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Abstract 
Sophisticated malware frequently employs advanced evasion techniques to remain undetected by traditional security 
mechanisms. One of the most commonly used tactics is process injection, where malicious code is covertly inserted 
into the address space of legitimate processes. This allows the malware to operate under the guise of trusted 
applications, making detection significantly more challenging. In response to this issue, the present study introduces a 
novel detection methodology that functions entirely outside the virtual machine (out-of-VM). This technique 
leverages advanced memory introspection to identify and analyze different forms of process injection within 
virtualized environments. Notably, the approach is agentless, meaning it does not require any software to be installed 
within the guest VM, thereby eliminating the risk of the detection system itself being compromised or bypassed by the 
malware. Instead, it analyzes memory from the hypervisor level, providing a more secure and isolated vantage point. 
Experimental evaluations validate the effectiveness of the proposed method, demonstrating superior performance 
when compared to existing detection frameworks. Specifically, the method achieves higher detection accuracy, with 
more true positives and fewer false positives. It is capable of precisely identifying injected memory regions and 
detecting a broader spectrum of malware types, thereby outperforming current state-of-the-art solutions across all 
major evaluation metrics. 

Keywords: Malware Detection, Memory Analysis, Process Injection, Security, Virtual Machine Introspection, 
Volatility, Windows. 
 

Introduction 
Distributed computing has become a dominant 

paradigm in recent years, with virtualization 

serving as a critical foundation for cloud 

computing. Virtual Machine Monitors (VMMs) 

allow multiple virtual machines (VMs) to operate 

on a single physical host, but this flexibility 

introduces significant security risks. Virtual 

machine security remains one of the primary 

challenges in cloud infrastructure, as adversaries 

often exploit VMs to gain unauthorized access to 

virtualized environments. Traditional security 

measures are insufficient against modern 

malware, which has evolved to be more persistent 

and adaptive. Among the tactics employed by 

malware, process injection is a powerful method 

for evading detection by concealing malicious 

code within legitimate processes. Process 

injection allows attackers to access system 

resources, memory, and network assets of the 

target process while gaining elevated privileges 

(1). Numerous process injection techniques exist, 

including Remote DLL Injection, Remote Thread 

Injection, Hollow Process Injection, Reflective DLL 

Injection, and others. Detecting process injection 

within virtualized environments is particularly 

challenging due to the lack of direct access to the 

VMs’ physical memory. This study addresses this 

gap by proposing an automated approach to 

detect various process injection techniques in 

virtualized systems. A tool named Hashtest has 

been described in the GitHub repository (2), 

which is designed to validate the integrity of in-

memory code through the use of hashes. A 

dynamic malware analysis framework, 

VEDefender, was introduced to detect dormant, 

suspicious, or concealed processes in a monitored 

virtual machine without modifying the guest OS 

kernel on the host (3). A number of techniques   

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY 

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, 

and reproduction in any medium, provided the original work is properly cited. 
 

(Received 20th December 2024; Accepted 23rd April 2025; Published 30th April 2025)      

mailto:dmtank@gmail.com


Tank et al.,                                                                                                                                           Vol 6 ǀ Issue 2 

897 
 

exist for identifying process injection, including as 

process monitoring, system calls, named pipes, 

Windows API calls, events from DLL/PE files, and 

more. To identify typical injection strategies, one 

may examine API call grouping patterns as 

OpenProcess → VirtualAllocEx → 

WriteProcessMemory → CreateRemoteThread 

(4). The method of malware analysis was 

proposed, involving the monitoring of processes 

running in a virtual system. In this approach, the 

software within the virtual machine is monitored 

using a virtual machine introspection method (5). 

In addition, it was demonstrated that Virtual 

Machine Introspection could identify malicious 

processes in virtual machines by collecting system 

call data from memory pages examined during VM 

execution (6). Finding areas of memory in a 

process' virtual address space that might be 

injected is possible using a number of methods. 

