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Abstract 
In forensic science, blood is a crucial piece of evidence for reconstructing crime scenes. Identifying and classifying blood 
can help confirm a suspect's involvement, though various chemical processes are employed to identify bloodstains at 
the crime scene. However, such processes may deteriorate the obtained material and interfere with further DNA 
analysis. Hyperspectral Imaging (HSI) is a promising noncontact technique that can be utilized in forensic science 
examination at crime scenes for body fluid classification, including bloodstain detection and classification. Therefore, 
this work demonstrates the use of Hybrid Inception networks for HSI data analysis for bloodstain recognition and 
classification. For testing and validation, we make use of a Hyperspectral-based Bloodstain dataset that is openly 
accessible. A variety of detection scenarios with differing degrees of complexity are incorporated in this dataset. It 
allows evaluation of how well machine learning techniques work in various backgrounds, acquisition environments, 
blood ages, and situations where additional blood-like compounds are present. We conducted blood detection 
experiments using this dataset. We use the proposed Hybrid Inception network to compare the findings against a 
variety of widely accessible cutting-edge deep learning models, including 3D CNN, Hybrid CNN, and the Inception 
model. We carefully evaluate the results and discuss each examined architecture, taking into consideration the limited 
supply of training samples. Experiments show that the modified Inception network is an efficient and accurate 
classification model. 

Keywords: Bloodstain Classification, Crime Scene Investigation, Deep Learning, Spectral Information, 

Hyperspectral Imaging, Inception Network. 
 

Introduction 
Body fluid identification, such as "blood" 

identification, is important in violent crime cases 

because it can give key evidence in a criminal 

investigation and help the court reach a decision. 

Establishing a link between identifying the fluid or 

tissue and the DNA profile strengthens this proof. 

Numerous chemical techniques are employed for 

identifying and analysing blood evidence, which 

can help confirm a suspect's involvement in a crime 

(1). These traditional chemical-based methods, 

while effective, can negatively impact future DNA 

analysis, which is crucial for conclusive 

identification. DNA analysis itself is both time-

consuming and expensive, requiring significant 

resources. Additionally, the risk of false positives, 

such as mistaking a dark paint stain for blood, can 

lead to considerable waste of time and effort, 

diverting attention and resources from more 

accurate lines of investigation. This underscores 

the need for more reliable and less invasive 

methods to analyse and classify blood evidence at 

crime scenes. 

Tests like Leucomalachite Green (LMG), Benzidine, 

and Luminol are commonly used to identify 

bloodstains. These tests work by causing a colour 

change when the reagent reacts with the blood, 

indicating its presence (2). However, the use of 

chemicals and the preparation of samples are often 

involved in these methods, which can complicate 

further investigations, such as pattern analysis and 

DNA testing. The evidence can be altered or 

degraded by the chemicals, potentially leading to 

the destruction of its original context and making 

future forensic analysis more difficult. Due to these 

limitations, non-destructive methods for 

identifying recent evidence are increasingly being 

sought by forensic investigators. Various 

spectroscopic methods, including Raman 

spectroscopy, Reflectance spectroscopy, Electron 

Paramagnetic Resonance (EPR), Nuclear Magnetic  
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Resonance (NMR), and Infrared (IR) spectroscopy 

—particularly Attenuated Total Reflectance 

Fourier Transform Infrared (ATR-FTIR) 

spectroscopy—have demonstrated potential in 

detecting bloodstains at crime scenes (3). While 

these spectroscopic techniques offer high 

sensitivity and specificity for bloodstain 

identification, they also require significant 

expertise and laboratory analysis. Proper 

interpretation of the spectroscopic data 

necessitates specialized knowledge and 

experience. Additionally, the equipment used for 

these analyses can be sophisticated and expensive, 

making them less accessible for routine crime 

scene investigations. However, their ability to 

produce non-destructive and extremely precise 

results makes them essential instruments in 

forensic science, potentially improving the 

accuracy and speed of bloodstain identification 

and analysis at crime scenes. The spectral 

characteristics of blood components, particularly 

haemoglobin, make HSI a powerful tool for 

identifying and analysing bloodstains. Blood 

consists of approximately 45% cellular elements, 

including red and white blood cells and platelets, 

with haemoglobin as the primary component of 

red blood cells. In a healthy individual, 

haemoglobin exists in two main forms: 

