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Abstract 
To address the issue of traffic congestion, a new unsupervised incremental learning strategy has been proposed to 
identify and profile traffic congestion in metropolitan areas. The proposed model can effectively analyze and anticipate 
traffic situations in urban areas and improve traffic efficiency. Additionally, a clustering method based on Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) and Ordering Points To Identify the Clustering Structure 
(OPTICS) has been suggested to cluster accident-prone regions. This method outperforms other algorithms based on 
synthetic and actual datasets. Furthermore, this research aims to determine and forecast the traffic flow of the road 
network using GPS data from floating cars. The traffic condition of the metropolitan road network is determined using 
an emerging hot spot analysis tool to look for diverse patterns of hot spot formation. Using the time series clustering 
approach, the road network is partitioned into groups with comparable spatiotemporal features. The three-time series 
forecasting models are also applied to estimate traffic operation status, and the proposed model outperforms the 
existing methods. Finally, this study proposes efficient and effective methods for managing traffic congestion in urban 
areas. These methods can help identify, assess, and forecast traffic congestion levels, crucial for improving traffic 
efficiency and ensuring public safety.  

Keywords: Adjusted Information, Affinity Propagation, Clustering Structure, Density-Based, Hotspot Analysis, 
Spatial Clustering. 
 

Introduction 
In today's world, traffic congestion is one of the 

difficult scenarios faced in metropolitan cities. 

There is a direct correlation between the time 

people spend caught in traffic jams and the 

pollution in metropolitan areas. Traffic congestion 

is a major issue in many cities worldwide, leading 

to significant delays and negative impacts on 

health and safety. Traditional approaches to 

detecting congestion often rely on data from fixed 

sensors, which can be costly and have limited 

coverage. A new experimental approach using 

Particle Swarm Optimization (PSO) has been 

developed to address these limitations. PSO is a 

metaheuristic optimization algorithm that is 

effective in solving complex problems, and it has 

recently been applied to traffic congestion 

detection. Drivers lose 97 hours yearly due to 

traffic congestion (1). The increasing mobility of 

today's society has led to a rise in traffic accidents. 

Road traffic accidents are a public health and social 

issue because of the number of injuries and deaths 

they cause. To properly allocate resources for 

enhancing safety, adding value-added data to 

accident hotspots and analyzing their actions is 

essential. Using GIS and other value-added data 

forms, it is possible to acquire a better knowledge 

of the indicators of causal effects by finding road 

accident hotspots. GIS is a system for storing, 

retrieving, and analyzing geographic data (2). 

Recent academic research evaluates and uses 

initial data effectively to gain vital information (3). 

The theoretical and practical relevance of 

accurately analyzing Urban traffic congestion's 

spatiotemporal characteristics and fully exploring 

its complex operational regularity is significant. It 

has been over two decades since the 

Autoregressive Integrated Moving Average 

(ARIMA) was first used to forecast traffic flow 

issues (4). Spatial data management and analysis 

are essential for several applications. They are 

based on real-time applications, such as satellite 

imagery processing, X-ray crystallography, etc. It 

necessitates the use of automated knowledge 

discovery (5). The clustering technique is 

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY 

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, 

and reproduction in any medium, provided the original work is properly cited. 
 

(Received 21st February 2025; Accepted 12th July 2025; Published 30th July 2025) 



Raju et al.,  Vol 6 ǀ Issue 3 

1529 
 

developed based on density to organize 

geographical data better. The construction of 

spatial dataset algorithms must address the 

following fundamental concerns (6). 

● There would be a need for more expertise in 

spatial data. Hence, the algorithm must work in 

an unsupervised way. 

● No centroid or grids may be employed since the 

groupings will take on random forms. 

● Databases are massive. Because clustering 

necessitates working with all of the available 

data, the algorithm should use processing 

approaches that are both quick and efficient. 

● The proposed experimental approach using 

particle swarm optimization can significantly 

improve the accuracy of road traffic congestion 

detection modeling and analysis. This is 

because particle swarm optimization can 

efficiently search for the optimal combination 

of parameters to detect and analyze traffic 

congestion in real time accurately. 

● The proposed approach can also improve road 

users' health and safety. Accurately detecting 

and analyzing traffic congestion can help 

reduce the risk of accidents caused by sudden 

stops or unexpected changes in traffic patterns. 

The DBSCAN, a typical clustering technique, tries 

to mine datasets for potentially relevant 

information. Clustering analysis technology relies 

heavily on the DBSCAN algorithm. However, 

despite the DBSCAN algorithm's numerous 

benefits in clustering, it also has a few drawbacks. 

DBSCAN's minpts and eps will vary depending on 

the analyzed datasets. Traditional clustering 

methods may be divided into three categories, 

each with its own principles: partition-based and 

hierarchical (7). By reducing the total distances 

between points in a cluster, a partition-based 

approach is used to assign points to clusters while 

at the same time increasing the distances between 

the points in different clusters (8). The cluster 

count must be determined in advance to utilize this 

strategy. 

Because of its excellent computing cost, the 

hierarchical clustering approach needs to be 

revised for substantial point clouds. Algorithms for 

detecting traffic jams have long relied on GPS data. 

The speed performance index (SPI) was developed 

using floating vehicle data to analyze traffic 

conditions. The journey duration is determined by 

analyzing the vehicle's GPS trajectory information 

(9). Traffic accidents and temporary traffic 

management are the most common causes of 

occasional congestion, but regular traffic flows are 

more likely to produce persistent congestion (10). 

