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Abstract 
Emerging as a distributed machine learning paradigm allowing many people to cooperatively train models without 
directly exchanging raw data is federated learning (FL). FL is nevertheless vulnerable to several attacks, including 
model inversion, gradient leaking, and adversarial inference, which might expose private information even this privacy-
centric architecture. Adoption of FL depends on addressing privacy issues; this is especially true in industries like 
finance and healthcare where data security is critical. This work suggests a fast cryptographic method to improve FL's 
privacy preservation while preserving computational economy. To enable safe multi-party computation and stop illegal 
inference of private data, the proposed solution combines lightweight cryptographic primitives—including 
homomorphic encryption (HE) and differential privacy (DP)—as Differential privacy generates controlled noise to 
protect individual contributions; homomorphic encryption guarantees that model updates can be aggregated safely 
without decryption. By reasonably balancing privacy protection with model performance, our method lowers 
computational and communication overhead. Experimental analyses show that the suggested approach greatly 
improves data security without sacrificing the scalability or accuracy of the federated learning system. This work helps 
to advance safe FL deployments by striking a trade-off between privacy, efficiency, and usability, so making them more 
practical for real-world applications needing strict confidentiality, such medical diagnosis, financial transactions, and 
personalized recommendation systems. 

Keywords: Cryptographic Techniques, Differential Privacy (DP), Federated Learning, Homomorphic Encryption 
(HE), Privacy-Preserving Machine Learning, Secure Multi-Party Computation (SMPC). 
 

Introduction 
Federated learning has become a transforming 

paradigm allowing cooperative model training 

over distributed devices while preserving data 

locality in the era of big data and artificial 

intelligence. Unlike conventional centralized 

learning techniques, federated learning addresses 

important privacy issues by letting many users 

jointly train machine learning models without 

disclosing their raw data. Nonetheless, federated 

learning is not immune to flaws including data 

leakage, inference assaults, and adversarial 

exploitation during model updates or 

communication notwithstanding its natural 

privacy-preserving design. These difficulties 

highlight how urgently strong cryptographic 

techniques are needed to guarantee the privacy, 

integrity, and confidentiality of private data all 

around the federated learning process. Reducing 

these hazards depends critically on the creation of 

a scalable cryptographic method specifically for 

federated learning. Since federated learning 

usually runs in resource-limited situations such 

mobile devices or IoT networks, such an algorithm 

must carefully balance offering strong security 

guarantees with preserving computational 

performance. Furthermore, the method has to be 

scalable to fit the dynamic and diverse character of 

federated learning systems, in which users could 

join or leave the network whenever they so want. 

This work intends to build and implement a fresh 

cryptographic framework including homomorphic 

encryption, secure multi-party computation, and 

differential privacy to protect data privacy in 

federated learning by means of advanced 

approaches. Using these cryptographic primitives 

will help to minimize computing overhead and 

communication costs while also ensuring that 

sensitive data stays encrypted during the training 

and inference phases. The ultimate aim is to enable 

safe and privacy-preserving federated learning at  
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scale, hence building confidence and cooperation 

among users of many applications spanning from 

healthcare and finance to smart cities and beyond. 

By means of this work, we hope to add to the 

increasing corpus of knowledge in privacy-

preserving machine learning and offer a useful tool 

enabling companies and people to leverage 

federated learning without endangering data 

privacy. Cryptographic methods offer promising 

solutions, yet existing techniques often impose 

significant computational overhead. This paper 

introduces an efficient cryptographic algorithm 

tailored for federated learning to address these 

challenges. FL is considered a revolutionary 

concept in the distributed machine learning 

paradigm in which many clients, including smart 

phones, edge devices, and IoT nodes, can 

collaboratively train a global model without 

uploading their raw data to any central server. This 

approach, therefore, fits into modern data privacy 

regulations in terms of how organizations handle 

personal data, which, in this case, involves the 

GDPR and CCPA. These modern data privacy 

regulations put emphasis on protecting user data, 

and FL supports data sovereignty by making sure 

that sensitive information is kept in control by 

both the organization and individual while trying 

to achieve mutual learning objectives. Despite 

these benefits, federated learning is still hampered 

by various challenges mainly about data privacy, 

communication overhead, and computational 

efficiency. FL does not necessarily share raw data 

but is also vulnerable to indirect attacks on 

privacy. In order to solve the aforesaid problems, 

the work creates a fast cryptographic method 

especially intended for federated learning. Here 

the answer is to combine differential privacy with 

lightweight homomorphic encryption into a dual-

layered method of privacy protection. Lightweight 

homomorphic encryption locks gradients at the 

transmission point so that even semi-honest 

adversaries cannot leak any data. Differential 

privacy generates noise into model updates, 

therefore offering further defence against gradient 

leaks and model inversion. Furthermore, 

computationally efficient, the method will perform 

well in settings with limited resources. The best 

aggregation methods lower the communication 

overhead and offer a strong assurance for strong 

privacy preservation free from loss in model 

accuracy. Apart from evaluating the efficacy of the 

suggested method on actual datasets including 

MNIST and CIFAR-10, the paper addresses the 

theoretical foundations of it. It is employed for 

several metrics of relevance including computing 

efficiency, model accuracy, and resistance to 

invasions of privacy. We address the present 

significant privacy concerns as well as efficiency 

factors and explain work under this paper as our 

addition to federated learning literature. Why 

laying the basis upon which the future framework 

for federated learning will finally be built can be 

considered very important since the integration of 

advanced cryptographic with pragmatic 

optimizations results in a proposal that is both 

practical, scalable, and deployable in many 

challenging real cases.  

Research on the creation of effective cryptographic 

algorithms to protect data privacy in federated 

learning (FL) is under active progress. The 

following is a synopsis of pertinent research and 

significant domanial contributions. Federated 

learning, a decentralized ML paradigm, emerges to 

answer a growing demand of data privacy and 

collaborative model training. It fundamentally 

differs from the more traditional approaches, 

where all collected data are collected and stored on 

a central repository, by ensuring that the local data 

remain resident on the client device and that 

updates to models shared with a central repository 

are model-specific, for instance, gradients or 

parameters. This approach greatly minimizes the 

risk of data breaches and is also in line with global 

privacy regulations such as the General Data 

Protection Regulation (GDPR) and the Health 

Insurance Portability and Accountability Act 

(HIPAA).  