deoxyhaemoglobin (deoxyHb) and 

oxyhaemoglobin (oxyHb). Without biological 

processes to maintain its state, oxyHb undergoes 

oxidation to form methaemoglobin (metHb), which 

further degrades into hemichrome (HC). OxyHb 

exhibits distinct spectral features, including 

absorption dips in the reflectance spectrum near 

414nm (Soret band) and at approximately 542nm 

and 576nm (α and β bands) (4). The progressive 

degradation of oxyHb to metHb over time is 

reflected in spectral variations at these 

wavelengths. HSI captures the unique spectral 

signatures of oxyHb and metHb, providing detailed 

spectral and spatial data crucial for the accurate 

classification of human bloodstains at crime 

scenes. 

A significant concern is how different substances 

behave in HSI with diverse spatial and spectral 

properties, such as those obtained at crime scene, 

particularly under the deceptive visual 

background. A publicly available HSI dataset was 

utilized in this study, in which each scenario 

features a section of a prepared mock-up crime 

scene containing background materials of various 

colors, shapes, and compositions (5). Blood traces 

of various sizes and shapes are strategically placed 

within the scene alongside visually similar 

substances, such as artificial blood, tomato juice, 

and red paint. As a result, the complexity of the 

detection task varies across scenarios, ranging 

from simple settings with a uniform white 

background to more challenging environments 

with diverse backgrounds and multiple blood-like 

substances. 

Deep learning techniques for HSIC have shown 

promising outcomes in recent years. As a result, 

one of the best ways to extract more detailed 

spatial, spectral, or spatiospectral feature 

information in HSIC has been found to be CNN-

based approaches. Specifically, state-of-the-art 

performance in the field of HSI classification has 

been demonstrated by supervised convolutional 

neural networks (CNNs) and their variations—

including 1D-CNNs, 2D-CNNs, 3D-CNNs, and 

HybridCNN—through the successful extraction of 

deep spectral-spatial information (6).  

CNN-based methods are increasingly being 

adopted due to their effectiveness in enhancing 

classification performance. In HSI classification, 2D 

CNNs are commonly used to extract spatial 

features, while 3D CNNs capture spatial-spectral 

information simultaneously. To improve these 

approaches, a hybrid CNN model was introduced 

that integrates multiscale spatial-spectral features 

using a combination of 3D and 2D CNNs (7). 

Similarly, a hybrid spectral CNN (HybridSN) was 

developed for hyperspectral remote sensing image 

classification, leveraging both 3D and 2D CNNs (8). 

In this model, 3D CNNs extract spatial-spectral 

features from stacked spectral bands, followed by 

2D CNNs to refine spatial feature extraction. 

Additionally, an Inception-inspired architecture 

was proposed, incorporating 3D and 2D Inception 

blocks to enhance spatial-spectral feature learning 

(9). 

Deep learning models' performance is largely 

dependent on the amount of training samples. 

However, labelling hyperspectral data is 

challenging and time-consuming, resulting in a 

shortage of annotate freely available dataset. 

Limited training data can lead to effective model 

overfitting, which means they perform well on 

training data but poorly on new and unknown data 

(10). To address these inherent challenges, we 
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proposed a modified Inception network based on 

the Google Inception architecture for HSI 

classification  (11).  

To identify blood at crime scenes, forensic 

scientists use a variety of chemical approaches. 

