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Abstract 
Community and hierarchical structures are frequently created, disrupted, and reorganized in dynamic social networks.  
Understanding these dynamic processes is useful for a wide range of applications, including information diffusion, 
social innovation, and organizational management.  In this research, we conduct a comprehensive evaluation of 
hierarchical reconstruction and community identification on three different datasets: the Email-EuAll network, 
Facebook Social Circles, and a synthetic dataset that simulates real-world network behavior. We assess the effectiveness 
of many well-known community detection techniques, including Louvain, Walktrap, Clique Percolation, and Label 
Propagation, in order to determine how well they recognize dynamic network patterns.  Our findings demonstrate that 
while Louvain and Walktrap are successful in modularity-based scenarios, effectively detecting well-defined, densely 
interconnected communities, Label Propagation performs better in sparse networks with fewer, loosely coupled 
communities.  Furthermore, Clique Percolation struggles in extremely dynamic environments yet provides valuable 
insights into overlapping community structures. Given that different algorithms yield varying degrees of accuracy and 
efficacy in dynamic situations, the results demonstrate that the best method to employ depends significantly on the 
structural characteristics of the network.  The adaptable nature of hierarchical structures is further supported by 
empirical studies, which highlight how community patterns shift as a result of real-time network changes.  The need 
for dynamic modeling techniques that can adjust to shifting network dynamics over time is supported by these findings.  

Keywords: Community, Community Detection, Dynamic Social Network, Hierarchy, Network Analysis, Social 
Network Analysis. 
 

Introduction 

A social network represents relationships among 

individuals, each considered a social unit, with the 

network illustrating the distribution and strength 

of these connections. Statistically, social networks 

are modeled as graphs, where nodes represent 

individuals and edges denote their interactions (1). 

Dynamic social networks (DSNs) capture temporal 

patterns such as relationship formation and 

dissolution, community emergence, information 

spread, and structural evolution. Understanding 

these dynamics is crucial for revealing the 

mechanisms behind social interactions, diffusion 

processes, and collective behavior. With the rise of 

digital platforms and large datasets, DSNs have 

gained significant attention. Computational 

modeling, machine learning, and network analysis 

enable researchers to predict behaviors, analyze 

trends, and enhance network resilience. A strong 

grasp of temporal dynamics also helps address 

societal challenges and guide the development of 

new social network strategies. A Social Networks 

is formalized as a graph G = (V, E), where V and E 

denote the number of people and connections 

respectively. A snapshot 
( , )i i iS V E=

of G shall 

signify graph that consists of the set of persons and 

interactions at specific time interval i. Every 

snapshot iS  comprises of ik  communities 
1 2( , ,..., )i

k

i i i iC C C C=
where every community 

j

iC  is also a graph denoted by 
( , )j j

i iV E
 (2-4). 

Social network studies earlier have brought to 

study the role of community structure and 

strength of association in web analytics, 

marketing, homeland security and disease 

modelling domains (5-11). The constant changing 

nature of social networking is demonstrated 

through dynamic interactions such as emailing, 

joint authorships, emailing, joint authorships, and  
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collaborations between actors (12-14). To observe 

topology changes and determine which nodes may 

be disproportionately influential, and also to 

enable well-informed decision-making, it is vital to 

have a glance at the community and hierarchical 

dynamics, in which hierarchies are conceptualized 

as Directed Acyclic Graphs incorporating notions 

of (high) intra-group similarity and community 

(15, 16). This study performs the analysis of 

community detection algorithms in three datasets 

and suggests suggestions on the improvements of 

dynamic modeling. This has been identified in the 

past as the limitation of hierarchical as well as 

scale-free networks especially in a cooperative 

environment and structural constraints (17). It has 

been seen that the emerging sophisticated 

algorithms perform better in community detection 

as compared to traditional techniques, that are of 

low-complexity validation in nature (18). 

Wikipedia notability scores and HSM framework 

has provided information about the changing 

online hierarchies and actor-group systems (15, 

16, 19). Trust networks indicate the complication 

associated with hierarchy mining when there are 

mixed interactions present (20). Overlapping 

community tracking can be enhanced through 

techniques such as Tiles and hierarchical 

visualizations also make visualization more easily 

understood (21, 22). Surveys of interactive 

community discovery divide and classify 

algorithms according to principle and 

effectiveness, and more recent advances use 

neural representation learning and subgraph 

embeddings to apply such techniques to complex 

networks (23, 24). Angel algorithm also leads to 

enhanced overlapping communities identification 

because it presents a set of strong outcomes across 

various datasets (25). 

Research Gaps 
Despite significant progress in understanding 

social hierarchies and community structures, key 

research gaps remain. One major gap is the limited 

exploration of temporal dynamics—how 

communities and hierarchies evolve over time, 

especially given their interdependence. While 

methods like FacetNet and Tiles address 

community evolution, few techniques examine the 

organization of communities across time-

sequential hierarchies (18, 21). Trust hierarchies, 

particularly   within    signed   networks,  are   also  

understudied in dynamic settings due to 

challenges with mixed interactions (20). 

Additionally, there is a lack of standardized 

evaluation metrics for community detection and 

hierarchy assessment, unlike structured 

approaches such as ANGEL and HSM (15, 25). Most 

studies also focus on homogeneous networks, 

overlooking the complexities of attributed, 

heterogeneous, and dynamic networks (24). To 

better understand evolving network architectures 

and their adaptability, new algorithms and 

comprehensive evaluation frameworks are 

needed. 

Our paper addresses these gaps by analyzing 

community and hierarchy patterns across three 

datasets—Facebook Social Circles, Email-EuAll, 

and a synthetic network. We evaluate key 

algorithms (Louvain, Walktrap, Label Propagation, 

and Clique Percolation) using standardized 

metrics such as modularity, clustering coefficient, 

and community size distribution. Unlike earlier 

studies, we examine how community and 

hierarchical structures evolve over time, 

highlighting the adaptive nature of social 

networks. Our results demonstrate algorithmic 

performance across diverse network types, 

bridging the gap in assessing methods for dynamic 

and heterogeneous networks. By incorporating 

insights into the temporal stability of these 

structures, our work contributes to the 

development of resilient and scalable approaches 

for real-world network applications. 

