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Abstract 
Node Localization (NL) in wireless sensor networks (WSNs) is main procedure for defining physical matches such as 
longitude, latitude, and altitude of Sensor Nodes (SNs) organized in a provided region. Exact NL is very essential for 
numerous WSN applications like surveillance, asset tracking and environmental monitoring. Localization models involve 
GPS hardware, anchor nodes with recognized locations or algorithms that influence distance dimensions and connectivity 
designs amongst SN in order to evaluate their places. Trustworthy NL improves exactness and efficiency of data collection 
and study in WSNs, finally boosting up the network's performance and quality information it offers. This article introduces 
a tuna swarm algorithm-based node localization (TSA-RNL) technique in WSN. The major aim of the TSA-RNL model to 
focus unknown nodes in WSN. TSA-RNL technique is developed for enhancing the localization accuracy in the WSN. The 
TSA, stimulated from the collective nature of tuna fish, optimizes the localization process by iteratively refining node 
positions. Over wide simulation and experimentation, we estimate the TSA-RNL model performance and establish its 
authority in gaining great accurateness node localization in WSNs. The methods provide potential advantages for many 
applications that based on specific node positioning, environmental monitoring, data fusion and target tracking that 
contributing to the development of WSN methodology. 

Keywords: Node Localization, Sensor Node (SN), Target Node, Tuna Swarm Algorithm (TSA), Wireless Sensor Network. 
 

Introduction 

WSN is common type of networks of distributed 

autonomous nodes which can wisdom their 

atmosphere supportively (1). WSNs are mainly 

employed in different applications like healthcare, 

traffic surveillance, home automation, environment 

and habitat monitoring and structural health 

monitoring (2). WSN nodes observe their 

environment via on-board sensors in monitoring 

applications. Location is very vital in WSNs because 

it is employed for monitoring as well as tracking 

applications (3). In addition, the Location data is 

utilized to identify and record actions, or to route 

packets by employing geometric-aware routing. 

Preparing every node with a worldwide positioning 

network is not a best solution due to size, cost and 

energy limitations (4). Node localization denotes to 

generating location consciousness in entire 

organized SNs so it become an area of active study. 

The sensor sites are frequently unidentified due to 

the deployment of arbitrary node. As an outcome, 

defining the physical places of the SNs is a very 

essential problem in WSNs (5). The main aim of WSN 

localization is to define the SNs positions in a 

network specified imperfect and noisy pairwise 

time-of-arrival (TOA), angle-of-arrival 

measurements, customary signal strength and time-

difference-of-arrival that are needed by the devices 

at the time of communications with their neighbors.   
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A typical assumption is the sites of some nodes which 

is known as anchors accurately, so it is highly 

probable to find out the complete places of the 

remaining nodes in WSN (6). The two chief aims that 

must be measured while planning a protocol of 

localization for sensor networks are scalability and 

accuracy (7). Several localization models in the 

literature have mainly focused on employing a 

quantity of specialized nodes in their places. Such 

specialized nodes are generally termed as anchors 

nodes (8). Whereas the remaining nodes effort to 

estimate their place by replacing data to together 

decide their distances to the anchors. Many anchor-

based models need a high-level percentage of anchor 

nodes to reach a satisfactory exactness (9). Also, the 

addition of a GPS receiver on every node is not useful 

due to the energy consumption, form factor and cost, 

enlarged sensor difficulty and also the sensitivity of 

GPS receivers to link of sight situations. However, 

many models undergo from scalability issue (10). 

This article introduces a Tuna Swarm Algorithm-

Based Node Localization (TSA-RNL) technique in 

WSN. One of the major goals of TSA-RNL method to 

localize unknown nodes in WSN. The TSA-RNL 

technique is developed for enhancing the 

localization accuracy in the WSN. The TSA, 

stimulated from the collective nature of tuna fish, 

optimizes the localization process by iteratively 

refining node positions. By using wide simulation 

and experimentation, the research estimate the TSA-

RNL models performance and establish its authority 

in attaining extremely precise node localization in 

WSNs. 

A New High-Precision and High-Robustness 

Localization (NHHL) technique was developed, in 

which a unique non-convex localization problem was 

first transformed into an alternating non-negative 

constrained least squares (ANCLS) architecture. 

Additionally, a consequence function was employed. 

