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Abstract 
This study introduces a new hybrid deep learning method for intrusion detection in the Internet of Medical Things 
(IoMT), a rapidly expanding domain that enhances patient care but remains highly vulnerable to cyber threats. The 
increasing integration of IoMT devices in healthcare facilitates real-time monitoring and data exchange, yet their 
susceptibility to security breaches poses serious risks to patient privacy and system integrity. As these devices generate 
vast amounts of sensitive data, ensuring security against cyberattacks is critical. Our proposed method integrates an 
Autoencoder (AE) with three encoder-decoder layers for anomaly detection and a Long Short-Term Memory (LSTM) 
network for temporal analysis. The autoencoder identifies anomalies through reconstruction errors and latent space 
classification, while the LSTM network captures sequential patterns in network traffic to detect attack signatures. We 
evaluated the model using the CICIoMT2024 data set, which includes traffic from 40 IoMT devices and 18 distinct attack 
types across Wi-Fi, MQTT, and Bluetooth protocols. The data set presents a significant class imbalance, with DoS and 
DDoS attacks dominating, posing real-world security challenges. To address this, we employed data balancing 
techniques to improve model performance. Our evaluation shows that the hybrid model achieves 94.1% accuracy with 
a robust Area Under the Curve (AUC), significantly outperforming the Autoencoder alone. Our findings demonstrate the 
efficacy of employing deep learning techniques to bolster IoMT security. This approach enables swift identification of 
various cybersecurity threats and establishes a resilient defense system against emerging attacks. 

Keywords: Autoencoder (AE), Deep Learning, Intrusion Detection System (IDS), Internet of Medical Things (IoMT), 

Internet of Things (IoT), Long Short-Term Memory (LSTM). 
 

Introduction 
The swift development of the Internet of Things 

(IoT) is altering everyday life by interconnecting 

billions of devices that have sensing, 

communication, and processing functionalities (1, 

2). These interconnected gadgets are being utilized 

for health monitoring, enabling real-time 

surveillance of patients' health metrics (3, 4). The 

Internet of Medical Things (IoMT) emerged from 

the convergence of the Internet of Things (IoT) 

with healthcare with the goal of revolutionizing 

healthcare services by way of individualized 

treatment programs and real-time tracking (5). A 

number of acronyms make up the IoMT, which 

stands for the Internet of Medical Things; these 

include "MIoT" and "H-IoT" (6, 7). IoMT systems 

provide conveniences to various users, including 

patients through wearable technologies, 

healthcare professionals through quick patient 

information access, and administrative personnel 

through the administration of medicinal assets. 

The Internet of Medical Things (IoMT) 

encompasses various subcategories, including 

Body Area Network (BAN), Wireless Body Area 

Network (WBAN), Body Sensor Network (BSN), 

and Wireless Medical Sensor Network (WMSN). 

These systems are collectively recognized as 

specialized networks within the broader IoMT 

framework (8). The healthcare sector produces 

vast amounts of data that conventional approaches 

find challenging to analyze it. Machine learning 

(ML) and Deep Learning (DL) methods offer 

automated techniques that enhance the extraction 

of essential features for data analysis, particularly 

from electronic health records (9). Machine 

learning (ML) and deep learning (DL) techniques 

provide advanced capabilities for data analysis, 

predictive analytics, and the personalization of 

medical treatments (10). Data security and privacy 

are critical because of the utilization of digital 

technologies like IoT, mobile  gadgets, and medical
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cloud computing, where breaches may result in 

