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Abstract 
The fast spread of Internet of Things (IoT) devices over many different fields has made network security even more 
crucial.  Conventional security systems can fail to handle the dynamic and complex character of contemporary cyber 
threats aiming at IoT systems.  This paper suggests a novel security framework combining blockchain technology, 
machine learning (ML), and a centralized iOS application to get past these constraints.  The suggested approach 
guarantees privacy, integrity, and immutability of shared Cyber Threat Intelligence (CTI) data by using smart contracts 
and the Ethereum blockchain.  Fundamentally, a hybrid deep learning model CNNTransLSTM is used to highly precisely 
detect and categorize threats in real-time.  Combining Transformer encoders, Long Short-Term Memory (LSTM) 
networks, and Convolutional Neural Networks (CNN), this model efficiently records spatial and temporal aspects of IoT 
network data.  By allowing users to report hazards and get alerts, the iOS app serves as an interactive hub improving 
human-machine cooperation.  CNNTransLSTM model beats conventional approaches in terms of accuracy, sensitivity, 
and loss rate according to experimental evaluations.  Moreover, the distributed blockchain architecture enables among 
stakeholders safe, open, and cooperative threat intelligence sharing.  This all-encompassing strategy enables users and 
cloud providers to make quick, well-informed decisions to reduce risks, hence greatly improving the resilience of IoT 
ecosystems. 

Keywords: Blockchain, Convolutional Neural Network Transformer (CNNTrans), Cyber Threat Intelligence (CTI), 
Internet of Things (IoT), Long Short-Term Memory (LSTM), Threat Intelligence (TI). 
 

Introduction 

In recent years, computer technologies have 

advanced swiftly and persist in their evolution. 

This development has also incurred several 

adverse repercussions. Concurrently with this 

improvement, there is a consistent rise in cyber-

attacks. Due to digitization, both large 

corporations and small enterprises, including 

individual users, have grown increasingly aware of 

the privacy and security of their data, as a 

significant amount of their personal information is 

held in cyberspace (1). Numerous firms conduct 

research on detection and prevention systems to 

enhance the security of their systems against 

cyber-attacks. Their experiences are archived as a 

knowledge base within their systems that generate 

intelligence. This intelligence can be acquired 

either through experiencing specific attacks or by 

retrieving information from servers maintained 

and shared by various security firms or 

organizations. The disseminated information is 

referred to as CTI. Blockchain refers to a sequence 

of interconnected blocks. Every block is 

interconnected with both its preceding and 

succeeding blocks. The blockchain has recently 

garnered interest. A multitude of researchers from 

both corporate and academic sectors have 

commenced investigations into applications that 

can be built using this technology (2). The 

blockchain can be characterized as a data storage 

system functioning as a public ledger. Transactions 

executed using blockchain technology are 

recorded in blocks within a chain.  
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Upon the addition of a new chain, it undergoes 

ongoing growth. The primary benefit of blockchain 

technology is its cryptographic security. Altering a 

block inscribed on the blockchain is nearly 

infeasible. Moreover, a blockchain possesses 

characteristics including decentralization, 

persistence, and auditability. The blockchain 

functions in a decentralized setting by 

incorporating several essential technologies, 

including cryptographic hashing, digital signatures 

(utilizing asymmetric cryptography) and 

distributed consensus techniques.  

Blockchain technology facilitates the approval and 

publication of transactions in a decentralized 

manner. For instance, funds can be exchanged 

between two accounts without the involvement of 

a central authority (bank). This decentralized 

framework, which abolishes central authority, can 

diminish expenses and enhance 

productivity. Blockchain can facilitate monetary 

transfers and various financial applications, 

including online payments and the management of 

digital assets. Moreover, blockchain can be utilized 

in applications Examples include smart contracts 

for services for the public, the Internet of Things 

(IoT), reputational systems, and safety services. 

Given low latency and little resource use, Proof of 

Authority (PoA) or PBFT is most likely the 

consensus mechanism fit for IoT. For limited 

devices, these techniques are perfect since they do 

not need great computation. In a permissioned 

blockchain design, they guarantee fast data 

validation and integrity. 

 

 
Figure 1: Blockchain Based TI Framework Sharing 

 

Figure 1 illustrates the sequential phases 

involved in the communication process among 

the different components of the framework. 