Foundation of Federated Learning and 

Privacy Issues 
Federated learning or FL: Originally developed 

by Google in 2016, FL lets several parties jointly 

train a machine learning model without 

distributing actual data.  

Privacy Concerns: meanwhile, come from 

possible inference attacks or data leaks during 

model changes. Several privacy issues inherent in 

the distributed character of the system must be 

addressed in the creation of an effective 

cryptographic method to maintain data privacy in 

federated learning (FL). Under federated learning, 

several clients—many of whom do not share their 

raw data—coordinate training of a shared model. 
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Although this method improves privacy naturally, 

it still carries hazards that need be reduced with 

cryptographic methods. 

Existing Cryptographic Techniques for 

Protection of Privacy 
Secure Multi-Party Computation (SMPC): A 

widely used other technique for protecting privacy 

during FL aggregation of updates is SMPC. SMPC 

helps in computing a joint function on inputs 

generated by multiple clients without revealing 

that input to another client or central server. Every 

client contributes values encrypted or shares them 

secretly while the computation itself is done 

collaboratively using cryptographic techniques. 

SMPC is a protocol that doesn't need the 

involvement of any trusted third party. This 

characteristic makes it very fit for scenarios in 

which no entity can be trusted for keeping data 

private. However, there can be some substantial 

communication overhead with SMPC, especially if 

there are too many participants within large-scale 

networks. The repeated sending of cryptographic 

messages between clients and the server creates 

delays and higher bandwidth consumption, 

becoming problematic in resource-constrained 

environments. Review of the literature on Secure 

Multi-Party Computation (SMPC)(1) in federated 

learning (FL) finds an increasing corpus of work 

aimed on improving security and privacy in 

networked machine learning systems shown in 

Table 1. Keeping such inputs confidential, SMPC is 

a cryptographic method allowing several parties to 

jointly compute a function over their inputs. Key 

studies, techniques, and developments in this field 

are compiled here. Applications in FL include 

secure aggregation of model updates without 

revealing individual contributions. 
 

Table 1: Secure Multi-Party Computation (SMPC) in Federated Learning (FL) 

Ref. 

No 

Key 

Contributions 

Methodology Limitations Accuracy 

Trade-

off 

Security 

Strength 

Utility Trade-

off 

(1) Introduced a 

secure 

aggregation 

protocol for FL 

using SMPC. 

Combines 

secret sharing 

and 

cryptographic 

primitives for 

secure 

aggregation 

High 

communication 

overhead; 

scalability 

issues with 

large datasets 

No noise 

added; 

high 

accuracy 

kept 

 

SMPC 

provides 

strong 

privacy 

 

A lot of 

communication 

overhead 

makes things 

less useful and 

less scalable 

(2) Demonstrated 

the use of 

SMPC for 

privacy-

preserving 

neural 

network 

inference. 

Uses 

homomorphic 

encryption 

and SMPC for 

secure 

computation. 

Limited to 

inference; not 

directly 

applicable to 

FL training. 

Keeps the 

output of 

the 

model 

accurate 

 

 

 

High (SMPC 

+ 

encryption) 

Only good for 

inference 

tasks; not good 

for the whole 

FL pipeline 

(3) An SMPC-

based privacy-

preserving ML 

framework 

was proposed.  

Integrates 

unstructured 

secret sharing 

with jumbled 

routing. 

Concentrated 

on centralized 

ML; further 

development is 

needed for FL 

adaptation. 

Accuracy 

kept; no 

change 

 

 

 

 

Strong 

against 

attacks that 

try to guess 

Limited FL 

adaptability; 

centralized 

focus makes FL 

less useful in 

general 

(4) Provided a 

safe FL 

architecture 

that 

aggregates 

Secures 

aggregation 

through the 

use of secret 

sharing and 

SMPC 

Expensive 

computing 

requirements; 

restricted 

capacity for FL 

No loss of 

accuracy 

 

 

 

High—keeps 

model 

updates safe 

while they 

are being 

combined 

Lots of 

calculations; 

affects speed 

and scalability 
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gradients 

using SMPC. 

on a grand 

scale 

 

 

 

(5) Presented a 

new method 

that combines 

SMPC with 

differential 

privacy. 

Implements 

differential 

privacy for 

noise 

addition and 

secure 

aggregation 

using SMPC. 

Privacy vs. 

model 

accuracy trade-

off 

 

Less 

accurate 

because 

of noise 

injection 

 

Very 

strong—two 

layers of 

privacy 

protection 

The tension 

between 

accuracy and 

privacy affects 

how useful a 

model is. 

(6) Put out a FL-

specific, 

lightweight 

SMPC 

protocol.  

Makes use of 

additive 

secret sharing 

and pair wise 

masking 

Restrictions to 

FL settings on 

a smaller scale 

 

Keeps 

accuracy; 

no extra 

noise 

 

 

 

Moderate—

lightweight 

SMPC might 

not be as 

strong 

Made for small-

scale FL; not 

very useful in 

general 

(7) Secure 

aggregation in 

FL based on 

SMPC is more 

efficient now.  

Implements 

SMPC-based 

tree-based 

aggregating 

protocol 

In order to set 

up, reliable 

third parties 

are needed. 

 

Accuracy 

kept 

 

 

 

 

Strong if 

third parties 

that are 

trusted are 

reliable 

 

The complexity 

of the setup 

and the need 

for trust make 

it hard to use 

in real life. 

(8) Improved 

privacy 

assurances by 

the integration 

of SMPC and 

differential 

privacy. 

Injects noise 

using 

differential 

privacy and 

SMPC for 

secure 

aggregation 

Dual privacy 

techniques 

increase 

computing 

complexity. 

