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Abstract 
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have emerged as versatile tools with applications 
spanning surveillance, aerial photography, agriculture, and disaster response. However, their increasing presence raises 
security concerns, necessitating robust detection systems. This research explores the development of a real-time drone 
detection system using the state-of-the-art YOLOv5 algorithm. This paper presents a detailed methodology, 
comparative analysis, and results demonstrating the efficacy of our approach in enhancing security measures against 
UAV threats. Current detection technologies encompass a range of approaches, including computer vision, machine 
learning, radar systems, and acoustic sensors. Traditional methods often rely on rule-based algorithms or handcrafted 
features, exhibiting limited scalability and adaptability to dynamic environments. In this research paper, we present a 
novel approach to drone detection utilizing the YOLOv5, a powerful object detection algorithm, with OpenCV, a versatile 
computer vision library. The heart of our system lies in a meticulously curated dataset containing 1440 images, 
showcasing a diverse array of drones. Each image tells a unique story, helping our system learn to recognize drones of 
different types and sizes. Our methodology involves a detailed process of training YOLOv5 using the dataset, carefully 
splitting the data into training, validation, and testing sets, and setting up a real-time detection system using OpenCV. 
The system not only identifies drones but also issues warnings when a drone is detected within or near a specified area. 
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Introduction 

In our rapidly advancing technological landscape, 

the soaring popularity of drones brings both 

excitement and challenges. Drones, or Unmanned 

Aerial Vehicles (UAVs), have become increasingly 

accessible to individuals and organizations 

worldwide. While these flying gadgets offer 

incredible possibilities in various fields, such as 

photography, agriculture, and delivery services, 

their misuse poses potential threats to privacy, 

safety, and security. Additionally, many 

Commercial-off-the-Shelf (COTS) drones come 

equipped with cameras, facilitating First-Person 

View (FPV) capabilities. This feature enables live 

video streaming from the drone's camera to the 

controller or a separate viewing device. However, 

the ease of access to such live video feeds raises 

concerns about potential privacy infringements. 

To address these issues, the Federal Aviation 

Administration (FAA), the civil aviation regulatory 

body of the U.S. government, introduced a set of 

policies on January 15, 2021. These policies, 

known as Remote ID, establish guidelines for the 

identification requirements of drones (1). 

Numerous drone detection solutions are available 

in the market, but their high costs often render 

them inaccessible to many individuals (2, 3). 

Furthermore, some of these solutions are designed 

to detect only specific models of drones, thereby 

limiting their effectiveness in detecting a wide 

range of UAVs (4). Recognizing these limitations, 

affordable drone detection solutions are 

increasingly being developed through intensified 

research efforts. These efforts primarily focus on 

detecting unauthorized drones entering restricted 

airspace or private areas. In recent years, methods 

for detecting drones by analyzing their network 

traffic patterns have been explored in several 

studies (5, 6). This approach leverages insights 

from network data to identify drones, offering a 

promising avenue for cost-effective drone 

detection solutions. However, these approaches 

may fail to differentiate drones from other moving 

radio sources. In response to these pressing 

concerns, our research endeavors to pioneer an 
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innovative solution aimed at detecting drones in 

real-time.  By harnessing the latest advancements 

in computer vision and machine learning, our 

system is designed to swiftly identify and alert 

against unauthorized drone activities. Through 

meticulous development and rigorous testing, we 

aim to provide a robust and reliable defense 

mechanism against potential threats posed by 

drones in various settings, ranging from critical 

infrastructure protection to public safety 

enforcement. Our commitment to leveraging 

cutting-edge technologies underscores our 

dedication to safeguarding privacy, security, and 

airspace integrity in the face of evolving UAV 

challenges. With the proliferation of drones, 

there's a growing need for robust detection 

mechanisms to safeguard public spaces, events, 

and critical infrastructure. The existing UAV 

detection methods are mainly divided into the 

following categories: audio signal-based detection 

methods, radar-based detection methods, radio 

frequency-based detection methods, and image 

and video-based detection methods. Traditional 

methods of monitoring, relying on human 

surveillance alone, are becoming impractical due 

to the sheer volume and agility of drones. Our 

solution aims to automate the detection process, 

reducing reliance on manual oversight and 

providing a timely response to potential threats. 

Our research leverages two powerful tools, 

YOLOv5 (You Only Look Once, version 5) and 

OpenCV. YOLOv5 is a state-of-the-art object 

detection algorithm, allowing computers to rapidly 

and accurately identify objects in images or video 

frames. OpenCV, an open-source computer vision 

library, serves as the backbone for implementing 

our detection system. Together, they empower our 

model to quickly analyze real-time video feeds and 

pinpoint the presence of drones.  