financial losses and erosion of trust. Encryption, 

blockchain and biometric systems have been used 

to enhance the security (11). Healthcare IoT 

devices face security risks due to vulnerabilities 

across hardware (physical tampering, side-

channel attacks, counterfeit components, 

insufficient tamper resistance), software (poor 

coding, inadequate patching, limited security 

features due to resource constraints), and network 

layers (eavesdropping, unauthorized access, man-

in-the-middle attacks via Wi-Fi, Bluetooth, ZigBee, 

issues during network transitions, weak key 

management and routing protocols like RPL, and 

DoS/DDoS attacks). These vulnerabilities 

necessitate strong security measures and 

proactive design approaches for reliable and safe 

healthcare IoT systems (12). IoMT systems are 

vulnerable to cyberattacks, which can compromise 

patient privacy, infrastructure integrity, and 

operational continuity, including data breaches, 

denial-of-service and manipulation of medical data 

(13). Loss of diagnostic information due to security 

breaches in healthcare systems can have a negative 

effect on diagnosis, treatment, and even patient 

lives (14). For the aim of detecting malicious 

actions, intrusion detection systems (IDS) are 

important, using methods, such as those based on 

signatures, anomalies and specifications and 

hybrid approaches (15). While several 

methodologies have been presented for detecting 

intrusion in IoT based healthcare systems, their 

effectiveness is evolving continuedly. Several 

research have examined machine learning (ML), 

deep learning (DL), and combined methods, all 

with the goal of optimizing the precision and 

reliability of malicious activity detection. The 

current research outlines diverse approaches for 

threat detection in IoT systems. These techniques 

can be commonly categorized into three major 

types: machine learning-based approaches, deep 

learning-based models, and hybrid strategies that 

integrate both. Machine learning models are one 

such method to identify the intrusion in IoT 

healthcare system. It was observed that four 

supervised machine learning techniques, namely 

Naive Bayes, Decision Tree, K-Nearest Neighbors 

(KNN), and Random Forest were applied, to 

classify attacks in two data sets, namely, 

CICIDS2017 and Bot-IoT. The precision and F1-

scores obtained for Naive Bayes 42%, 41%, 

Decision Tree 93.2%, 93%, KNN 91%, 91%, 

Random Forest 93.3%, 94% were reported in the 

CICIDS2017 data set. For the Bot-IoT data set, the 

precision and F1-scores were: Naive Bayes (91%, 

91%), Decision Tree 99%, 99%, KNN (98.9%, 

98%), Random Forest 98.7%, 98% (16). It was 

found that three supervised machine learning 

techniques, namely Artificial Neural Network 

(ANN), Decision Tree, and K-Nearest Neighbors 

(KNN), were applied to classify attacks in the 

IoTID20 dataset. The reported precision and 

F1-score values are as follows: for ANN, 99% 

precision and 98% F1-score; for Decision Tree, 

99% precision and 99.8% F1-score; and for KNN, 

99.2% precision and 99% F1-score (17). It was 

demonstrated that different machine learning 

methods to enhance the potency of intrusion 

detection systems. In particular, it has been 

observed that Decision Tree together with 

AdaBoost and K-Nearest Neighbour (KNN) and 

Random Forest models were employed. The 

performance metrics include that a precision of 

99.6% alongside F1 score of 99.8% were achieved 

by the Decision Tree while, a precision of 99.8% 

with an F1 score of 99.9% was attained by 

AdaBoost. The results confirm the capacity of these 

methods to increase the accuracy and 

trustworthiness of intrusion detection system in 

real time (18). However, it has been noted that 

deep learning models such as RNNs and DNNs are 

of interest for learning complex structure in the 

large dataset. Intrusion Detection System based on 

Deep Neural Network It was proposed that an 

Intrusion Detection System based on a Deep 

Neural Network can achieve efficient performance 

metrics. Using the NF UQ NIDS data set, it was 

found that the model achieved a precision of 

93.02% and an F1 score of 91.76% in multiclass 

classification tasks, thereby demonstrating its 

capability for real-time detection of various 

network assaults. It was further demonstrated that 

the model is capable of meeting the challenges 

commonly encountered by typical IDS, which often 

fail when faced with diverse and dynamic network 

traffic (19). It was proposed that an efficient 

method exploiting a Deep Neural Network (DNN) 

model be used to identify anomalies. The model 

was designed to enhance the security of IoT 

networks by accurately classifying network traffic 

as normal or abnormal. It was found that the DNN 

model was superior, achieving an F1 score of 
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98.6% and a precision of 99%. It was further 

concluded that this approach substantially 

strengthens the performance of network-based 

intrusion detection systems in IoT environments 

by detecting anomalies with a minimal false alarm 

ratio (20). It was noticed that a CNN-based system 

was designed to detect environmental sensor 

anomalies within healthcare IoT ecosystems. The 

model was tested through the WSN DDoS Attack H-

IoT2023 dataset which was developed using the 

Cooja simulator platform. The CNN model 

architecture was optimized for one-dimensional 

time-series inputs and evaluated using accuracy 

and error rate metrics. A 92% accuracy rate was 

achieved by the model, with models like SVM, 

LSTM, and ensemble learning being outperformed 

in both efficiency and precision (21).  An anomaly-

based intrusion detection system (AIDS) for the 

Internet of Medical Things (IoMT) was created by 

applying six ML and DL algorithms, which included 

RF, SVC, KNN, CNN, CNN-LSTM, and attention-

based CNN-LSTM. In this research, the TON_IoT 

telemetry dataset was used to study different 

cyberattacks, including DDoS, ransomware, and 

scanning activities. SMOTE was applied to the 

training data in order to handle class imbalance. 

The evaluation of each model was based on 

accuracy, precision, recall, and F1-score metrics. 

The best accuracy results of 99% were achieved by 

Random Forest together with KNN, while 

attention-based CNN-LSTM achieved 94%. The 

CNN-LSTM model was observed to perform poorly 

(22). As observed healthcare systems intrusion 

detection method was introduced that combined 

Correlation-based Feature Selection with Bat 

Optimization Algorithm (HCFS-BOA) alongside 

Convolutional Neural Networks (CNN). Both the 

CIC-IDS2017 and NSL-KDD datasets were used, to 

which min-max normalization was applied and 

HCFS-BOA was utilized for feature selection based 

on correlation and optimization. CNN was 

employed to perform intrusion classification 

following the feature selection process (23). It was 

demonstrated that the Eccentric Intrusion 

Detection Model (EIDM), which employs Recurrent 

Neural Networks (RNNs) with Long Short-Term 

Memory (LSTM) units, is capable of detecting 

several cyberattack scenarios, including both 

conventional and unique attacks. The model was 

trained and tested on the CICIDS2019 data set, 

which comprises various benign and malicious 

network traffic examples. It was found that the 

proposed models achieved detection fidelity of 

99.5% and a very low false positive rate of 72%, 

indicating a strong capability to support 

cybersecurity systems for intrusion detection (24). 

It was reported that a novel intrusion detection 

solution for IoT settings, based on a Denoising 

Autoencoder (DAE), was proposed. The CICIDS 

2017 and NSL-KDD data sets were applied to 

assess the model. In the CICIDS 2017 data set, the 

DAE achieved a precision of 99.9% and an F1-score 

of 98%, while in the NSL-KDD data set, a precision 

of 94% and an F1-score of 98.9% were obtained. 