Unlike occasional congestion, recurring congestion 

has particular laws for generating, spreading, and 

dispersing. The congestion is always generated 

and dissipated simultaneously on the same day, 

while the position and propagation direction are 

highly comparable in the spatial dimension. This 

research examined the spatial and temporal 

patterns of recurring workday congestion. The 

recurring congestion is controlled in the road 

network by continually monitoring its 

spatiotemporal pattern (11). 

The novelty of this work is that they propose a 

broad approach to controlling traffic congestion in 

big cities using improved unsupervised learning 

schemes and clustering techniques. This work 

presents a strong method for clustering accident-

prone areas to analyze and predict traffic events in 

metropolitan cities using DBSCAN and OPTICS. 

Besides, accurate determination and forecast of 

the traffic flow is possible due to GPS data of 

floating cars, which implements hot spot analysis 

and time series clustering. Using three-time series 

forecasting models takes the prediction to higher 

levels than previously achieved, with a significant 

boost from applying the models. Hence, this 

multiple perspective study develops and evaluates 

traffic congestion indicators and helps design the 

future tactics of increasing traffic efficiency and 

safety in urban areas. 

The novelty of our method lies in a new blend of 

mining approaches, detection mechanisms, and 

type of data. In contrast with earlier studies that 

have a tendency to use static sensor readings and 

traditional clustering algorithms, our model 

combines Particle Swarm Optimization (PSO) with 

state-of-the-art density-based clustering 

algorithms such as DBSCAN and OPTICS to deal 

with non-conventional traffic patterns in an 

unsupervised fashion. In addition, we use the latest 

hotspot analysis and floating vehicle GPS data 

time-series clustering to model real-time 

spatiotemporal traffic flow dynamics. Not only 

does the integration improve the accuracy of 

congestion detection, but it also improves 

forecasting performance by utilizing several time-

series models (CFF, ESF, and FBF), providing a 

more dynamic and predictive urban traffic 
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congestion management system compared to past 

literature. 

Incorporating the proposed model is also critical 

because the problem of traffic congestion in urban 

areas is complex, and the analysis involved needs 

to employ the best of different analytic and 

clustering methods. City traffic environments are 

dynamic and complex, with factors that differ in 

space and time and cannot be addressed without 

special techniques for assessment and prognosis. 

When using DBSCAN and OPTICS in conjunction, 

clustering the accident-prone areas yields a less 

streamlined yet more accurate method of detecting 

the critical hotspots that cause congestion. Also, 

the model can predict the traffic flow using GPS 

data and the emerging hot spot analysis in real-

time, which is vital in timely interventions. 

However, this documented integrated approach of 

a consultant strengthens and optimizes traffic flow 

management approaches and traffic management 

systems to become efficient while reducing the 

danger associated with the urban transport 

system. 

The GPS trajectory records gathered using floating 

vehicles serve as the main source of traffic 

information in the analysis. It is real-time, high-

resolution spatiotemporal data. In order to 

maintain data reliability and prevent noise, there 

was a strong preprocessing pipeline was 

implemented. This involved the elimination of 

error trajectory points that are beyond the 

acceptable speed limits, rejection of duplicate or 

in-temporally incompatible records, and 

stationary points due to extended parking or 

idling. Invalid data out of the research scope were 

eliminated, and spatially contiguous records with 

equal time intervals were kept. Additionally, 

computations of average speeds and traffic 

performance measures were conducted upon 

rastering the road network into equal grids. Such 

strict cleaning and preprocessing ensured input 

data were representative, noise-free, and accurate, 

and a good representation of real traffic dynamics. 

Experts and academics in traffic accident 

prediction employ clustering approaches 

extensively, allowing pedestrians to get fast but 

accurate and less costly safety delivery (12). 

Spatial clustering has been addressed in several 

types of research. Some of the most significant 

contributions to this field are analyzing some 

geographic locations with a higher incidence of 

road accidents. The riskiest regions on the road can 

be analyzed using the K-means algorithm (13). 

Several clustering techniques using internal and 

external measures are analyzed. Silhouette, 

Davies-Bouldin, and Calinski-Harabasz measures 

were employed to compare clusters with the 

researchers. Using these methods, a researcher 

may quickly choose the best cluster for analyzing 

data on traffic accidents (14). 

Additionally, the researchers did not contrast 

clustering methods according to how quickly they 

ran. Run-time measurements may be helpful in the 

selection of an algorithm for non-experts. This 

work covers a wide range of topics that might 

benefit a novice researcher. K-means and DBSCAN 

clustering algorithms were compared for their 

performance (15). The researchers compared 

DBSCAN and k-means based on "run time" and 

accuracy. Even yet, when it came to showing which 

clustering method was superior based on the 

accuracy and complexity. The research compared 

the performance of several algorithms across 

various platforms (16). However, this research 

explores whether the method is superior for 

analyzing data from road accidents. 

Diversity is an effective method for improving 

information retrieval (IR) (17). To account for the 

query-to-document lexical discrepancy, a 

probabilistic model was developed. The real-time 

and predictive data may be used to anticipate 

traffic congestion (18). They devised two 

assessment frameworks to test the proposed 

method's accuracy and computing efficiency. The 

natural and typical bus travel times are calculated 

using the vehicle's GPS trajectory information with 

the classification and congestion index (19). The 

road network's traffic status is exactly identified 

and rapidly disseminates crucial data that provides 

the logical flow of the driving paths to reduce 

traffic congestion. Researchers studying traffic 

congestion use the exact trajectory information. 