Subsequently, the localization problem was further 

reformulated into a Generalized Trust Region Sub-

Problem (GTRS), and an interior-point model was 

used for the initial estimation. Finally, the solution 

was iteratively obtained using a block coordinate 

descent approach to determine both the position and 

the path loss factor (PLF) jointly (11). A study was 

presented that aimed to enhance the standard DV-

Hop method, where an improved cosine similarity 

parameter was introduced. Furthermore, a hybrid 

model combining modified particle swarm 

optimization (PSO) with simulated annealing was 

employed to refine the initial position estimates of 

unknown nodes, which were derived using a 

trilateration approach within the modified DV-Hop 

framework (12). 

A Robustness Enhanced Sensor-Assisted Monte 

Carlo Localization (RESA-MCL) model was proposed. 

This approach demonstrated improved localization 

accuracy and robustness against malicious threats or 

faulty nodes. To evaluate the model’s resilience, 

three types of attack strategies based on malicious 

anchor nodes were simulated and compared with 

existing techniques (13). A novel model combining 

Kalman Filtering (KF) with a Radial Basis Function 

Neural Network (RBFN), referred to as RBFN+KF, 

was introduced. The model’s performance was 

assessed using simulated Received Signal Strength 

Indicator (RSSI) data and was benchmarked against 

Multilayer Perceptron (MLP), trilateration, and 

conventional RBFN-based localization techniques 

(14). 

An anchor node selection scheme was proposed for 

RSS-based localization in WSNs. The method 

involved an initial arrangement of nodes to enable 

rational anchor selection, and weights were assigned 

to each anchor node to mitigate the effect of selection 

errors. An enhanced cuckoo search algorithm was 

then employed to estimate the positions of unknown 

nodes (15). A framework was developed for threat 

detection and localization in IoT-enabled WSNs. This 

approach integrated trust estimation with 

blockchain-based cascade encryption in a 

hierarchical architecture. Federated machine 

learning (FML) was incorporated to ensure data 

security and communication integrity by aggregating 

device-level data and identifying malicious activity 

on the blockchain. Harmful nodes were classified 

using a combination of support vector machines 

(SVM), ensemble learning, gradient boosting, hybrid 

random forest (RF), and k-means clustering, 

following a feature evaluation process (16). 
 

Methodology 
In this research paper, a novel development of TSA-

RNL approach in WSN is proposed. The major aim of 

the TSA-RNL method is to focus the unfamiliar nodes 
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in WSN. The TSA-RNL technique is developed for 

enhancing the localization accuracy in the WSN. 

Figure 1 defines the overall process of TSA-RNL 

system. 
 

 
Figure 1: Overall Procedure of TSA-RNL Model 

 

To balance localization accuracy and computing 

performance, algorithm parameters were carefully 

selected and optimized in the TSA-RNL framework. 

The population size was 30, which balanced 

convergence quality and execution time based on 

empirical tweaking and published benchmarks. The 

maximum iteration was 100, which was adequate for 

steady localization accuracy without significant 

processing expense. Adopting adaptive weight 

settings (𝑊 𝑢 𝑎 𝑥 = 0.9 W max=0.9 and 𝑊 𝑢 𝑖 𝑛 = 0.4 

W min=0.4) improves the exploration-exploitation 

balance of the method. These parameters were set to 

retain variety early in optimization and speed 

convergence later. The chosen parameters have a 

practical and theoretically good calibration for WSN 

node localization.  TSA model starts the optimization 

procedure by uniformly and randomly creating 

initial populace in the search collection (17). The TSA 

can be exactly expressed as below: 

 

𝑋1
𝑖𝑛𝑡 = 𝑟𝑎𝑛𝑑 ∙ (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏, 𝑖 = 1,2, … , 𝑁𝑃                       [1] 

 

In Equation [1], 𝑋𝑖
𝑖𝑛𝑡  signifies the original place of 𝑖-

𝑡ℎ individual, 𝑙𝑏 and  𝑈𝑏 is the lower and upper limits 

of search spaces similarly. 𝑁𝑃 denotes tuna 

population quantity. Normally, this weighted value 

marks optimal rate of TSA and then equally 

dispersed random vector. Spiral foraging (SF) is one 

of the main techniques of tuna schools that races 

target through creating fitted spirals. Beside with 

racing target, tuna schools transform information by 

all others. Each tuna is ordered as well as sturdily 

connected; so adjacent tuna share information. The 

SF method arithmetically calculated as follows: 
 