 

Added 

noise 

made the 

accuracy 

worse 

 

 

Very 

strong—uses 

two different 

types of 

cryptography 

to protect 

data 

 

A lot of 

processing 

power is 

needed, and 

the protocol is 

complicated, 

which makes 

deployment 

less flexible 
 

Homomorphic Encryption (HE): Homomorphic 

encryption is a very powerful cryptographic 

technique that enables direct computation on 

encrypted data without decryption. In the context 

of FL, it means that gradients or model updates 

could remain encrypted in the central server and 

aggregated without making the raw data or 

sensitive information exposed. For example, a 

client can encrypt locally computed gradients and 

send them to the server where aggregation 

operations on the encrypted form are performed, 

without accessing actual gradients. In return, such 

strong privacy guarantee of homomorphic 

encryption comes with high overhead in 

computation. This may even make it unfit for 

highly resource-constrained environments, such 

as IoT devices or edge networks. Fully 

homomorphic encryption is highly computational 

and could take a lot of hardware resources if 

acceptable performance levels are to be achieved, 

in particular for the arbitrary computations in 

encrypted data. To keep data private in federated 

learning (FL), there has been significant research 

and development around homomorphism 

encryption (HE). The table below summarizes this 

literature review. The main emphasis is on 

creating effective cryptographic algorithms and 

using them in FL shown in Table 2. 
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Table 2: Homomorphic Encryption (HE) in Federated Learning (FL) 

Ref. 

No 

Key 

Contributio

ns 

Limitations 
Relevance to 

FL 

Privacy 

Protection 

Accuracy 

Trade-off 

Efficiency and 

Scalability 

(1) Updates to 

models can 

be made 

while 

protecting 

user privacy 

thanks to 

newly-

introduced 

safe 

aggregation 

techniques 

for FL. 

Not 

completely 

homomorphic; 

heavy 

computational 

burden 

A 

cryptographic 

framework for 

privacy-

preserving FL 

Aggregation 

hides 

individual 

updates 

without 

needing full 

encryption. 

 

 

 

No or very 

little loss 

in the 

accuracy 

of the 

model 

Not as heavy 

as FHE but not 

as efficient as 

basic DP 

(9) A 

distributed 

deep 

learning 

system that 

protects 

user privacy 

is suggested 

to use 

additive HE. 

 

Not 

appropriate 

for 

complicated 

models; 

restricted to 

addition 

operations 

alone 

The initial 

implementatio

n of HE in FL 

for safe 

aggregation 

Allows the 

collection of 

encrypted 

model 

updates 

 

 

Keeps 

accuracy 

high (no 

extra 

noise) 

Only works for 

addition and 

costs a lot of 

money to run 

(10) Created 

Batch Crypt, 

a HE 

batching 

method to 

boost cross-

silo FL 

efficiency. 

Batching is 

necessary; 

however, it 

might not 

work well with 

big datasets. 

Enhanced FL 

HE efficiency 

for business 

use cases 

Based on 

HE, secure 

aggregation 

stayed 

 

 

No effect 

on the 

accuracy 

of the 

model 

 

 

Increases 

efficiency, but 

may have 

trouble with 

big datasets 

(11) Presented 

POSEIDON, a 

FL 

framework 

that 

integrates 

HE with 

MPC 

Great 

expenditures 

on computing 

and 

communicatio

n 

Proved that HE 

and MPC could 

work together 

toward FL 

goals. 

Brings 

together 

two secure 

computatio

n models 

 

 

 

Accuracy 

kept 

 

High costs for 

communicatio

n and 

computing 

(12) An 

alternative 

to 

traditional 

encryption 

methods, 

Hybrid 

Trade-off 

between 

privacy and 

model 

accuracy. 

Improved 

anonymity in 

FL while 

decreasing 

computing 

burden 

 

HE gives 

you strong 

privacy and 

DP gives 

you 

anonymity. 

A small 

drop in 

model 

accuracy 

(because 

of DP 

noise) 

Better than 

just HE or MPC 
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Alpha 

combines 

HE with 

differential 

privacy.  

 

 

(13) Developed a 

small-

footprint HE 

method that 

works well 

with 

massive FL 

datasets... 

Restricted to 

only a few 

neural 

network types 

I resolved the 

scalability 

problems with 

HE in FL 

Keeps HE's 

privacy 

strong 

 

 

Compatibl

e models 

keep their 

accuracy 

Made for big 

datasets; not 

much NN 

support 

(14) A secure 

method of 

aggregation 

in FL was 

implemente

d using fully 

homomorph

ic 

encryption 

(FHE).  

Very 

expensive to 

compute; not 

feasible for use 

in real-time 

scenarios. 

Investigated 

the possibility 

of using FHE in 

FL to achieve 

the highest 

level of 

anonymity 

Lets you do 

any kind of 

math on 

encrypted 

data 

 

No giving 

up on 

accuracy 

Not possible in 

real time, 

expensive 

 

Differential Privacy (DP): A statistical method 

called differential privacy manages noise 

introduced to data or model updates such that 

individual contributions cannot be discernible. In 

FL, differential privacy can be implemented by 

adding noise to the gradients or model parameters 

before sharing those with the central server 

represented in Table 3; this would ensure that 

even if an adversary manages to get access to the 

updates, then the noise will mask the details of 

individual data points. Differential privacy's 

advantage is that it lets one tune-off privacy from 

model utility. Greater degrees of noise guarantee 

more privacy but compromise the accuracy of the 

model. For environments limited in resources, this 

makes differential privacy more sensible than 

cryptographic methods such as HE and SMPC. To 

strike a suitable compromise between privacy and 

the general FL system performance, nevertheless, 

accurate noise level calibration is needed. This 

approach guarantees that computer results don't 

reveal too much about any one piece of data, 

therefore safeguarding individuals' privacy. DP can 

be used in a federated learning environment to add 

noise into the data or model updates should 

sensitive information have to be concealed during 

training. 

 

Table 3: Differential Privacy (DP) in Federated Learning (FL) 

Ref. 

No 

Focus Key 

Contributi

ons 

Techniqu

es Used 

Impact on 

FL Privacy 

Accuracy Security 

Level 

Utility 

Trade-off 

(1) Privacy-

preservin

g 

aggregati

on in FL 

a safe 

aggregatio

n 

technique 

to merge 

model 

updates 

without 

disclosing 

Safe Multi-

Party 

Computati

on (SMPC) 

and 

homomor

phic 

encryption

.  

Improve 

security in 

FL 

therefore 

safeguardi

ng 

individual 

data. 

SMPC adds 

extra work 

to 

communica

tion, which 

could slow 

down 

convergenc

e and lower 

Strong 

privacy 

protections 

that don't 

show 

changes to 

individual 

models. 

Increases 

the cost of 

computing 

and 

communicat

ion, which 

makes it 

harder to 

scale. 
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individual 

updates. 

the 

accuracy of 

the model. 

 

 

(15) Federated 

Learning 

optimizati

on 

Present 

Federated 

Averaging 

(FedAvg), 

a 

distributed 

training 

approach.  

