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Abstract 
In the aerospace and automotive industries, structural integrity depends on it, and it is extremely important to 
automate weld defect detection because hand X-ray inspections are generally error-ridden or inefficient. The proposed 
work is presented as an advanced deep learning framework employing convolutional neural networks (CNNs) and 
traditional data augmentation techniques to mitigate the poorly distinguishable defects between X-ray and scanning 
electron microscope (SEM) images. The GDXray Welds Dataset was used to fine-tune a ResNet-50 model pretrained on 
ImageNet to tackle data scarcity. Considering these experimental results, the proposed approach achieved an F1-score 
of 0.93 and a mean average precision (mAP) of 0.90, which was significantly better than the baseline models, including 
the vanilla ResNet-50 (F1 0.80) and SVM-based classes (F1 0.63). The system demonstrated high efficiency but had 
problems stemming from session constraints in cloud-based environments and reduced sensitivity to sub-millimeter 
defects. The findings demonstrate the practicality of applying AI in the practice of quality assurance in the industrial 
field, particularly for small-scale operations. This study fills the gap between industrial needs and the academic 
development of AI-based manufacturing automation systems to become scalable and sustainable. 

Keywords: Convolutional Neural Networks, Data Augmentation, Industrial Automation, Nondestructive Testing, 
Weld Defect Detection. 
 

Introduction 
Welding is an essential manufacturing process in 

the automotive, aerospace, and construction 

sectors because the quality of welded joints 

determines both product safety and operational 

dependability. Quality standards and catastrophic 

failure prevention require welding inspection 

methods that can accurately detect weld defects, 

including crack formation, porosity, and lack of 

fusion (1). X-ray imaging, along with other 

traditional nondestructive testing (NDT) 

approaches, continues to be the primary method 

for weld inspection operations. Experts 

performing manual image evaluation encounter 

extensive workloads and lengthy processing times, 

alongside human errors during high-speed 

production scenarios (2). Through deep learning, 

CNN technology research has shown considerable 

promise in automating defect detection through 

the ability to extract multilevel features from 

image data (3). CNNs demonstrate exceptional skill 

in identifying complex patterns, which allows them 

to properly analyze elaborated weld defect 

indicators found in X-ray images. The development 

of resilient CNN models depends on substantial 

datasets that contain diverse samples; however, 

industrial defect assessment often faces difficulties 

when acquiring annotated defect specimens (4). 

The solution to data scarcity problems utilizes 

traditional data augmentation approaches that 

enhance training datasets through rotation 

techniques, scaling methods, flipping operations, 

and noise injection adjustments (5). These 

methods improve model generalization by 

generating different image orientations, scales, 

and environmental conditions, making defect 

detection systems more robust (6). 

This study examines how CNN-based architectures 

work in conjunction with traditional data 

augmentation methods when detecting weld 

defects through an analysis of the publicly 

accessible GDXray Welds Dataset (7). The GDXray 

Welds Dataset serves as a standardized 

benchmark for X-ray images containing diverse 

weld defects, which supports systematic detection 

algorithm evaluation. The main aim is to construct 

an accurate defect detection system that uses CNN 

features with augmentation techniques from the 

traditional domain to enhance dataset quality. This 

study uses performance metrics consisting of 

precision, recall, and F1-score to demonstrate how  
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an integrated methodology addresses data 

constraints while improving automated inspection 

capabilities.  

The research findings expand the knowledge of 

smart weld inspection systems and provide useful 

guidance to industries that want to implement AI-

based quality control systems. The proposed 

method demonstrates the excellence of CNNs in 

defect recognition and emphasizes how data 

augmentation produces performance benefits that 

enhance CNN models in resource-limited 

environments. 

In the aerospace, automotive, and construction 

industries, welded structures must be integrated 

to ensure integrity. It can be said that weld defect 

detection using Nondestructive Testing (NDT) is a 

fundamental role in this area. For the detection of 

weld defects such as foreign inclusions, cracks, and 

porosity, traditional NDT methods using X-ray 

radiography, ultrasonic testing, and eddy current 

testing have been broadly adopted (8). 