Step 1: All parties present their proof of identity to 

a trustworthy authority. Proof of identification 

may entail revealing data such as government-

issued credentialing (e.g., driver's license or 

passport), having access to third-party documents, 

or business accreditation. 

Step 2: The producer creates CTI and adds it to a 

blockchain for confirmation. 

Step 3: The verifier evaluates the reliability of the 

CTI using an established set of standards provided 

by the network. 

Step 4: The CTI considered valid in Step 3 is 

included on the blockchain. 

Step 5: Consumers have access to the CTI which 

has been integrated into the blockchain. 

Figure 2 is a simplified sharing model that 

demonstrates how blockchain might 

fundamentally improve CTI sharing. 

The proposed system emphasise the benefits and 

drawbacks of past studies by surveying the 

literature on issues such as blockchain technology, 

iOS applications, IoT security, and Machine 

Learning (ML) techniques (3). There have been a 

lot of studies looking at how to use ML algorithms 

to make the Internet of Things more secure. An 

extremely successful method for identifying 

malicious activities in IoT network data by relying 

on Deep Learning (DL) is stated in past study (4). 

The prospect of detecting botnet attacks and 
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malware on the Internet of Things using 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), two kinds of 

DL algorithms are found in past research (5). 

However, these studies just in terms of IoT 

security, they emphasise data integrity and 

authentication; yet, their research fails to utilise 

collaborative threat intelligence (6). An approach 

to Sharing information about cyber threats to 

detect network intrusions based on Federated 

Learning (FL) researchers invented in the past (7). 

Confronting the challenge of developing ML-based 

detection systems, this study makes use of varied 

data from many sources and organisations. IoT 

security concerns and Software Defined Networks 

(SDN) solutions using ML is stated in past study 

(8). Their paper briefly covered ML approaches 

that reduce security weaknesses, such as Neural 

Networks (NNs) for data validity assessment and 

Bayesian learning for cross-layer harmful assault 

detection (9, 10). However, the paper does not 

examine all ML methods. After testing several 

detection algorithms for each set of characteristics, 

Naïve Bayes (NB), Random Forest (RF), J48, K-

nearest Neighbours (KNN), and Support Vector 

Machine (SVM) were the most popular. Hybrid 

analysis enabled flexibility in selecting static and 

dynamic features to improve detection accuracy. 

However, this essay only covers one application 

and one security concern (malware) (11). 

evaluated if Blockchain techniques could improve 

IoT data security. The investigation found security 

vulnerabilities in Blockchain techniques is found in 

past research (12). The study cited majority 

assaults, double-spend attacks, and denial-of-

service attacks as security threats. The poll advised 

CNNs and Deep Neural Network (DNNs) for 

security (13). Using a mix of extreme ML 

techniques, a better threat-hunting model for IoT 

malware and ransomware is stated in past study 

(14). Comparing its performance against that of 

well-known Deep NN models, such as CNN and 

stacked Long short-term Memory (LSTM), 

revealed satisfactory results. Similar to this, the 

study proposed a method for detecting malware on 

Windows, Android, and the IoT utilising ensemble 

learning based on threat-hunting models (15). The 

authors showed that by combining strong ML 

algorithms, they may improve the process of 

searching for IoT computer viruses (16). Its 

performance was comparable to that of other 

kinds of deep neural networks, such as CNN and 

stacking LSTM. Jointly detecting distributed denial 

of service (DDoS) attacks by merging smart 

contracts with a Fuzzy Neural Network (FNN) (17). 

While protecting user privacy, the public can get 

data on unusual traffic thanks to the Blockchain. 

Critical for real-time IoT security, quick consensus 

with minimum delay and high throughput is 

accomplished with PoA/PBFT. It guarantees good 

performance and helps to prevent delays typical in 

PoW systems. Using a permissioned blockchain, 

only verified entities may safely access, validate, 

and distribute threat intelligence. 
 

Methodology 
The IoT is growing as one of the fastest accepted 

technologies in the past decade across diverse 

applications. The intelligent devices are 

interconnected either wirelessly or via wired 

connections for communication, processing, 

computation, and monitoring various real-time 

situations (18). The authors carefully examine the 

three principal technologies: DL, AI, and 

Blockchain, to address security concerns in the IoT. 