 

Federated 

Learning, 

DP 

achieved 

via noise 

injection 

First 

important 

step 

towards 

merging 

DP and FL 

techniques

. 

Adding 

noise can 

lower 

accuracy, 

depending 

on the 

privacy 

budget (ε). 

 

 

 

ε 

determines 

how 

private 

something 

is, and 

there are 

trade-offs 

between 

safety and 

usefulness. 

Adding 

noise makes 

models less 

useful, 

especially 

when the 

data set is 

small or the 

task is 

sensitive. 

(16) Privacy-

preservin

g in FL 

Examined 

privacy-

preserving 

systems in 

FL, with 

particular 

attention 

on 

homomorp

hic 

encryption 

and DP.  

Homomor

phic 

encryption 

and 

differentia

l privacy 

Complete 

review of 

FL privacy 

method 

Using more 

than one 

method 

together 

may make 

things less 

accurate 

than using 

just one. 

 

 

Encryption 

keeps 

computatio

n safe, and 

DP stops 

data from 

leaking. 

A lot of extra 

work for the 

computer 

and maybe 

less 

usability for 

the model. 

(17) Homomor

phic 

encryptio

n in FL 

Combining 

fully 

homomorp

hic 

encryption 

(FHE) with 

DP will 

help to 

aggregate 

data while 

maintainin

g privacy.  

Differentia

l privacy 

allows a 

powerful 

privacy-

preserving 

architectu

re 

employing 

fully 

homomorp

hic 

encryption 

(FHE) in 

FL. 

FHE causes 

latency, and 

DP makes 

accuracy 

worse, 

which 

makes the 

problem 

worse. 

 

FHE is the 

best way to 

encrypt 

data, and 

DP adds 

even more 

security. 

 

Not yet 

useful for 

large-scale 

FL because 

of latency 

and extra 

computing 

power. 

(18) Combinin

g DP and 

HE 

Presented 

a hybrid of 

homomorp

hic 

encryption 

and DP to 

improve 

FL 

security.  

Homomor

phic 

Encryptio

n and 

Differentia

l Privacy 

Advancem

ents in 

Data 

Privacy 

Protection 

in FL via 

Hybrid 

Methods. 

If 

hybridizati

on is set up 

correctly, 

optimizatio

n can lower 

the rate of 

accuracy 

loss. 

Increases 

privacy by 

covering a 

lot of 

different 

ways to 

attack. 

Depending 

on how it's 

set up, it 

might find a 

balance 

between 

performanc

e and 

usefulness. 

(19) Security 

and 

privacy in 

FL 

Presented 

a safe 

aggregatio

n 

While 

keeping 

efficiency 

in 

homomorp

hic 

encryption 

with 

A careful 

balance 

may keep 

the 

Protects 

against 

inference 

attacks and 

Efficient 

implementat

ions can cut 

down on 
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technique 

guaranteei

ng data 

privacy 

during 

federated 

training by 

integrating 

homomorp

hic 

encryption 

with DP.  

federated 

training, 

differential 

privacy 

improves 

security 

accuracy at 

a 

reasonable 

level. 

 

 

 

 

 

 

makes sure 

that 

communica

tion is safe 

utility loss, 

but there is 

still 

overhead. 

 

Privacy Threats in FL: Federated Learning (FL) 

has been designed to preserve privacy but faces 

considerable threats to client data confidentiality. 

Among the most prevalent threats in FL are 

gradient leakage and model inversion. Both of 

these attacks take advantage of information 

disclosed in the process of FL, like gradients or 

model outputs, to reconstruct or infer sensitive 

data that have been used in training. 

Gradient Leakage: The attacker is able to infer the 

underlying data from the gradients that clients 

exchange; this form of leakage is also called 

gradient inversion or leaking. Due to their 

statistical information-rich nature, gradients are 

an inherent part of model training. Even though the 

raw image remains local to the client, gradients 

from that client could reveal specific details in an 

image, like the texture or shape of an item, in a 

picture classification task. This poses a significant 

threat to patient privacy in industries such as 

healthcare, as gradients from medical imaging 

operations may disclose individual patients' 

identities or health conditions (20). In federated 

learning (FL), when many parties cooperatively 

train a machine learning model without sharing 

their raw data, gradient leakage is a major issue. 

Recent studies, however, have revealed that 

gradients experienced during the training process 

may unintentionally leak sensitive information 

about the training data, therefore violating data 

privacy. By means of cryptographic methods, 

effective and privacy-preserving algorithms for 

federated learning can be developed. Clients in FL 

generate gradients on local data and forward these 

gradients to a central server for model 

aggregation. These gradients let attackers recreate 

sensitive training data. 

 

Why is it Problematic? 
Private information—personal data, financial 

records, medical histories—may be exposed by 

gradient leakage, therefore breaking GDPR or 

HIPAA privacy rules.  

Model Inversion: Model inversion is another type 

of critical privacy threat in FL (20), attempting to 

infer sensitive information about the training data 

from the outputs of the trained global model. In 

this attack type, attackers feed the global model 

with inputs artificially designed in a way to track 

the produced responses, for instance, the 

activation values or output probability 

distributions. Through a refining process of input 

selection based on these outputs, it is possible for 

attackers to build estimates of training examples. 

For example, for some disease prediction health 

model, some patient features, or other healthcare 

attributes used could be inferred, including those 

characteristics making the prediction likely. This 

attack becomes particularly effective in the case 

when the model overfits to its training data, as 

outputs then encode more detailed information 

about individual data points. A great example of 

such a threat is in facial recognition systems, 

where inversion techniques have succeeded in 

reconstructing facial images of individuals in the 

training dataset with identifiable features, thus 

compromising privacy. In federated learning (FL), 

model inversion attacks seriously compromise 

data privacy since they may possibly reconstruct 

private training data from distributed model 

updates. Developing a strong cryptographic 

method to protect data privacy in FL is therefore 

absolutely vital to solve this. Here is a high-level 

framework for building such a system. Federated 

Learning (FL), a distributed machine learning 

method whereby several clients jointly train a 

model without exchanging raw data. Adversaries 
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use model updates—e.g., gradients—to deduce 

sensitive knowledge about the training data. Aim: 

Create a cryptographic method preserving data 

privacy while keeping FL's efficiency and use.  