The Kastle-Meyer (KM) test, for example, is a 

popular presumptive test that uses the interaction 

of phenolphthalein and hemoglobin to generate a 

pink colour, suggesting the presence of blood. This 

test is highly sensitive, identifying blood at a 

dilution ratio of one in 10,000 (12). However, its 

sensitivity can result in false positives when 

reacting with compounds such as rust or specific 

plants. Another approach, the Leucomalachite 

Green (LMG) test, detects blood at comparable 

dilution levels and creates a green colour. While 

some studies suggest that LMG is as sensitive as 

KM, others claim it is less effective and, like KM, can 

produce false positives with certain compounds 

(13). 

The luminol test is another popular procedure 

recognized for its ability to identify blood traces 

that are invisible to the human eye. When sprayed 

on a suspicious region, luminol interacts with the 

iron in haemoglobin, giving off a blue glow in the 

dark. This makes it particularly beneficial for 

spotting clean or faint bloodstains. However, 

luminol's efficiency is limited by its need for 

darkness and its ability to react with other 

chemicals including some metals, bleach, and plant 

materials, resulting in false positives. Furthermore, 

the chemical reaction might dilute or erase DNA 

evidence, complicating future forensic 

investigations. Despite these disadvantages, 

luminol's great sensitivity and ability to detect 

buried blood traces make it an important tool in 

crime scene investigations (14). 

Various spectroscopic techniques are employed for 

bloodstain analysis, each with unique benefits and 

limitations. Near-Infrared (NIR) spectroscopy is 

non-destructive and suitable for dried samples, 

offering high accuracy in bloodstain identification 

when paired with pattern recognition techniques 

(15). However, sophisticated calibration is 

required. Raman spectroscopy provides a detailed 

molecular fingerprint, making it highly specific and 

effective for complex mixtures, though its accuracy 

decreases for dried samples due to blood structure 

degradation by powered laser light (16). Fourier 

Transform Infrared (FTIR) spectroscopy offers 

detailed molecular information and can 

differentiate between human and non-human 

species, gender, and age groups, but it faces 

challenges with overlapping spectral features and 

precise sample preparation (17). Vibrational 

spectroscopy, which integrates IR absorption and 

Raman scattering, offers detailed blood 

identification and age estimation but is complex 

and resource intensive. Electron Paramagnetic 

Resonance (EPR) spectroscopy detects unpaired 

electrons in blood components but demands 

specialized equipment (18). 

HSI offers significant advantages for bloodstain 

classification over chemical and traditional 

spectroscopic methods. It is a non-destructive 

method that protects the integrity of the evidence 

by obtaining precise spectral information for every 

pixel over a broad range of wavelengths, improving 

the ability to distinguish blood from other 

substances. Using both spatial and spectral 

mapping, HSI facilitates sophisticated multivariate 

analysis and increases the precision of crime scene 

reconstructions. It permits real-time, in situ 

analysis without requiring much sample 

preparation like various spectroscopic methods 

and lowers false positives that are frequently 

encountered in chemical procedures (19). The 

development of deep learning architectures for HSI 

classification in the field of forensic science has 

grown substantially in recent years. 

A detailed evaluation of deep learning 

architectures for bloodstain classification was 

presented, including recurrent neural networks 

(RNNs), multilayer perceptron (MLPs), and 1D, 2D, 

and 3D CNNs. Taking Support Vector Machine 

(SVM) as a baseline, it was found that 3D CNNs and 

RNNs performed better than conventional models, 

emphasising the importance of customising neural 

networks for hyperspectral data (20). Since deep 

learning often requires extensive labelled data, the 

development of architectures aimed at reducing 

this dependency has been considered encouraging. 

Notably, a hybrid CNN with a bit short training 

datasets was used to examine classification 

accuracy. To compare the suggested models, the 

Hybrid CNN architecture was also used as a 

baseline in this study. However, due to the limited 

amount of training data, a tendency toward 

overfitting was observed in these models (21).  