This Proposed study addresses a blockchain-based 

threat intelligence sharing system based on 

tamper-proof ledger recording of CTI data 

production, verification, and access guarantees 

ensuring data provenance.  Smart contracts 

limiting and recording access to CTI entries (Step 

1–5 in Figure 1) and identity verification systems. 

E.g., government-issued credentials, corporate 

certifications and implement the access control. 

Although model synchronization is not specifically 

addressed in terms of federated learning or multi-

node training synchronization, the architecture 

guarantees that threat intelligence, once validated 

it is made available to all authorized nodes in a 

distributed and secure manner utilizing 

blockchain.  Blockchain is thus employed here not 

for deep model synchronization but rather for 

provenance/access control mechanism and threat 

intelligence exchange. This dataset comprises 

network traffic data that emulates diverse forms of 

communication among network entities, with 

particular emphasis on various protocols and 

potential security vulnerabilities (19). The data 

encompasses details regarding packets 

transmitted between sender and receiver entities, 

their characteristics, and related attack kinds. 
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Figure 2:  Proposed Model Conceptual Framework 

 

Figure 2 delineates the principal components of 

the model. IoT devices, which create an 

interconnected network spanning several 

domains, are introduced at the beginning of the 

framework. This section outlines a comprehensive 

architecture aimed at enhancing the security of 

IoT networks. Our plan employs an integration of a 

blockchain technology, iOS central hub, and 

DL, highlighting the essential contribution of 

human expertise (20). The technology functions in 

real time, facilitating swift hazard identification 

and response while continuously evolving to tackle 

emerging safety issues. CNNTransLSTM deep 

learning is included into the suggested 

architecture for strong temporal and spatial 

analysis. An iOS central center for hazard alerting 

and real-time communication. Blockchain for 

unchangeable, safe storing of danger intelligence. 

This solution is suitable as centralized models 

usually create hazards and IoT systems are 

heterogeneous and resource-limited. Blockchain 

offers a distributed and tamper-proof way to 

document threat information. Improved attack 

detection accuracy (97.25%) using the hybrid 

CNN-Transformer-LSTM model covers both spatial 

patterns and sequential temporal dependencies. 

Due to their interconnectivity, these devices 

produce data and are susceptible to security 

breaches. The ML models constitute the 

framework's most critical element. The 

aforementioned models are trained on pertinent 

datasets, including the Cyber Risk Data, in order to 

identify trends, identify dangers, and classify 

security incidents instantly. The iOS app, which 

acts as a central hub, is the second element. The 

app has an easy-to-use interface for reporting 

threats and interacting with machine learning 

models. It enables users to report potential risks 

and furnish essential information, like the type of 

threat, timing, and origin. Moreover, the program 

utilises features such as notifications and 

encrypted channels of communication to facilitate 
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prompt response and identification of threat. The 

third essential element is the execution of 

blockchain technology. The deep learning models 

detect and categorise a threat, and the data is sent 

between the models of DL and the application of 

iOS. Upon the identification of a hazard by the DL 

models, the threat data and device details are 

securely transmitted to the network of blockchain. 

The blockchain network acts as an open and 

unchangeable repository for threat data, keeping it 

safe and encouraging many people to work 

together. 

Preprocessing 

Collection of Data: Cyber threat data can be 

sourced from multiple origins, including network 

logs, security apparatus (e.g., firewalls, intrusion 

detection systems), threat intelligence feeds, and 

user activity records. These sources offer critical 

insights on network traffic, system events, and 

user behaviour, which can be examined to identify 

potential risks. 

Missing Values Handling: Deficiencies in cyber 

threat data may occur owing to multiple factors, 

including sensor malfunctions or inadequate log 

records. Imputation methods, like mean 

imputation, regression imputation, or algorithms 

like k-nearest neighbours (KNN), can be utilised to 

address missing variables (21). If the missing data 

are considered significant, the relevant instances 

or characteristics may be eliminated. 

Dealing the Outliers: Outliers in cyber threat data 

may signify unusual activity or measurement 

inaccuracies. Statistical methods, like z-scores and 

interquartile range (IQR), facilitate the 

identification and management of outliers. Outliers 

may be eliminated, modified, or classified as a 

distinct category based on the context during 

model training. 