One such approach is Malfind, a popular 

component of the Volatility memory analysis 

system that can identify regions of memory that 

have been artificially enhanced (7). Nevertheless, 

the CreateRemoteThread → LoadLibrary function 

cannot be used by Malfind to identify DLLs that 

are injected into a process. Several methods of 

process hollowing may be found with the help of 

the Hollowfind plugin for Volatility (8). These 

methods have several drawbacks, yet they are 

nonetheless helpful. While Malfind has a high 

probability of false positives, Hollowfind only 

finds some of the potential host-based code 

injection threats. Also, instead of finding malicious 

memory addresses inside a process, Membrane 

only displays the processes that are impacted (9). 

Jared Atkinson's Get-InjectedThread.ps1 

PowerShell script is another method; it checks all 

running threads for evidence of memory injection 

and terminates them if they do (10). In some 

contexts, it could be hard to tell the difference 

between malicious and authorized uses of 

Windows API calls. As an example, most typical 

applications do not need the use of 

CreateRemoteThread, which is why many security 

scanners detect it and may possibly discover the 

suspicious DLL on disk (11). Analyses that look 

for CreateRemoteThread calls from any process 

often provide false positives. Code injection may 

also be indicated by certain Windows API calls, 

such as VirtualAllocEx and WriteProcessMemory, 

which are used to manipulate the memory of 

another process (11). A method for identifying 

host-based code injection vulnerabilities in 

memory dumps was developed and named Quincy 

(12). The supervised machine learning-based 

Quincy was made available as a Volatility plugin 

and was made compatible with three versions of 

Windows (12). To locate all executable pages 

relevant to an investigation, a technique for 

individual user-space processes was suggested 

(13). Malware detection using API calls, recurrent 

neural networks, and Long Short Term Memory 

(LSTM) was proposed (14). Detection systems for 

process injection can generate a large volume of 

data, which may not be immediately useful for 

defense unless collected under specific conditions 

(15). Malware classification systems require a 

substantial number of samples to function 

effectively (16). 

According to the AV-TEST Security Report 

2016/17, the cybersecurity landscape witnessed a 

significant escalation in the number of malware 

samples, with over 640 million malicious 

programs identified by the end of 2016, 

underscoring the persistent and growing threat to 

users worldwide (17). Kaspersky Lab’s annual 

security bulletin also echoed these concerns, 

reporting a substantial rise in cyberattacks, 

including over 758 million malicious attacks from 

online resources located in 203 countries and 

territories throughout the year (18). Symantec’s 

Internet Security Threat Report further 

highlighted the increasing sophistication of 

threats, noting the rise of zero-day vulnerabilities 

and advanced persistent threats (APTs), along 

with a marked surge in ransom ware attacks 

targeting both individuals and organizations (19). 

Among the advanced techniques employed by 

threat actors, process injection remains a 

prevalent method for evading detection and 

maintaining persistence. Tools and techniques 

such as those detailed in the InjectProc repository 

illustrate the variety of process injection 

strategies leveraged by attackers, including 

remote thread injection, process hollowing, and 

DLL injection, emphasizing the need for enhanced 

defensive mechanisms against such low-level 

exploits (20). 

Finally, the aforementioned difficulties severely 

restrict the effectiveness of the various 

approaches and tools now available for 

identifying process injection attacks in memory 
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dumps.mAs with any detection system, 

adversaries may attempt to understand and 

bypass the detection heuristics. To develop an 

effective detection system, additional context is 

still necessary. In this study, we present the VMI-

based Process Injection Detection (VMIPID) 

approach to address the limitations of the 

previously mentioned solutions. Process injection 

is a long-standing tool in the arsenal of attackers, 

enabling the manipulation of legitimate processes 

or hiding malware’s presence. Current detection 

frameworks are often limited in scope, unable to 

adapt to modern injection techniques or reliably 

identify malicious memory regions. To address 

these limitations, this study presents an advanced 

memory introspection technique that leverages 

Virtual Machine Introspection (VMI) to analyze 

live memory data in virtualized environments 

dynamically. Here, we zero in on eight distinct 

process injection implementations: Atom 

Bombing, Thread Execution Hijacking, Reflective 

DLL Injection, Portable Executable Injection, 

Remote Thread Injection, and Asynchronous 

Procedure Call (APC) Injection. A Volatility plugin 

named ProcInjectionsFind was developed to detect 

injected memory regions, with the code made 

available in a public repository to facilitate 

reproducibility (21). 