Essential Conditions: Ensuring that sensitive data 

cannot be rebuilt from shared changes helps to 

prevent model inversion attacks. Minimizing 

computational and communication overhead will 

help FL to remain scalable. Make sure the 

cryptographic systems not compromise the 

accuracy of the global model.  

Membership Inference: In Federated Learning 

(FL), membership inference attacks (MIAs) are a 

major issue since they can violate data privacy by 

identifying if a particular data point was included 

into the training dataset (16). A difficult but vital 

task is developing an effective cryptographic 

method to protect data privacy in FL while 

lowering MIAs. Here is a high-level strategy meant 

to handle this: 

Attackers Use Model Output: such as forecasts, 

confidence scores—to deduce if a given data 

sample was included during training, therefore 

known as the threat model membership inference 

attacks (MIAs). 

Device Heterogeneity: Usually varying in 

processing power, network resources, and storage, 

participating clients make it challenging to ensure 

equal participation.  

Non-IID Data: Different client data distribution 

influences model convergence and accuracy in 

non-IID data.  

Heavy Communication Overhead: Particularly in 

resource-limited environments, such IoT and UAV 

systems, the heavy communication overhead 

resulting from regular model changes between the 

clients and the central server causes network 

bottlenecks. Presented solutions aim to overcome 

such constraints by means of non-cryptographic 

and cryptographic approaches shown in Figure 1. 

Three main categories define cryptographic 

methods: homomorphic encryption (HE), 

differential privacy (DP), and safe multi-party 

computation (SMPC). Although all of them provide 

strong privacy guarantees, they are usually 

acquired at the expense of more computational 

and communication complexity. For instance, 

completely homomorphic encryption provides 

privacy over data; nevertheless, its heavyweight 

latency makes real-time deployment impractical. 

Although non-cryptographic techniques like 

gradient scarification and model compression save 

on communication overhead, integrity in the 

training process may be sacrificed. Among these 

negative aspects, some are most obvious in 

settings like. IoT devices have limited resources; 

so, their algorithms should be simple, with privacy 

trade-offs and efficiency. 

Drones: the data gathered is quite sensitive for 

instance video recorded through surveillance; 

which calls for processing security along with 

energy as well as bandwidth restrictions. 

Health and Financial: Federated Learning 

utilized as the method for Collaborative use of data 

in Health and financial applications, such usage 

highly confined under privacy, which has 

challenges on scaling at that level of the update of 

a model. 
 

 
Figure 1: Federated Learning with Homomorphic Encryption for Secure Model Aggregation 



Pamula et al.,                                                                                                                                                    Vol 6 ǀ Issue 3 

 

718 

 

Mitigation Strategies for Privacy 

Threats 
Preventing these hazards calls for advanced 

privacy-preserving policies. Noise on the gradients 

or outputs can be included to DP prevent gradient 

leakage and ensure that data contributions from a 

particular person cannot be found. Homomorphic 

encryption (HE) encrypts gradients before 

distribution and thereafter allows computations 

on encrypted data without revealing the raw 

gradients, therefore maintaining their security. 

Many customers can collaborate using SMPC to 

compute updates without sharing any data to the 

server or any of their peers. Gradient scarification, 

which only offers major updates, is advised to be 

used to reduce gradient leaking and model 

inversion assaults. This lessens the access to 

information possible attackers have. Two of the 

most crucial mitigation strategies are guaranteeing 

data privacy and carefully implementing 

Federated Learning systems into sensitive areas. 

Challenges and Trade-Offs 
These cryptographic techniques greatly improve 

privacy in Federated Learning but create various 

challenges. Homomorphic encryption and SMPC 

are very computationally expensive and require 

powerful hardware with wide energy 

consumption. SMPC has a large communication 

overhead, which can put stress on bandwidth, 

especially in scaled and big and bulky 

infrastructures and implementations. Differential 

privacy, although computationally very efficient, 

may incur accuracy loss, especially in cases of 

having smaller-sized data or having a highly 

imbalanced distribution of data. All these demand 

optimized cryptographic solutions that balance 

privacy, efficiency, and scalability. 

Differential Privacy (DP), Homomorphic 

Encryption (HE), and Secure Multi-Party 

Computation (SMPC) are all types of cryptography 

that keep your information private and work well 

with international privacy laws like GDPR, HIPAA, 

and CCPA. DP lowers the risk of revealing personal 

data by putting a number limit on it. HE and SMPC, 

on the other hand, protect data while it is being 

processed and sent without showing the raw data 

(17). In Federated Learning (FL), these methods 

enable compliance by allowing decentralized 

training of models based on encrypted or 

obfuscated updates. Audit ability is enhanced 

through secure model update logging, privacy 

budgets, and aggregation schemes to allow 

regulators to verify compliance without examining 

private information. FL is also explainable in the 

long run because it lets people see the global model 

and client-level local explanations after the fact, all 

while keeping data private. These methods work 

together to create a solid foundation for making AI 

systems that are safe, open, legal, protect privacy, 

are responsible, and are easy to understand. 

Methodology 
To handle privacy as well as the computational 

difficulties in Federated Learning (FL), the 

suggested method Elliptic Curve Cryptography 

(ECC) applies lightweight homomorphic 

encryption and differential privacy (21). It 

obfuscates and encrypts the updates to the model 

such that they least likely cause breach. The 

approach is quite suitable for actual FL 

implementations in resource limited 

circumstances since it blends great security with 

efficiency. Public-key cryptography derived from 

the application of algebraic features of elliptic 

curves over finite fields generates strength in 

Elliptic Curve Cryptography (ECC). With 

substantially smaller key sizes, meaning much 

faster computations with less use of resources, ECC 

provides higher security than RSA and is 

consequently fit for mobile devices and the 

Internet of Things, where resources are restricted. 

The mathematical problem underlying ECC's 

security is the hardness of the Elliptic Curve 

Discrete Logarithm Problem. 

Figure 2 shows a method of multi-stage encryption 

and decryption. Plaintext (m) first is encrypted 

with public key encryption (Epk). The ciphertext 

passes several rounds of partial decryption (PD) 

under several keys (psk). Following all partial 

decryption is complete, a last decryption stage 

(CD) aggregates the data to produce the plaintext. 