These findings validate that the model is capable of 

successfully detecting intrusions and can be used 

to enhance security in IoT systems (25). Recently, 

multiple intrusion detection models have been 

hybridized to obtain the strength of the individual 

models and improve the precision. For instance, 

AE-LSTM-CNN is presented as a hybrid deep 

learning framework that is aimed at boosting 

intrusion detection capabilities in IoT systems. 

Autoencoders with LSTMs along with CNNs are 

used by the integrated model to perform multi-

stage feature extraction in order to detect multiple 

attack forms. This hybrid mode was evaluated on 

the CICIoT2023 dataset and an accuracy and F1-

score of 99.1% were achieved (26). It was reported 

that a hybrid IDS for Internet of Medical Things 

(IoMT) was developed by integrating Gated 

Recurrent Units (GRU) with Attention Mechanisms 

to enhance detection of known and unknown as 

well as zero-day attacks. When tested on the ICU 

Healthcare and NF-TON-IoT datasets, accuracy 

levels of 99.99% and 98.94% were reached by the 

model, together with precise measurements and 

high recall scores on both datasets, thereby 

proving its reliable real-time operation (27). JAYA-

BiLSTMIDS on the IoT-23 data set yielded a 

precision of 99.6%, and a precision of 99.88% was 

obtained on the MQTT set data set (28). It was 

introduced that a hybrid deep learning strategy for 

Internet of Medical Things (IoMT) system 

intrusion detection is proposed. Three models—

including the proposed GNN-BiLSTM, GRU-

BiLSTM, and CNN-BiLSTM—are tested using the 

'IoT healthcare security' dataset. The GNN-BiLSTM 

model is shown to exhibit the best performance 

with 99.98% accuracy and 99.97% F1 score 

compared to GRU-BiLSTM (99.95% accuracy, 

99.94% F1 score) and CNN-BiLSTM (99.97% 
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accuracy, 99.96% F1 score). Moreover, the GNN-

BiLSTM is found to be much more efficient with the 

classification task. It is demonstrated that the GNN-

BiLSTM serves as an effective IoMT security 

solution because it delivers strong accuracy 

alongside quick processing times (29). It was 

employed a two-tier intrusion detection system 

including a stacked autoencoder (SAE) for feature 

retrieval and a deep neural network (DNN) for 

classification. This model was assessed applying 

three multiclass datasets: KDDCup99, NSL-KDD, 

and AWID. The multiclass accuracies attained were 

dependent on the dataset and the count of layers in 

the DNN; however, the optimal model (a DNN with 

two layers) attained roughly 94.2% precision on 

the KDDCup99 dataset, 99.7% on the NSL-KDD 

dataset, and 99.9% on the AWID dataset. It was 

noted that the paper did not clearly disclose F1-

scores for multiclass categorization (30). This 

paper proposes a new hybrid deep learning 

approach for intrusion detection in the context of 

IoMT that combines an Autoencoder with a Long 

Short-Term Memory network using weighted 

ensemble approach. Compared to previous studies 

that have usually carried out features extraction or 

time dependent pattern analysis in network traffic, 

our method integrates these two strategies to 

identify important features and temporal 

variations. Furthermore, we also tackle the 

inherent class imbalance of the CICIoMT2024 

dataset to have equal representation of all attack 

types via oversampling and under sampling 

techniques. The evaluation metrics show robust 

performance with accuracy reaching 94.1% and 

excellent ROC AUC scores. The study results 

confirm the effectiveness of our methodology by 

addressing critical gaps within current research on 

Internet of Medical Things security. 
 

 

 
Figure 1: Autoencoder Model with 6 Layers 
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Figure 2: RNN Fold Representation 

 

Methodology 
In this section, we elucidate the methodologies of 

hybrid AutoEncoder and Long Short-Term-

Memory LSTM. We demonstrate our suggested 

model, named hybrid Autoencoder method 

combined with the LSTM model for security 

violation detection in IoT based healthcare. In the 

subsequent section, we will explain how each 

component of our proposed model work. The 

hybrid AutoEncoder (AE), (LSTM), and the 

weighted ensemble of both models. The 

reconstruction error is applied by the Autoencoder 

model to determine if IoT network traffic is normal 

or aberrant (31). Our work introduces 

autoencoder architecture with a classification 

head, three layers of encoders, and three layers of 

decoders. Following batch normalization and the 

LeakyReLU activation function, each encoder and 

decoder layer is a dense layer. Classification 

predictions are generated by the classification 

head using the latent space, allowing the model to 

execute reconstruction and classification at the 

same time. Figure 1 illustrates the Autoencoder 

(AE), whereas Figure 2 represents the LSTM 

model. 