Research Contributions 
This study adds significantly to the field of dynamic 

social network analysis in a number of ways.  The 

first step is a comparison analysis of three different 

datasets using well-known community detection 

techniques, such as Louvain, Walktrap, Label 

Propagation, and Clique Percolation.  This enables 

a more sophisticated comprehension of how 

various methods function in various network 

scenarios.  The study also looks into how social 

network structures change over time, showing 

how various algorithms adjust to the dynamic 

nature of community development and 

dissolution.  Third, it presents the idea of using 

neighborhood theory to improve the scalability 

and efficacy of the conventional Clique Percolation 

method for identifying hierarchical structures in 

dynamic      networks.      The     methodology     for  
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examining changing communities and hierarchies 

in intricate social systems is improved by these 

contributions taken together. 

Organization of the Paper 
This paper is organized as follows. The necessity 

for hierarchical development for networks has 

been demonstrated in section 2. Section 3 and 4 

shall discuss about some of the aspects regarding 

hierarchy and community. Methodology alongside 

some real-life examples are illustrated in section 5. 

Development of hierarchical communities has 

been discussed with the idea of dynamic social 

network supported by some real-life example and 

simulation results have been provided for the 

existing algorithms with a dataset within Section 6. 

Finally, section 7 concludes the paper. 

Need for the Study 
Network modeling provides a versatile 

demonstration of objects and their relationship, 

which is often shown as a graph including nodes 

(members) and edges (information paths). There 

are three main models namely Random, Scale-free 

and Hierarchical networks which are represented 

in Figure 1. Random graphs (Figure 1A) are graphs 

whose edges have been placed at random, and so 

they lack an explicit structure and their degree 

distribution obeys a Poisson distribution. Scale-

free networks (Figure 1B) show power-law 

distribution such that a small number of nodes are 

well-connected and most with a few connections 

(26, 27). Tree-structured networks (Figure 1C) are 

constructed without cycles (the cryptographic 

requirement of the hierarchy networks) and 

typically represent a tree-like hierarchy, more 

often than not a binary tree, with nodes in different 

layers varying in number as well as connectivity, 

documenting the layered relationships in an 

organization (17).  

 

 
Figure 1: Representation of Network Structures (A) Random, (B) Scale-Free and (C) Hierarchical (17) 
 

Historically, hierarchical networks have been 

formulated based on iterative algorithms that 

reproduce distinct topological properties such as 

scale-free topology and high clustering of nodes 

simultaneously. This type of network structure has 

more hubs and has a different distribution of 

clustering coefficients than the other two types. 

The Watts-Strogatz model generates graphs with 

small-world characteristics when used to a 

random graph generation mechanism: It creates 

graphs with strong clustering and shorter average 

path lengths. These characteristics are attained 

through interpolation between a regular ring 

lattice and randomised structures that can nearly 

resemble ER graphs. Subsequently, the model is 

capable of providing partial explanation 

concerning "small-world" phenomena among 

various networks (28, 29).  The BA model is 

generally observed as a potent algorithm with 

preferential attachment and growth that is used to 

generate networks while analysing scale-free 

networks. The Internet, citation networks, and 

particular social networks are illustrations of both 

natural and artificial systems of scale-free 

networks. There are fewer nodes in these systems, 

known as hubs, which have a higher degree than 

alternative nodes within the network. A random 

graph generation model does not show power laws 

in degree distributions for such networks (30). 

The difference in hierarchical models with other 

similar models lies in the fact that nodes whose 

links are greater are supposed to have a lower 

clustering coefficient. On the other hand, it is 

anticipated that the alternative models will 

maintain a degree-invariant clustering coefficient. 

Barabási-Albert model makes a prediction that 

average clustering coefficient would decrease with 

the increment in the number of nodes, but the size 

of a network and the average clustering coefficient 

are uncorrelated in hierarchical models (31). 

Moreover, hierarchical network model is built on 

few design goals that makes it better than other 

modeling approaches: 
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● Hierarchy: Reliability in a network 

infrastructure becomes easier when the 

network is modeled in a hierarchical 

manner. Fragmentation of complex 

problems in network design is done so 

that they become easier to manage. 

● Modularity: Module wise separation of 

different functions within a network 

makes the design process simpler.  

● Resiliency: Networks need to be available 

both under normal and abnormal 

conditions. Various normal conditions 

include predictable traffic movements and 

patterns, in addition to arranged 

processes like maintenance windows. In 

contrast, various abnormal conditions 

include hardware or software failures, 

unexpected traffic heaps, infrequent 

traffic arrangements, DoS events. 

● Flexibility: The ability to modify some 

fragments of a network with the addition 

of novel services or enhancements to its 

capacity with very confined changes (32). 

Some Aspects Regarding Hierarchy 
Understanding the hierarchical structure of 

dynamic social networks is essential in social 

network analysis. As relationships and 

interactions evolve over time, capturing hierarchy 

becomes complex, yet it highlights each 

individual's role within the network. The process 

typically starts by dividing the network into 

cohesive units called communities, which form the 

basis for analyzing clustering patterns and 

subgroup dynamics. Once communities are 

identified, attention shifts to evaluating members’ 

positions and significance in the broader context 

(33, 34). 

Several methodologies have emerged to quantify 

individuals’ roles within dynamic social networks. 

Network correspondence, for instance, provides a 

means to map individuals’ positions across 

different snapshots of the evolving network, 

facilitating the identification of key players and 

evolving structures over time. Normalized degree 

D(v), closeness centrality C(v), betweenness 

centrality B(v), and eigenvector centrality E(v) are 

among the metrics utilized to gauge individuals’ 

centrality and influence within their respective 

communities and the network as a whole. 

Maintaining the spectral properties of the network 

emerges as a fundamental objective in hierarchical 

analysis. This entails preserving the eigenvalues λ 

and eigenvectors v of the network, which encode 

crucial structural attributes such as graph 

connectivity, vertex centrality, and symmetry (35–

38). The eigenvalues govern the stability of 

dynamic behaviors within the network, offering 

insights into its resilience and responsiveness to 

external stimuli. Meanwhile, eigenvectors shed 

light on additional properties, such as the 

propensity of random walks and information 

diffusion within the network, elucidating its 

navigational and communicative dynamics (39–

41).  

Developing hierarchical structures in dynamic 

networks requires a deep understanding of 

individual roles, community dynamics, and 

temporal network properties. By applying 

advanced methods and spectral analysis, 

researchers can uncover the mechanisms driving 

social interaction and information flow in these 

complex systems. 