By spreading the decryption process over several 

phases, this layered decryption technique 

guarantees strong security and increases system 

integrity generally. 
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Figure 2: Encryption and Decryption Process with Partial Decryption Stages 

 

Lightweight Homomorphic Encryption 
In cryptography, homomorphic encryption is a 

method wherein computations on encrypted data 

may be done without decryption. This guarantees 

that throughout the computing process sensitive 

data stays private. The method keeps strong 

privacy guarantees while lowering computing 

overhead by means of a simplified form of 

homomorphic encryption. This method follows the 

general direction of basic lightweight 

homomorphic encryption in that, they initially get 

encrypted before gradients acquired during local 

training are moved to the central server(9). The 

server can thereby gather these gradients without 

ever consulting the raw data. This approach so 

helps to stop hostile activities or illegal access 

against the server from happening. 

Homomorphic Encryption allows computations to 

be performed on encrypted data. 

Mathematical Formulation: 

● Let m be plaintext data. 

● Encryption: c = Enc(m, pk), where pk is 

the public key. 

● Homomorphic property: Dec(c1⊕c2,sk) = 

m1o m2, where ⊕is a cipher text 

operation corresponding to plaintext 

operation o. 
 

Homomorphic Aggregation 
                               Cagg = ⊕i=1N Enc(wi,pk)                      -----------------------------------------[1] 

Decrypted Result: 

                                    Wglobal = Dec(cagg,sk) = ----------------------------- [2] 

Secure Aggregation 
Ensures the server only sees aggregated results, 

not individual model updates. 

Example: 

● Each user I sends Enc (wi, pk) (encrypted 

model update) to the server 

● The server computes Enc  without decrypting individual updates. 
 

Lightweight Homomorphic Encryption 

Advantages 
Confidentiality The server cannot obtain the 

content from encrypted data. This makes it 

impossible to leak information if it becomes 

compromised. Efficiency Fully homomorphic 

encryption, which has computational expenses, the 

lightweight form of homomorphic encryption 

lessens the burden in the computation, thus, 

encryption and decryption would be applicable 

even on nodes having a relatively weak computer 

capacity for instance in an IoT device or in any 
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portable gadget. For example, gradients used for 

encryption of patient records in a health care 

context in different hospitals are transferred to a 

central server for aggregation while keeping 

patient data private so that it can be compliant 

with HIPAA regulations. 

Differential Privacy Augmentation 
To further fortify privacy, the algorithm exploits  

differential privacy mechanisms. Differential 

privacy relies on calibrated noise in the gradients. 

This is to prevent the individual data points from 

being distinguishable in the aggregated updates. 

This adds yet another layer of protection that will 

make it quite challenging for those who have got 

the encrypted updates to re-identify sensitive data. 

Mechanism of Differential Privacy: The 

inclusion of controlled random noise in the 

encryption phase of the encrypted gradients. In 

this case, even though the noise obscures the 

contribution of an individual to the global model, 

still, the accuracy of the global model is 

maintained. Differential privacy mathematically 

ensures that exclusion or inclusion of any specific 

data point from the aggregate would not 

significantly affect the resultant aggregate model, 

hence countering the threat posed by gradient 

leakage or membership inference. 

Adds random noise to updates to prevent re-

identification. 

Mathematical Formulation 
o Perturbed update: wi1 = wi + N (0, σ²), where N (0, σ²) is Gaussian noise. 

o Privacy loss is controlled by e (privacy budget). 

Key Exchange Mechanism 
o Securely distributes keys to participants for encryption/decryption. 

o Can use Elliptic Curve Diffie-Hellman (ECDH) for lightweight key exchange. 

Differential Privacy  
For ε-DP, the Noise Added Satisfies: 

P(M(D) ε S) ≤ eε  .P(M(D’) ε S)                -----------------------------[3] 

Where D and D’ differ one record, and M is the randomized mechanism. 

Security Bound 
Security Level is Determined by:  

                                                        Advantageadversery ≤ 2k -------------[4] 

Where k is the security parameter. 

Advantage of Differential Privacy 
● Resistance against Data Reconstruction: 

The amount of noise added ensures that even 

with the strongest analyses of gradients 

performed by the adversary; it will not be able 

to glean sensitive information. 

● Flexibility: The level of noise involved can be 

adjusted according to the trade-off between 

privacy and model accuracy required. 

● Illustration: Consider a financial fraud 

detection model. Assuming that the attacker 

accesses the shared gradients, differential 

privacy guarantees that sensitive customer 

details for transactions are kept confidential. 
 

The security of data during the Federated Learning 

(FL) process is ensured through the usage of 

cryptography.  During local training, Differential 

Privacy (DP) adds noise to user data.  

Homomorphic Encryption (HE) and Secure Multi-

Party Computation (SMPC) encrypt or hides raw 

data before model updates are sent, so that the 

server cannot view it. The server performs 

computations on encrypted data at aggregation 

without ever decrypting it, thereby maintaining 

privacy. Secure procedures such as encrypted 

model distribution and cryptographic logging 

ensure that audits are possible, data is accurate, 

and regulations are obeyed. All these procedures 

do together maintain data as private, secure to 

collaborate, and ensure that the FL process obeys 

all the rules. 

 

Algorithm Workflow 
Initialization Phase 

● Each client I generates a public-private key pair (pki, ski) 

● Public keys are shared with the server and other clients using ECDH. 
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Model Training 

I. Client-Side Computation 

● Compute local model update wi based on private data. 

● Encrypt the update: 

 

                            Ci– Enc(wi, pk) 

● Where pk is the global public key. 

● Apply differential privacy: 

Wi’ – wi + N(0, σ²) 

II. Aggregation at Server 

● Receive encrypted updates {ci}i=1N 

● Aggregate them homomorphically: 

                                Cagg- ⊕i=1N ci 

Where ⊕ represents cipher text addition. 

III. Decryption 

● Server sends Cagg to a trusted aggregator or uses threshold decryption to compute: 

Wglobal – Dec (cagg ,sk) 

Where sk is the private key. 

IV. Global Update 

● Broadcast Wglobal to all clients. 

● Clients update their local models: 

Wi 🡨wi n *(wglohal–wi) 

Experimental Evaluation 
The experiment was conducted to test the privacy-

preserving ability and computational efficiency of 

the designed algorithm against model accuracy. 