Autoencoder Method 
An autoencoder (AE) is an algorithm that 

compresses data into a representation with 

minimal dimensions through an encoder and 

subsequently recreates this compressed version to 

approximate the original version input through a 

decoder component. The autoencoder consists of 

two components, namely an encoder and a 

decoder. The encoder transforms the initial data 

into a finite depiction, termed to as the encoding 

layer or latent space layer, whilst the decoder 

reconstructs the initial data from this encoding 

layer. Encoders and decoders frequently perform 

linear operations that can be executed 

unsupervised within a dense layer of a neural 

network. The encoder converts the input 𝑥 into a 

latent representation ℎ, whereas the decoder 

reconstructs the initial data as 𝑥  from ℎ. An 

encoder is a deterministic aligning function 𝑓(𝑥) 

that transforms a multidimensional input matrix 𝑥 

into an r-dimensional latent representation ℎ, 

known as an encode, as illustrated below:

ℎ = 𝑓(𝑥) = 𝜙(𝑤𝑥 + 𝑏) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑥 + 𝑏) =
1

1 + 𝑒−(𝑤𝑥+𝑏)
 [1] 

A decoder is an operation of mapping (ℎ) that 

transforms the latent form ℎ, derived from 

Equation [1], into a reconstructed vector 𝑧 within 

the input space. A decoder can also be expressed as 

an affine transformation followed by a squashing 

linearity, as depicted below: 

𝑧 = 𝑔(ℎ) = 𝜙(𝑤ℎ̂ + �̂�) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑤ℎ̂ + 𝑏)̂  =
1

1 + 𝑒−(�̂�ℎ+�̂� )
 [2] 

Where w   represents the weight matrix of the 

affine mapping and b   denotes the bias vector, 

while ϕ(ℎ) signifies the activation function 

referred to as the sigmoid function. Generally, the 

learning process in autoencoders involves 

optimizing the weights to minimize the 

reconstruction error (32). As a result, the objective 

function can be represented as follows: 

𝜑 =∥ 𝑥 − �̂� ∥ [3] 
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For anomaly detection task, autoencoders have the 

advantage of learning efficient representations of 

data and are able to detect deviations from normal 

patterns that may signal potential threat. In 

healthcare specifically, this capability is important 

for early detection of anomalies in order to save 

patient lives. 

Recurrent Neural Network 
Unlike basic neural networks like Multilayer 

Perceptions (MLPs), Recurrent Neural Networks 

(RNNs) are not limited to single-directional input 

processing. Recurrent Neural Networks (RNNs) can 

loop multiple layers and possess the ability to 

temporarily retain information for future use. The 

architecture of a Recurrent Neural Network (RNN) 

is illustrated in Figure 2. 

𝐻𝑡  Signifies a hidden layer, 𝑋𝑡  identifies the input, 

and 𝑌𝑡  represents the output. RNNs are classified as 

deep neural networks due to the multiple layers 

involved in input processing. Figure 3 illustrates the 

unfolding structure of a standard RNN to 

demonstrate the depth of the RNN architecture. 
 

 

Figure 3: RNN Unfold Representation 

 
Figure 4: LSTM Memory Cell Structure 

 

Xt-1  denotes previous input, Ht-1 denotes previous 

hidden layer, Yt-1 denotes previous output, and Xt 

represent current input, Ht represent current 

hidden layer, Yt represent current output, and Xt+1 

indicates next input, Ht+1 indicates next hidden 

layer, Yt+1 indicates next output (33). 

Long short-term Memory 
Long Short-Term Memory (LSTM) networks are a 

specific type of recurrent neural networks (RNNs) 

designed to mitigate the limitations of traditional 

RNNs in handling long-term interdependencies in 

sequential data. Standard RNNs experience the 

vanishing and exploding gradient problem, when 

gradients decrease progressively at the time of 

backpropagation across time, resulting in 

network's inability to retain information from 

previous time steps. This significantly limits their 

capacity to discern patterns over extended 

periods, a crucial constraint for tasks like speech 

recognition or machine translation. Figure 4 shows 

the LSTM cell architecture which, address this 

issue by the utilization of an advanced cell 

architecture and gating mechanism. The core 

element of LSTM is its memory cell, a system 

designed to preserve information for prolonged 

durations. This cell engages with three essential 

gates: an input gate that regulates the inflow of 

input data, a forget gate that decides which 

information from the prior cell state should be 

eliminated, and an output gate that modulates the 

extent to which the cell's current state is disclosed 

as the network's output. The gates, in conjunction 

with the cell state, facilitate precise regulation of 

information flow within the network, permitting 

LSTMs to acquire and maintain information over 

considerably longer sequences than conventional 
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RNNs, thereby effectively mitigating the vanishing 

gradient issue and enhancing their capability for 

intricate sequential data processing (34). The 

current input data point xₜ and the disguised state 

from the previous time step ht-1 are the two inputs 

that the LSTM cell receives. Forget Gate ft This gate 

supervise which information should be removed 

from the cell's memory. The prior hidden state hₜ₋₁ 

and the current input xₜ are utilised as inputs. A 

sigmoid activation function (σ) compresses the 

output to a range betwixt 0 and 1, with 0 indicating 

entirely discard and 1 signifying entirely preserve.  

𝑓𝑡 = 𝜎(𝑤𝑓 . (ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑓)                             [4] 

Input Gate it the input gate specifies how much of 

new data from the current input xt and prior 

hidden state (ht-1) that should be stored in the cell 

state. A sigmoid function (σ) is applied to assess 

the significance of this fresh information. 

𝑖𝑡 = 𝜎(𝑤𝑖 . (ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑖)                              [5] 

Candidate cell state Ct   this is the new possible 

content that will be included in the cell state It is 

calculated as a function of the input at the present 

time step xt and the preceding hidden state ht-1 

passed through a tanh function. The tanh ensures 

the values remain in the of range (-1,1). 