This study proposes a novel approach that 

integrates a 3D/2D CNN Inception module with a 

Hybrid Inception-based 3D/2D CNN architecture. 
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The hybrid Inception module is designed to 

enhance both depth and width within the network 

by incorporating 3D and 2D convolutional layers 

alongside 3D and 2D max-pooling layers. In 

essence, the Inception module applies multiple 

convolutional and max-pooling layers 

simultaneously to the same input, with the outputs 

subsequently concatenated. This multi-branch 

structure enables efficient multi-scale feature 

extraction, allowing the network to capture diverse 

spatial-spectral information. By leveraging 

multiple convolutional layers, the proposed 

method enhances feature representation and 

improves overall classification performance. The 

following summarises the contributions of the 

work. 

• Proposed Hybrid Inception architecture 

shows the improvement in HIS classification 

with adopting convolution kernel size with 

incremental filter size.  

• The use of 3D CNN with 2D CNN as hybrid 

structure shows increase in performance 

when spectral and special parameter consider 

for HIS classification. 

• The proposed approach demonstrates its 

utility in forensic science as a non-destructive, 

effective, and quick tool for identifying 

bloodstains.  

The paper is structured as follows: after reviewing 

related forensic HSI studies, the subsequent 

sections detail the implemented methodology, 

present the dataset and results, and conclude with 

directions for future research. 
 

Methodology 
HSI is a technique that collects and analyses data 

across the electromagnetic spectrum, with each 

pixel containing spectral information that enables 

accurate material identification. The hyperspectral 

cube 𝑠 𝜖 ℛ(𝑀 × 𝑁 ×𝐿) represents data with spatial 

dimensions M and N, and spectral dimension L. 

This comprehensive data format is ideal for 

detailed analysis and classification tasks. 

As each pixel in HIS has number of spectral band 

(typically 100+) this high-dimensional data 

requires significant computational resources and 

time. As the number of dimensions grows, the 

feature space expands rapidly, making it harder for 

the model to learn and generalize. Principal 

Component Analysis (PCA) helps by reducing the 

data’s dimensions while keeping the most 

important spectral details. This makes CNN 

computations more efficient and easier to handle. 

The HSI cube is partitioned into small overlapping 

3D patches, the truth labels of which are 

determined by the label of the centring pixel. This 

process involves creating neighbouring 

patches𝑁𝑝𝜖ℝ(ω × ω × k) where 𝑘 is the number of 

PCA component with a spatial window (𝑤 × 𝑤) 

centered at the spatial location (x, y). For each 𝑛 

patches,(𝑀 − (𝜔 + 1)) × (𝐿 − (𝜔 + 1)), the 

dimensions cover the width and height from (𝑥 −

(𝜔 − 1)/2) to (𝑥 + (𝜔 − 1)/2)and (y−( 𝜔 −1)/2)  

to (y + (𝜔 − 1)/2).  

 

Hybrid CNN Model 
The hybrid CNN model combines 3D and 2D 

convolutions to leverage the advantages of both 

types of networks. Initially, the HSI data undergoes 

3D convolution to capture joint spatial-spectral 

features. A 3D-CNN is used to extract spatial-

spectral features from the HSI cube. The 3D 

convolution operation can be mathematically 

represented as: 
 

𝐷𝑖,𝑗,𝑘
𝑢,𝑣 = 𝑅𝑒𝐿𝑢 (∑ ∑ ∑ ∑ 𝑄𝑢,𝑣,𝑝

𝜋,𝜆,𝜔𝜀
𝜔=−𝜀 × 𝐷(𝑢−1),𝜌

(𝑖=𝛾)(𝑗+𝑛)(𝑘+𝜀)𝑛
𝜆=−𝑛

𝛾
𝜋=−𝛾

𝑠𝑢−1
𝜌=1 + 𝑏𝑢,𝑣)     …………... [1] 

 

where 𝑅𝑒𝐿𝑢 is the activation function, 𝑏𝑢,𝑣 

represents the bias, 𝑄 is the depth of the kernel, 

and 𝐷 is the feature map. Subsequently, the data is 

reshaped and passed through 2D convolution 

layers to enhance spatial feature extraction. The 

2D-CNN processes the output from the 3D-CNN to 

refine the spatial features further. The 2D 

convolution operation is defined as: 
 