Threat Model and Assumptions  
Threat Model 

Process injection vulnerabilities in virtualized 

settings are the major emphasis of this study. 

Malware continues to target Windows-based 

systems in particular. Attacks on Infrastructure as 

a Service (IaaS) cloud architecture, in which the 

host operating system has little control over guest 

systems, are assumed to occur within this scope. 

Assumptions 

Inter-VM attacks are not considered. 

The hypervisor, cloud provider, and underlying 

infrastructure are assumed to be secure. 

Zero-filled or empty VAD regions are treated as 

safe to reduce false positives. 
 

Methodology  
In order to examine virtual machine memory and 

locate injected areas, the detection framework 

incorporates the Volatility framework (22), the 

KVM hypervisor (23), and the LibVMI library (24). 

Figure 1 shows the overall layout of our suggested 

detection architecture. Once installed and set up 

on the host system, KVM acts as a hypervisor or 

Virtual Machine Monitor (VMM), supervising 

virtual machines that run guest operating systems 

like Windows 7, Windows 8.1, or Windows 10. For 

low-level insights, the LibVMI package allows 

access to the memory of a running virtual 

machine. We install the Volatility framework 

(version 2.6.1) and the LibVMI Python bindings 

(version 3.4) on the host operating system. When 

used in tandem, these instruments dissect 

dynamic malware. For the purpose of conducting 

memory forensic analyses in real-time, our 

suggested solution makes use of Virtual Machine 

Introspection (VMI). 

 

 
Figure 1: The Architecture of Proposed Framework 
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Use of this virus allows attackers to compromise 

Windows virtual computers using process 

injection vulnerabilities. Shortly after the 

injection, a dump file is generated to capture the 

exact state of the virtual machine's core memory 

for further examination. On the other hand, you 

may use the LibVMI Python bindings to directly 

access the memory of a running VM and examine 

it for signs of process injection immediately. In 

order to locate memory areas that have been 

injected by process injection, the VMI-based 

Process Injection Detection (VMIPID) model was 

developed. By employing Volatility, a free and 

open-source memory forensics tool, we were able 

to test the model with both real-life virtual 

computers and memory snapshots that included 

malware. 

Research Approach 
Numerous techniques exist for inserting and 

executing malicious code into running processes. 

The allocation of memory inside the victim 

process's address space is a common 

characteristic across process injection techniques, 

which use various execution styles and effect the 

victim process's memory-resident data structures 

and API calls differently. Malware often inserts 

itself into a process's virtual address space by 

creating a new memory area, also known as a 

Virtual Address Descriptor (VAD). This research 

suggests a new way to find possible injected 

memory in a victim process's virtual address 

space. For the purpose of identifying code 

injection, the proposed detection approach 

thoroughly checks all currently operating 

processes' memory regions. An add-on for 

Volatility called ProcInjectionsFind uses specially 

designed algorithms to identify different forms of 

process injection in virtualized settings. Following 

are the steps to identify Suspicious Processes. 

 

Table 1: Identifying Suspicious Processes 

Input: VM's Primary Memory or A Memory Image that Has Been Compromised with Malware 

Output: A List of Suspicious Processes with the Process-Thread Id 

1:  Examine all running processes 

2:  List process’ handles in each running process   

3:  Refine process’ handles of type ‘THREAD’ 

4: Examine a thread that isn't being handled or produced by the process it's running in (*) 

5: Update the suspicious process list with the thread's handle PID and TID 

(*) Step 4 exempted the thread’ handles of the following 

• Handles produced by csrss.exe 

• Handles produced by its parent process 

• In addition to its own operation and the processes that were started before it, csrss.exe is 

involved in the creation of every process and thread (25). 