Benchmark datasets were used for conducting 

experiments in a simulated federated learning 

environment. Experimental results revealed that 

the proposed cryptographic algorithm could 

indeed support suitable privacy-preserving 

capabilities while balancing computational 

efficiency with competing performance in 

accuracy. The above algorithm was implemented 

on Python, most popular programming language 

by adopted libraries Tensor Flow and 

PyCryptodome. The experimental settings were 

set such that it appears to be like a distributed 

system which can then be used as an imitation 

scenario of multiple federated clients and, in a real-

life-like scenario, each client simulates an 

independent node. Many devices support other 

functionalities, aside from what data exists in 

actual devices thus covering all of the above 

examples. 

We try our benchmarks on two standard datasets: 

MNIST and CIFAR-10. 

MNIST: The dataset consists of 70,000 gray scale 

images of handwritten digits. In this paper, a 

fraction of the 60,000 training samples as well as a  

fraction of the 10,000 test samples was distributed 

to each client, which represents a typical setting of 

non-IID data distribution in federated learning. 

CIFAR-10: It is a dataset of 60,000 coloured 

images across ten classes-50,000 training images 

and 10,000 images for testing. Its difficulty in 

challenging the diversity classes and the features 

involved in the image while making it to test model 

robustness. 

A simulated federated learning environment was 

designed for the system. Here, 10 clients are fed to 

train a global model in a distributed setting with 

the transmission of encrypted noisy gradients to 

an aggregated server. It provides support through 

iterative rounds during the training in the form of 

step-by-step model improvement while 

maintaining the privacy. 

Performance Metrics 
For measuring the proposed algorithm, the 

following performance metrics are used 

Privacy Preservation: It was very much 

concerned with the privacy resilience against 

gradient leakage and model inversion attacks. 

Gradient Leakage Resistance: It verified whether 

a malicious user could infer sensitive client data 

from gradients shared as a result of a lightweight 

homomorphic encryption scheme, having ensured 

that raw gradients would never leak. 
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Impact of Utilising Encrypted Gradients 

on Federated Optimisation 
The use of encrypted gradients in federated 

learning (FL) offers a big boost in data privacy 

through keeping local model updates (gradients) 

secret while being sent to the central server. 

Homomorphic encryption (HE) and secure multi-

party computation (SMPC) enable operations on 

cipher text without revealing plaintext data. The 

privacy benefit comes with a utility cost. Encrypted 

computations are more costly (require more 

computations) and sometimes less accurate, 

resulting in: 

• Convergence is slower because gradient 

precision is limited. 

• The transmission of larger encrypted 

payloads increases the communication 

overhead. 

• Edge devices in particular experience 

increased latency and energy 

consumption. 

• Use of approximation techniques to 

facilitate efficient encryption may lead to 

a loss of accuracy. 

In addition, strong encryption can hamper 

adaptive optimization methods (e.g., Adam, 

RMSProp) because previous gradient states are 

not readily available. Therefore, the balance 

between privacy protection and model usability 

(speed, accuracy, scalability) is essential. New 

methods investigate hybrid encryption or selective 

encryption to reduce these trades-offs, adapting 

protection to sensitivity levels across gradient 

components. 

Model Inversion Resistance: It introduces 

effective noise into differential privacy so that the 

individual data point cannot be masked and input 

reconstruction is prevented. Model inversion 

resistance is measured by comparing the input 

data reconstruction quality in the presence and 

absence of differential privacy. 

Computational Efficiency: Time computation for 

encryption, addition of noise, and decryption at 

each round of training measures the efficiency of 

an algorithm. 

Lightweight homomorphic encryption consumes 

much more time in the task of performing both 

encryption and decryption as compared with the 

traditional model. Training time is also evaluated, 

which is composed of the computations both at the 

client side as well as aggregation at the server and 

designed to provide at least the minimal amount of 

overhead than the conventional FL mechanisms. 

Model Accuracy 
It compares its accuracy to the traditional other FL 

methods that do not implement more advanced 

privacy-preserving methods. The performance of 

the algorithm was achieved close to another state-

of-the-art technique without any loss on that 

aspect and did not degrade the efficiency of the 

learned model due to privacy mechanisms. 
 

Results 
Research findings of the work indicate that the 

proposed cryptographic algorithm can perform 

issues relevant to federated learning with 

adequate efficiency, efficiency, and accuracy. The 

most important results are as follows. 

Privacy Preservation 
This significantly reduced the gradients leakage 

and inversion risks. In experiments where the 

adversarial reconstruction methods are applied, 

the reconstruction of information has become 

meaningless because of the differential privacy 

noise due to encryption. 

This hints that the algorithm is robust while 

handling the sensitive data of clients in the attack 

scenario also. 

Computational Efficiency 
The light homomorphic encryption lightened the 

computation overhead that normally arises with 

the cryptic techniques. The times required to 

encrypt and decrypt were around 40% lesser than 

those that took place within the completely 

homomorphic encryption techniques. 

Additionally, the total training time increased by 

less than 10% compared to the standard FL 

approaches, and this was found to be very minimal 

overhead. 

Model Accuracy 
The accuracy of the model trained by the proposed 

algorithm is very close to that by classical FL 

approaches. 

Table 4 presents a comparison of four approaches 

used in Federated Learning (FL) on the same 

performance metrics. The models under study are 

Proposed Algorithm, Standard FL (Baseline), 

Differential Privacy Only, and Homomorphism 

Encryption Only. 
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Table 4: Performance Evaluation of Cryptographic Techniques in Federated Learning 

Model MNIST Accuracy (%) 
CIFAR-10 Accuracy 

(%) 

Gradient Leakage 

Resistance (%) 

Proposed Algorithm 

(ECC) 
98.2 87.6 95 

Standard FL (Baseline) 98.7 88.5 75 

Differential Privacy 

Only 
97.5 86.0 90 

Homomorphic 

Encryption Only 
98.0 87.2 92 

 

MNIST Accuracy (%): Accuracy on MNIST dataset 

that tests the performance of the model on a basic 

digit classification problem with a broad range of 

usage. 

CIFAR-10 Accuracy (%): The accuracy achieved 

on the CIFAR-10 dataset, which is a more complex  

dataset for image classification over 10 categories. 

Gradient Leakage Resistance (%): Pertaining to 

the model's resilience toward adversarial attacks 

that aim for reconstructing clients' information 

from contributed gradients. 

 

 
Figure 3: Gradient Leakage Resistance Comparison among Federated Learning Models 

 

Figure 3 compares the Gradient Leakage 

Resistance (%) of four Federated Learning models 

Proposed Algorithm: shows the highest 

resistance is 95%, which means strong protection 

against various adversarial attempts to 

reconstruct client data. 