The document retrieval system is developed using 

passage-based information with increased 

performance (20). A rating of passages generated 

in response to the query was used to evaluate the 

application of learning-to-rank-based document 

retrieval techniques. Based on the floating 

automobile data, a unique speed performance 

index (SPI) is developed to evaluate current traffic 

circumstances (21). 
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This work has several important advantages, such 

as the possibility of employing further and more 

advanced clustering concepts in connection with 

real-time data analysis to predict transportation 

congestion in large established urban areas 

effectively. Application of DBSCAN and OPTICS for 

identifying problematic zones in terms of raising 

the number of accidents increases the accuracy of 

congested area detection. Integrating the GPS data 

of floating cars will facilitate real-time traffic flow 

monitoring and prediction. Besides, the model's 

flexibility to changes in spatiotemporal traffic 

features allows for better response to traffic and 

subsequent control. Such combined strengths 

make it possible to produce a more general and 

anticipative approach to controlling urban traffic, 

which improves traffic flow, decreases congestion, 

and increases public safety. 

The work has some shortcomings, but before 

listing them, it is worth stating that these 

limitations are typical of many similar studies. One 

vulnerability is that using DBSCAN, OPTICS, and 

real-time data implementation may be time-

intensive and computationally extensive and may 

need to be more efficient in huge, dynamic city 

areas. Also, since the GPS information is collected 

only from float cars, there may be systematic 

biases if the information collected is not random or 

if the float cars’ coverage is not random and 

comprehensive. Further, the approach may fail to 

consider such factors as weather or any other 

unexpected event that can cause a shift in traffic 

flow patterns. These constraints point right back to 

recommendations for enhancement to scale up 

while maintaining the representativeness of data 

and factoring resilience against disruptive events. 
 

Methodology 
The mining technique adopted in this work is 

based mostly on unsupervised clustering 

supported by metaheuristic optimization methods 

for optimizing clustering performance. 

Specifically, the method employs Density-Based 

Spatial Clustering of Applications with Noise 

(DBSCAN) and Ordering Points To Identify the 

Clustering Structure (OPTICS) for identifying 

accident-prone areas and congestion clusters 

label-free. These are further enhanced with 

Particle Swarm Optimization (PSO) for enhancing 

cluster parameters towards achieving increased 

accuracy and responsiveness to a variety of traffic 

scenarios. The approach integrates time-series 

forecasting models and clustering models to 

identify spatiotemporal congestion patterns. The 

approach can thus accurately be termed as an 

unsupervised, multi-technique clustering 

framework for real-time urban traffic mining and 

prediction. 

One of the most often utilized metaheuristic 

techniques for solving optimization issues is the 

Particle Swarm Optimization (PSO). Because PSO 

optimizes in a time-sensitive way, results from PSO 

may be retrieved in real time (22). This is a huge 

benefit. A multi-start PSO is used to accomplish 

density-based clustering, as illustrated in Figure 1. 

There are three primary steps to the proposed 

method: cluster thresholds, multi-start PSO for 

cluster node identification, and cluster 

construction. 

This model collects and analyzes real-time data 

from traffic cameras and sensors to detect traffic 

congestion. The PSO algorithm is then applied to 

optimize traffic signal timings and control traffic 

flow, reducing congestion and minimizing the risk 

of accidents. The model also includes a predictive 

analytics component, which uses historical traffic 

data to predict congestion and recommend 

proactive measures to prevent it. The proposed 

model can improve traffic flow, reduce travel time, 

and enhance road safety, resulting in significant 

economic and social benefits. 

In this experimental approach, utilizing Particle 

Swarm Optimization for road traffic congestion 

detection modeling and analysis is a promising 

solution that can enhance road health and safety by 

optimizing traffic signal timings and controlling 

traffic flow based on real-time and historical data. 

The overall framework of the research study is 

depicted in Figure 1. 

Nodes are identified as belonging to a cluster based 

on the node's density in a particular region. The 

first step in the clustering process is to define the 

threshold level at which a point may be included in 

a cluster based on the data. The maxdist and 

minpts are critical features that must be 

considered while calculating the threshold. A node 

may only be included in an available cluster if it is 

within a certain distance (maxdist) of another 

node. Nodes must be surrounded by a minimum of 

minutes of nodes before they are considered part 

of the cluster (23). This characteristic is known as 
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the direct density accessible for nodes n1 and n2. 

This cluster includes both of these sites. 

This research is divided into three parts: 

identifying and forecasting urban traffic conditions 

and mining spatiotemporal patterns using various 

data sources. Many methods, such as processing 

trajectory data, are developed as a grid model, and 

road traffic performance indicators must be used 

to determine whether or not there is traffic 

congestion (24). Emerging hot spots and time 

series clustering are part of spatiotemporal 

pattern mining. The space-time cube and time-

series approach predict traffic congestion on urban 

roadways. 
 

Figure 1.  Overview of The Framework for The Study 

Trajectory Data Processing 
Crucial phases in trajectory data processing 

include eliminating inaccurate and speed 

information. Figure 2 displays the data processing 

for trajectory data. The central processing units 

are listed below: 

• Remove inaccurate data: The trajectories 

beyond the research's purview are deleted, and 

any trajectories that exceeded 100 km/h when 

the vehicle was in an abnormal state  

• Precise invalid time-related data: A 

chronological sort of each vehicle's trajectory 

points was performed, and any points with 

multiple time stamps were purged. A trajectory 

point will be considered an isolated point and 

eliminated if the temporal separation between 

it and two neighboring trajectory points is 

more than 5 minutes (25). 