𝑋1
𝑡+1 = {𝛼1 • (𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝛽 • |𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 • 𝑋𝑖
𝑡 , 𝑖 = 1, 𝛼1 • (𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝛽 • |𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 • 𝑋𝑡−1
𝑖 , 𝑖

= 2,3, … , 𝑁𝑃,                                                                                          [2] 

𝛼1 = 𝜕 + (1 − 𝑎) •
𝑡

𝑡𝑚𝑎𝑥

,                                                                 [3] 
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𝛼2 = (1 − 𝑎) − (1 − 𝑎) •
𝑇

𝑡𝑚𝑎𝑥

,                                                     [4] 

𝛽 = 𝑒𝑏𝑙 • 𝑐𝑜𝑠 (2𝜋𝑏),                                                                         [5] 

𝑙 = 𝑒3 𝑐𝑜𝑠 (𝑡𝑚𝑎𝑥+1/𝑡)−1)𝜋),                                                                  [6] 
 

Where 𝑏𝑒𝑠𝑡 signifies the present better individual 

(food),  𝑋𝑖
𝜄+1  represents 𝑖-𝑡ℎ individual of 𝑡 + 1 

iteration, 𝑎 shows endless that outlines that range 

tuna follows improved and prior individual at first 

stage, 𝑡 and 𝑡𝑚𝑎𝑥 specifies the current and the high 

amount of iterations, 𝛼1and 𝛼2 indicates the weight 

constant that manages the action trends of individual 

to the improved as well as earlier individuals, and 𝑏 

is evenly distributed random number between [0, 1]. 

Once the optimal person not capable to locate food, 

sightlessly subsequent finest individual foraging is 

not beneficial to the cluster foraging. Therefore, for 

helping each person in consuming finest spatial hunt 

capabilities, a reference point for spiral search must 

be provided to generate a casual manage in the hunt 

system, so permitting TSA to have greatest global 

exploration aptitudes, and it will provide accurate 

expression by Equation [7]: 
 

𝑋1
𝑡+1′

= {𝛼1 • (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 • |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 • 𝑋𝑖

𝑡 , 𝑖 = 1, 𝛼1 • (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 • |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 • 𝑋𝑖−1

𝑡 , 𝑖

= 2,3, … , 𝑁𝑃,                                                                                              [7] 
 

Whereas in the search ranges, the 𝑋𝑟𝑎𝑛𝑑
𝑡  signifies 

random reference point, TSA are classically 

discovered extensively worldwide at an initial phase 

and next gradually transitioned to precise local 

exploitation by growing sum of iterations. TSA 

leisurely modifies the SF reference point from 

arbitrary person to optimal individual at the 

beginning. The SF method can be calculated by 

Equation [8]: 

 

𝑋1
𝑡+1′

= {{𝛼1 • (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 • |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 • 𝑋𝑖

𝑡 , 𝑖 = 1, 𝛼1 • (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 • |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 • 𝑋𝑖−1

𝑡 , 𝑖

= 2,3, … , 𝑁𝑃,    𝑖𝑓𝑟𝑎𝑛𝑑 ≥
𝑡

𝑡𝑚𝑎𝑥 

 {𝛼1 • (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 • |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 • 𝑋𝑖

𝑡 , 𝑖

= 1, 𝛼1 • (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 • |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 • 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁𝑃,    𝑖𝑓𝑟𝑎𝑛𝑑 <
𝑡

𝑡𝑚𝑎𝑥 

 [8] 

 

 

 
Figure 2: Steps Involved in TSA 
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Tuna selects SF with parabolic cooperative foraging. 

Tuna creates a parabola with directed food to 𝑍-

point as a reference. Tuna discoveries the beset food 

by hunting around the parabola. Both tuna foraging 

techniques are executed depend upon the possibility 

portion, and if the assortment possibility for dual 

foraging models is ½. At last, they are 

simultaneously executed, and it can be exactly 

expressed as follows. 

 

𝑋1
𝑡+1 = {𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝑟𝑎𝑛𝑑 • (𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋1

𝜄 ) + 𝑇𝐹 • 𝑝2 • (𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡), 𝑖𝑓𝑟𝑎𝑛𝑑 < 0.5, 𝑇𝐹 • 𝑝2 • 𝑋1
𝜄 , 𝑖𝑓𝑟𝑠𝑛𝑑 ≥ 0.5,   [9] 

𝑝 = (1 −
𝑡

𝑡𝑚𝑎𝑥

)
(𝑡/𝑡𝑚𝑎𝑥 )

,                                                  [10] 

 

Whereas 𝑇𝐹 indicates random integer within [1, −1]. 