Nevertheless, these methods are human operator-

dependent, input-intensive, and susceptible to 

human errors, resulting in inconsistent defect 

detection (9). 

Several studies have attempted to implement 

automation techniques to enhance traditional NDT 

methods. For example, Kalman filtering has been 

used to track real-time radiographic defects in 

spiral pipes, reducing false alarms by tracking the 

continuity of defects between image sequences 

(10). Over 95% accuracy was achieved in defect 

classification based on another method using 

Gaussian Mixture Models (GMMs) and background 

subtraction (11). These approaches increased 

accuracy but were unable to adapt to such 

environments, especially in production and high-

speed environments, where unstable detection 

velocities impact performance (10). 

Although machine vision-based approaches were 

introduced to overcome human dependency and 

inefficiency in manual inspection, these 

approaches are not free from cost or error. In the 

area of vision-based defect detection systems, a 

study demonstrated more than 99% accuracy in 

real-time production lines (11). However, it uses 

handcrafted feature extraction techniques that do 

not adapt well to diverse defect types. Therefore, 

Convolutional Neural Networks (CNNs) are 

becoming a better alternative as deep learning 

methods. 

Weld defect detection has been revolutionized by 

deep learning because it enables automated 

feature extraction with high accuracy and 

efficiency. ResNet50 based on CNNs achieved high 

classification accuracies of 98.75%, 90.255%, and 

75.83% for three datasets with different image 

qualities (12). For instance, a custom CNN model 

based on infrared thermography achieved a mean 

accuracy of 99% and median F1-score of 73%, as 

deep learning has proven to be effective for weld 

inspection too (13). 

Furthermore, optimizing existing models resulted 

in even more improvements. Similar to previous 

CNN-based methods, YOLO V5-IMPROVEMENT 

(with attention mechanisms and advanced loss 

functions) achieved 92.2% precision and 92.3% 

recall, respectively (14). These are examples of 

neural network architecture refinement to 

increase accuracy and robustness in detection. 

To further increase model generalization, random 

rotation, shearing, zooming, brightness 

adjustments, and horizontal flips were applied 

(15). This creates a more diverse dataset so that 

the CNN can generalize better and provide better 

classification performance. For example, a CNN 

trained on the same dataset with standard data 

augmentation performed on 4,479 X-ray images 

would achieve an average accuracy of 92% for 

classifying six defect types (16). 

Beyond conventional augmentation, designs of 

advanced augmentation methods, such as 

Wasserstein Generative Adversarial Networks 

(WGANs), have also been exploited to synthesize 

synthetic defect images that alleviate dataset 

imbalance (17). It has been shown that extending 

the models' robustness performance can be 

achieved by applying GAN based augmented 

techniques with CNNs. It has been demonstrated 

that GAN-based augmentation can significantly 

improve model robustness, particularly if limited 

real defect samples are available (12, 17). 

Despite the great success in weld defect detection 

using deep learning, there are still two challenges: 

computational complexity and the need for large 

annotated datasets and real-time processing. 

Furthermore, the adoption of edge AI in 

implementation might also improve real-time 

defect detection and reduce cloud-based system 

dependency. The combination of deep learning 

with transfer learning and state-of-the-art 

augmentation techniques will help improve 
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automated weld inspection. This approach is 

reliable, scalable, and adaptable to diverse 

industrial applications. (12, 13, 16, 18). Transfer 

learning, a machine learning technique in which a 

model trained on one task is repurposed as the 

foundation for a second task, addresses data 

scarcity while reducing training time and 

computational costs. Combined with advanced 

data augmentation, this strategy improves model 

generalization, enabling robust defect detection, 

even with limited labelled datasets. A comparison 

of traditional nondestructive testing methods and 

deep learning NDT methods for identifying weld 

defects is shown in Table 1. Although techniques 

such as X-ray Radiography and Kalman Filtering 

have proven to be effective, they require 

substantial manual interpretation and have limited 

automation and consistency. In contrast, CNN deep 

learning models have increased accuracy, 

robustness, and efficiency for any given imaging 

modality. The combination of data augmentation 

techniques also improves performance, making 

deep learning augmentations for NDT industrial 

weld defect detection very enticing (19, 20). 
 