𝐷𝑖,𝑗
𝑢,𝑣 = 𝑅𝑒𝐿𝑢 (∑ ∑ ∑ 𝑄𝑢,𝑣,𝑝

𝜋,𝜆 × 𝐷(𝑢−1),𝜌
(𝑖=𝛾)(𝑗+𝑛)𝑛

𝜆=−𝑛
𝛾
𝜋=−𝛾

𝑠𝑢−1
𝜌=1 + 𝑏𝑢,𝑣)  …………………………...       [2] 

 

where 𝐷𝑖,𝑗
𝑢,𝑣 is the final output feature map and the 

parameters are like those used in the 3D 

convolution equation. The implemented  Hybrid 

architecture with HIS cube size 9 x 9 x 9 is shown 

in same as (20). 

 

Hybrid Inception Network 

Google's Inception network revolutionised 

convolutional neural networks (CNNs) by 

introducing the concept of "inception 
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modules"(11). These modules allow the network 

to capture numerous features at the same time by 

applying different convolutional filters (e.g., 1x1, 

3x3, and 5x5) within a single layer. This 

architecture increases the network's robustness 

and efficiency by combining the outputs of various 

filters along the depth axis. Furthermore, 1x1 

convolutions are used within the Inception 

modules to minimise the dimensionality of the 

feature maps before applying larger convolutions, 

which greatly reduces processing costs and the 

number of parameters while retaining crucial 

information. The Inception module's parallel 

nature greatly reduces the computational 

complexity and memory utilisation concerns faced 

by traditional CNN models. 

To utilise spectral and spatial data through a hybrid 

method, the suggested Hybrid Inception (3D-2D) 

model for bloodstain classification is carefully built 

(Figure 1). The three primary convolutional blocks 

that make up the design convolve through a 

succession of 3D convolutions with various filter 

sizes to collect a variety of spectral-spatial 

information. The blocks perform 3D convolutional 

layers with kernel sizes of (1, 1, 1), (3, 3, 3), and (5, 

5, 5) to extract complex features and gradually 

reduce dimension. After the 3D output is flattened 

into a 2D structure, more 2D convolutions take 

place for improved feature extraction, followed by 

max pooling. 

Specifically, each block performs a parallel 

processing operation with its 3D convolutional 

layers. The 3D CNN outputs are reshaped for 2D 

CNN with a last temporal 1 × 1 convolution, then 

max pooling and a sequence of 2D convolutions 

with growing filter sizes: 32, and 64. Each block 

allows parallelism in handling computation at 

different scales of spectral and spatial information, 

hence can give rich and flexible representation. 

 

                                      

 

 

 

 

 

 

 

 

Figure 1: Architectural Depiction of Proposed Hybrid Inception Network 
 

The use of several different kernel sizes from 

parallel branches offers the network elasticity, 

allowing it to efficiently deal with unpredictability 

from hyperspectral data in feature extraction that 

a single convolutional pathway would otherwise 

overlook. Reshaping, in combination with 2D 

convolutions at each block, decreases dimensions 

and refines features, allowing the model to be 

computationally economical while retaining 

crucial information. After processing, the outputs 

of each convolutional block are concatenated to 

combine the various features collected from other 

scales. his is subsequently transmitted through 

another 2D convolutional layer. The model flattens 

the feature maps and then moves forward to dense 

layers for regularization. Finally, a dense output 

layer classifies the input into one of the 

seven classes using a softmax activation function. 

This approach incorporates 3D and 2D 

convolutions into parallel branch architecture in 

the 3D-2D Inception model, resulting in a powerful 

ability to capture full spectral-spatial correlations 

in hyperspectral data for complex classification 

tasks in HIS classification. 
 