• A parent process may legitimately create a handle of type THREAD in its child process 
 

Table 2: Lists the Proposed Techniques for Detection 

Algorithm 1: "Remote DLL Injection Via Createremotethread And Load library" Detection 

Input: VM's primary memory OR a memory image that has been compromised with malware 

Output: Indicate the injected process ID, process name, full DLL name, and associated VAD information 

1:  With the use of the procedures in Table 1, identify suspicious processes 

2:  Make the following checks for each thread listed in the suspicious processes list 

3:  Link the thread to the relevant VAD 🡪 Verify the file's mapping on the disc 🡪  Thread is mapped to 

kernel32.dll 

4: Look for the LoadLibrary (or LoadLibraryEx) API method during thread execution.   

5: Connect DLLs to the thread (which is in charge of injecting the malicious DLL) by tying the load time of 

the DLL to the thread's creation time using a predetermined time period, and add it to the list of suspect 

DLLs 

6: Verify if the injected DLL has a corresponding entry in the process' IAT, i.e., No entry for the injected 

DLL exists in the process' IAT 

7: Mark the DLL and the associated memory area as suspect 

8: Dump the complete VAD associated with a suspicious memory area 
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9: Verify injection by comparing the dumped VAD with VirusTotal score 

Algorithm 2: “Thread execution hijacking” detection 

Input: VM's primary memory OR a memory image that has been compromised with malware. 

Output: Show different characteristics for each injected memory region. 

1: Check all running processes. 

2: List every thread in each running process. 

3: Discovered thread id in the list of suspicious processes. 

4: Check if a thread is suspended, i.e., 'Waiting' is the thread's State and 'Suspended' is the Wait Reason. 

5: Run the following memory region (VAD) check by traversing the process' VADs. 

● Any VAD region which marked as private carries the VadS tag and executes permission. 

6: Mark the corresponding area of memory as suspicious. 

7: Dump the complete VAD associated with a suspicious memory area. 

8: Verify injection by comparing the dumped VAD with VirusTotal score. 

Algorithm 3: To recognize the following injection type 

a. Remote thread injection using  b. PE injection CreateRemoteThread 

c. Reflective DLL injection d. Hollow process injection  

e. APC injection f. Atom Bombing 

Input: VM's primary memory OR a memory image that has been compromised with malware. 

Output: Show different characteristics for each injected memory region. 

1: Check all running processes. 

2: List every thread in each running process. 

3: Get the Win32StartAddress attribute's entry point for the thread 

4: At the thread's entry point, implement the subsequent injection filters 

● Any process thread that did not have a file object was mapped to a VAD 

● The memory is committed and any thread in the process is mapped to a VAD with a file object, but the 

kind of file object is not an IMAGE FILE 

● Any thread in the process that is mapped to a VAD that has an executable file object that is distinct 

from the image file for the loaded process 

● Any thread in the loaded process that is mapped to a VAD that contains an identical exe file object, but 

a thread is suspended, i.e., 'Waiting' is the thread's State and 'Suspended' is the Wait Reason 

5: Analyse VADs for processes 

6: Implement the subsequent injection filters to the VAD area 

● Any VAD area that represents a memory-mapped file (type _MMVAD (Vad) or _MMVAD_LONG (VadL)), 

but the fields VadImageMap and Image are not set in the Vad Type and Control Flag fields, respectively 

● Any VAD region having the characteristics: VadS tag, execute permission, private, committed, 

memory-resident, and VadNone type 

7: Dump the complete VAD associated with a suspicious memory area 

8: Verify injection by comparing the dumped VAD with VirusTotal score 
 

The proposed approach determines whether a 

running process is the result of process injection 

by analyzing its threads and memory segments. 

Table 2 outlines the proposed techniques for 

detecting process injection. The detection 

techniques outlined in Tables 1 and 2 have been 

integrated into a single Volatility plugin/module 

named ProcInjectionsFind, which can be executed 

from the Volatility command line. This module 

conducts multiple tests to identify malicious or 

injected memory regions and provides detailed 

information about each identified memory region 

that aligns with the rules defined by the proposed 

methods. The ProcInjectionsFind plugin can 

analyze either a Windows memory image or the 

memory of a live virtual machine to identify signs 

of process injection. It examines the threads and 

memory regions of each process to detect 

anomalies. The described methods have been 

successfully applied to both memory snapshots 

and live virtual machines infected with malware, 

and the results have been verified. 

https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/
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Figure 2: Workflow for the Proposed System 

 

Our proposed framework, illustrated in Figure 2, 

operates in three stages: input, process, and 

output. In the input stage, the framework accepts 

either an infected memory image or the live 

memory of an active virtual machine. This input is 

then analyzed in the process stage by the 

ProcInjectionsFind module, which examines 

memory regions for signs of injection. In the 

output stage, the module displays various 

properties of each identified injected memory 

location, providing detailed insights into potential 

process injection activities. 