Table 1: Comparison of Traditional NDT and Deep Learning-Based Weld Defect Detection Methods from 

the Literature 

Citation Approach Methodology 
Accuracy 
(%) 

Key 
Advantages 

Key Limitations 

(8) 
Traditional 
NDT 

X-ray Radiography 
High 
(Manual 
Dependent) 

Effective for 
defect 

identification 

Requires skilled 
technicians, prone 

to human error 

(10) 
Traditional 
NDT 

Kalman Filtering 

Robust 
under 
unstable 
velocity 

Reduces false 
alarms 

Limited 
generalization 
across defect 

types 

(11) 
Traditional 
NDT 

Gaussian Mixture 
Model 

>95% 
High 

identification 
accuracy 

Reliance on 
background 
subtraction 

methods 

(12) 
Deep 
Learning 

CNN (ResNet50) 
98.75%, 
90.255%, 
75.83% 

Handles low-
quality 

images, robust 
classification 

Requires large 
labeled datasets 

(13) 
Deep 
Learning 

Infrared 
Thermography + 
CNN 

99% Mean 
Accuracy 

Effective in 
thermal 
imaging 

applications 

Performance 
depends on 
dataset size 

(14) 
Deep 
Learning 

YOLO V5-
IMPROVEMENT 

92.2% 
Precision, 
92.3% Recall 

Improved 
detection via 

attention 
mechanisms 

Computationally 
expensive 

(15, 16) 
Deep 
Learning 

CNN + Data 
Augmentation 

92% (Hybrid 
Approach) 

Effective for 
imbalanced 

datasets 

May require 
advanced 

augmentation 
strategies 

 

Methodology 
Weld defect detection requires several 

components, which are explained in detail in this 

section. These components include preprocessing 

datasets, CNN design, traditional augmentation 

techniques, and the training process. A 

methodological framework was developed to 

handle scarce data while maximizing the 

performance of industrial X-ray imaging analysis. 

 

Dataset Preprocessing 
The GDXray Welds Dataset offers the main dataset 

that includes X-ray images of welded joints 

labelled with defects, including cracks, porosity, 

and lack of fusion. The preprocessing steps 

included the following: The preprocessing step of 

normalization converts the pixel values into a 

standard range between 0 and 1. The image 

processing technique included resizing operations  
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to transform all images into a standard resolution 

format of 224×224 pixels. The defect classes 

received a one-hot encoding treatment to 

implement multiclass classification. The dataset 

was partitioned into 70% training data, 15% 

validation data, and 15% test data for a fair 

assessment. 

Traditional Data Augmentation 
Given the absence of relevant data, and to improve 

the generalization of the model, some classic 

methods of data augmentation were applied to the 

training dataset (21). These augmentations were 

performed using TensorFlow ImageDataGenerator 

and PyTorch’s Image Data Transformer, which 

enabled real-time changes during the training 

process. These methods can be classified into 

geometric transformations, photometric 

transformations, and spatial augmentation. Defect 

recognition requires that several different rotation 

angles be considered for every weld bead; thus, 

random rotations of ±15° were imposed. Other 

augmentations included horizontal and vertical 

flipping to enable the welds to remain invariant to 

the head orientation during imaging. Moreover, it 

ensured that images captured in different plane 

alignments were not affected. Random scaling of 

defect sizes was implemented using a zoom range 

of 90%–110%. Alterations were made for 

Brightness, Contrast, Exposure and Gaussian noise, 

which improved the model’s adaptability while 

increasing the robustness of the sensors. The shift 

in the X-ray intensity was controlled with 20% 

variations, and noise artifacts were added to 

enhance the model’s resolution, similar to X-ray 

images.  