Table 1: Detail of the Implemented and Modified 2D Inception Network Architecture 

Layer Kernel Size Parameters 

Conv2D 1-1 (1, 1, 8) 128 

Conv2D 2-1 (3, 3, 16) 2176 

Conv2D 3-1 (1, 1, 8) 128 

Conv2D 3-2 (3, 3,16) 1168 

Conv2D 4-1 (1, 1, 8) 128 

Conv2D 4-2 (3, 3, 16) 1168 
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Conv2D 4-3 (5, 5, 32) 12832 

Concatenate - 0 

Conv2D 5 (3, 3, 32) 20768 

Conv2D  6 (3, 3, 64) 18496 

Flatten - 0 

Dropout - 0 

Dense - 51850 

Total trainable Parameters - 87842 
 

Table 2: Detail of the Implemented and Modified 3D Inception Network Architecture 

Layer Kernel Size Parameters 

Conv3D 1-1 (1, 1, 1, 8) 16 

Conv3D 2-1 (3, 3, 3, 16) 448 

Conv3D 3-1 (1, 1, 1, 8) 16 

Conv3D 3-2 (3, 3, 3, 16) 3472 

Conv3D 4-1 (1, 1, 1, 8) 16 

Conv3D 4-2 (3, 3, 3, 16) 3472 

Conv3D 4-3 (5, 5, 5, 32) 64032 

Concatenate - 0 

Conv3D 5 (3, 3, 3, 32) 62240 

Conv3D 6 (3, 3, 3, 64) 55360 

Flatten - 0 

Dropout - 0 

Dense - 544327 

Total trainable Parameters - 732,871 
 

Table 3: Details of the Proposed Hybrid Inception Network Architecture 

Layer Kernel Size Parameters 

Conv3D 1-1 (1, 1, 1, 8) 16 

Conv3D 2-1 (3, 3, 3, 16) 448 

Conv3D 3-1 (1, 1, 1, 8) 16 

Conv3D 3-2 (3, 3, 3, 16) 3472 

Conv3D 4-1 (1, 1, 1, 8) 16 

Conv3D 4-2 (3, 3, 3, 16) 3472 

Conv3D 4-3 (5, 5, 5, 32) 64032 

Concatenate - 0 

Reshape - - 

Conv2D 5 (3, 3, 32) 0 

Conv2D 6 (3, 3, 64) 311392 

Flatten - 18496 

Dropout - 0 

Dense - 0 

Total trainable Parameters - 437,627 
 

Our hybrid-inception network uses gradient 
descent (backpropagation) to train its parameters. 
Moreover, dropout was implemented with the fully 
connected layer. The three suggested inception 
architectures differ considerably in the total 
amount of trainable parameters, which suggests 
their different ability to deal with complexity with 
different model tannable time and feature 
extraction capacities. The first architecture, a 
purely 2D convolutional model, as shown in Table 

1, has the fewest trainable parameters (87,842), 
making it relatively lightweight and faster to train 
but with limited representational power. The 
second design, a purely 3D convolutional model, 
given in Table 2, contains a large number of 
trainable parameters (732,871), indicating a more 
complex model capable of capturing 
spatiotemporal patterns in the data, but at the 
expense of higher computational requirements. 
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Table 3 shows the third design, a hybrid inception 

model, which balances the two with 437,627 

trainable parameters. The usage of a 3D CNN and a 

2D CNN hybrid structure demonstrates that it 

makes better use of both spatial and spectral data 

than the strictly 2D model while using fewer 

resources. This change in parameter count 

demonstrates the trade-offs between model 

complexity, computational cost, and performance 

in HSI classification tasks. 

Dataset Description and Experimental Design 

The HSI dataset utilized in this research was 

initially created and reviewed (21). Released under 

an open-access policy, the dataset encompasses 

multiple detection scenarios with varying levels of 

complexity. Hyperspectral data were captured 

using a Surface Optics SOC710 camera, which 

operates within the VNIR range of 377–1046 nm. 