• Clear invalid parking points: After 3 minutes, it 

was found that cars idling on the side of the 

road, waiting for passengers, were providing 

false data. Therefore, those trajectory points 

were eliminated. 

• Compute the trajectory's average speed: The 

whole road network was broken down into 

equal-sized grids. After that, the latitude and 

longitude of each grid were rasterized, and the 

grids were assigned numbers. The final step is 

calculating each grid's path's average speed 

(26). 

• Compute the traffic performance index for the 

road: The TTI for each grid was calculated 

based on the vehicle's speed. 
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Spatiotemporal Traffic Patterns and 

Space-Time Cube Model 
ArcGIS Pro was utilized to mine spatiotemporal 

patterns in this investigation. By using time series 

analysis, the model creates the visual 

representations of spatiotemporal data. Hot and 

cool spots may be identified over time using new 

algorithms that use multidimensional data sets. 

The GPS data at one-hour intervals is analyzed 

using the hot spot analysis approach (27). The 

places are divided into separate groups in a space-

time cube (STC), each having the same time-

measure characteristics.
 

Figure 2:  Trajectory Data Processing 
 

The multidimensional cube of the raster layer 

was used to develop the multidimensional 

cubical structures. The STC will have the exact 

temporal and spatial resolution as a 

multidimensional raster. The raster cells 

dimension is converted from each space-time 

bin. The columns, rows, and time steps define the 

structure of the STC. To obtain the bin count in 

the STC, multiply the row and column counts by 

the number of time steps. Rows and columns 

define the geographical and temporal ranges of 

the cube. The cube of space and time is seen in 

Figure 3. 

The suggestion acknowledges that the spatial 

representation of how effective the model is 

useful. To that end, congestion time-series plots 

and heatmaps are included in the study to 

illustrate the traffic congestion dynamics across 

locations and time periods. These are geo-

referenced using ArcGIS Pro and the space-time 

cube (STC) technique, in which one can 

determine sustained, occurring, and transient 

hotspots. Time-series clustering outputs also 

illustrate that the congestion patterns change 

over time and provide better insight into both 

spatial density prediction and temporal change 

of metropolitan traffic. These visualization 

resources improve the interpretability and 

usefulness of the proposed model.  

Hotspot Analysis 
Watch out for hot and cold spots in the space-

time cube that may be constant, sporadic, or 

oscillating. The Getis-Ord Gi statistic is applied, 

which considers every bin's information among 

its neighbors to calculate the degree of clustering. 

To determine which bins are included in a 

particular inquiry neighborhood, the method 

looks at neighborhood bins that fit under the 

defined conceptual link of Geographic distances. 

Bins must be included if they have been present 

in the same region for N neighboring time steps. 

Following that, two distinct analyses are 

performed: (1) the clustering strength of high 

and low values in adjacent bins was determined 

by examining the individual bins separately. 

These results are computed with Kendall’s 

measure using each bin's p-value, Z-score, and 

category in STC (28). Emergent hot spot analysis 

is organized in terms of structure, as shown in 

Figure 4. 

 Series Clustering 
 Series clustering identifies distinct network 

congestion where each cluster's constituents 

have comparable time measures. The kinds of 
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congestion are grouped due to their shared 

historical background similarities. The image 

shows a grouping of time series. The location 

measures of time series inside and outside every 

group experience increasing levels of clustering 

when the space-time cube is partitioned into 

distinct groups. The correlation strategy groups 

the time series whose values fluctuate in 

lockstep. To evaluate the similarity of time series, 

this method uses statistical correlation that 

determines the differences between two time 

series. The positions of a cube were grouped 

according to the notion of similarity over time 

using the Partitioning Around Medoids (PAM) or 

K-medoids method. Determining how many 

clusters to utilize in a clustering procedure is 

challenging. An F test will determine the optimal 

number of clusters in this technique. When the 

cluster becomes closer to the time series, F 

values increase, showing that clustering is 

effective. Hostop classification and its 

significance are shown in Figure 5. 
 

 
Figure 3: The Space-Time Cube  

 

Figure 4: Hot Spot Trends 
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Figure 5: Hotspot Classification Method

 

Kernel Density Estimation  
Many spatial tools have been created to better 

grasp how point patterns change geographically by 

estimating the Kernel densities (29). Kernel 

density estimation (KDE) has numerous benefits 

over statistical hotspots and clustering methods 

like K-means. For this strategy, the primary benefit 

is estimating the extent of an accident's danger. As 

a result of spatial dependence, there is an 

increased possibility of an accident near a 

designated cluster. By applying this density 

approach, it is feasible to create and homogenize 

an arbitrary geographic unit of analysis for the 

whole region, allowing for comparison and, 

eventually, classification (30). 
 

 
Figure 6: Time Series Clustering

In Kernel density estimation, each point is placed 

on the surface of a symmetrical polygon, the 

distance to a reference site is evaluated using a 

mathematical function, and the result for each 

polygon is summed. This technique is performed 

for each of the points on the compass. It is thus 

possible to estimate the density of the distribution 

of accident spots by adding the density estimates 

of each kernel. Time series clustering is presented 

in Figure 6.
 