Further improvements in the dataset were 

achieved through spatial augmentation. To ensure 

that the model was trained properly on defects, 

random cropping was used to focus on specific 

regions of the images. Padding techniques were 

also used to retain information around the edges of 

the images to ensure that important defect 

features were not lost. These augmentation 

procedures were used throughout the training to 

create more diverse samples and reduce the 

chance of overtraining or relying too heavily on the 

original dataset. Such procedures greatly 

improved the model’s ability to generalize and 

subsequently perform better in weld defect 

detection (22). 

CNN Architecture 

Figure 1 shows the architecture of the deep 

learning model created for defect classification in 

X-ray images. As it stands, the model consumes a 

single-channel grayscale X-ray image sized 224 × 

224 × 1. However, because many deep learning 

models require input in three channels, including 

ResNet-50, a preprocessing step that duplicates 

the grayscale channel into a 224 × 224 × 3 format 

was applied. We selected ResNet-50 as the 

backbone owing to its efficacy in industrial defect 

detection, offering an optimal balance between 

accuracy and computational complexity, as well as 

its robust transfer learning capabilities. It 

facilitates effective feature extraction from limited 

X-ray data while ensuring compatibility with the 

standard benchmarks. Once preprocessed, the 

image is passed into a pretrained ResNet-50 model 

that acts as a feature extractor. In transfer learning, 

the initial layers of the pretrained networks 

capture general image features (such as edges and 

textures), whereas the final layers are fine-tuned 

to learn task-specific patterns relevant to weld 

defect detection. To capture the hierarchical 

features from an image, ResNet-50 employs 

residual blocks that effectively learn the complex 

patterns associated with defects. The output from 

the ResNet-50 model was then run through a 

global average pooling layer that preserved the 

essential feature representations while reducing 

the dimensionality. This extracts a 2048-

dimensional feature vector that enables residue 

classification. After the feature extraction process, 

the model is followed by two fully connected, 

dense layers. The first dense layer comprised 512 

units, a dropout rate of 0.5 to prevent overfitting, 

and the ReLU activation function. In addition, the 

second dense layer has 256 units with ReLU 

activation and another set of dropouts, which 

further polishes the learned representations. The 

final output layer uses a softmax activation 

function to classify the specific defect category of 

the input image. The model provides a probability 

distribution across all possible defect types owing 

to the output nodes corresponding to the defect 

class. This architecture is built around the 

utilization of pretrained neural networks for 

feature extraction and the use of tailor-made 

neural networks for classification, enabling 

optimal defect detection in radiographic images. 
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Figure 1: Block Diagram of the Modified ResNet‑50 Architecture 

 

The utilization of transfer learning enables 

pretrained weight exploitation to improve both 

performance speed and result quality when 

working with restricted data (23). 

Training Protocol 
The training process was defined to achieve the 

best optimal results while being mindful of the 

computation time. The model was categorical 

cross-entropy as the loss function, optimized with 

the Adam optimizer, set to a learning rate of 1e-4. 

Memory usage and gradient update performance 

were boosted with the implementation of batch 

training using a batch size of 32. An early stopping 

mechanism was implemented to terminate 

learning when the validation loss did not decrease 

for 10 epochs to prevent overfitting. A learning 

rate scheduling strategy was also applied by 

decreasing the value by 50% when five epochs 

passed without improvement in the validation 

accuracy. 

Evaluation Metrics 
Several metrics were utilized to obtain a 

multifaceted evaluation of the model’s efficiency. 

Precision measures the percentage of defects that 

were correctly detected among all predicted 

defects, whereas recall measures the percentage of 

the total actual defects that were correctly 

detected by the model. Accuracy balance was 

maintained using the F1-score which provides a 

single value from the blended metric of precision 

and recall. Moreover, the mean Average Precision 

(mAP) was calculated across all defect categories 

to provide an overall score for the detection 

performance. Additionally, a confusion matrix was 

constructed to assess how well the model could 

classify the labels by providing a compact 

summary of the true versus predicted values. The 

use of convolutional neural networks (CNNs) along 

with other traditional data augmentation 

techniques solves the data problem in weld 

inspection. Consequently, this enables the 

development of a relevant industrial-quality 

assurance solution that is both scalable and 

effective. This section explains the experiment and 

how the datasets were prepared. 