The resulting images have a resolution of 696 × 

520 pixels, with 128 spectral bands and a 12-bit 

dynamic range. The dataset was generated in a 

controlled laboratory environment, simulating a 

mock crime scene. Figure 2A illustrates the 

laboratory setup, including target annotations, 

documentation, and 14 HSI files (each 

approximately 180 MB) in ENVI format. 

'Scene E' is a subset of the generated mock-up 

scene, featuring various blood-like traces on eight 

distinct backgrounds, including fabric, wood, 

plastic, and metal, some with crimson textures. 

After noise band removal, the image dimensions 

are 696 × 520 × 113. These images consist of a 

sequence of spectral stripes. These images consist 

of a sequence of spectral stripes. Figure 2B 

illustrates the presence of substances resembling 

blood traces, such as tomato concentrate, ketchup, 

poster paint, acrylic paint, manufactured blood, 

and unidentified blood. Additionally, their spectral 

signatures are provided in Figure 3. 

The dataset was randomly split into training 

(80%), validation (10%), and test (10%) samples, 

as detailed in Table 4. Convolutional network 

hyperparameters were fine-tuned based on prior 

experience and experimental findings. For all 

experiments, the Adam optimizer was used with a 

learning rate of 1e-3 and a decay term of 1e-6. 

Optimal network settings were determined 

through trial and error and refined using a mini-

batch-based backpropagation method. Training 

was conducted for 100 epochs with a mini-batch 

size of 32. 

 

Table 4: Summary of Class Distribution in the 'Scene E(1)' Bloodstain Dataset 

Class Training Validation Test 

Blood 296 296 2372 

Ketchup 584 584 4675 

Artificial Blood 641 642 5133 

Poster Paint 662 663 5300 

Tomato Concentrate 393 394 3148 

Acrylic Paint 802 802 6417 

Total 3378 3378 27048 
 

  

 

Multiple metrics were used to evaluate the 

performance of the tested models, including 

execution time, average accuracy (AA), overall 

accuracy (OA), and the Kappa coefficient (K × 100). 

The Kappa coefficient quantifies the agreement 

between predicted and actual classifications while 

accounting for chance, providing a robust measure 

of classification accuracy. Overall accuracy (OA) 

represents the proportion of correctly classified 

samples across the entire dataset, serving as a key 

performance indicator. Average accuracy (AA) 

calculates the mean accuracy across all classes, 

ensuring equal weighting and highlighting the 

model’s ability to handle class imbalances. 

Execution time measures computational efficiency, 

indicating the time required for classification and 

the trade-off between accuracy and computational 

cost. 
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Figure 2: Illustration of the Dataset, (A) The Mock-Up Crime Scene Setup (With Locations of Images A-E), 

(B) Overview of the E ‘Frame’ Scene 

 

Figure 3: Spectral Signatures of Experimental Samples, Including Blood, Ketchup, Artificial Blood, Poster 

Paint, Tomato Concentrate, and Acrylic Paint, in 'Scene E(1)' 
 

The Bloodstain dataset image E(1) was processed 

using PCA to reduce dimensionality, resulting in 9 

× 9 × 9 × 15. image cubes as input for the network. 

Table 5 compares the classification performance of 

the three proposed networks—2D Inception 

Network, 3D Inception Network, and 3D-2D 

Hybrid Inception Network—with three commonly 

used methods: 2D CNN, 3D CNN, and Hybrid CNN. 

Additionally, classification accuracies were 

visually represented. Figure 4 depicts the ground 

truth maps generated after evaluating the 

proposed Inception-based models on image E(1) 

from the bloodstain dataset. 
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Results and Discussion 
The Table 5 shows a comparison of all six 

implemented network architectures results: 

2DCNN, 3DCNN, Hybrid CNN, 2DIN, 3DIN, and 

Hybrid Inception. Each network's performance is 

assessed across various material classes, including 

blood, ketchup, artificial blood, poster paint, 

tomato concentrate, and acrylic paint on eight 

different backgrounds. Notably, the Hybrid 

Inception network outperforms most categories, 

suggesting its effectiveness in classifying HSI. 