𝐶�̂� = 𝑡𝑎𝑛ℎ(𝑤𝑐 . (ℎ𝑡−1, 𝑥𝑡), +𝑏𝑐)                     [6] 

Cell state update Ct the cell state is modified by 

summing the preceding cell state Ct-1 and the 

candidate cell state Ct     the forget gate ft control the 

extent to which the prior cell state is preserved 

while the input gate it regulate the amount of the 

candidate cell state Ct   to be included. The result is 

the new cell state Ct  

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝐶�̂�                                          [7] 

Output gate Ot the output gate determines which 

parts of the updated cell state Ct are used to 

compute the hidden state ht. The output 

importance is decided by applying a sigmoid 

function. 

𝑜𝑡 = 𝜎(𝑤𝑜 . (ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑜)                            [8] 

The hidden state ht is computed by passing the 

updated cell state Ct through a tanh function to 

squash the values in the range of (-1,1) and 

modulated by the output gate ot. This hidden state 

is used as output and passed to the next time step. 

ℎ𝑡 = 𝑜𝑡 . 𝑡𝑎𝑛ℎ(𝐶𝑡)                                              [9] 

The Long Short-Term Memory (LSTM) networks 

are particularly well suited for learning from 

sequential data, and therefore, are ideal to identify 

patterns and anomalies over time in the context of 

healthcare monitoring. This model can effectively 

process time series data and can detect a slight 

deviation from normal and abnormal behavior that 

may indicate a possible intrusion. Such capability 

not only improves the reliability of the health 

monitoring systems but also allows timely 

detection of intrusion, thus improving the patient 

outcomes and safety in critical care environments. 

An effective approach for detecting anomalies in 

IoT-based healthcare systems is represented by 

the integration of Autoencoder and LSTM models. 

The Autoencoder's capacity for efficient 

representation and deviation detection, combined 

with the LSTM's strength in modeling sequential 

data and capturing subtle temporal variations, 

results in a robust detection system. A robust 

detection system is formed by the combination of 

the Autoencoder's efficient representation and 

deviation detection capabilities with the LSTM's 

strength in modeling sequential data and capturing 

subtle temporal variations. The unique challenges 

posed by high-dimensional, time-series healthcare 

data are effectively addressed by this hybrid 

approach, ensuring timely and reliable anomaly 

detection. 

Dataset 
This study utilizes the CICIoMT2024 data set to 

evaluate performance of the hybrid AutoEncoder 

(AE), (LSTM), and the weighted ensemble of both 

models. in identifying cyberattacks targeting 

Internet of Medical Things (IoMT) devices. The 

CICIoMT2024 data set comprises information from 

40 IoMT devices, composed of 25 real and 15 

imitated devices. This multi-protocol data set 

contains 18 unique attack types across Wi-Fi, 

MQTT, and Bluetooth, comprising Denial of Service 

(TCP, ICMP, SYN, UDP), Distributed Denial of 

Service (TCP, ICMP, SYN, UDP), reconnaissance 

(Ping Sweep, OS Scan, Port Scan, Vulnerability 

Scan), MQTT attacks (Malformed Data, DoS 

Connect Flood, DoS Publish Flood, DDoS Connect 

Flood, DDoS Publish Flood), and ARP Spoofing. The 

data set is notably imbalanced, showing a 

substantially greater number of instances for DoS 

and DDoS attacks relative to other attack types and 

benign traffic (35). As detailed in Table 1, this 

represents the number of attack instances in each 

class. 
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Table 1: Number of Attack Instances in Each Class of Cisiomt2024 Data Set 

 

Consequently, we aggregated all specific attack 

types into their main categories to streamline 

classification and manage the complexity arising 

from numerous sub-categories. For instance, 

specific attack types for DoS and DDoS, like DoS 

TCP, DoS ICMP, and DoS SYN, were consolidated 

under the broader classifications of DoS and DDoS. 

Furthermore, subcategories for reconnaissance 

attacks, including OS Scan and Port Scan, merged 

into a singular category named Recon. By 

integrating them into the superior category level 

taxonomy, we diminished the problem's 

complexity, hence facilitating subsequent analyses 

and modelling endeavors to be significantly more 

manageable and relevant. This effectively 

preserves the fundamental characteristics of each 

primary category while enhancing models' 

capacity to identify generalized patterns in closely 

related attack types. Following the aggregation of 

subcategories into main categories, a Label 

Encoder was applied to convert categorical class 

labels into numerical values, facilitating 

accessibility for our machine learning models. A 

Standard Scaler was then applied to normalize the 

feature distributions, ensuring that all 

characteristics maintained equal importance 

throughout comparable numerical ranges during 

training. This enhanced model convergence, 

stability, and overall performance. The data set is 

highly imbalance, with classes such as TCP_IP- 

DDoS and TCP_IP-DoS considerably outnumbering 

others like Spoofing and Recon, hence jeopardizing 

model bias. To rectify this, we employed 

oversampling and under sampling methods to 

guarantee equitable representation of all classes—

TCP_IP-DDoS, TCP_IP-DoS, Benign, Recon, 

Spoofing, and MQTT. Specifically, random under 

sampling techniques were applied to decrease the 

over-represented classes including TCP_IP-DDoS 

and TCP_IP-DoS whereas random oversampling 

techniques were used to increase under-

represented classes like Spoofing and Recon. This 

procedure implemented a fixed random seed to 

achieve perfect data division where the training 

and testing sets included 1,066,764 samples for 

each class. This method supplied sufficient data for 

the model to identify the distinctive characteristics 

of minority classes while preventing the 

predominance of majority classes. The model's 

generalization, fairness, and robustness enhanced, 

resulting in improved assessment metrics and 

more dependable performance in identifying 

various risk within the network. and testing set. 