𝑓(𝑥, 𝑦) =
1

𝑛ℎ2
∑  𝑛

𝑗=1 𝐾𝑑𝑗𝐶ℎ                                [1] 

𝑓(𝑥) =
1

ℎ𝑛
 ∑  𝑛

𝑗=1

(𝑥−𝑥𝑗)

ℎ
𝐾                                   [2] 

 

Assuming no outliers exist in the data, the density 

is estimated at the point (x, y) by multiplying the 

density estimate by the observation count (n) and 

the bandwidth h. To produce a smooth and 
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continuous surface, kernel values are placed. The 

KDE approach is a method of determining 

bandwidth (the kernel) surrounding each place 

where the indication may be viewed. This applies a 

suitable function to the indicator's value at that 

particular moment. They add up all of these values, 

and even if there are no occurrences of the 

indicator variable, it yields a density estimate for 

the whole surface. There are two ways to 

determine density: the basic approach and the 

kernel method. Cell density values are computed 

by taking the number of features in the search area, 

considering the area's size, and then drawing a 

circle around each cell to determine how many 

cells there are. The neighborhood's radius 

influences the density map's appearance. If the 

circle's radius is enlarged, more feature points may 

be included, resulting in a more uniform density 

surface. The kernel approach uses a fixed number 

of cells to split the study area into sections. Instead 

of drawing a single neighborhood around each cell, 

a circular one is built around the accidental region 

instead of just one. A mathematical equation goes 

from 1 at every feature location to 0 at the 

boundary, as shown in Figure 7. 

The particle velocity is updated using.
  

𝐶𝑎𝑝𝑉𝑗 =  {𝑐𝑟
𝑉𝑚𝑎𝑥

𝜌
− 𝑎 𝑖𝑓 |𝑉𝑗| <  𝑉𝑚𝑖𝑛  𝑉𝑗 + 𝑟/𝑐, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               [3] 

 

The collision factor of a particle is deed using𝑐𝑓𝑐𝑓𝑖 =  
1

1+𝑒2−𝑓(𝑖)                     [4] 
 

sigmoid operation 𝑆(𝑝𝑖) is given by 

𝑆(𝑝𝑖) = 1/(1 + 𝑒−𝑝𝑖)                                   [5] 

Determine the updated velocities of particles using 

Vi = wVi  + r1 c1 (Cbest – Ci) + r2 c2 (Cgbest – Ci)    [6] 
                                                           

The Department of Transportation and the Police 

collect this data, known as Stats19 data, which 

includes official accident information. To ensure 

the validity and reliability of the data collection, 

GPS information is recorded with the accident's 

position to a 10-meter precision. High-density grid 

cells (2290) were used to create the final surface. 

Many grid cells in densely populated city areas are 

clustered together, showing varying sizes. Both cell 

size and bandwidth (also called search radius) 

impact the KDE's performance. The bandwidth is 

critical for identifying the optimal density surface. 

The size of the hotspots may be influenced by the 

bandwidth used; in general, the more bandwidth 

used, the bigger the hotspots will be. Choosing the 

bandwidth and grid cell size for road accident 

density measurements is a guessing game due to 

the need for defined parameters. The search radius 

of 200 m is considered for this research since that's 

twice the size of our grid cell with the bandwidth 

at 200 m. Table 1 shows the environmental 

attributes and relative information in the relative 

information in context of the environment, 

referring to data or knowledge that is relevant or 

meaningful concerning a particular environmental 

attribute or issue.
 

 
Figure 7: The Density Approach Based on the Quadratic Kernel Density 
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Table 1. Environmental Information  

 

Forecasting and Validation 
Two models created using these methods are 

necessary to forecast the future of time series. 

Conversely, the prediction model is built to predict 

the time step's worth. A validation model is also 

utilized to confirm the predicted values. The time 

series data are fitted into the prediction model at 

each place in STC. Then, FRMSE is calculated for 

each time series using.  
 

𝐶𝑎𝑝𝐹𝑅𝑀𝑆𝐸 = √∑  𝑇
𝑡=1 (𝑐𝑖 − 𝑟𝑖)2/𝑇                                 [7] 

 

T – time steps, ct – curve value, and rt – raw 

information at point t. The application of the 

forecast and validation models is shown in Figure 

7. The method's original time series is evaluated 

using the FRMSE. The accuracy of the forecast 

model cannot be determined from this 

information. It typically fits the time series when 

extrapolating, but cannot produce reliable 

projections. The validation model offers an answer 

to this problem. A prediction model's ability to 

forecast future values for each time series is tested 

using the validation model. Each time series' last 

section is eliminated, and the forecasts from that 

data set are then used to build a prediction model. 

The difference between anticipated and raw values 

for time steps is expressed as the square root. 

The Validation Root Mean Squared Error (VRMSE), 

a measure of the predictability utilized in the 

study, is computed. A validation model must be 

used if you wish to evaluate the precision of a 

prediction model, even when it isn't used for 

forecasting, to support model prediction where it 

is the prediction produced from time steps 1 

through T-m, m, the count of time steps to be 

withheld for validation. Forecast and validation 

models are depicted in Figure 8.

        

 
Figure 8: (A) The Forecast, (B) Validation Models 

 

                                     Cap𝑉𝑅𝑀𝑆𝐸 = √∑  𝑇
𝑡=𝑇−𝑚+1 (𝑐𝑖 − 𝑟𝑖)2/𝑚                                                  [8] 

 

This paper covers all three facets—post-hoc trend 

analysis, real-time congestion detection, and 

prediction beforehand—to present an end-to-end 

system for the management of traffic congestion. 