Hierarchical Clustering Algorithms  
Hierarchical clustering algorithms form a family of 

unsupervised learning algorithms that place 

similar data-points in a tree-like hierarchy by 

nesting clusters. The agglomerative clustering 

method, the most usual one, consists of each point 

being a cluster by itself, and in successively joining 

similar clusters, where the linking criterion (e.g. 

the inter-cluster distance) may be one of single, 

complete, average, or Ward linkage. Conversely, 

divisive clustering starts with a web of every point 

in a single cluster and recursively cuts it up into 

two or more parts via such techniques as k-means 

or centroid partitioning. Such algorithms find 

broad use in computer science, biology and social 

network analysis, including document clustering 

and community discovery and gene expression 

analysis. However, although they are useful to 

disclose the complex data structures, hierarchical 

clustering techniques may be time-consuming and 

root-dependent, as well as linkage- and distance-

measure-sensitive (41).  

Spectral Analysis Techniques 
Spectral analysis techniques are a class of methods 

used to analyze the properties of networks by 

examining the eigenvalues and eigenvectors of 

matrices derived from network representations. 

One common spectral analysis technique is 

spectral clustering, which leverages the spectral 

properties of matrices to partition nodes into 
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clusters based on their connectivity patterns. 

Using a particular network adjacency or Laplacian 

matrix, spectral clustering would eigen decompose 

the network of interest into a corresponding low 

dimension and then use k-means, another 

conventional technique based on this data. A 

fourth spectral technique can be based on 

community detection using modularity 

maximisation, in which the adjacency matrix of any 

network is broken down into its various 

eigenvectors and associated, highest-value eigen-

vectors that are used to identify networks by 

communities. By partitioning the network based 

on the sign of the entries in the leading 

eigenvector, spectral modularity optimization 

algorithms can efficiently detect communities in 

large networks (35).  

Network properties like network centrality and 

structural equivalence are studied by spectral 

analysis techniques. The centrality measures like 

eigenvector centrality and PageRank assign 

importance scores to nodes based on their 

connectivity with other nodes and their position in 

the eigenvector space of the network. Structural 

equivalence analysis identifies nodes that have 

similar connectivity patterns by comparing their 

eigenvector representations. Principal component 

analysis (PCA) and singular value decomposition 

(SVD), two dimensionality reduction approaches, 

use spectral analysis techniques to convert high-

dimensional network data into a lower-

dimensional space while maintaining crucial 

structural information. These spectral analysis 

methods are effective for determining 

communities, assessing node centrality metrics, 

and comprehending the structural characteristics 

of networks. They shed light on the fundamental 

architecture of intricate networks and have 

potential applications in a number of fields, such as 

recommendation systems, biological networks, 

and social network analysis (36, 37).  

Incorporating Temporal Aspects in 

Hierarchy Detection  
Temporal consideration over hierarchy detection 

is associated with observing the dynamics of the 

development of the hierarchical structures within 

dynamic network. Conventionally, static snapshots 

tend to be the main idea of operation but, in 

dynamic networks, issues of influencing nodes and 

structure of groups have to be addressed in the 

approach. An example is done through dynamic 

centrality, where the rules are evolving centrality 

measures (like betweenness and eigenvector 

centrality) will be calculated in each time step to 

keep track of how the nodes become important and 

how they lose their significance over time, which 

will allow tracking hierarchies changing over time 

(40). Temporal evolution of the community can 

also be captured using dynamic clustering 

algorithm like dynamic modularity optimization 

and spectral clustering. Also, comparing frequency 

and persistence of network motifs can be used to 

imply changing relations of hierarchy, and 

mathematical models and time series analysis can 

also explain the changes of hierarchy formation 

and development in time (41). 

This article defines hierarchy based on 

information flow and centrality. Nodes that have 

high ratings consistently in terms of their 

centrality the most particularly are those nodes 

betweenness and closeness; such are observed to 

be at higher positions in the hierarchy because of 

their influence factors and bridging functions. The 

trend of these centralities in time can be used to 

identify temporal levels of the hierarchy where 

nodes with high-centrality remain in a high 

hierarchy relative to other nodes. Verification of 

hierarchical structure happens longitudinally, 

whereby detected stratifications indicate a long 

term roles and not temporary pressures. 

Community and its Detection   
In social networks, communities represent 

clusters of individuals with interconnected 

relationships. A person may belong to multiple 

overlapping communities, such as school, college, 

friends, or family groups. Community detection 

involves identifying these clusters based on key 

structural features within the network. Various 

methods are used to uncover such groups, 

reflecting their wide range of applications. 

Typically, global quality functions are applied to 

detect meaningful substructures while satisfying 

local connectivity criteria (42–46). 

Methods for Detecting Community 

Structure 
Community definitions vary based on whether 

nodes can belong to one or multiple groups, 

depending on the analysis context. Community 

detection methods—static and dynamic—both 

identify densely connected node groups but differ 

in their treatment of time. Static methods analyze 

a single time snapshot using topology and edge 
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weights, with common techniques including 

modularity optimization, hierarchical clustering, 

and spectral clustering. While computationally 

efficient, static methods lack temporal context and 

cannot capture evolving community structures. 

Dynamic community detection aims to identify 

communities that evolve over time, capturing 

shifts, merges, splits, or dissolutions across time 

steps. These methods integrate topological 

information with temporal dependencies to track 

community evolution. While offering deeper 

insights into structural changes and temporal 

persistence, dynamic techniques are more 

computationally intensive and often require 

parameter tuning to balance noise resistance and 

sensitivity to fine-grained changes. The choice 

between static and dynamic approaches depends 

on the research goals, network characteristics, and 

the desired level of temporal detail (42).  

Disjoint Community Detection 
Many community detection algorithms also view 

the problem as that of hierarchical partitioning, 

and result in dendrograms that reflect nested 

subgroup relationships. Within this context, a 

person is progressively split into smaller 

subgroups until the whole network is broken, and 

the multi-level structure of community is exposed. 

A particularly important variant is disjoint 

community detection, that seeks to find a partition 

of nodes into disjoint parts, by trying to maximize 

internal connectivity by minimizing external links. 

This approach is extensively used in such fields as 

biological networks, social media analysis, or 

recommendation systems. Optimization of 

modularity as well as other algorithms evaluates 

the quality of a partition by contrasting rates of 

connections within a community versus rates of 

connections across communities, whereas 

alternatives, such as label propagation, 

hierarchical clustering as well as spectral, detect 

dense subnetworks based on divergent principles 

(43). 