Figure 2 depicts the steps involved in TSA. The TSA-

RNL localization method mainly used to define the 

organize points of sensors. Main objective of 

localization node in WSN is to calculate the organized 

facts of preferred node by diminishing the impartial 

work. In WSN, the localization issue is measured 

optimization problem established employing many 

metaheuristic techniques. The developed method 

was employed in order to discover the sensor in 

WSN. Locate 𝑀 and 𝑁 as target ACN in a random 

method in sensor area. Whole ACN are prepared 

through place attention for identifying the place. 

Entire anchor and TNs include transmission range𝑅. 

Space among the ACN and target are evaluated and 

adapted utilizing improver Gaussian noise. The TN 

signifies space by 𝑑̂𝑖 = 𝑑𝑖 + 𝑛𝑖  whereas 𝑑𝑖  indicates 

real distance that was calculated among place of TNs 

(𝑥, 𝑦) then position of beacon (𝑥𝑖 , 𝑦𝑖) employing the 

provided task: 
 

𝑑𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2                                             [11] 
 

The variable 𝑛𝑖  defines noise which marks calculated 

distance from 𝑑𝑖 ± 𝑑𝑖  (
𝑃𝑛

100
) while 𝑃𝑛 indicates noise 

ratio in valued distance. The required node is known 

a localizable node once it encloses 3 ACN in the 

communication range of TN. Afterwards, the basis 

depends upon trilateral locating unit, organize three 

ACN (𝑥1, 𝑦1), 𝐵(𝑥2, 𝑦2), and 𝐶(𝑥3, 𝑦3), and the space 

among TN 𝑑𝑖  and 3 ACN are recognized. Then, the 

usage of trigonometric rules of cosine/sine, the TN 

coordinate is definite. Similarly, in multi alteration 

TN valued unit, space metrics of enormous ACN used 

for reducing the fault from a unique and assessed 

distance. 

The TSA-RNL model is separately executed in order 

to recognize the location of the TN in occurrence of 

localizable node. The coyotes are required by centre 

ACN inside transmission range by provided task: 
 

(𝑥𝑐 , 𝑦𝑐) = (
1

𝑁
∑  

𝑁

𝑖=1

𝑥𝑖 ,
1

𝑁
∑  

𝑁

𝑖=1

𝑦𝑖)                                    [12] 

 

The 𝑁 represents sum of ACN in the transmission 

choice of localizable TN. 

TSA-RNL technique is highly suitable for classifying 

the coordinates (𝑥, 𝑦) of TN, which reduces 

localization error (LE). The primitives engaged in 

localization issue is a mean square distance among 

mark and ACN that is diminished by given model: 

 

𝑓(𝑥, 𝑦) =
1

𝑁
(∑  

𝑁

𝑖=1

√(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)2 − 𝑑̂)

2

             [13] 

 

While 𝑁 ≥ 3 symbolizes sum of ACN in a 

transmission radius of TN. 

The optimal quantity (𝑥, 𝑦) was defined through 

TSA-RNL element when total of rounds is controlled. 

The sum LEs are determined when estimating 

localizable TNs𝑁𝐿 . This is calculated as a mean 

square of space from distinct node coordinates 

(𝑋𝑖 , 𝑌𝑖) whereas the actual node coordinates (𝑥𝑖 , 𝑦𝑖) 

are provided by: 
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𝐸1 =
1

𝑁1

∑  

𝑁

𝑖=1

√(𝑥𝑖 − 𝑋𝑖)
2 + (𝑦𝑖 − 𝑌𝑖)

2                                     [14] 

 

The two to six process is sustained till the TN is 

restricted. The localization node depends upon 

greatest LE 𝐸1 as well as quantity of unlocalized 

nodes 𝑁𝑁𝐿
 are determined in use of 𝑁𝑁𝐿

= 𝑀 − 𝑁𝐿 . 

Least scores of 𝐸1 and 𝑁𝑁𝐿
 enhances an actual 

localization. 

The node localization quantity obtains improved 

when the repetition boost. Similarly, it decreases the 

anchor node sum within transmission range of the 

localizable TN, and valued place of TN performance 

as an anchor node in the succeeding iteration. It is 

mainly employed in order to limit the issue of flip 

hesitation that produces greatest LE. Once the 

repetition is boosted, the process period to 

localization data of TN enhances.  
 