Normalization of Data and Standardization: 

Methods for data normalisation include min-max 

scaling and z-score normalisation, adjust 

numerical features to a uniform scale, ensuring no 

single feature predominates the study. 

Standardization methods, like mean removal and 

unit variance scaling, guarantee that features 

possess a mean of zero and a variance of one, which 

can enhance the performance of specific machine 

learning algorithms. 

Feature Representation 
A corpus was developed to transform words 

(tokens) into their corresponding numerical 

values, depending on the frequency of unique 

tokens in every class. The quantitative textual 

representation, specifically TF-IDF, was computed 

using the subsequent equation: 

                                                                 𝑠𝑑𝑖𝑑ℎ = 𝑠ℎ.𝑙𝑜𝑔 𝑙𝑜𝑔 
𝑀

𝑒ℎ
                                                                 [1] 

 

In this context, 𝑠ℎ represents the term frequency of 

the word in a particular occurrence, 𝑒ℎ denotes the 

word document frequency, and 𝑀 signifies the 

samples of total number in the dataset. The 

term  𝑠ℎ denotes the frequency of a term's 

occurrence inside a sample, whereas inverse 

document frequency 𝑖𝑑ℎ indicates the reciprocal of 

the variety of documents that include the word. 

The larger the word frequency, the inverse 

document frequency 𝑠ℎ𝑖𝑑ℎ of the more words in a 

paper, the document is more relevant. This phase 

produced three numerical vectors for each sample. 

Feature Selection 
The elevated dimensionality of the extraneous 

information hindered the differentiation between 

benign and malicious URLs. As a result, the 

learning problem became more complex, leading 

to inferior training accuracy. Likewise, the 

properties of the Who is information and URL 

included extraneous details, particularly when the 

N-gram approach was employed. The attributes 

were doubled according to the n-value of the N-

gram. Furthermore, FS is a popular strategy for 

text characteristics (22). Therefore, choosing 

features is critical in this research. This study 

selected the top 5,000 characteristics to limit the 

risk of information loss while increasing the 

generalisability of trained models. The informative 

value of low probability features is higher than that 

of high probability features (common features). CI-

based FS use entropy to assess feature impurity 

throughout the partitioning of the target variable. 

Entropy can be calculated using Equation [2]. 

Increased entropy corresponds to more 

information content. Entropy is a mathematical 

expression as: 

                                                         𝐷(𝑞) =  − ∑  

𝑚

𝑗=1

𝑞𝑗 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑞𝑗)                                                              [2] 
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Where 𝑚 is the class of target, and 𝑞𝑗  denotes the 

feature probability partitioning class 𝑗. The 

following formula can be used to calculate the IG, 

which represents the split's quality. 
 

                                                         𝐺𝑎𝑖𝑛 = 1 − 𝐷(𝑞)                                                                             [3] 
 

Where 𝑚 is the class target of the entropy and 

𝐺𝑎𝑖𝑛 denotes the split quality. A trait is pertinent 

for categorisation if it exhibits a substantial gain. 

An increase in benefit correlates with a reduction 

in entropy. A zero entropy indicates a less impure 

division. This phase yields a feature vector 

consisting exclusively of high-gain features. 

CNNTransLSTM Model Training 
This section initially presents a formulaic 

depiction of the CTI problem, followed by an 

elaboration on the various components of 

CNNTransLSTM as shown in Figure 3. 

 

 
Figure 3: Proposed Algorithm Overall Structure 

 

CNN Component 
In contrast to the single-kernel convolutional 

layer, the multi-kernel convolutional layer 

possesses a broader receptive field, resulting in 

more enriched spatial feature extraction, which 

enhances the prediction accuracy of 

CNNTransLSTM. Therefore, this paper proposes a 

module based on the Inception module, referred 

to as Multi-kernel CNN. The program can 

standardise the output dimensions of different 

layers by modifying the kernels and paddings of 

each layer. The outputs from all convolutional 

layers can be consolidated to derive the spatial 

feature of final vectors. When the input data is𝑌̃ =

(𝑌̃1, 𝑌̃2, … 𝑌̃𝑠𝑣)
𝑆
, the total input dimension can be 

articulated as (𝑠𝑣 , 𝐹, 𝑉), where 𝑠𝑣  denotes the 

sliding window length, 𝐹 signifies the height of 𝑌̃1, 

and 𝑉 indicates the breadth of 𝑌̃1. The dimension 

of output convolutional component is denoted as 

(𝑠𝑣 , 𝑏, 𝐹 − 1,1), with 𝑏 indicating the channels 

number, which is established as 1 in this research. 