Where Hybrid CNN also shows promising 

classifying numbers. The Hybrid CNN and Hybrid 

Inception models perform exceptionally well when 

class-wise accuracy is examined; they receive 

perfect scores (100%) for classes like Poster Paint 

and Blood. It demonstrates their flawless ability to 

classify these substances precisely. The 2DCNN 

and 3DCNN models, on the other hand, have much 

lower accuracy for some classes, such as Tomato 

Concentrate, where the 2DCNN only gets 83.50% 

and the 3DCNN gets 87.80%. The Hybrid CNN and 

Inception models have far longer execution times 

despite their great accuracy. The 2DCNN 

completes tasks in 87.25 seconds, whereas the 

3DIN model takes 688.12 seconds, indicating a 

trade-off between speed and accuracy with the 

increase in number of trainable parameters.

 

Table 5: Comparisons of Classification Accuracies among Different Methods 

Class 2DCNN 3DCNN Hybrid 

CNN 

2D Inception 3D Inception Hybrid 

Inception 

Blood 92.40 97.20 100 97.20 99.50 99.50 

Ketchup 95.90 98.80 99.80 98.80 99.00 99.80 

Artificial Blood 93.70 92.20 99.10 90.70 92.00 99.30 

Poster Paint 99.40 99.80 100 99.90 99.90 99.90 

Tomato Concentrate 83.50 87.80 92.60 90.40 93.90 95.00 

Acrylic Paint 98.40 99.90 99.70 99.00 98.80 100 

OA(%) 95.01 96.59 98.85 96.00 97.28 99.18 

AA(%) 93.87 95.96 98.52 96.00 97.21 98.90 

Kappa 93.88 95.83 98.60 95.10 96.68 98.95 

Executions Time (s) 87.25 121.12 132.00 208.00 688.12 485.00 

The hybrid inception network exhibits a robust 

and reliable result in HSI classification, shown by 

its high overall accuracy (99.18%), average 

accuracy (98.90%), and Kappa coefficient (98.95). 

This model is the finest option for applications 

where precision is crucial because it regularly 

performs better than others. The 2D CNN, on the 

other hand, has the quickest execution time but 

shows worse performance metrics, indicating that 

it would be better suited for situations when speed 

is more important than accuracy. These results 

emphasize the importance of selecting the best 

model for a given set of application requirements, 

weighing classification accuracy against execution 

time and need of resources to get the best 

outcomes. 

The classification maps in Figure 3 show minimal 

qualitative differences between the deep learning 

models. However, Table 5 provides quantitative 

evidence that the 3D-2D Hybrid Inception Network 

achieved the highest performance. While 3D 

Inception Networks outperformed 2D-CNN and 

3D-CNN, the Hybrid Inception Networks and 

Hybrid CNN demonstrated superior accuracy. A 

closer analysis of Table 5 confirms this trend. 

Additionally, the classification map for the Hybrid 

Inception Network closely resembles the ground 

truth map, as shown in Figure 4.
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Figure 4: Classification Maps for (A) Ground Truth, (B) 2D Inception (C) 3D Inception  

(D) Hybrid Inception Model

 

Conclusion 
The methods used in this research are non-

destructive, effective, and rapid. We introduced a 

3D-2D hybrid inception network for spectral-

spatial joint feature extraction and classification to 

increase the classification accuracy of HSIC. With 

only a few training examples, the proposed 3D–2D 

hybrid inception network achieves high 

classification accuracy. With the fine tuning and 

updating of the models, we can also have 

satisfactory classification rates for hybrid CNN and 

3D inception networks. The experimental results 

also showed that the proposed methodologies have 

the potential to improve blood classification using 

HSI technology for real-world crime detection. 

Possible future research directions include using 

various time-delayed HSIs to identify bloodstains 

that degrade over time. Additionally, the developed 

model can be utilised using transfer learning to 

identify other body fluids at crime scenes.  
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