Experimental Setup 
The experimental configuration details are 

outlined in this section by defining the dataset 
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characteristics, model implementation methods, 

and evaluation standards for validating the 

proposed weld defect detection framework. 

Dataset Configuration 
This study utilized the GDXray Welds Dataset, a 

modified dataset comprising 2,727 X-ray images of 

aluminum and steel welds with annotated defects. 

The dataset encompasses various defect classes, 

including cracks, porosity, lack of fusion, slag 

inclusions, and no-defect samples. The image 

resolutions ranged from 256×256 to 768×768 

pixels, with an imbalanced class distribution (e.g., 

cracks: 15%, porosity: 30%, no defect: 25%). To 

address this imbalance, oversampling was applied 

to the minority classes during training using the 

augmented samples. The dataset was partitioned 

into a training set of 1,909 images (70%) with 

augmented samples, a validation set of 409 images 

(15%) for hyperparameter tuning, and a test set of 

409 images (15%) for the final evaluation. 

Augmentations were applied in real time during 

training using tf.keras.layers.RandomRotation, 

RandomZoom, and RandomFlip.  

Cracks are characterized by a narrow, linear 

appearance in various orientations. Using rotation 

and flipping techniques can make the model more 

robust to cracks at different angles. Porosity 

appeared as uniform, round holes. Changing the 

brightness and adding noise can improve model 

generalization across different image qualities. 

Lack of Fusion often blends with the weld bead 

texture. Zooming in and random cropping can help 

the model focus on local features, improving its 

sensitivity to defects. The shapes and locations of 

slag inclusions differ from those of cracks. 

Adjusting the contrast and adding noise can help 

distinguish defects based on texture differences. 

Parameters include: 

• Rotation Range: ±15°. 

• Zoom Range: ±10%. 

• Brightness Adjustment: ±20%. 

• Gaussian Noise: σ=0.05. 

Implementation Details 
The framework was implemented in Python 

utilizing TensorFlow/Keras on Google Colab, 

employing its complimentary NVIDIA Tesla T4 

GPU (16 GB VRAM) and 12 GB of RAM. The 

reproducibility of the code was ensured by 

establishing fixed random seeds (NumPy, 

TensorFlow) and comprehensive documentation 

of the hyperparameters. The Colab environment 

offers a cost-effective platform for training and 

inference, eliminating the need for local high-

performance hardware. Table 2 presents the 

model configuration. 

 

Table 2: Model Configuration 

Component Configuration 

Base Architecture ResNet-50 pretrained on ImageNet, with weights frozen up to the fourth residual 

block 

Fine-Tuning The final three residual blocks unfrozen for task-specific adaptation, This 

procedure involves unfreezing selected layers of a pre-trained model and 

retraining them with new layers on the target dataset, allowing the model to 

adapt to the specific defect classification task. 

Optimizer Adam with initial learning rate η=1×10^-4, reduced by 50% on validation loss 

plateau 

Regularization Dropout and L2 weight decay (λ=1×10^-4) 

 

Training Protocol 
The training process was optimized to function 

properly within the boundaries of Google Colab. 

The batch size was reduced to 16 to meet the 

memory requirements of Colab, which provided a 

stable training environment that did not produce 

memory errors. The training process was run for 

100 epochs using early stopping with 10 epochs of 

patience to stop overfitting and minimize the 

training time. The execution took between 6 and 8 

h to complete the training process. Model weights 

were saved automatically to Google Drive at five-

epoch intervals to protect data from loss when 

Colab finishes its 12-hour session. 

Baseline Models for Comparison 
The performance evaluation of the proposed 

framework includes a comparison with three well-

established methodologies. A standard ResNet-50 

model functioned as the baseline implementation, 

which did not use data augmentation or fine-

tuning approaches (24). A VGG-16 network was 

trained from scratch using the unprocessed 
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GDXray dataset. An SVM classifier operates 

conventionally by detecting objects using HOG 

features for analysis. This study compares the 

performance of the proposed method with deep 

learning models and standard machine learning 

algorithms for X-ray image analysis evaluation. 
 