To enhance clarity, the extraneous dimensions of 

the output are removed; hence, the final output 

dimension is (𝑠𝑣 , 𝐹 − 1). In order to emphasise the 

temporal information, different multi-kernel 

CNNs process data from every time step. 
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Component of Encoder 
Given the Transformer's ability to process long 

text inputs efficiently, we combine the 

Transformer's encoder layer with an LSTM 

network to develop an encoder component that 

can extract temporal information from prolonged 

input sequences. The main purpose of the skip 

link between encoder modules is to lessen 

degradation problems brought on by an 

excessively deep network. The residual 

connection in the module alleviates the problem 

of gradient vanishing. 

Component of LSTM 
Although the Transformer encoder can obtain 

positional information through the Encoding 

layer, some degree of information loss 

concerning word locations may still occur. Unlike 

obtaining positional information through 

functions, the LSTM network directly extracts it 

from the input sequence, potentially enhancing 

the model's sensitivity to temporal data. In order 

to better capture the time dependence of 

variables, the gating mechanism has the ability to 

retain temporal information. Thus, we include an 

LSTM network layer with the Encoder 

transformer layer to jointly extract temporal 

data. The input, output, and forgetting gates make 

up the majority of the LSTM network 

architecture.  The forgetting gate regulates the 

internal state 𝑏𝑠−1 from the preceding moment to 

determine the extent of information to be 

discarded. The input gate is utilised to regulate 

the candidate state𝑏̃𝑠at the present moment to 

determine the amount of information retained. 

The output gate 𝑙𝑠 regulates the internal state 𝑏𝑠 

at the present instant to determine the extent of 

information conveyed to the external state𝑓𝑠. 

The forgetting gate, input gate, and output gate 

are delineated as follows: 
 

                                                         𝑓𝑠 = 𝛼(𝑣ℎ . [𝑓𝑠−1, 𝑦𝑠] + 𝑐ℎ)                                                              [4] 

                                                    𝑗𝑠 = 𝛼(𝑣𝑗 . [𝑓𝑠−1, 𝑦𝑠] + 𝑐𝑗)                                                                    [5] 

                                                     𝑙𝑠 = 𝛼(𝑣𝑙 . [𝑓𝑠−1, 𝑦𝑠] + 𝑐𝑙)                                                                   [6] 
 

The present candidate state 𝑏̃𝑠, memory unit 𝑏𝑠, and external state 𝑓𝑠are computed as follows: 

                                                 𝑏̃𝑠 =𝑡𝑎𝑛 𝑡𝑎𝑛 𝑓 (𝑉𝑏 . [𝑓𝑠−1, 𝑦𝑠] + 𝑐𝑏)                                                       [7] 

                                                  𝑏𝑠 = ℎ𝑠 . 𝑏𝑠−1 + 𝑗𝑠 . 𝑏̃𝑠                                                                              [8] 

                                                          𝑓𝑠 = 𝑙𝑠  .𝑡𝑎𝑛 𝑡𝑎𝑛 𝑓 (𝑏𝑠)  .                                                                  [9] 
 

𝑉ℎ, 𝑐ℎ , 𝑉𝑗, 𝑐𝑗 , 𝑉𝑙 , 𝑐𝑙 , 𝑉𝑏 , 𝑐𝑏  are parameters subject to training.𝛼(. ) and𝑡𝑎𝑛 𝑡𝑎𝑛 𝑓(. )  are both activation 

functions. The formulas are as follows: 
 

                                                          𝛼(𝑦) =
1

1 + 𝑑−𝑦
                                                                           [10] 

                                                      𝑓(𝑦) =
𝑑𝑦 − 𝑑−𝑦

𝑑𝑦 + 𝑑−𝑦
                                                                             [11] 

 