Post-hoc analysis is conducted through hotspot 

mapping and trajectory clustering to detect 

patterns of congestion in the past. Real-time 

detection is accomplished through floating 
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Road Length Map 

Length of Cycle Land 

Pedestrian Crossings              

City underground locations  

Traffic lights                                                                  

Bus stops                                                                        

University & Schools  

Speed cameras                                                                                       
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vehicles' GPS data that monitor real-time traffic 

status and feed into clustering algorithms 

(DBSCAN and OPTICS) for real-time congestion 

detection. In addition, sophisticated forecasting is 

obtained by applying time-series clustering and 

forecasting models (CFF, ESF, and FBF) to forecast 

future congestion levels based on spatiotemporal 

trends. It is a layered application that boosts 

responsiveness and accommodates short-term as 

well as long-term traffic management initiatives. 
 

Results and Discussion 
Reducing congestion on arterial highways is 

critical based on the network's congestion 

analyses. Building urban traffic microcirculation, 

increasing the density of the road network, and 

improving its capacity are essential. Pedestrian 

overpasses, safety islands, traffic signage, and line 

markings should all be highlighted as ways to keep 

roadways safe and convenient for everyone. Zebra 

crossings should also be redrawn. Shopping, 

catering, and entertainment establishments were 

found to be the most crowded areas during the 

evening rush hour. Side parking has become a 

prevalent problem in certain areas due to the need 

for more parking spaces nearby. This substantially 

affects road service levels and is critical to 

maximizing unused land usage and building more 

parking lots. To actively relieve parking issues, the 

shared parking policy is widely supported due to 

the various features of vehicle parking needs in 

various locations. The model increases public 

transportation use and service quality by 

optimizing the public transportation network. 

Spatiotemporal structures refer to patterns or 

configurations that evolve over space and time. 

These structures capture how certain phenomena 

or processes change and interact within a physical 

space across different periods in Figure 9. Time 

series clustering is a technique that groups similar 

time series data based on their patterns, trends, or 

other characteristics. By clustering time series 

data, we can identify groups of data that behave 

similarly over time, which helps simplify analysis, 

detect patterns, and make predictions in Figure 11. 

Clusters and hotspots refer to areas or groups 

where certain activities, events, or data points are 

concentrated. In the context of data analysis, a 

cluster is a group of similar items or occurrences 

that are close together either in a dataset or in a 

spatial area. A hotspot specifically refers to a 

region or location on the x-axis with a high 

concentration of activity or events on the y-axis, 

often indicating areas of special interest or concern 

in Figure 12.

     

 
Figure 9: Spatiotemporal Structures 
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Figure 10: The Cluster-based Time Series  

 

 
Figure 11: The Result of Time Series Clustering 

 

 
Figure 12: Clusters and Hotspots 
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There are intriguing patterns throughout time and 

geography due to the different cluster types. 

Mainly, the a large gap between clusters that 

incorporate walkers and bicyclists and those that 

don't; pedestrian and bicycle clusters predominate 

in the Centre of the city, whereas vehicle-only 

clusters are more common on the city's busier, 

arterial highways. This approach generates a 

database of various sizes and densities of hotspots 

and the collisions that occur inside the hotspot's 

limits. The database structure indicates that 

individual collisions are not examined. Still, the 

collection of collisions that are close to each other 

implies that there is some common or connecting 

causal element. At the same time, each site may be 

deemed distinct with characteristics – number of 

pedestrians, number of cyclists, and frequency of 

accidents in different climates. This similarity may 

construct a "like for like" comparison between 

hotspots. Table 2 represents the cluster 

characteristics, groups of related or similar entities 

that share common characteristics or attributes. 

These characteristics can vary depending on the 

type of cluster being considered.
 

Table 2. Cluster Characteristics 

 

Table 3. Comparison of Clustering Methods 

 

Table 3 compares the outcomes of the clustering 

techniques used for this study. A look at the most 

excellent accident-prone locations packed 

together using various clustering algorithms 

reveals a noticeable variation in the information 

quantity in each significant cluster that may 

confuse the users. Various comparisons are 

performed in this research to discover the best 

clustering technique for data on traffic accidents. 

These algorithms' efficacy is evaluated using two 

criteria in this section: execution time and internal 

cluster validation metrics.

It is possible to determine the clustering quality 

using the Silhouette coefficient. As well as 

demonstrating how specific or well-separated an 

item is from another cluster, it also displays how 

closely an object relates to the other objects. 

Objects with a silhouette score greater than 1 are 

both well-matched inside their cluster and poorly 

matched with clusters on either side. On the other 

hand, a lower number indicates that the item is a 

poor match inside its cluster and has some 

similarities with clusters to its immediate north 

and south. When an item is shown this way, it 

indicates how distinct or far off it is from other 

clustered objects (cohesion) (separation). From 

1/+1, which signifies that the item is matched well 

in its cluster and badly matched to its neighbors, 

the silhouette score ranges from 1/-1. Low values 

imply objects that are both unsuitable for their 

cluster and have some similarities with those in the 

clusters to which they belong. DBSCAN returns the 

maximum result of 0.751, as seen in Fig. 8. Two 

distances make up a silhouette score: a medium 

and a far one. 
 

𝑠 =
(𝑏−𝑎)

((𝑎,𝑏) )
                                                       [9] 

 

As you can see, a is the average distance among 

each point in one cluster, whereas b is the distance 

between the next nearest cluster's other points 

and sample, defined by d – d-inter-cluster distance. 

The clustering is predicted if a and b are equal. 