Results 
This section describes the results obtained using 

the proposed system. The assessment is 

performed using important evaluation metrics, 

which also consider the effects of data 

augmentation. Furthermore, a comparison with 

baseline models provides an overview of the 

advantages of the proposed approach. 

Performance Evaluation 
The proposed model was tested on the GDXray 

Welds Dataset’s test set, and the results were 

compared to baseline approaches, including 

ResNet-50, VGG-16 trained from scratch, and an 

SVM classifier with HOG features. The results are 

presented in Table 3 and Figure 2. This proposed 

model is 14% more effective than the standard 

ResNet-50 compared to the other baseline models. 

The fine-tuning and augmentation used in this 

model play a large role in enhancing performance, 

especially with regard to data scarcity, as well as 

improving model generalization. 

 

Table 3: Comparative Performance of Models for Weld Defect Classification 

Model Precision Recall F1-Score mAP 

Proposed (ResNet-50 + Augmentation) 0.94 0.92 0.93 0.91 

Vanilla ResNet-50 0.82 0.78 0.80 0.75 

VGG-16 (from scratch) 0.74 0.69 0.71 0.68 

SVM (HOG features) 0.65 0.62 0.63 — 
 

 
Figure 2: Comparison of Performance Metrics Across Different Weld Defect Detection Models 

 

Effect of Data Augmentation 
An ablation study was performed to evaluate the 

contribution of different augmentation strategies 

and their results. The results in Table 4 show the 

effects of different augmentation methods on the 

model performance. 

The data also suggest that using a combination of 

geometric (rotation and flipping) and photometric 

(brightness, contrast, and noise injection) 

augmentations gives the best improvement, 

raising the F1 score value by 13% when compared 

to the baseline model without augmentation. 

Moreover, adding Gaussian noise improves the 

robustness against sensor artifacts and reduces 

false positives in low-contrast regions.  

 

Table 4: Ablation Study on Augmentation Strategies (F1-Scores) 

Augmentation Strategy F1-Score 

Baseline (No Augmentation) 0.80 

+ Rotation and Flipping 0.85 

+ Brightness/Contrast 0.87 

+ Gaussian Noise 0.89 

All Augmentations 0.93 
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Comparison with Existing Literature 
To demonstrate the efficacy of the proposed 

approach, an analysis was performed on more 

current research in the area. A comparison of the 

proposed model with the different works 

presented in the literature is provided in Table 5 

and visualized in Figure 3. From the analysis 

presented, the performance of our approach is 

better than that of all existing CNN-based models, 

particularly with respect to the F1-score and 

generalization. Unlike other approaches that 

achieve good results, such as YOLO V5-

IMPROVEMENT, these CNN-based models are not 

as efficient in real-time processes because they 

require more computational power. The use of 

data augmentation techniques in our model 

significantly increased the robustness of the model 

and effectively addressed dataset deficiency 

issues.
 

Table 5: Comparison of Proposed Method Against Existing Approaches 

Study Approach Dataset F1-Score Key Findings 

(12) CNN (ResNet-50) Custom X-ray 

dataset 

0.75 High classification accuracy 

but limited generalization 

(13) Infrared 

Thermography + 

CNN 

Infrared dataset 0.73 Effective for thermal imaging 

but dataset dependent 

(14) YOLO V5-

Improvement 

Industrial X-ray 0.92 Strong real-time detection but 

computationally expensive 

(15, 16) CNN + Data 

Augmentation 

GDXray 0.92 Effective for imbalanced 

datasets 

Proposed 

Work 

ResNet-50 + 

Augmentation 

GDXray Welds 

Dataset 

0.93 Superior performance with 

optimized augmentation 

 

 
Figure 3: Comparison of F1-Scores Across Various Weld Defect Detection Approaches 

 

Confusion Matrix Analysis 
A detailed class-wise analysis was performed using 

a normalized confusion matrix, as shown in Table 

6. The analysis of the confusion matrix 

demonstrated salient aspects of the model 

accuracy with respect to various defect types. The 

model has a strong recall of 94% for porosity 

defects, indicating that it is proficient in 

recognizing sniffed clusters of gas pockets. 