This method supplied sufficient data for the model 

to identify the distinctive characteristics of 

minority classes while preventing the 

predominance of majority classes. The model's 

generalization, fairness, and robustness enhanced, 

Class Category Attack Count 

Benign - - 200339 
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Spoofing ARP Spoofing 17791 
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Ping Sweep 926 

Recon VulScan 3207 

OS Scan 20666 

Port Scan 106603 

 

 

 

MQTT 

Malformed data 6877 

DoS connect flood 15904 

DDoS publish flood 36039 

DoS publish flood 52881 

DDoS connect flood 214952 
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DoS TCP 462480 

DoS ICMP 514724 

DoS SYN 540498 
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DDoS SYN 974359 

DDoS TCP 987063 

DDoS ICMP 1887175 

DDoS UDP 1998026 
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resulting in improved assessment metrics and 

more dependable performance in identifying 

various risk within the network. 

Experiment setting 
A Windows 10 (64-bit) machine with an Intel Core 

i9-12900K CPU, 32 GB of RAM, and an NVIDIA RTX 

4060 graphic processing unit (GPU) with 8 GB of 

dedicated memory was used for the research. The 

PyCharm integrated development environment 

(IDE) made use of the PyTorch framework for 

building and running the proposed model. In order 

to carry out and evaluate the experimental 

procedures described in this work efficiently, this 

configuration offered the necessary processing 

power and adaptability. 
 

Results  
The model was trained for a total of 50 epochs to 

avert overfitting, before each training epoch 

begins, the data are shuffled to prevent the model 

from learning any sequence patterns that aren't 

intended. Partitioning the data into smaller 

batches of a predetermined size (e.g., 64 samples 

each batch) is the next step. By randomly sorting 

and batching data at each epoch, we may optimize 

the model's generalizability and accelerate the 

training process In Figure 5, the left diagram 

displays the accuracy of hybrid autoencoder, while 

the right graph shows the loss of hybrid 

autoencoder, whereas in Figure 6, the left graph 

represents the accuracy of LSTM model, and the 

right graph presents the loss of LSTM model. The 

training results demonstrate that the LSTM 

Classifier surpasses the Hybrid Autoencoder 

model. Despite an increase in the Hybrid 

Autoencoder's training precision, its testing 

precision remained low and inconsistent, 

indicating a decrease in training loss alongside a 

high and fluctuating testing loss. This indicates 

poor generalization to novel data. The LSTM 

Classifier showed constant improvements in both 

training and testing precision, in addition to 

decreases in training and testing loss, highlighting 

its outstanding generalization and overall 

performance on the task model. 

 

 
Figure 5: Hybrid Autoencoder Accuracy over Epochs-Hybrid Autoencoder Loss over Epochs 

 

 

 
Figure 6: LSTM Classifier Accuracy over Epochs-LSTM Loss over Epochs 
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Figure 7: Performance Metrics by Model 

 

 
Figure 8: Per Class Accuracy by Model 

 

In Figure 7, we display per-class accuracy by 

model, and in Figure 8, we represent the per-class 

accuracy by model as we evaluate the performance 

metrics of three models: Hybrid AE, LSTM, and 

Combined for intrusion detection in IoT-based 

healthcare. The performance measures 

demonstrate that the LSTM and Combined models 

much outperform the Hybrid AE model in 

precision, precision, recall, and F1-score, with both 

the LSTM and Combined models attaining roughly 

94% for each metric, in contrast to the Hybrid AE's 

81%. The LSTM and Combined models show 

similar overall performance; however, the 

combined model indicates marginally superior 

precision at 94.1% compared to the LSTM model's 

94.0%, along with a marginally higher recall of 

94.1% compared to 94.0%. The marginal increase 

in performance is evident in the second chart, 

where the Combined model attains slightly 

superior precision in the "Benign," "Recon," and 

"Spoofing" classes. This stands in stark contrast to 

the Hybrid AE's performance, which remains at 

approximately 81% across all parameters, 

indicating its limited ability to effectively identify 

intrusion. The overall pattern is accentuated by the 

analysis of per-class precision, wherein the LSTM 

and Combined models consistently exhibit 

superior performance across all traffic classes, 

particularly in the "TCP_IP-DDoS" and "TCP_IP-

DoS" classes. The Hybrid AE model exhibits a 

notable decline in precision for those classes, 

whereas the LSTM and Combined models attain 

above 99% precision, indicating that the Hybrid AE 

is less effective in classifying these traffic 

categories in comparison to the other models. 

Nevertheless, although the combined model 

demonstrates marginally excellent. The Table 2 

ROC curve performance metrics encapsulates the 

successful implementation of the combined model 

across various classes taking advantage of ROC 
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curves. The AUC (Area Under the Curve) assesses 

capability of the model to differentiate between 

true positives and false positives for each class, 

with a greater AUC signifying superior 

performance. The Table 2 ROC curve performance 

metrics illustrates that the model exhibits 

outstanding performance, with AUC values. 

Between 98% and 100%. The model attains 

impeccable AUC scores of 1.00% for classes such as 

MQTT, Recon, TCP_IP-DDoS, and TCP_IP-DoS, 

indicating flawless discrimination without any 

errors. The Benign and Spoofing classes exhibit 

AUC values of 98%, indicating exceptional 

performance with little misclassifications. The 

Table 2 ROC curve performance metrics highlights 

the model's robust classification capability across 

multiple classes, exhibiting excellent precision and 

reliability. 
 