Nevertheless, disjoint community detection has 

serious challenges. Resolution limit issue means 

that small-scale communities cannot be easily 

identified, so scalable algorithms must be used and 

can work on a variety of granularity levels. The 

networks that exist in the real world even make the 

above more complicated because in the real world  

the networks are dynamic and therefore, 

communities keep evolving, form or break apart. 

The algorithms normally used to manage this are 

dynamic community detection algorithms, which 

monitor changes in a structure across time with 

the hope of observing the time changes of 

community organization. The need to have 

effective tools of identifying and assessing disjoint 

communities to provide the structural basis of 

complex networks and to facilitate developments 

in many aspects of analysis should be regarded as 

a priority. 

Overlapping Communities 
The existence of overlapping communities, in 

which nodes may have more than one membership 

at a time, can be seen as a feature of the 

multifaceted nature experienced in the real world 

networks like social, biological or other 

organizational networks (47, 48). As an example, a 

person can also involve in career, family and 

personal life simultaneously. Contrary to the 

segmented communities, overlapping ones 

provide a more detailed representation but are 

harder to identify because of the fuzzy notion of 

membership and complicated web of connections. 

The classical single-membership algorithms are 

not sufficient, thus more specialized, node-

similarity based, based on local clustering 

coefficients, and based on community affiliation 

scores, methods have been developed. 

Overlapping modularity optimization enables the 

nodes to be in many communities and the 

optimization ensures that there is a high density 

within the communities. In addition, methods such 

as stochastic block models and mixed-membership 

models have been developed which scale the 

observed data to deal probabilistically with the 

uncertainty in community assignment. The 

approaches play an important role in both 

modelling a complex network structure across 

various quarters, including recommendation 

systems, social studies, and bioinformatics (47). 

Mathematically, community detection can be 

formulated using optimization techniques aiming 

to maximize or minimize certain objective 

functions. For disjoint community detection, 

algorithms might seek in partitioning network in 

non-overlapping sets C = C1, C2, ..., Ck where each Ci 

represents a distinct community C = C1, C2, ..., Ck 

allowing nodes to belong to multiple communities.  

One commonly used metric for evaluating 

community detection algorithms is modularity Q, 

defined as: 
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𝑄 =
1

2𝑚
∑  

 

𝑖𝑗

(𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
)𝛿(𝐶𝑖𝐶𝑗)                                     [1] 

 

Where Aij is the adjacency matrix, ki and kj are the 

degrees of nodes i and j respectively, m is the total 

number of edges and 𝛿(𝐶𝑖𝐶𝑗) is the Kronecker delta 

function which equals to 1 if the nodes i and j 

belongs to the same community and 0 otherwise. 

high modularity values indicate better community 

structure.  
 

Methodology 
A systematic approach has been used to analyze 

the changes of communities and hierarchies in the 

dynamic social networks including selecting a 

dataset, dividing the time into parts and using an 

algorithm. Three data sets were used: Facebook 

Social Circles, where the dense social relations 

available to users are described by friendships 

among the users; Email-EuAll, reflecting 

infrequent interaction by means of email 

messaging in a European research lab; a Synthetic 

data set generated to test the hypothesis of varied 

network density and structure under control 

conditions. All these datasets have made it possible 

to have in-depth analysis in various social contexts. 

All of the temporal snapshots were processed 

separately with the aim of evaluating structural 

dynamics across time using the static community 

detection algorithms, including Louvain, Walktrap, 

Label Propagation (LPA), Clique Percolation 

Algorithm (CPA), and others. The methodology 

allowed making a regular comparison of the 

performance and insight the strengths and 

weaknesses of the algorithms in relation to 

changing conditions of the networks. 

Metrics and Algorithms for Detecting 

Communities  
Social network community detection uses a range 

of metrics and methods to find clusters of nodes 

with strong connections between members and 

lesser connections to other nodes outside the 

group. One popular metric for evaluating a 

partition's quality is modularity, which shows how 

many edges there are in a community relative to 

what would be predicted by chance. The balance 

between internal density and outward 

connectivity is measured by other measures, such 

as coverage, conductance, and normalised cut, 

which assess the quality of community partitions. 

Community discovery algorithms include more 

contemporary techniques like the Louvain method, 

Infomap, and label propagation algorithms, as well 

as more conventional techniques like spectral 

clustering and hierarchical clustering. These 

algorithms iteratively optimize a quality function 

or perform iterative updates to partition nodes 

into communities based on network structure and 

connectivity patterns. Furthermore, dynamic 

community detection algorithms monitor how 

communities change over time, considering 

temporal relationships as well as topological 

information to capture the dynamic character of 

social networks (48). 

Illustrating Some Hierarchical 

Communities in Real Life 
Boxing club network: The communicative 

structure of boxing club with 34 members involves 

descriptions of social stratification that stemmed 

out of a dispute between the instructor and the 

club president (49). Applying the Hierarchical 

Structure of Members (HSM) strategy on the 

position of the instructor (node 34) we see a 

hierarchy to be visualized in Figure 2, with two 

levels emerging at first (k=2) corresponding to the 

real separation of the group, except by node 8 at 

the level boundary. When k is increased to three 

more separations are visible in the first level where 

we have lower-resolution (orange) and higher-

resolution (red) subgroups. Additional increments 

of k divide the blue level into light and deep blue, 

the light blue nodes representing overlap among 

groups. Such a stratification of color accentuates 

the existence of multi-resolution structures in the 

community providing an understanding of 

overlapping memberships and depth of structural 

hierarchies (15). 
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Figure 2: The Hierarchical Structure of All Members Forming a Network in the Boxing Club Each of Nodes 

at Distinct Levels is Represented with Different Colors, i.e. Orange, Yellow, Light Blue and Deep Blue. The 

Seed Node 34 is Colored in Red. The Green Dotted Line Specifies the Top 2 Levels (15) 
 

University network: In this network, all staff 

members at a single university are represented by 

three distinct schools (50). The nodes shall 

represent a person while links shall represent 

friendship. The degree of friendship has been 

measured in terms of questionnaires which have 

subsequently been filled up by all the academic 

staff who have participated in this survey. The 

entire network has been partitioned into different 

communities according to the different schools of 

the university. This has been demonstrated in 

Figure 3(A). The grey nodes in the figure indicate 

the undetermined nodes. The HSM has been 

designed according to the seed nodes 50, 67, and 

44, which correspond to three different schools. 