Results and Discussion 
In this section, the investigational validation of the 

TSA-RNL technique is examined. Table 1 and Figure 

3 represents a comparative localized nodes (LN) 

results of the TSA-RNL technique under varying ANs. 

The experimental values highlighted that the TSA-

RNL technique obtains maximal LN values. With 10 

ANs, the TSA-RNL technique gains increased LN of 

141 whereas the COA, BOA, GSA, CSO, and KHA 

models obtain decreased LN values of 134, 123, 119, 

111, and 109 respectively.  
 

Table 1:  LN Outcome of TSA-RNL Approach with Other Methods under Various Anchors 

Localized Nodes 

Anchor Numbers TSA-RNL 
COA-

Protocol 

BOA- 

Protocol 

GSA- 

Protocol 

CSO- 

Protocol 

KHA- 

Protocol 

10 141 134 123 119 111 109 

20 156 149 132 128 124 111 

30 178 170 149 145 126 120 

40 179 172 158 150 141 128 

50 199 193 172 163 149 139 
 

 

Figure 3: LN Outcome of TSA-RNL Approach under Various Anchors 
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Meanwhile, based on 20 ANs, the TSA-RNL method 

attains raised LN of 156 while the COA, BOA, GSA, 

CSO, and KHA methods get reduced LN values of 149, 

132, 128, 124, and 111 individually. Also, on 30 ANs, 

the TSA-RNL method attains raised LN of 178 but, 

the COA, BOA, GSA, CSO, and KHA methods acquire 

diminished LN values of 170, 149, 145, 126, and 120 

correspondingly. 

The localization error (LE) results of the TSA-RNL 

technique are compared with existing models under 

changing ANs, in Table 2 and Figure 4. The results 

indicate that the KHA and CSO models have reported 

maximum LE values whereas the BOA and GSA 

models accomplish slightly decreased LE values. 

Meanwhile, the COA model has managed to report 

considerable LE values. But the TSA-RNL technique 

shows better performance with minimal LE of 0.18, 

0.15, 0.13, 0.03, and 0.05, under ANs of 10-50 

respectively (Table 2). 

 

Table 2: LE Outcome of TSA-RNL Approach with Other Methods under Various Anchors 

Localization Error 

Anchor Numbers TSA-RNL 
COA-

Protocol 

BOA- 

Protocol 

GSA- 

Protocol 

CSO- 

Protocol 

KHA- 

Protocol 

10 0.18 0.33 0.44 0.54 0.69 0.67 

20 0.15 0.31 0.39 0.49 0.64 0.69 

30 0.13 0.25 0.35 0.47 0.50 0.54 

40 0.03 0.17 0.33 0.41 0.48 0.50 

50 0.05 0.16 0.27 0.37 0.45 0.47 
 

 

 
Figure 4: LE Outcome of TSA-RNL Approach under Various Anchors 

 

Table 3 depicts the LE outcome of TSA-RNL approach 

with other methods under various range error (RE) 

and transmission range (TR). The LE results of the 

TSA-RNL approach are compared with existing 

models with changing RE, in Figure 5. The outcome 

value specifies that the KHA and CSO methods are 

stated higher LE values while the BOA and GSA 

models get moderately reduced LE values. 

Additionally, the COA technique is managed to show 

remarkable LE values. However, the TSA-RNL 

approach exhibit higher performance with reduced 

RE of 0.24%, 0.15%, 0.09%, 0.10%, and 0.09%, with 

REs of 10%-30% ranges correspondingly. 
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Table 3: LE Output of TSA-RNL Approach with Other Methods 

Localization Error 

Range Error (%) TSA-RNL 
COA-

Protocol 

BOA- 

Protocol 

GSA- 

Protocol 

CSO- 

Protocol 

KHA- 

Protocol 

10 0.24 0.28 0.37 0.44 0.62 0.63 

15 0.15 0.22 0.36 0.39 0.55 0.63 

20 0.09 0.16 0.34 0.38 0.50 0.54 

25 0.10 0.13 0.33 0.36 0.44 0.49 

30 0.09 0.12 0.29 0.30 0.42 0.45 

Transmission Range (m) TSA-RNL 
COA-

Protocol 

BOA- 

Protocol 

GSA- 

Protocol 

CSO- 

Protocol 

KHA- 

Protocol 

10 0.14 0.19 0.34 0.34 0.49 0.54 

15 0.11 0.16 0.23 0.31 0.45 0.48 

20 0.09 0.15 0.21 0.31 0.46 0.51 

25 0.05 0.10 0.12 0.25 0.36 0.40 

30 0.03 0.08 0.12 0.22 0.35 0.42 
 

 