Experimental Setup  
An outline of our experimental apparatus is given 

in this section. All of the research takes place on a 

host machine using the settings listed in Table 3. 

Ubuntu 16.04.6 LTS is installed and configured 

using KVM to set up the virtualization 

environment. 

 

Table 3: Setups for Test Platforms 

Host OS Ubuntu 16.04.6 LTS  

Host OS Type 64-bit 

Linux Kernel Linux 4.15.0-74-generic 

Architecture X86_64 

Processor Intel(R) CoreTM i5-8265U CPU @ 1.60GHz x 8 

Disk  1 TB 

Number of cores and threads 4 and 8 

Physical memory (RAM) 8 GB 

Hypervisor (VMM) KVM 

Virtual Machine – 1 OS – Windows 7, vCPU - 1 

Memory – 2 GB, Storage – 40 GB 

Virtual Machine – 2 OS – Windows 8.1, vCPU - 1 

Memory – 2 GB, Storage – 40 GB 

Virtual Machine – 3 OS – Windows 10, vCPU - 1 

Memory – 2 GB, Storage – 40 GB 

Tools / Framework used LibVMI python bindings (version-3.4) and    

Volatility framework (version-2.6.1)  

(Both are open-source tools) 
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The IaaS cloud model is used to simulate a 

possible assault setting. Running Windows 7, 

Windows 8.1, and Windows 10 in guest mode 

resulted in the creation of three separate virtual 

machines. The Volatility framework and the 

LibVMI Python bindings are two examples of the 

open-source technologies that we use in our 

studies. Dynamic malware analysis and the 

extraction of higher-level semantic information 

from live memory data inside the virtual 

machines were accomplished using the Volatility 

framework and the Virtual Machine Introspection 

(VMI) application LibVMI. 

Malware Hiding Technique Covered in 

this Work  
The Virtual Address Descriptor's (VAD) 

protection field just displays the initial protection 

that was specified when memory was allocated. 

An adversary might take advantage of this by first 

creating memory without the WRITE or EXECUTE 

privileges, and then changing the protection to 

permit these rights for the region of memory that 

contains malicious code. It is common for 

malicious executables to deliberately modify the 

memory section's security from READONLY to 

EXECUTE_READWRITE. The VirtualProtectEx API 

method, which lets you change the protection of a 

memory area in a process's virtual address space, 

is used to accomplish this adjustment (26). 
 

Results and Discussion 
ProcInjectionsFind is a standalone Volatility 

plugin/module that integrates the detection 

techniques outlined in Tables 1 and 2. It can be 

executed directly from the Volatility command 

prompt. This module performs a series of tests to 

detect malicious or injected memory regions and 

provides detailed information about each region 

that meets the criteria defined by the proposed 

detection techniques. The proposed VMIPID 

model analyzes the memory of a virtual machine 

in real-time, inspecting the memory of each active 

process for signs of injected code. The model 

classifies each memory region as either benign or 

malicious based on its findings. To detect 

malicious or injected memory regions, the model 

performs a series of rigorous tests. 

 

Table 4: Metrics for Evaluation Definition 

Measures Definition 

True Positive (TP) The number of correctly identified injected memory regions. 

False Positive (FP) The number of incorrectly identified injected memory regions. 

True Negative (TN) The number of correctly identified benign memory regions. 

False Negative (FN) The number of incorrectly identified benign memory regions. 

Metric Formula 

Accuracy (TP + TN) / (TP + FP + TN + FN) 

Detection Rate TP / (TP + TN + FP + FN) 

F1-Score 2 * (P * R) / (P + R) 

False Positive Rate (FPR) FP / (FP + TN) 

Precision (P) TP / (TP + FP) 

Recall (R) TP / (TP + FN) 
 

The effectiveness of the proposed VMIPID model 

was evaluated using multiple assessment metrics, 

including Accuracy, Detection Rate, F1-Score, 

False Positive Rate (FPR), Precision (P), and 

Recall (R). The definitions of these metrics are 

provided in Table 4. 