This has been demonstrated in the subsequent 

figures Figure 3 (C, D, E) where the dash line has 

accurately separated the real communities from 

others excluding a few of the overlapping nodes 

(15). 
 

 
Figure 3: The University Network's Hierarchical Member Structure. (A) Displays Two Unknown Nodes 

(Grey) in Three Real Communities. (B) Displays the Area Where Node 61 Overlaps. (C-E) Three HSMs are 

Displayed, with Dashed Lines Indicating Automatically Determined Divisions and Levels Denoted by 

Various Colours (15) 
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Buy and sell groups in Facebook: Facebook's 

Marketplace feature allows individuals to create 

groups for buying and selling items via their pages. 

Promotional offers are often posted to attract large 

audiences, forming online social communities. 

Users who like the page or join the group are 

considered primary members. These groups are 

managed by a creator or admin, who can grant 

access to new participants. Reviews shared in 

comments or on the page wall allow users to 

express opinions about products. Instant 

messaging redirects buyers to the seller’s 

Messenger for direct communication. A snapshot 

of such a group is shown in Figure 4. 
 

 
Figure 4: (A) Facebook Buy and Sell Group Inviting Members to Join the Group and Allowing the 

Members to Post Their Item in the Wall of the Page. (B) The Group Showing the Admins and Moderators 

of the Page, the Available Members are Shown, Whereas New Invitations for New Members to Join are 

Shown 
 

Groups in WhatsApp: WhatsApp was a key source 

of communication between different groups of 

people within the office, colleges, and universities 

after it was developed. This messaging app has 

created a community with members acting as 

participants in every sphere of life. The group is 

centrally handled by an admin who has created the 

group and can add and remove participants from 

time to time. Assume there is an imperative 

message to be circulated among a group of people. 

Instead of calling and informing them one by one, 

the message is circulated instantly once this is 

posted in the official group. However, once 

everyone is online and has seen the message, the 

message is said to be shared. This information 

concerning how many of the people have seen the 

message, how many have read and to whom it has 

been delivered is available. It is regularly updated 

from time to time. Here is an example of a 

WhatsApp group given in Figure 5.  

Defining Dynamic Communities 
Dynamic communities are those which alter or 

develop with time. For an illustration, a social 

network might be considered alongside specific 

communities. The students staying in PGs form this 

kind of community. Static communities refer to the 

entire set of students who are the residents of the 

PG at any specified time. After a certain period of 

time, some students may leave the PG, and be 

replaced by some newcomers who move into their 

place. After a certain longer time period, none of 

the student neighbors are still residing in the PG; 

although, there is the existence of the 

corresponding community deprived of a slight 

disturbance. Such a community as a whole is 

described with a dynamic concept.  
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Figure 5: (A) Whatsapp Group Showing the Available Options Which Can be Done Within the Group.  

(B) An Invitation Link for Anyone Within the Contact List to Join the Group 
 

Dynamic communities are explained by a 

fundamental network that evolves over time. 

There have been two probable demonstrations of 

these networks. Alternatively, these 

demonstrations may be presented as time-series 

for static networks, called time frames, or 

snapshots, where each such network corresponds 

to communications that can be constructed from 

collected data on the basis of a date, week, or 

month (Figure 6), or by inputting information on 

the basis of a flow of edges in real time. Such a 

network modeled using this procedure is referred 

to as temporal networks (51). 

 

 
Figure 6: Demonstration of Dynamic Community (52) 

 

In both the representation as well as in the 

conversion of snapshots into temporal networks, 

the path of dynamic communities is found to be 

similar. On the basis of whether the network is 

modeled by either of the two representations, 

there are two different procedures which might be 

discussed in regard to the development of a 

particular community: 

• This phenomenon can be described as a sequence 

of changes occurring over consecutive time slots 

or, alternatively, as community variations 

observed in successive network snapshots. 

• An initial static community and a succession of 

alterations within the specific community, in terms 

of names, integrating or excluding nodes. 
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Alterations within Dynamic 

Communities 
The appearances of nodes and edges are the 

diverse operations which illustrate a dynamic 

network. Even though the alterations within 

communities appear to be simple, within the scale 

of a community, the alterations are more complex 

and referred to as "events" have focused on the 

detection of key events appearing within the 

community life cycle (52-55). 

In the previously mentioned studies, several 

events are discussed which are quite comparable 

as well as being complementary (Figure 7). The 

general events within a community are Birth 

describing the emergence of a novel community at 

a specified time, Death illustrating the 

disappearance of a community where there is a 

loss of membership of every node within the given 

community, Growth discussing the attainment of 

new members or nodes within a community, 

Contraction describing the dropping of some 

members within a community, Merging where 

quite a few communities amalgamate to form a 

new community, Splitting, the process of division 

of a community into a few novel ones and 

Reappearance (56) defining disappearance and 

reappearance of a community subsequent to a 

specific duration of time. 

 

 
Figure 7: Community Evolution in Dynamic Social Network (55) 

 

Dynamic Community Detection 
For the purpose of the analysis of dynamic social 

networks, G is further divided into τ discrete and 

successive snapshots and therefore attaining a 

collection of graph which is represented as

0( ,..., )G G G=
, where 

( , )i i iG V E=
will denote 

graph consisting of only collection of nodes and 

edges which emerges within the interval 1( , )i it t + . 

The ki community which are distinguished within 

ith snapshot is being symbolized as 
1 2( , ,..., )i

k

i i i iC C C C=
wherein the community

p

i iC C
, 
1 ip k 

, is in addition a graph being 

indicated as 
( , )p p

i iV E
. Identifying dynamic 

community’s entails identifying analogous 

communities within diverse time snapshots. By 

pre-arranging its ingredient communities 

according to different time snapshots, the dynamic 

community can be represented. The dynamic 

community is formally represented as 

0 1{ , ,..., }t t tDC C C C =
 wherein 0 1 ...t t t  

 

and moreover Cti shall correspond to the instance 

of a community at the time slot it  (55). 
 

Results and Discussion 
The authors will provide a preliminary description 

of an example of a real-world dataset in this 

section, showing how communities and 

hierarchies are formed with each time period. 

Boxing Club and University Network real world 

examples have been considered for the purpose. 

