.volatilityfoundation.org/

23. KVM, https://www.linux-
kvm.org/page/Main_Page/

24. LibVMI, http://libvmi.com/
25. Michael HL, Andrew C, Jamie L, AAron W. The art of

memory forensics: detecting malware and threats in
windows, linux, and Mac memory. Technical Book,
Published by John Wiley & Sons, 2014.

26. Microsoft Docs. VirtualProtectEx function
(memoryapi.h) Win32 apps. 2018.
https://docs.microsoft.com/en-
us/windows/win32/api/memoryapi/nf-
memoryapi-virtualprotectex

27. TheEvilBit. Injection techniques. GitHub –
theevilbit/injection.
https://github.com/theevilbit/injection

28. Fdiskyou. Seven different DLL injection techniques.
GitHub – injectAllTheThings.
https://github.com/fdiskyou/injectAllTheThings

29. CptGibbon. Windows Process Injection. GitHub –
CptGibbon/Windows-Process-Injection.
https://github.com/CptGibbon/Windows-Process-
Injection

30. Block F. Code Injection Tools. DFRWS-USA-
2019/tools at master. GitHub – f-block/DFRWS-
USA-2019. https://github.com/f-block/DFRWS-
USA-2019/tree/master/tools

31. Fewer S. Reflective DLL Injection. GitHub.
https://github.com/stephenfewer/ReflectiveDLLInj
ection

32. M0n0ph1. Process Hollowing. GitHub.
https://github.com/m0n0ph1/Process-Hollowing

33. BreakingMalwareResearch. AtomBombing. GitHub –
atom-bombing.
https://github.com/BreakingMalwareResearch/ato
m-bombing

34. KSLSample.vmem. Process hollowing in different
approaches.
https://www.mediafire.com/file/jlmtbbinanuh6jr/
KSLSample.rar

35. Balaoura S. Process Injection Techniques and
Detection using the Volatility Framework [Master’s
thesis]. University of Piraeus. 2018.

36. Volatility Foundation. Volatility's Malfind Plugin.
2017.
https://github.com/volatilityfoundation/volatility/
blob/master/volatility/plugins/malware/malfind.p
y

37. Monnappa KA. HollowFind Volatility Plugin. 2016.
https://github.com/monnappa22/HollowFind/blob
/master/hollowfind.py

38. KSL Group. Threadmap Volatility Plugin. 2017.
https://github.com/kslgroup/threadmap

39. Pshoul D. Malfofind Volatility Plugin. 2017.
https://github.com/volatilityfoundation/communit
y/blob/master/DimaPshoul/malfofind.py

40. Volatility Foundation. Volatility's Vadinfo Plugin.
2017.
https://github.com/volatilityfoundation/volatility/
blob/master/volatility/plugins/vadinfo.py

41. Volatility Foundation. Volatility's Impscan Plugin.
2017.
https://github.com/volatilityfoundation/volatility/
blob/master/volatility/plugins/malware/impscan.
py

42. Volatility Foundation. Volatility's Volshell Plugin.
2017.
https://github.com/volatilityfoundation/volatility/
blob/master/volatility/plugins/volshell.py

43. VirusTotal. https://www.virustotal.com/
44. Hybrid Analysis. https://www.hybrid-

analysis.com/
45. Google Inc. Rekall memory forensic framework.

2018. http://www.rekall-forensic.com

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://github.com/secrary/InjectProc
https://github.com/darshantank/ProcInjectionsFind
https://github.com/darshantank/ProcInjectionsFind
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotectex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotectex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotectex
https://github.com/theevilbit/injection