Evaluation Using Process Injection 

PoCs 

Process injection techniques were implemented 

using the Proofs of Concept (PoCs) outlined in 

Table 5. Where necessary, minor modifications 

were made to the original authors' code to ensure 

it was build- and run-ready. The source code was 

compiled using Microsoft Visual Studio 

Community 2017, Version 15.9.37. Additionally, 

Table 5 includes the PoCs for the malware 

concealment method described in Section 5.2. 
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Table 5:  Evaluation Using Process Injection PoCs 

Sr 

No 

Process Injection 

Techniques 

PoCs Used  

1 Remote DLL injection ● Methods for injecting. The Evil Bit's Injection on GitHub (27). 

● Methods for Injecting Processes. secrary/InjectProc on GitHub 

(20). 

● DLL injection methods number seven. 

fdiskyou/injectAllTheThings on GitHub (28). 

● Windows Injection for Processes. Some basic process injection 

methods for the Windows platform may be found in the 

following GitHub repository: CptGibbon/Windows-Process-

Injection (29). 

2 Remote thread injection ● Methods for injecting. The Evil Bit's Injection on GitHub  (27). 

3 PE injection ● Methods for injecting. The Evil Bit's Injection on GitHub (27). 

● Windows Injection for Processes. Some basic process injection 

methods for the Windows platform may be found in the 

following GitHub repository: CptGibbon/Windows-Process-

Injection (29). 

● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30). 

4 Reflective DLL injection ● DLL Injection via Reflection. Stephen Lester's Reflective DLL 

Injection on GitHub (31). 

● DLL injection methods number seven. 

fdiskyou/injectAllTheThings on GitHub (28). 

● Tools for Submitting Code. master/f-block/DFRWS-USA-2019 

tools in DFRWS-USA-2019 on GitHub (30). 

5 Hollow process injection ● Hollowing out the process. GitHub repository: 

m0n0ph1/Process-Hollowing (32) 

● Methods for injecting. The Evil Bit's Injection on GitHub (27). 

● Windows Injection for Processes. Some basic process injection 

methods for the Windows platform may be found in the 

following GitHub repository: CptGibbon/Windows-Process-

Injection (29). 

● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30). 

6 Thread execution 

hijacking 

● Methods for injecting. The Evil Bit's Injection on GitHub (27). 

● Windows Injection for Processes. Some basic process injection 

methods for the Windows platform may be found in the 

following GitHub repository: CptGibbon/Windows-Process-

Injection (29). 

7 APC injection ● Methods for injecting. The Evil Bit's Injection on GitHub (27). 

● Methods for Injecting Processes. secrary/InjectProc on GitHub 

(20). 

8 AtomBombing ● Bombing using atomic weapons. New Windows Code Injection 

Tool Available at BreakingMalwareResearch/atom-bombing on 

GitHub (33). 

● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30). 

Malware Hiding Technique 

1 PE injection ● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30) 
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2 Reflective DLL injection ● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30) 

3 Hollow process injection ● Tools for Submitting Code. at the main branch of DFRWS-USA-

2019 on GitHub f-block/DFRWS-USA-2019 (30) 

● Process hollowing using several methods using KSLSample.vmem 

(34) 
 

Table 6: Process Injection Detection Methods are compared to the Current Methods 

Sr Process Injection Techniques Compared With 

1 Remote DLL injection FindDLLInj (35) 

2 Hollow process injection Malfind (36), Hollowfind (37), Threadmap 

(38), Malfofind (39) 

3 Thread execution hijacking, remote thread injection, 

malicious code injection, atomic bombing, and 

reflective DLL injection 

Malfind (36) 

 

Table 6 presents a comparison of various process 

injection detection methodologies with the 

proposed approach. This study utilized several 

Volatility commands to detect malware in 

Windows memory images, including Malfind (36), 

Hollowfind (37), Threadmap (38), Malfofind (39), 

Vadinfo (40), Impscan (41), and Volshell (42). 