Thereafter, the effectiveness of some of the 

existing algorithms for community detection has 

been implemented on some real-world dataset of a 

dynamic social network and simulation results 

were analyzed.  

Illustrating Communities and 

Hierarchies in Dynamic Social 

Networks with Examples  
Random communities are portrayed by the graph 

(in terms of nodes and edges) at dissimilar time 

slots within the Figure 6. Various scenarios are 

being considered where nodes and edges change 

over time. The real-life examples which are being  
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discussed in section 3 are illustrated with brief 

descriptions where the hierarchical structure of 

the networks within the communities varies with 

time. Considering the example of the Boxing Club 

network, let us suppose that A and B are two 

instructors and C, D, E and F are the students. The 

four students are already interacting among 

themselves prior to joining the club because they 

are studying at the same university and the two 

instructors are in the same community (Time slot 

Ti-2). After the students enroll themselves in the 

boxing club, student’s C and D come under the 

guidance of instructor A While E and F are guided 

by instructor B (Time slot Ti-1). Considering two 

skill set X and Y. The skill set X is mastered by 

instructor B while the skill set Y is mastered by 

instructor A. Students must be able to perform 

both skills sets in order to participate in the district 

championship. Therefore, at the first instant, E and 

F learn skill set X from instructor B while C and D 

learn skill set Y from instructor A (Time slot Ti). 

The students then exchange their respective 

instructors for a few minutes (Time slot Ti+1) to 

learn the alternative skill set. After the students 

have mastered all the skill sets, they again reunite 

and compete against each other (Time slot Ti+2). 

The development of hierarchies has been 

illustrated in Figure 8. There were 6 different 

communities that have developed with the 5 

different time slots. During the initial time slots, 

there were two communities which developed to 

four in the subsequent two time slots. In the fourth 

time slot, there were further two new communities 

that existed for a single time slot. It is clearly 

viewed that community 1 and 2 only existed for the 

entire duration. This fact is illustrated in Figure 9.  
 

 
Figure 8: A Brief Illustration of the Development of Hierarchy with Each Time Slots in a Karate Club 

Network for (A) Time Slot Ti-2 , (B) Time Slot Ti-1, (C) Time Slot Ti, (D) Time Slot Ti+1, (E) Time Slot Ti+2 

 

 
Figure 9: A Brief Illustration of the Development of Community along-with Hierarchy with Each Time 

Slots in a Karate Club Network for (A) Time Slot Ti-2, (B) Time Slot Ti-1, (C) Time Slot Ti, (D) Time Slot Ti+1, 

(E)Time Slot Ti+2 
 

Considering the example of the University 

network, let us suppose that a professor A and 

professor B is associated with a common research 

interest whereas students C, D, E and F are 

performing their masters in the university (Time 

slot Ti-2). However, after some time, the research 

association will break up and Professor A will then 

work with his two research student’s C and D on a 

particular topic, while E and F will be working in a 

same college (Time slot Ti-1). The scholar’s C and D 

share common research interests up to the point 

where they unite (Time slot Ti), after which they 

perform their individual research work with their 

common guide Professor A (Time slot Ti+1). After 

the two scholar’s C and D have completed their 

doctoral thesis and have submitted to the 

university, two new students come for the 

guidance of Professor B i.e research scholar E and 

F (Time slot Ti+2). The development of hierarchies 

and communicated have been illustrated in Figure 

10. It is viewed that with each time slots there were 

development of new communities, only a single 

community i.e community 3 existed for the two 

subsequent time slots.  
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Figure 10: A Brief Illustration of the Development of Community along-with Hierarchy with Each Time 

Slots for an University Network at (A) Time Slot Ti-2 , (B) Time Slot Ti-1, (C) Time Slot Ti, (D) Time Slot Ti+1, 

(E) Time Slot Ti+2 

 

Considering the other example of the facebook buy 

and sell group, let us suppose that a person X has 

created an online store to sell his own handicraft 

items (t=0). Apart from having his own e-

commerce website, the person took the help of the 

facebook buy and sell group to promote and sell his 

items. Therefore, he requests to the admins to join 

the group by filling all the credentials as specified 

in the sign-up page. The admin verifies his details 

and approves him to join the page. At the same 

time, P joins his page as a new member (t=1). The 

person upon getting permission posts his items in 

the wall of the page. He also invites new member Y 

and Z to the page so that his item is promoted and 

more people is exposed to his items. Although he 

sees that new invited friends have started liking 

the page as per his request, certain old members P 

are leaving the group (t=2). A new friends Y has 

invited has drawn enough inspiration from X that 

they decide to start their own business and 

therefore decides to split from the main Buy and 

Sell group (t=3) and finally they merge with 

another buy and sell community so that they can 

promote and sell their own items without the 

knowledge of X (t=4). The circumstance for the 

hierarchy and community development has been 

demonstrated in Figure 11. It is clearly viewed that 

there has been development of new communities 

with each time slots in time slots t=1 to t=4. 

Community 2 has been persistent in t=2 to t=5 

while other communities has developed and 

perished with each time slot.  
 

 
Figure 11: A Brief Illustration of the Development of Community along-with Hierarchy with Each Time 

Slots for a Facebook Buy and Sell Group 
 

Let us suppose that a business conclave is going to 

be organized and therefore for a greater and 

efficient communication among the team 

members, the team head Mr X has created the 

whatsapp group (t=0). As per the necessity, the 

admin (Mr X) is adding the necessary team 

members P, Q, R, S and other people from the 

outside Y and Z so that a co-ordination is created 

(t=1). Many sub groups for each individual task are 

further created in the process with the knowledge 

of the team head keeping him in the loop (t=2).  

Some members having a difference in opinion from 

the team head have removed themselves from the 

group and further created their own group with 

the knowledge of the manager or the main 

organizer (t=3). They further unite with some of 

the subgroups for a better and efficient co-

ordination as per the instruction of the manager 

(t=4). The illustration provided in Figure 12 shows 

the way the community and hierarchies developed 

in subsequent time slots. As seen, from t=0 to t=1 

there has been an addition of new nodes within the  
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network and in parallel communities also evolve. 

Some more communities develop and perish with 

the subsequent time slot. During the final time slot  

there has been a new addition of new nodes within 

the existing communities.  