Component of Decoder 
This component first consolidates the output 

from the previous 𝑀 encoder layers with the AR 

component, then decodes the aggregate using the 

Linear layer and RELU function to get the final 

prediction result 𝑋̂𝑠+1. The following formula is 

used to determine the decoder layer: 
 

                              𝑋̂𝑠+1 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑅𝑒𝐿𝑈 (∑  

 

 

(𝐿1, 𝐿2, … . 𝐿𝑚, 𝐿𝐴𝑅)))                                          [12] 

 

Where 𝐿𝐴𝑅  denotes the output of the𝐴𝑅  model 

AR Component 
The model's output scale is insensitive to the 

input scale because to the non-linear properties 

of the CNN layer, LSTM network 

and Transformer encoder. As a result, we 

perceive the CNNTransLSTM's final predicting 

output as a blend of a linear and non-linear 

component. This paper uses the AR model for the 

linear component. To improve prediction 

accuracy, it may extract the target variable's 

linear correlation from previous data. The 

following is how the AR model is expressed: 
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𝐿𝐴𝑅 = 𝑋̃𝑠+1 = 𝑣1𝑥1 + 𝑣2𝑥2+, … . 𝑣𝑠𝑥𝑠 +∈𝑠+1 

                                                      = ∑  

𝑠

𝑟=1

𝑣𝑟𝑥𝑟 +∈𝑠+1 ,                                                                          [13] 

 

𝑣𝑟  and ∈𝑠+1 are parameters that can be trained. 𝑣𝑟  

denotes the weight of the variable, ∈𝑠+1  signifies 

the random noise, and 𝑥𝑟  indicates the historical 

value of the target variable. 
 

Algorithm 1 
Algorithm for Proposed Model 

Algorithm 1: Flow of Proposed Model 

Procedure DataHandleFlow 

Obtain data from the IoT Security Ecosystem 

Examine data within the Deep Learning Layer 

if a potential threat is recognized, then 

Initiate alert 

Configure push notifications in the iOS Central Hub  

The security of IoT researcher expert corroborates the threat. 

Document results in Feedback Loop (Blockchain) and enhance machine learning models. 

End if 

End 
 

A lot of data and network traffic are made by a lot 

of gadgets in the Ecosystem of IoT Security. This 

stream of data is the engine that keeps the system 

running and is the main source of information 

about possible risks. The data is quickly sent to the 

Layer of ML after being continually gathered. Real-

time analysis of incoming data is done using a wide 

range of methods. They have two goals: to find 

deviations from known data trends and to identify 

any threats in security within the data. The ML 

Layer sounds a warning as soon as it finds a 

possible threat. This starts a chain reaction of 

cooperation.  Emulating real-world network traffic 

and risks, the simulated IoT setup consists in IoT 

devices producing data via different 

communication protocols.  Among others, DDoS, C 

and C, File Download (malware) attack forms. 

Network design: Data moves from IoT sensors → 

ML-based detection layer (CNNTransLSTM) → iOS 

app for alerting → blockchain for logging and 

distribution. While the LSTM detects temporal 

relationships, the CNN component uses multi-

kernel convolutions for spatial feature extraction; 

the transformer encoder improves sequential 

understanding. This framework is intended to 

record local as well as long-range dependencies of 

threat patterns. 

 

Results and Discussion 
The advent of Internet of Things (IoT) technology 

has instigated a significant transformation in the 

cyber threat landscape. Nevertheless, the 

majority of current systems are predominantly 

centralised and fail to facilitate information 

sharing in a dispersed manner. This chapter aims 

to assess how blockchain technology might 

mitigate several limitations inherent in current 

CTI sharing systems. To ascertain the future role 

of blockchain-based sharing, we outline many 

overarching difficulties associated with CTI 

sharing and examine how blockchain can provide 

secure and efficient solutions to these challenges. 