Table 2: ROC Curve Performance Metrics 

 

Table 3: Performance Comparison with Other Methods 

 

Table 4: Model Performance Comparison across 5-Fold Cross-Validation 

Fold Hybrid AE Accuracy  LSTM Accuracy  Combined Accuracy  

1 85.58% 86.13% 86.10% 

2 85.55% 96.40% 96.36% 

3 85.46% 95.96% 95.12% 

4 85.56% 86.17% 86.07% 

5 85.54% 86.19% 86.16% 

Mean 85.54% 90.17% 89.96% 

Std 0.04% 4.91% 4.73% 

 

Our model's performance was compared to that of 

other similar models. Using Accuracy, precision, 

recall, and F1 score for comparison It was 

observed that the weighted ensemble model 

achieved the highest F1-score of 94.1% and an 

accuracy of over 94.1%, as shown in Table 3. We 

conducted a 5-fold cross-validation to compare the 

performance of three models: Hybrid Autoencoder 

(Hybrid AE), LSTM, and a Combined (ensemble) 

approach. Table 4 summarizes the accuracy 

results. 

Throughout all folds the Hybrid AE system 

demonstrated reliable performance with accuracy 

rates at 85.5% which indicates its overall 

reliability and robustness. The LSTM and 

Combined methods demonstrated peak accuracy 

levels at 96.40% and 96.36% in folds 2 and 3 but 

displayed more unstable performance measures 

throughout the entire process. To determine 

whether the performance differences among the 

Class AUC (Area Under Curve) Performance 

Benign 98% excellent 

MQTT 100% Perfect 

Recon 100% Perfect 

Spoofing 98% excellent 

TCP_IP-DDoS 100% Perfect 

TCP_IP-DoS 100% Perfect 

Method Precision Recall F1-score Accuracy 

Weight average (36) 85% 84% 84% 483% 

DNN (37) 74.7% 81.7% 75.3% 81.7% 

LSTM (38) 92% 94% 79% 79% 

CFS (39) 89% 87% 86.4% 90.3% 

BiLSTM (40) 91.1% 89.7% 89.4% 91.9% 

AE-LSTM (41) 90.9% 89.7% 89.4% 92% 

Our proposed model Weighted 

Ensemble 
94.3% 94.1% 94.2% 94.1% 
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three models were statistically significant, we 

performed a non-parametric Friedman test. This 

test compares the models' ranks across the folds 

rather than their exact accuracy values. The 

Friedman test yielded a chi-square statistic of 

10.00 and a p-value of 0.0067. Since this p-value is 

less than 0.05, we conclude that there are 

statistically significant differences in the models' 

performances. The LSTM and Combined models 

display performance metrics that are statistically 

different from the Hybrid AE model which 

demonstrates consistent moderate results. The 

experimental results indicate that LSTM models 

detect specific data patterns well although they 

deliver peak accuracy inconsistently between 

different data subsets while the Hybrid AE model 

maintains steady and reliable performance. 
 

Discussion 
This research employs Autoencoder (AE) and Long 

Short-Term Memory (LSTM) networks because of 

their complementing advantages. LSTM networks 

are especially applicable for processing sequential 

data and capturing long-term dependencies, which 

is critical for detecting patterns in time-series data 

like network traffic. The forget gate in LSTM is 

essential for deciding which data to preserve or 

eliminate, allowing the model focusing on 

important information and identify changing 

attack patterns such as DDoS and DoS, which are 

extremely dynamic and necessitate long-term 

pattern recognition. Autoencoders (AE), on the 

other hand, are excellent in feature extraction 

because they learn compressed representations of 

input data. Autoencoder detects anomalies 

through reconstruction errors thus proving highly 

efficient for discovering security breaches by 

tracking abnormal traffic patterns. The 

Autoencoder algorithm shows better results at 

finding defects in data but performs worse when 

used for time-based inputs compared to LSTM. The 

hybrid AE-LSTM model band together the 

attributes of AE models with LSTM models to 

extract features and detect anomalies and analyze 

sequential patterns therefore achieving better 

identification of sophisticated network attack 

patterns. The preprocessing procedures started 

with handling missing data then followed standard 

scaling of features and attack type consolidation to 

simplify the classification process. The analysis 

integrates DoS TCP, DoS ICMP and DoS SYN attacks 

under the headers of DoS and Distributed Denial of 

Service (DDoS). The OS Scan and Port Scan 

reconnaissance attacks have been placed into the 

"Recon" classification group. Combining attack 

types into broader groups made the data set easier 

to process while keeping essential aspects of each 

assault type to help the model recognize typical 

patterns. The application of Label Encoder 

processed categorical class labels for numerical 

transformation in order to make them compatible 

with machine learning models. In addition, 

oversampling and under sampling techniques 

were used to address the class imbalance so that all 

the attacks get fair representation and the model 

becomes fair, robust, and have better 

generalization capability. Our weighted ensemble 

of Autoencoders and LSTM networks produced 

strong results when identifying different cyber-

attacks especially Denial-of-Service (DoS), 

Distributed Denial-of-Service (DDoS) and 

reconnaissance activities. This approach lets the 

models work separately and combine their results 

for decision-making. The AE model learns compact 

representations of relevant features of the data 

and the LSTM model extracts temporal 

information from one sequential traffic. After the 

predictions of both models have been generated, 

these predictions are integrated using the 

weighted ensemble method which weights the 

contribution of each model based on its 

performance. By using this method, the hybrid 

model can take advantage of the strength of both 

techniques, where the Autoencoder has the ability 

to extract features and the LSTM has the capacity 

to seize long term dependency within the data. 