Standard FL (Benchmark): Only offers 75% 

resistance, which indicates poorer privacy 

protections. 

Differential Privacy Only: High (90% strong 

resistance), especially for the mechanism-based  

noise-added properties. 

Homomorphic Encryption Only: Provides the 

same level of resistance at 92%, relying on 

encryption for privacy. Figure 4 shows the 

performance of the proposed ECC-based 

Federated learning model over 30 epochs. High 

accuracy on MNIST, the accuracy will be steadily 

increased for the given epochs for CIFAR-10 while 

gradient leakage resistance also increased while 

clearly showing enhanced privacy protection. The 

result strongly indicates that the ECC approach 

enhances both accuracy and security. 
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Figure 4: Performance Metrics for Proposed Algorithm (ECC) 

 

 
Figure 5: Performance Metrics for Standard Federated Learning (Baseline) 

 

Figure 5 reports the standard Federated Learning 

performance over the same time horizon. Accuracy 

over MNIST stabilizes but, while that of CIFAR-10 

is worse, increasing slower as weaker in 

adaptation ability. Figure 6 represents the 

performance of the model over 30 epochs with 

Differential Privacy. The MNIST accuracy remains 

high, and the CIFAR-10 accuracy improves 

gradually with fluctuations, and the Gradient 

Leakage Resistance increases with better privacy 

protection. 

Figure 7 shows that the model, secured using 

Homomorphic Encryption, has a similar accuracy 

for MNIST, but the improvement in CIFAR-10 is 

steadier than in Figure 6, while Gradient Leakage 

Resistance is always higher, showing better 

security with minimal effects on the performance. 

The visualization emphasizes that the Proposed 

Algorithm combines the strengths of 

homomorphic encryption and differential privacy 

to outperform other approaches in preserving 

privacy while maintaining computational 

efficiency. Proposed Algorithm achieves the best 

balance of performance across all of the evaluated 

metrics for both of the datasets: it achieves nearly 

optimal accuracy for MNIST (98.2% with less than 

0.5% degradation from the baseline) and a 

competitive accuracy on CIFAR-10 (87.6%, with 

less than 1% degradation).  
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Figure 6: Performance Metrics for Differential Privacy Only 

 

 
Figure 7: Performance Metrics for Homomorphic Encryption Only 

 

It also yields the highest gradient leakage 

resistance with 95% and minimal computation 

overhead with 10%, so it is best suited and the 

most efficient in privacy-preserving Federated 

Learning for various applications. 
 

Discussion 
The proposed cryptographic algorithm integrates 

lightweight homomorphic encryption and 

differential privacy; hence, its balance between the 

security and the efficiency of the federated 

learning system is outstanding. The protection of 

sensitive information by the lightweight 

homomorphic encryption ensures that all 

computations can indeed be carried on encrypted 

gradients thereby reducing risks to include 

gradient leakage. Simultaneously, differential 

privacy brings in the protection mechanism 

through noise injection controlled for obscuring 

individual contributions to reconstructed data in 

case of model inversion attacks. The significant 

advantage of this approach is the lower 

computational overhead as compared to the 

traditional methods of fully homomorphic 

encryption. The algorithm is computationally 

feasible, even for devices as resource-constrained 

as IoT sensors and mobile clients, by employing a 

streamlined variant of homomorphic encryption. 

Therefore, it fits well with the practical 

applications that are found in heterogeneous 

scenarios, with the power of clients being diverse. 

The minimal performance overhead measured 
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during the experimental evaluation further 

underlines the possibility of this lightweight 

cryptographic approach toward enhancing privacy 

without compromising the scalability of federated 

learning. However, while the algorithm 

demonstrates strong privacy preservation and 

competitive accuracy in small to medium-scale 

deployments, challenges remain when scaling to 

large networks with a high number of clients. 

Communication overhead of encrypted and noisy 

gradients is highly prone to increase with larger 

deployments, which can cause a significant strain 

on the network bandwidth. The cumulative effect 

of noise might become more visible at larger scales, 

thus requiring careful calibration of the differential 

privacy mechanisms. Further optimization of the 

algorithm is needed to address these limitations. 

Techniques such as gradient scarification, model 

compression, and adaptive encryption can 

therefore alleviate communication and even 

computational complexities. Additionally, an 

investigation on a hybridist cryptography 

approach toward achieving the greatest 

combination of various methodologies under 

privacy could potentially make it much more 

hardened against attacks and easily scaled. 

Hardware accelerators, such as GPUs and TPUs, 

might also be key to supporting both encryption 

and aggregation processes, such that the algorithm 

can scale adequately to meet requirements of large 

federated learning application. Integration of 

homomorphic encryption and differential privacy 

strikes a balance between security and efficiency. 

While the lightweight cryptographic approach 

reduces computational demands, further 

optimization may be required for large-scale 

deployments. 
 

Conclusion  
This paper summarizes the significant 

development in the data privacy area in federated 

learning by introducing an efficient cryptographic 

algorithm. The proposed algorithm integrates 

lightweight homomorphic encryption with 

differential privacy and effectively enhances 

security while maintaining optimal performance. 

This dual-layered approach protects sensitive 

information both during model updates and 

against significant challenges such as gradient 

leakage and model inversion attacks, which are 

prominent in federated learning scenarios. Besides 

its strong security features, the algorithm is 

computationally very efficient, and hence it can be 

deployed in resource-constrained environments 

such as IoT devices and drones. The experimental 

results of this work show that the proposed 

method achieves a good balance between privacy 

preservation and operational efficiency, thus 

ensuring that federated learning can be 

implemented without significant overhead or 

degradation in model accuracy.  

Future Enhancement  
Future work includes continuing to improve the 

scalability so more clients may join and utilizing 

extra cryptographic methods, which are 

discovered to further fight emerging threats under 

the developing trend of data privacy. Practical 

optimization of the proposed advanced 

cryptographic techniques provides a great 

foundation for subsequent federated learning 

frameworks with robust data privacy 

consideration and easier machine learning 

cooperation from various applications. This paper 

contributes to the federated learning discourse by 

offering a feasible solution that not only complies 

with the current privacy standards but also sets 

the stage for more secure and efficient 

collaborative learning systems. 
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