Although specific artificial data augmentation 

methods (e.g., SMote, GANs) are not discussed, 

the system compensates for imbalanced data via 

focused sampling which is more especially, 

under-sampling the majority class by deleting 

outliers. This method lowers training bias and 

guarantees a more balanced dataset. 
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Figure 4: ROC Curve for CNNTransLSTM Model 

 

DDoS, Command and Control (C and C), 

malware downloads, and botnet traffic are 

among the system's detects. It makes the 

presumption that attackers may circumvent 

conventional protection, start stealthy attacks, 

and take advantage of IoT weaknesses. Skilled 

in network evasion and remote access, 

attackers call for distributed detection and 

response systems. The ROC curve showed that 

the predictor really was very good at what it 

did. The threats 'Attack,' 'C and C-FD', 

'FileDownload,' and 'DDoS,' had an exceptional 

ROC area score of 0.97%. This dual evaluation 

emphasizes the characteristics of the ensemble 

classifier and identifies opportunities for 

enhancing its detection of threat capabilities. 

Based on the image in Figure 4. 

 

 
Figure 5: Proposed Model Confusion Matrix 

 

The Random Forest classifier demonstrated 

exceptionally favourable outcomesROC plots for 

each class showed how well the model could tell the 

difference between them. It showed AUC values of 

0.97 for classes that represented major risks, like 

DDoS attacks and Command and Control (C and C) 

operations. This means that the classifications were 

very accurate. This highlights the RF’s capability in 

precisely detecting and differentiating harmful 

network behaviours. These findings bolster the 

validity of our research. Figure 5 shows how well 

the CNNTransLSTM Classifier worked on the 

dataset we used for our study project together. 
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Table 1: Training and Test Time Analysis of Various Models 

Rate of 

Learning 
CNN 

Trans-

LSTM 
GRU 

Att-

GRU 

BiLSTM-

BiGRU 

CNNTransLSTM 

Accuracy 90.86 95.54 91.45 94.32 93.26 97.25 

Precision 76.25 90.46 80.39 83.93 85.74 97.12 

Sensitivity 76.25 90.46 80.39 83.93 85.74 97.12 

Specificity 95.38 98.99 94.83 98.66 97.66 98.45 

F-Measure 76.25 90.46 80.39 83.93 85.74 97.12 

MCC 82.66 90.73 78.22 86.76 80.53 89.64 
 

The suggested research introduces a technique 

termed focused sampling to mitigate the uneven 

impact of datasets by under-sampling the majority 

class. This strategy entails creating a subset by 

deliberately identifying and eliminating outliers 

from the predominant class. Eliminating these 

outliers facilitates a more equitable representation 

of the dataset. Table 1 presents the evaluation 

metrics for many models, including Att-GRU, 

BiLSTM-BiGRU, CNNTransLSTM, and Trans-LSTM.  
 

 
Figure 6: Accuracy Values Comparison of the Models 

 

The examination of Figures 6 and 7 demonstrates 

that the suggested model in this paper has superior 

convergence speed and enhanced generalization 

capability relative to previous models. 

Furthermore, the precision of the proposed model 

exceeds that of alternative models, despite an 

equivalent amount of training iterations. The 

accuracy of the proposed model exhibits stability 

during the training phase, showing minimal 

changes. The suggested model achieves a 

commendable final training accuracy of 97.25% on 

the validation set. This research presents a model 

that demonstrates superior performance and 

significant advantages. It not only attains superior 

accuracy relative to conventional models but also 

exhibits accelerated convergence and enhanced 

generalization capability. The findings indicate 

that the suggested model had considerable 

potential and may yield improved performance in 

practical applications. 

The narrative encompasses various models, each 

distinguished by unique markers and line styles for 

enhanced clarity. CNN (blue solid line with circular 

markers): Figure 7 Demonstrates a consistent 

decline in loss, achieving stable convergence near 

2%. TransLSTM (orange dashed line with square 

markers): Initiates with the highest loss rate 

(>20%) and exhibits a rapid decline, ultimately 

stabilizing at a comparatively elevated loss (~5%) 

relative to other models. 
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Figure 7: Loss Values Comparison of the Models 

 

GRU (green dash-dot line with triangular 

markers): Demonstrates a consistent decline in 

loss, culminating just below 4%. Att-GRU (red 

dotted line with diamond markers): Rapidly 

declines and stabilizes at approximately 

2%. BiLSTM-BiGRU (purple dashed line with 

arrow markers): Progressive decline in loss, 

stabilizing around 3%. CNNTransLSTM (brown 

dash-dot line with star markers): Demonstrates 

superior performance, achieving rapid 

convergence with the minimal loss rate 

(~1%). The legend on the right enumerates the 

models along with their respective colours and 

markers for straightforward identification. The 

plot demonstrates that CNNTransLSTM attains the 

minimal loss, establishing it as the superior model 

among those evaluated. 