However, the crack detection accuracy is rather 

low, at only 85%. Eight percent of the cracks were 

incorrectly classified as slag inclusions because of 

their predominant linear geometric forms. The No 

Defect category, which has never been recorded as 

false, boasts an accuracy rate of 97%. These 

statistics imply that the model can be trained 

further using more sophisticated feature 

engineering methods to improve defect 

classification, especially for intricate classes such 

as cracks and slag inclusions. 
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Table 6: Confusion Matrix for Weld Defect Classification 

Defect Type Cracks Porosity Lack of Fusion Slag 

Inclusions 

No Defect 

Cracks 0.85 0.02 0.03 0.08 0.02 

Porosity 0.01 0.94 0.02 0.01 0.02 

Lack of Fusion 0.04 0.03 0.91 0.02 0.00 

Slag Inclusions 0.07 0.01 0.04 0.88 0.00 

No Defect 0.01 0.02 0.00 0.00 0.97 
 

Discussion 
The experimental results demonstrate the 

effectiveness of using a fine-tuned ResNet-50 

model with traditional data augmentation 

techniques for weld defect detection in 

radiographic images. These improvements 

validate the benefits of combining transfer 

learning with data augmentation to overcome data 

scarcity and enhance the generalization of the 

model. 

The proposed method achieved an F1-score of 

0.93, surpassing recent CNN-based weld defect 

detection models such as ResNet-50 (12), which 

reported an F1-score of 0.75, and infrared 

thermography-based CNNs (13), which achieved a 

median F1-score of 0.73. It also outperformed 

CNNs trained with traditional data augmentation 

techniques, such as those reported in past studies 

(15, 16), which both achieving an F1-score of 0.92. 

Despite its strong overall performance, there are 

still some limitations in its real-world deployment. 

While the model demonstrates good robustness to 

variations in lighting and orientation owing to the 

use of photometric and geometric augmentations, 

challenges remain in detecting sub-millimeter 

defects and distinguishing between visually 

similar defect types, such as cracks and slag 

inclusions, especially when weld zones overlap or 

are partially occluded.  

In terms of industrial applicability, the model 

deployment depends on several factors, including 

data quality, choice of architecture, augmentation 

strategy, and computational resources available 

for training and inference. The results indicate that 

with optimization frameworks such as TensorFlow 

Lite or TensorRT, the ResNet-50-based model can 

achieve near-real-time inference speeds on edge 

devices equipped with modern GPUs or AI 

accelerators. This makes it a promising candidate  

 

for integration into semi-automated inspection 

systems in controlled environments.  
 

Conclusion 

This study presents a novel method for weld defect 

detection using deep learning that implements a 

fine-tuned ResNet-50 model with data 

augmentation techniques. The proposed 

framework outperformed traditional CNN 

implementations, with an F1 score of 0.93 and a 

mean average precision score of 0.91. Insightful 

experimental analysis has proven that data 

augmentation has a significant effect on improving 

the robustness and generalization of models in 

scenarios where labelled data are sparse. 

Furthermore, the study establishes that the 

aforementioned model significantly outperforms 

traditional classifiers such as ResNet-50, VGG-16, 

and SVM, demonstrating the effectiveness of the 

fine-tuning and augmentation techniques. In 

addition to the advantages of the model, it displays 

great accuracy for porosity and lack-of-fusion 

defects; however, as with all other models, visually 

similar defects, such as cracks and slag inclusions, 

are challenging to detect owing to their non-

prominent visual attributes, particularly in 

scenarios where weld zones overlap or are 

partially hidden. Considering these findings, future 

work should focus on optimizing lightweight 

architectures, such as MobileNet or EfficientNet, 

for faster inference. Hybrid cloud-edge 

implementations can also be explored to support 

real-time defect detection in industrial settings. 

Furthermore, integrating advanced data 

augmentation techniques, such as GANs, can help 

reduce the dependency on large labelled datasets 

and improve robustness across varying imaging 

conditions. 
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