Attacks are categorized effectively by this method 

into diverse specific types such as 'TCP-IP-DDoS' 

and 'TCP-IP-DoS' and by 'Recon' and 'Spoofing' 

while distinguishing normal from malicious traffic. 

The weighted ensemble method delivers accurate 

results that make it advisable for real-time 

detection of network threats in IoMT systems.  The 

results in Table 3 compare the Weighted Ensemble 

model against six state-of-the-art methods 

(Models 33-38) The results show that the 

Weighted Ensemble greatly performs better than 

any other model with precision of 94.3%, recall of 

94.1%, F1-score of 94.2%, and accuracy of 94.1%. 

The experimental results show our method 

enhances the detection ability while improving 

upon the performance strength of separate 
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baseline models when used for IoT-based anomaly 

detection. The ensemble’s superiority stems from 

its capability to bring together different 

architectures which effectively mitigating 

weaknesses present in single models. The 

extensive analysis shows how the proposed 

approach can lead the development of new 

methods in healthcare anomaly detection systems. 

As shown in Table 4, the results are a tradeoff 

between stability and peak performance. It was 

found that the Hybrid Autoencoder (Hybrid AE) 

model was consistently reliable and had an 

accuracy of 85.5 percent. This shows that it will be 

a good choice for applications where stability is the 

prime concern. Although the combined and LSTM 

models were better able to reach higher peak 

accuracies at 96.4% and 96.36, respectively, it was 

the single model that achieved the highest overall 

accuracies at 95.5%. However, these models were 

more variable across folds which indicates that 

they are more sensitive to the data used. The 

results from the Friedman test at p = 0.0067 

proved the performance differences between 

models were statistically significant where the 

LSTM and Combined models showed superior 

performance compared to Hybrid AE. The 

performance of LSTM and Combined models 

results in better accuracy levels when compared to 

Hybrid AE. The primary focus of research is on 

anomaly detection in IoMT system, but we 

acknowledge that an adversarial attack where an 

attacker aims to manipulate input data to mislead 

the model can also expose the model in reducing 

detection accuracy and increase false negatives. 

Our method combining an Autoencoder with an 

LSTM has the potential to resist small adversarial 

perturbations because it detects anomaly from 

typical patterns that were learned during training. 

The present study did not implement dedicated 

defenses against adversarial attacks. Future 

research of IoMT anomaly detection systems needs 

specific hazard resistance techniques such as 

adversarial training because this remains an 

essential research topic to enhance the healthcare 

security. Future research should aim to further 

enhance the resilience and adaptability of IoMT 

anomaly detection systems. One promising 

direction is the integration of dedicated 

adversarial defense mechanisms, such as 

adversarial training or robust optimization 

techniques, to mitigate potential attacks designed 

to bypass the current detection framework. 

Additionally, expanding the dataset to include a 

wider variety of IoMT devices and attack types 

could improve model generalization and enable 

the development of more sophisticated, real-time 

detection systems. Finally, exploring alternative or 

hybrid deep learning architectures, as well as the 

fusion of additional data modalities (e.g., 

contextual patient data), may provide further 

insights and lead to more robust and 

comprehensive security solutions for IoMT 

environments. 

Conclusion 
In order to study the effectiveness of an 

Autoencoder (AE), Long Short-Term Memory 

(LSTM) network, and their combination, a novel 

innovative breach detection system for Internet of 

Medical Things (IoMT) environments was 

introduced and evaluated in this research. 

Numerous key results were obtained from 

experimental findings on the CICIOMT2024 data 

set. Autoencoder model had potential but the best 

findings were based on the LSTM model. In the 

case of all these parameters of accuracy, precision, 

recall, and F1-score the LSTM model showed its 

robustness with exactly 94%. The most 

conspicuous and remarkable outcomes were 

achieved using the combined method, which 

combined the merits of the AE and LSTM. By 

combining these two approaches, we achieved 

over 99% precision on most of the traffic 

categories including the most important ones, 

TCP_IP-DDoS and TCP_IP-DoS, and outperformed 

the performance of each individual model. This 

indicates that the combined method can protect 

medical IoT devices effectively. Moreover, 

Receiver Operating Characteristic (ROC) Curve 

research demonstrated that the combined model 

had extremely high efficacy across multiple classes 

with Area Under the Curve values of 100%. Further 

validation of our approach was carried out with 5-

fold cross validation, and a non-parametric 

Friedman test was applied to show that the 

difference of the models’ performance was 

statistically significant with a chi square statistic of 

10.00 (p = 0.0067).  The results show that a 

combination of the AE and LSTM models is a sturdy 

and efficient way for intrusion detection. The use 

of this combined strategy offers a solid foundation 

for enhancing reliable security systems designed 

to resolve the particular challenges that emerge in 
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the IoT-based healthcare environment. Further 

study of this model will be placed toward its real 

time application and further refinement for usage 

in multiple medical settings. 
 

Abbreviations 
AE: AutoEncoder, AUC: Area Under the Curve, 

CNN: Convolutional Neural Network, DDoS: 

Distributed Denial of Service, DoS: Denial of 

Service, IoMT: Internet of Medical Things, LSTM: 

Long Short-Term Memory, RNN: Recurrent Neural 

Network, ROC: Receiver Operating Characteristic. 
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