 

 
Figure 12: A Brief Illustration of the Development of Community along-with Hierarchy with Each Time 

Slots for a Facebook Buy and Sell Group 
 

Simulation Results 
Two real data sets namely Email-EuAll and 

Facebook Social Circles and one synthetic network 

data sets were analyzed to guarantee stability and 

cross-platform applicability. The facebook dataset 

is made up of 4039 nodes and 88 234 edges with 

an average clustering coefficient of 0.6055, having 

dense, user-centric interaction and anonymous 

node IDs as well as obscured feature vectors (57). 

The email-EuAll having 1005 nodes and 25571 

edges is a medium scale organization network and 

contains internal as well as external edges (58, 59). 

To simulate controlled conditions of the network, 

a synthetic dataset with 100 nodes and 250 edges 

was also adopted. Fixed, non-overlapping 

comparison windows customized to the activity 

level of each data set 7 days, Email-EuAll; and 

longer in Facebook and synthetic data to eliminate 

repetition and information redundancy, and to 

maximize band structure signification. In order to 

measure their performance, the performance of 

community detection algorithms such as Clique 

Percolation, Label Propagation, Fluid 

Communities, Louvain and Walktrap were 

executed on 60,000 initial edges on Facebook, 500 

unique edges on Email-EuAll and on all edges on 

the synthetic dataset (60-62).   

Number of Communities (K) option specifies how 

many communities or clusters the algorithm 

should identify. The algorithms require this 

parameter as input, while others may decide it 

automatically based on network features or 

optimisation criteria. Average number of nodes 

per community is also an important criterion in 

defining the effectiveness of the algorithm. The 

greater number of nodes that fall within the 

community, the more efficient the algorithm is. The 

clustering coefficient is concerned with the 

number of neighbours that are connected to each 

given node. Consequently, it can be described as 

the extent to which a node's neighbours are 

connected to one another. The formula defines: 
 

𝐶𝑖 = 2 ×
𝐿𝑖

𝑘𝑖(𝑘𝑖 − 1)
                                         [2] 

 

where 𝐿𝑖is number of links between the neighbors 

of node i. The value of Clustering co-efficient can 

only vary between 0 and 1. The quality of dividing 

a network into communities or clusters is 

measured by modularity that compares the 

number of edges in communities created by 

dividing a network into nodes with the number of 

edges that would be predicted if the network were 

rewired at random while maintaining the same 

degree distribution. The partition's ability to  

capture the network's community structure 

improves with increasing modularity. 

Mathematically, the modularity of a partition has 

already been defined earlier. The Facebook dataset 

that has been considered for algorithm 

implementation is a massive dataset with over 

88,000 edges; as such, applying the algorithms to 

the entire dataset is a significant undertaking. 

Thus, for convenience, we have used the first 

60,000 edges for research and analysis.  
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Table 1: Comparison of the Results Obtained on the Major Community Detection Algorithms on Social 

Circles: Facebook Dataset 

Community Detection 

Algorithms 

No. of 

Communities 

Average No 

of Nodes per 

community 

Average 

Clustering 

Coefficient 

Average 

Modularity 

of 

Community 

Clique- Percolation (CPA) 369 6.547 0.9342 0.0001 

Label Propagation (LPA) 11 316.64 0.684 0.01215 

Fluid Communities (FCA) 369 7.76 0.4423 0.00029 

Louvain Community Detection 

(LCD) 
12 290.25 0.6258 0.02716 

Walktrap Community Detection 

(SCD) 
9 387 0.5928 0.03233 

 

As observed in Table 1, the clusters identified by 

spatial some of the algorithms CPA, LPA, FCA, LCD 

and WCD and vary widely because of variance in 

resolution parameters and detection methods, as 

well as the sensitivity to the particular 

characteristic in a network. Every algorithm 

focuses on different structural characteristics like 

interconnection patterns, and some are more 

effective to identify similar communities or deal 

with network noise. Variation is also due to 

network complexity, size and randomness in 

initialization of the network as well as parameter 

tuning. In spite of such differences of community 

number and mean node degree, clustering 

coefficients are rather constant between the 

algorithms. As Figure 13 shows, CPA shows the 

maximum average clustering coefficient, 

indicating a high local connectivity unlike other 

techniques which gives the value between 0.4 and 

0.7.  
 

 
Figure 13: Comparison of the Average Clustering Coefficient Value for Evolved Community 

 

Modularity-based methods can be adapted to 

dynamic networks, where tracking changes in 

modularity helps monitor community evolution, 

detect key events, and understand network 

dynamics. In dynamic social networks, a minimum 

modularity value should serve as a benchmark. As 

shown in Figure 14, LCD and WCD consistently 

yield higher partition quality, especially in the 

Email-EuAll dataset, indicating their effectiveness 

in identifying well-separated communities. In 

contrast, Clique Percolation and Fluid 

Communities produce lower average modularity 

values. However, with parameter tuning, these 

algorithms could contribute to developing more 

robust methods for detecting community 

evolution in dynamic social networks, as 

illustrated in the earlier real-time examples. 
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Figure 14: Comparison of the Average Modularity Value Per Community for Existing Algorithms 

 

Table 2: Comparison of Results on Major Community Detection Algorithms on Email-Euall Network 

Dataset 

Algorithm 
No. of 

Communities 

Average No of 

Nodes per 

Community 

Average 

Clustering 

Coefficient 

Average 

Modularity 

of 

Community 

Clique Percolation (CPA) 3 132.334 0.412  

Label Propagation (LPA) 46 10.326 0.412 0.386 

Louvain Community Detection 

(LCD) 
32 14.844 0.412 0.461 

Walktrap Community Detection 

(WCD) 
39 12.179 0.412 0.446 

 

The Email-EuAll dataset's community detection 

findings are provided in Table 2, which also shows 

the average modularity values and number of 

communities for each algorithm. 
 

Table 3: Comparison of the Results Obtained on the Major Community Detection Algorithms on Synthetic 

Dataset 

Algorithm 
No. of 

Communities 

Average No of 

Nodes per 

Community 

Average 

Clustering 

Coefficient 

Average 

Modularity 

of 

Community 

 

 

Clique Percolation (CPA) 15 3.4 0.0474  

Label Propagation (LPA) 4 25.5 0.0474 0.047 

Louvain Community Detection 

(LCD) 
10 10.2 0.0474 0.427 

Walktrap Community Detection 

(WCD) 
9 11.333 0.0474 0.428 

 

The performance metrics for the Synthetic dataset 

are shown in Table 3, which also illustrates how 

various algorithms react to simulated network 

dynamics. 
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Figure 15: Comparison of Modularity Values of Different Community Detection Algorithms for Datasets 

 

Performance pattern of community detection 

techniques are dissimilar based on statistical 

analysis of the three datasets. LCD and WCD always 

attain high modularity, in particular in sparse, well 

partitioned communities as those of Email-EuAll 

and Synthetic data, where the modularity takes 

values of 0.461 and 0.427, respectively (Figure 15). 