High Low 

Variable  Index                                             Variance Variable                   Index                Variance 

Accidents                                       499                81.52 Casualities*4             9                       5.45 

Number Cells                                485                81.33 Rain with wind           3                        6.27 

Other wallets                                153                 10.62 Vehicles*4                  2                        3.7 

Severity * Fatal                             137                  7.66 Snowing                     0                       2.3 

Vehicles * 1                                   124                 55.92 Vehicles*5                   0                      11.07 

Unknown                                      95                  13.07 Casualities*5               0                     6.74 

Tube Stations                                93                    2.8 Casualities*6               0                      3.22 

K-means (10) Mini K-Means (9) DBSCAN (13)  Optics (12) 

8394 (1) 8521 (4) 5310 (3)  5310 (3) 

6634 (2) 6691 (0) 2831 (1)  2831 (1) 

5312 (4) 5317 (2) 1745 (6) 1745 (6) 

3093 (5) 3215 (5) 1539 (5) 1559 (5) 
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The value of suitable visualization to facilitate 

better model validation and real-world 

applicability for traffic authorities and urban 

planners. To this end, the study places emphasis on 

visual attributes such as spatiotemporal heatmaps, 

hotspot categorization, space-time cube plots, and 

time-series cluster plots in order to represent 

intricate traffic patterns effectively visually. These 

visualizations not only confirm the result of 

clustering and prediction but also demystify 

technical results into intuitive observations for 

non-technical users. In the future years, these 

developments can be realized to integrate 

dashboard-based interfaces or GIS-enhanced 

visualization tools in an effort to enable real-time 

monitoring and decision-making within 

metropolitan traffic networks.

 

 
Figure 13: According to the Silhouette Coefficient, A Comparison of Clustering Techniques 

 

In other words, a value of one indicates that the 

two clusters are touching, a value more than one 

implies that the clusters overlap, and a value lower 

than one denotes a respectable distance between 

the clusters. Put another way, we're searching for 

small values that show how well two clusters can 

be separated. The Silhouette score and Davies-

Bouldin Index distinguish between each data 

point's centroid and the allocated cluster center 

point. 

When comparing clustering techniques using the 

Silhouette Coefficient, the method that yields the 

highest average Silhouette score across all data 

points is generally considered to have produced 

the most effective clustering. This comparison 

helps select the most appropriate clustering 

technique for a given dataset in Figure 13. 

Davies-Bouldin Index is defined based on the 

"within cluster" and "between-cluster" distances 

ratio. 
 

𝐷𝑖𝑗 =            ∑  𝑘
𝑖=1 𝐷𝑖𝑗                                      [10] 

 

𝑂𝑝𝑒𝑛(Between clusters 0, 1, 2, 3, and 4, Dij values 

are calculated, taking the sum of the values from 

those Clusters. Clusters 1, 2, 3, and 4 will be treated 

similarly. Then, the average of the highest values in 

the dataset is taken. A measure of how close the i 

and j clusters are together is called the "within-to-

between cluster distance ratio," or Dij. 
 

  𝐷𝑖𝑗 =
𝑑𝑖 + 𝑑𝑗

𝑑𝑖𝑗

                                                        [11] 

  

In this case, di and dj are the average distances 

between the centroid and each data point in cluster 

i. A distance of dij separates the two clusters' 

centroids. In this case, Dij is the cluster similarity 

index, estimated by multiplying the standard 

deviations by the difference between the center 

velocities and dividing that result by the sum of the 

squares. Di and die are both tiny, which shows that 

the ij clusters are incomparable. For example, a 

value of one indicates that the two clusters are 

nearby; a value of more than one indicates that the 

overlapping clusters; and a value of < 1 defines that 

the clusters are well separated. In other words, 

tiny numbers are considered to indicate how 

effectively two clusters are separated in Figure 14.
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Figure 14: Comparison Based on Davies-Bouldin Index 
 

Each cluster's "inter-cluster dispersion" and 

"intra-cluster dispersion" are added together to 

arrive at the Variance Ratio Criterion (VRC). The 

"better" the algorithm performs, the "higher" the 

index's score might be. There is no specified range 

for this value. The higher the score, the more 

distinct and dense the clusters are, which is 

consistent with the cluster concept. 

Calinski-Harabasz Index: The index, sometimes 

called the VRC, is calculated as the total dispersion 

inside and across each cluster. The "higher" the 

index's score, the "better" the algorithm performs. 

This value's range is not given. The clusters get 

clearer and denser as the score increases, which is 

compatible with the idea of a cluster. OPTICS 

returns the highest number, 597,722, as seen in 

Figure 10. The global centroid, as well as the 

relative centroids for each of the k clusters. 

Intercluster SSB and intracluster dispersion (SSw) 

(38). 

𝑆𝑆𝑤 = ∑ ∑‖𝑥 − 𝑚𝑖‖
2         

𝑥∈𝑐𝑖

𝑘

𝑖=1

                            [12] 

 

𝑇𝑆𝑆 − 𝑆𝑆𝑤                                                                 [13] 

   

Where k – clusters, and N – data points. The total 

number of squares in a dataset equals the sum of 

the square distances between the dataset's 

centroid and each data point. For each data point, 

Ci stands for the cluster it belongs to; mi is the 

cluster's centroid, and ||xmi || is their distance. 

This is followed by the Calinski-Harabasz Index 

(CHI) and then the ratio of dispersion inside and 

across clusters: 
 

𝐶𝐻𝐼 =
𝑆𝑆𝐵

𝑆𝑆𝑊

(𝑁 − 𝑘)

(𝑘 − 1)
                                            [14] 

 

Total data points are represented by N. Indexes 

such as the Calinski-Harabasz and the Silhouette 

measure the efficiency of a group by comparing 

pairwise differences in the distances inside and 

across clusters, respectively. 