 
Figure 5: LE Outcome of TSA-RNL Approach under Various Range Errors 

 

The LE analysis of the TSA-RNL technique can be 

compared with existing approaches with modifying 

TR, in Figure 6. The outcome value shows that the 

KHA and CSO models are specified better LE values 

but, the BOA and GSA models get moderately 

reduced LE values. Moreover, the COA approach is 

managed to show significant LE values. Then, the 

TSA-RNL approach reveal greater performance with 

reduced LE of 0.14%, 0.11%, 0.09%, 0.05%, and 

0.03%, with TRs of 10m-30m ranges respectively. 
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 Figure 6: LE Outcome of TSA-RNL Approach under Various Transmission Range  
 

Table 4 demonstrates the comparative outcome of 

TSA-RNL system with recent approaches in terms of 

energy consumption (ECOM) and packet delivery 

ratio (PDR). The ECOM analysis of the TSA-RNL 

system is compared with recent techniques with 

changing nodes, in Figure 7. The outcome value 

specifies that the KHA and CSO models are provided 

maximum ECOM values whereas the BOA and GSA 

models get slightly reduced nodes values. Then, the 

COA model has accomplished to show considerable 

ECOM values. However, the TSA-RNL model exhibits 

excellent performance with decreased ECOM of 

54mJ, 90mJ, 109mJ, 122mJ, and 160mJ, under nodes 

of 200-1000 correspondingly. 

 

Table 4: ECOM and PDR Outcome of TSA-RNL Approach with Other Methods under Various Nodes 

Energy Consumption (mJ) 

No. of Nodes 
KHA- 

Protocol 

CSO- 

Protocol 

GSA- 

Protocol 

BOA- 

Protocol 

COA-

Protocol 
TSA-RNL 

200 179 170 99 87 66 54 

400 207 199 137 114 99 90 

600 230 217 177 142 121 109 

800 275 250 190 172 132 122 

1000 311 289 216 197 168 160 

Packet Delivery Ratio (%) 

200 95.37 97.69 98.59 99.47 99.89 99.95 

400 93.68 96.58 97.61 98.49 99.43 99.74 

600 91.59 94.50 95.52 97.57 98.26 98.97 

800 89.63 92.41 94.61 96.46 97.41 98.40 

1000 87.28 90.77 93.63 95.48 96.36 97.69 
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Figure 7: ECOM Outcome of TSA-RNL Approach under Various Nodes 

 

The PDR analysis of the TSA-RNL methodology is 

compared with existing systems under changing 

nodes, in Figure 8. The outcome value that the KHA 

and CSO models are reported greater LN values 

while the BOA and GSA models obtain slightly 

diminished PDR values. Also, the COA technique has 

accomplished to report remarkable PDR values. But 

the TSA-RNL technique exhibits exceptional 

performance with minimal PDR of 99.95%, 99.74%, 

98.97%, 98.40%, and 97.69%, under nodes of 200-

1000 respectively. 

 

 
Figure 8: PDR Outcome of TSA-RNL Approach under Various Nodes 

Conclusion 
In this article, a new introduces a TSA-RNL technique 

in WSN. The main aim of the TSA-RNL model is to 

find out the unknown nodes in WSN. TSA-RNL 

technique is developed for enhancing the 

localization accuracy in the WSN. The TSA, 

stimulated from the collective nature of tuna fish, 

optimizes the localization process by iteratively 

refining node positions. With help of wide simulation 

and experimentation, we estimate the TSA-RNL 



Periasamy et al.,                                                                                                                                                Vol 6 ǀ Issue 3 

 

1436 

 

approach performance and establish its authority in 

reaching great exactness node localization in WSNs. 

The method comes with many highly benefits for 

applications that trust on exact node positioning 

with target tracking, environmental monitoring, data 

fusion and contributing to the improvement of WSN 

machinery. The key restriction found is TSA-RNL's 

centralized character, which could influence real-

time scalability in very dynamic surroundings. To 

improve flexibility and robustness even further, we 

want to investigate distributed implementations, 

lightweight hybrid models, and machine learning-

enhanced localization methodologies in next work. 
 

Abbreviations 
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