Experimental Findings   
This section presents the experimental findings of 

the proposed VMIPID model. The performance of 

the framework was evaluated using multiple 

assessment metrics, including Accuracy, Detection 

Rate, F1-Score, False Positive Rate (FPR), 

Precision, and Recall. A series of experiments 

were conducted to assess the model’s 

effectiveness, followed by a comparison with 

existing methodologies from the literature. The 

results demonstrate the model's ability to detect 

process injection techniques effectively, 

highlighting its advantages over traditional 

approaches. Detailed results and analysis are 

provided in the following subsections. 

 

 
Figure 3: A List of the Host's Active VMs 

 

 
Figure 4: Injecting PE into the Win10_VM 
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One can see all of the host's currently running 

virtual machines in Figure 3. Figure 4 shows how 

PE injection is done on the Windows 10 virtual 

system using the Proofs of Concept (PoCs) from 

Table 5. The injection instance is initialized by 

launching the target process, wordpad.exe. Figure 

4 shows the injection command. 

Figure 5 displays the results of taking a memory 

snapshot of win10_VM using the 'virsh dump' 

command after PE injection. This document 

explains how to use the ProcInjectionsFind 

Volatility module to automatically identify the 

different process injection mechanisms. Both the 

memory of a virtual machine and a memory image 

infected with malware (PE injection) are 

subjected to the ProcInjectionsFind plugin (Figure 

6 and Figure 7). 

 

 
Figure 5: Acquiring the Live Win10_VM Memory Image 

 

 
Figure 6: ProcinjectionsFind Plugin Execution on a Memory Image (Win10_VM) With Malware (PE 

Injection) 
 

 
Figure 7: ProcinjectionsFind Plugin Execution on the Memory of a Running Win10_VM 
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Figure 6 illustrates the execution of the 

ProcinjectionsFind plugin on a memory image 

(win10_VM) containing malware through PE 

injection. Figure 7 demonstrates the execution of 

the ProcinjectionsFind plugin on the live memory 

of a running win10_VM. Details on the 

injected/victim process's VADs, disassembly, and 

hex-dump are published at the base address of the 

VAD by the ProcInjectionsFind plugin. We may 

further check the findings or do additional 

research by dumping an injected memory area to 

disk, which is made possible by the plugin. 

The ProcInjectionsFind Volatility plugin was tested 

on 75 different malware-infected memory images 

(25 images obtained from each of the three virtual 

machines), as shown in Figure 8. The results 

confirm that the plugin operates as expected. 

 

 
Figure 8: Evaluation Metrics and Detection Methods are compared 
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Figure 9A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind & 

Procinjectionsfind) on the Win7_VM Environment 

 

 
Figure 9B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Malfind & 

Procinjectionsfind) on the Win7_VM Environment 
 

 
Figure 10A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win7_VM Environment 
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Figure 10B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win7_VM Environment 
 

 
Figure 11A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind & 

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win7_VM Environment 
 

 
Figure 11B: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the 

Win7_VM Environment 
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Figure 12A: Comparative Evaluation of Accuracy for Memory Forensics Tools (Malfind & 

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win7_VM Environment 
 

 
Figure 12B: Comparative Evaluation of Accuracy for Memory Forensics Tools (Hollowfind, Malfind, 

Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win7_VM 

Environment 
 

 
Figure 13A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind & 

Procinjectionsfind) on the Win8.1_VM Environment 
 



Tank et al.,                                                                                                                                           Vol 6 ǀ Issue 2 

910 
 

 
Figure 13B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Malfind & 

Procinjectionsfind) on the Win8.1_VM Environment 
 

 
Figure 14A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win8.1_VM Environment 

 

 
Figure 14B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win8.1_VM Environment 
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Figure 15A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind & 

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win8.1_VM Environment 
 

 
Figure 15B: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the 

Win8.1_VM Environment 
 

 
Figure 16A: Comparative Evaluation of Accuracy for Memory Forensics Tools (Malfind & 

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win8.1_VM Environment 
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Figure 16B: Comparative Evaluation of Accuracy for Memory Forensics Tools (Hollowfind, Malfind, 

Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win8.1_VM 

Environment 
 

 
Figure 17A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind & 

Procinjectionsfind) on the Win10_VM Environment 
 

 
Figure 17B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Malfind & 

Procinjectionsfind) on the Win10_VM Environment 
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Figure 18A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win10_VM Environment 
 

 
Figure 18B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) on the Win10_VM Environment 
 

 
Figure 19A: Comparative Evaluation of Precision & Recall for Memory Forensics Tools (Finddllinj & 

Procinjectionsfind) on the Win10_VM Environment 
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Figure 19B: Comparative Evaluation of F1-Score & Accuracy for Memory Forensics Tools (Finddllinj & 

Procinjectionsfind) on the Win10_VM Environment 
 

 
Figure 20A: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Malfind & 

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win10_VM Environment 
 

 
Figure 20B: Comparative Evaluation of Precision, Recall, & FPR for Memory Forensics Tools (Hollowfind, 

Malfind, Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the 

Win10_VM Environment 
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Figure 21A: Comparative Evaluation of Accuracy for Memory Forensics Tools (Malfind & 

Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win10_VM Environment 
 

 
Figure 21B: Comparative Evaluation of Accuracy for Memory Forensics Tools (Hollowfind, Malfind, 

Threadmap, Malofind, & Procinjectionsfind) Utilizing Malware Hiding Techniques on the Win10_VM 

Environment 
 

The calculated results, as shown in Figure 8, are 

graphically represented in Figures 9 to 21. To 

identify and dump an injected memory location, 

we utilize the ProcInjectionsFind plugin. 

VirusTotal, a powerful and freely available online 

malware scanner, can be used to determine 

whether an executable file is malicious or safe. It 

offers a free service that uses multiple antivirus 

engines to scan suspicious files (43). Another free 

tool, Hybrid Analysis, employs a unique 

methodology to identify and analyze unknown 

threats (44). To validate our findings, we can 

submit the file hash to VirusTotal or Hybrid 

Analysis (online malware scanners) and hash the 

memory area identified as injected, as shown in 

Figure 22. 

 

 
Figure 22: Calculating Suspected File Hash 
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Figure 23: Using Hybrid Analysis to Analyse a Suspicious Memory Area (44) 

 

 
Figure 24: Using Virus Total to Analyze a Suspicious Memory Area (43) 

 

In Figure 23, Hybrid Analysis is used to analyze 

the file hash of the injected memory areas, while 

Figure 24 shows the same process performed 

with VirusTotal. Both online malware scanners 

flagged the file as malicious. 

This study focuses on the identification of eight 

distinct process injection techniques. In the 

future, additional process injection techniques 

could be incorporated, and malware hiding 

methods not covered in this study could be 

explored. A created plugin was tested against 

various Windows-based virtual machines, 

including Windows 7, Windows 8.1, and Windows 

10. The plugin’s compatibility and compliance 

with different Windows operating systems may be 

evaluated. The Volatility plugin ProcInjectionsFind 

may be integrated with existing process injection 

detection plugins and ported to Rekall, a widely 

used memory forensic framework (45). The 

proposed framework could also be applied to 

virtual machines running Linux or Mac OS. 
 

Conclusion  
In this article, we analyzed and evaluated eight 

different process injection techniques. The 

experimental results demonstrate the strong 

potential of the proposed methods, yielding 

several valuable insights. Across all three virtual 

machines (Win7, Win8.1, and Win10), the VMIPID 

model consistently achieves excellent 

performance across all evaluation metrics. It 

delivers a 100% positive predictive value, 
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completeness, F1-score, and accuracy, along with 

a 0% false-positive rate on each VM. Compared to 

existing solutions, the experimental data show 

that the proposed model outperforms others in 

accuracy, F1-score, and true positive rates while 

minimizing false positives. Overall, the framework 

identifies a broader range of malware types and 

surpasses previous models in every evaluation 

criterion discussed. Additionally, the 

ProcInjectionsFind module is designed to 

automatically detect the process injection 

techniques explored in this study, saving 

identified injected memory locations to disk for 

further analysis. 
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