According to the Silhouette Metric and Davies-

Bouldin Index, it has been concluded that DBSCAN 

is a superior option. The CHI is much higher for 

convex clusters than for alternative cluster 

definitions, such as clusters gathered from 

DBSCAN. K-means uses the closest mean to split 

the space, creating convex sections. As long as a 

line segment joining two locations is inside the set, 

it's called convex. Using DBSCAN and OPTICS, a 

maximum cluster radius is set. The algorithm will 

group points accessible from one another. 

However, a non-convex cluster is possible. A 

higher Calinski-Harabasz Index indicates better-

defined and more distinct clusters, making it a 

useful tool for comparing different clustering 

methods or determining the optimal number of 

clusters in a dataset in Figure 15. It's now obvious 

that DBSCAN creates clusters faster than OPTICS 

has shown in Table 4.
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                Figure 15: Comparison Based on CHI 

 

Table 4. Clustering Times 

Total No of Test 

Cases. 

Time Taken to cluster (sec) 

K-means Mini Batch K-means Optics DBSCAN 

8700 

20554 

32407 

0.05 

0.251 

0.348 

0.097 

0.1 

0.11 

11.349 

41.675 

81.656 

1.1126 

4.951 

7.899 
 

Real-World Deployment and Smart City 

Integration 
The mining technique adopted in this work is 

based mostly on unsupervised clustering 

supported by metaheuristic optimization methods 

for optimizing clustering performance. 

Specifically, the method employs Density-Based 

Spatial Clustering of Applications with Noise 

(DBSCAN) and Ordering Points To Identify the 

Clustering Structure (OPTICS) for identifying 

accident-prone areas and congestion clusters 

label-free. These are further enhanced with 

Particle Swarm Optimization (PSO) for enhancing 

cluster parameters towards achieving increased 

accuracy and responsiveness to a variety of traffic 

scenarios. The approach integrates time-series 

forecasting models and clustering models to 

identify spatiotemporal congestion patterns. The 

approach can thus accurately be termed as an 

unsupervised, multi-technique clustering 

framework for real-time urban traffic mining and 

prediction. 

Thus, clustering performance, spatiotemporal 

behavior, and forecast output have been checked 

and verified with literature results. For example, 

DBSCAN and OPTICS usage have been compared 

against standard clustering algorithms such as K-

means set in the literature (13–16). Likewise, our 

forecasting for time series is consistent with recent 

predictive traffic modeling literature (17–21). 

These analogies are to provide context for 

authenticating the strength and originality of our 

approach and placing it in the general intellectual 

and practical debate of traffic congestion analysis.  
 

Conclusion 
To get around the drawbacks of many earlier 

techniques for grouping accident-prone sites, this 

work suggests OPTICS and DBSCAN. The density-

based cluster strategies are more adept at finding 

geographical clusters and handling outliers than 

other methods. The simulation on a real-world 

dataset supports the same. This research is 

targeted to assess and forecast the current level of 

traffic operations on roads. The research focused 

on weekday traffic congestion and used the 

emerging hotspot analysis to search for fresh, 

escalating, recurrent, and sporadic hotspot 
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patterns every hour. The network's traffic status is 

split into three groups using a time-series 

clustering method. The time series prediction 

models are applied - CFF, ESF, and FBF. The 

forecast and VRMSE are measured for the model 

validation. As a result of this analysis, the following 

spatiotemporal characteristics of network 

congestion were identified: Intersections and 

significant urban arteries are the most often 

congested sites. Commuter routes are congested 

both in the day and night, with every rush period 

showing the most congestion. The lowest average 

FRMSE/RMSE figures clearly show that the CFF 

exactly anticipates the traffic state. However, this 

study has several drawbacks. More data might be 

incorporated into the model as a first step to 

improve accuracy. Future studies could look 

towards leveraging GPS data from vehicles to 

address the limitations of taxi GPS. These ML 

strategies are applied in this research to anticipate 

operational traffic conditions; more strategies still 

need an inquiry. Future studies should include a 

range of methods for traffic prediction. This 

research only applied TTI throughout various 

periods to create predictions. In the future, new 

evolutionary and hybrid methods will be applied 

further to reduce computing time and to increase 

the measures of performance. 

Future Work 
Using spatial data expertise has become 

increasingly crucial in developing unsupervised 

algorithms that cluster massive databases quickly 

and efficiently. The random groupings require 

innovative processing approaches to detect and 

analyze road traffic congestion in real time 

accurately. The proposed experimental approach 

using particle swarm optimization offers a 

promising solution to improving the accuracy of 

traffic congestion modeling and analysis. 

Furthermore, it can significantly enhance the 

health and safety of road users by reducing the risk 

of accidents caused by sudden stops or unexpected 

changes in traffic patterns. Overall, these 

advancements in traffic congestion detection and 

analysis will ultimately lead to more efficient and 

safer road networks for everyone. 
 

Abbreviations 
ARIM: Autoregressive Integrated Moving Average, 

CHI: Calinski-Harabasz Index, DBSCAN: Density-

Based, Spatial Clustering of Applications with 

Noise, FRMSE: Forecast Root Mean Squared Error, 

GIS: Geographic Information System, GPS: Global 

Positioning System, KDE: Kernel Density 

Estimation, OPTICS: Ordering Points To Identify 

the Clustering Structure, PSO: Particle Swarm 

Optimization, SPI: Speed Performance Index, STC: 

Space-Time Cube, TTI: Traffic Performance Index, 

VRC: Variance Ratio Criterion, VRMSE: Validation 

Root Mean Squared Error. 
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