In comparison, CPA prefers small tight-knit 

clusters, thus leading to large modularity and small 

number of communities. LPA exhibits a more 

moderate modularity (0.386) in more sparse 

networks such as Email-EuAll but identifies 

smaller, but more communities in the Facebook 

dataset. Such observations are confirmed by 

correlation analysis as presented in Figure 16 

where qualitative results demonstrate a positive 

relationship between modularity and community 

granularity and a weak relationship between 

clustering coefficient and modularity. As presented 

in Figure 17, LPA has a relatively moderate 

modularity when it creates fewer communities, 

which establishes the suitability of the algorithm 

again to sparse networks. At large, the two forms, 

LCD and WCD are resistant to modularity-oriented 

tasks, but CPA and LPA are competent in special 

settings. 
 

 
Figure 16: Correlation Matrix of Different Parameters for Datasets 
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Figure 17: Scatter Plot of Average Modularity Value and Number of Nodes Per Community for Datasets 

 

Scalability Considerations 
Applying community detection to large, evolving 

real-world networks demands scalability. Louvain 

and Label Propagation (LPA) stand out for their 

efficiency. LPA, with near-linear time complexity 

and minimal global information needs, suits large, 

sparse networks. Louvain also scales well by 

reducing computation through hierarchical 

modularity optimization, making both suitable for 

dynamic networks. In contrast, algorithms like 

Clique Percolation and Walktrap struggle to scale 

due to higher time complexity and reliance on 

global structures. Clique Percolation’s dependence 

on k-clique counting and Walktrap’s use of random 

walks become computationally expensive in dense 

or large graphs. These limitations hinder their use 

in real-time systems without further optimization. 

Future work should focus on distributed 

frameworks, graph sampling, and incremental 

detection to adapt resource-intensive methods for 

high-scale, dynamic networks (63). 

Practical Applications 
Insights from studying community dynamics and 

hierarchical evolution in social networks have 

valuable practical applications. In corporate 

management, understanding shifting hierarchies 

and communication clusters can help detect 

isolated departments, identify informal leaders, 

and improve internal communication. In 

marketing and social innovation, tracking 

influential networks and their evolution supports 

targeted outreach, viral campaigns, and product 

adoption strategies. These insights enable 

organizations to align interventions with emerging 

social structures and influence patterns (18). 

Dynamic community detection enhances modeling 

in fields like epidemiology by enabling real-time 

tracking of disease transmission channels and 

supporting targeted interventions. In 

cybersecurity, detecting sudden changes in 

community behavior or hierarchy can reveal 

insider threats or coordinated malicious activity. 

Temporal modeling of user communities also 

improves personalization and relevance in 

recommendation systems and information 

retrieval platforms. Thus, the approaches 

discussed in this paper can support a wide range of 

systems that rely on evolving human interaction 

networks (18). 

Comparative Analysis with Previous 

Studies 
The performance of community detection methods 

that are established in the study has been 

determined to support a number of past 

researches. More specifically, modularity-based 

algorithms, including Louvain, showed better 

results in detecting well-separated communities in 

both Facebook and Email-EuAll data sets, which 

was also observed in the previous work (23,25). 

Label Propagation is a static approach, so it is 

natural that it has good performance on the sparse 

and dynamic settings as compared with the prior 

literature due to its tendency to work effectively on 

communication networks (18,54). These insights 

lead to the conclusion that some of the static 

algorithms naturally crop up dynamic settings and 

further the credibility of modularity as a metric of 

quality. There have been shortcomings of the 
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Clique Percolation Algorithm (CPA) in large or 

poorly connected networks because it relies on 

dense clique patterns. This finding is contrary to 

previous findings that pointed out the strong 

ability of CPA to identify small, overlapping 

communities (55). The difference can be explained 

by a gap in the scale and topology of datasets and 

the necessity to match the algorithm choice and the 

features of a network. The current paper adds to 

this realization by measuring how the modularity 

and clustering coefficient of CPA changes with 

increasing network sparsity. 

Its issue with scalability on larger temporal 

snapshots was also discussed even though 

established to be very successful on smaller 

networks (61). The timing point of analysis in the 

proposed research should be contrasted with the 

majority of previous analyses conducted using a 

snap shot evaluation that indicate that the 

temporal implementation showed that the 

structural evolution over the years impacts 

detrimentally on the behavior of Walktrap. It was 

likewise discovered that despite Label Propagation 

being computationally efficient in large networks, 

modularity and stability remain dataset-

dependent this is particularly in environments 

where there is a density of connections such as the 

case in Facebook (46). This work by introducing 

temporal variability and multiple-data set 

evaluation, further contributes to the evaluation of 

community detection methods, and increases the 

foundation of dynamic network analysis under 

diverse real-life circumstances. 
 

Conclusion  
Social networks continually evolve as nodes and 

edges are added or removed, and social events lead 

to varied interactions. This study applied Louvain, 

Walktrap, Label Propagation, and Clique 

Percolation to detect communities and hierarchies 

in three networks: Facebook Social Circles, Email-

EuAll, and a synthetic dataset. Results showed that 

Clique Percolation maintained strong clustering 

coefficients, Label Propagation excelled in sparse 

networks, and Louvain and Walktrap performed 

well in terms of modularity. The findings highlight 

the adaptive nature of social networks and the 

importance of aligning algorithm choice with 

network characteristics. While static visualizations 

were used to illustrate temporal changes, they fall 

short in capturing the dynamic nature of social 

networks. Future research will explore interactive 

visualizations and time-lapse graph animations to 

better represent community formation, fusion, and 

dissolution over time. These tools may provide 

more intuitive interpretations and deeper insights 

into temporal behavior. Additionally, the study 

proposes enhancing the scalability and 

hierarchical detection of Clique Percolation by 

integrating neighborhood theory to better capture 

temporal evolution for practical applications. 
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