 

Table 2: Performance Classification of CNNTransLSTM under Combination of Training, Testing and 

Validation  

 

Train:Val:Test 

Accuracy Classification (%)  

Time (ms) Train Val Test 

60:10:30 97.56 94.73 92.28 13.8 

60:20:20 97.25 94.92 92.16 13.4 

70:10:20 97.03 95.77 93.68 13.2 

70:15:15 97.14 95.58 93.84 12.6 

80:10:10 96.28 95.77 94.02 13.4 

 

This section demonstrates the thorough 

optimisation and classification effectiveness of the 

hybrid CNN-Trans-LSTM model across several 

combinations of training, validation, and test data, 

with results shown in Table 2. The partial discharge 

classification accuracy in training sets across 

different combinations is more than 95%, which 

shows that the model has converged close to the 

global optimum and fully matched the training 

data. Additionally, there is no overfitting in the 

model, as seen by the test set's classification 

accuracy being equivalent to the validation set's 

(i.e., accuracy loss not exceeding 4%). The hybrid 

CNN-TransLSTM model's resilience and 

generalisability to a wide range of data 

combinations are demonstrated by its test 

classification accuracy, which exceeds 97% across 

all combinations with a variance of less than 3%. 

With a 97% classification accuracy in discharge 

pattern identification over 300 test samples, only 

12 samples were incorrectly identified, meeting the 

requirements for real-world applications. On the 

other hand, the model's inference efficiency will not 

be impacted by sample set partitioning during the 

testing phase, suggesting that the model can be 

successfully applied in a variety of contexts. 
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Figure 8: Results of Hyperparameter Tuning 

 

It used cross-validation and a grid search method 

to look into the hyperparameter space in depth. As 

part of the grid search, all possible values for each 

hyperparameter were carefully looked at, and the 

model's success was judged using different 

methods, including negative RMSE and R-squared 

(r2). To get the highest R-squared number, which 

means that our model fits the data the best, we had 

to find the best hyperparameters using those 

factors. This strict process made sure that the 

model we used was optimised to make the most 

accurate predictions possible. Figure 8 illustrates 

the outcomes of hyperparameter tuning, including 

the optimal hyperparameters and a comparison of 

models prior to and after to hyperparameter 

optimization. 

Benefits and drawbacks of decentralization consist 

in Transmission latency in transactions: Slightly 

greater due to consensus procedures like PoW or 

PoS; but, this is lessened by only providing 

authenticated CTI data, which is not common. 

Agreement Overhead: Though it adds 

computational expenses, distributed consensus 

guarantees data integrity. Still, in this paradigm, 

given the security advantages, it is seen reasonable. 

burden of storage: Blockchain size can increase 

with time since all CTI transactions are kept 

immutably. But the character of shared CTI data—

textual threat descriptors, hashes—allows the load 

to be controlled. 
 

Conclusion 
Applications that track numerous variables, such as 

smart city monitoring systems, rely on the security 

of the IoT. Using blockchain technology to keep tabs 

on IoT networks is the focus of this research. 

Objective functions that are parameterised are 

used in the analysis. In order to monitor and assess 

the progress of each activity in real-time, it is 

essential to establish distinct job execution 

intervals in the IoT. To strengthen data security in 

smart city apps, the proposed method combines 

CNNTransLSTM algorithms with blockchain 

technology. Data security in processing and storage 

units is compromised due to the deployment of IoT 

throughout the process. Therefore, at every step, 

monitoring units depend on utmost confidence. 

CNNTransLSTM is specifically integrated in the 

architecture for accurate threat detection; 

blockchain for safe CTI sharing; and an iOS hub for 

real-time alerting. It guarantees decentralization, 

anonymity, and group work. Important 

contributions include low 1% loss rate, 97.25% 

detection accuracy, 0.97 ROC AUC for severe 

assaults, and blockchain-based validation 

procedures for safe CTI sharing. 
 

Abbreviations 
TI: Threat Intelligence, CNN: Convolutional Neural 

Network, IoT: Internet of Things, NN: Neural 

Networks.  
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