Our system boasts several features that set it apart: 

Real-time Detection 
The ability to identify drones instantly as they 

appear in the video feed. 

Interactive Rectangle Control 
Users can define and adjust a detection area 

interactively. 

Warning Mechanism 
Immediate warnings are triggered when a drone is 

detected within or near the defined area. 

The benefits of our system extend to enhanced 

security, automated monitoring, and adaptability 

to diverse environments. Furthermore, our 

approach is customizable, open-source, and cost-

effective. As drones become more accessible to 

individuals and organizations alike, the need for 

effective detection systems has never been more 

critical. Ensuring that drones are used responsibly 

and within legal boundaries is vital for 

safeguarding public spaces, events, and critical 

infrastructure. 

Traditional surveillance methods, relying heavily 

on human observation, struggle to keep pace with 

the agility and prevalence of drones. To address 

this challenge, our research focuses on developing 

an advanced drone detection system that leverages 

state-of-the-art technologies in computer vision 

and machine learning. 

In the past, various techniques, such as radar, were 

used to detect drones. However, it is very difficult 

for radar to do so, due to the low levels of 

electromagnetic signals that drones transmit. 

Similarly, other techniques, such as acoustic and 

radio frequency-based drone detection, are costly 

and inaccurate. Recently, machine learning-based 

drone detectors, such as SVM and artificial neural 

network classifiers, have been used to detect 

drones, achieving better success than radar and 

acoustic drone detection systems (7). 

Different types of drone images are collected to 

build a dataset (8). The images are then annotated 

in the YOLO format for training a YOLOv3 model. 

An NVIDIA GeForce GTX 1050 Ti GPU was used to 

train the dataset with chosen parameter values, 

such as a learning rate of 0.0001, batch size of 64, 

and 150 total epochs. The best mAP value was 0.74. 

PyTorch, an open-source machine learning 

programming language, was used to train and test 

the YOLOv3 model. 

YOLOv4 was used to automatically detect drones 

with the aim of integrating the trained model into 

a CCTV camera, thereby reducing the need for 

manual monitoring. The authors collected their 

dataset from public resources such as Google 

images, opensource websites, etc. The images then 

converted into the YOLO format using free and 

paid image annotation tools. They fine-tuned the 

YOLOv4 architecture by customizing filters, max 

batches, subdivisions, batches, etc. After training 

the YOLOv4 model for 1300 iterations, the 

researchers achieved a mAP of 0.99. Though their 

mAP value was very high, they trained only 53 
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images and did not address model overfitting, 

resulting in a greater improvement scope. 

An approach based on YOLOv5 was presented, 

utilizing a dataset of 1359 drone images. They fine-

tuned the model on a local system with an 8 GB 

NVDIA RTX2070 GPU, 16 GB of RAM, and a 1.9 GHz 

CPU. They employed a 60:20:20 split of the dataset 

for training, testing, and validation. They trained 

the model on top of COCO pre-trained weights and 

obtained a precision of 94.70%, a recall of 92.50%, 

and a mAP of 94.1%. 

In their study, drones were suggested to be 

detected by analyzing their First-Person View 

(FPV) streams (9).  They propose comparing the 

bit rate of an FPV stream from a drone with that of 

a previously recorded FPV data stream. However, 

they note that the bit rate of an FPV stream tends 

to increase as the scene becomes more dynamic. 

This means that a drone capturing a highly 

dynamic scene may not always match a specific set 

of FPV bit rates accurately. Additionally, the 

authors argue that the Received Signal Strength 

Indicator (RSSI) of FPV channels differs from other 

WiFi video streaming services due to the 

movement of drones. However, they did not 

consider the possibility of other moving video 

streaming devices, such as Voice over Internet 

Protocol (VoIP) applications on smartphones. 

In their study, classical features similar to those 

employed in previous research were utilized to 

distinguish First-Person View (FPV) drones from 

other devices, thereby enabling drone detection 

(10-12). They demonstrate that their framework 

achieves high accuracy in detecting drones by 

analyzing features extracted from packet samples 

exchanged between the drone and its controller, 

with a minimum of 50 packets. However, the 

authors acknowledge two unresolved issues: the 

recognition of new types of unmanned aerial 

vehicles (UAVs) and the detection of modified 

video patterns. The findings of previous research 

were built upon by enhancing detection accuracy 

and addressing the challenges associated with 

recognizing new UAV types (13). At the forefront 

of our research are two key tools: YOLOv5 (You 

Only Look Once) and OpenCV (Open Source 

Computer Vision Library). YOLOv5 is an advanced 

object detection algorithm known for its rapid 

processing speed and accuracy. Paired with 

OpenCV, a versatile toolkit for image and video 

analysis, our drone detection system gains the 

capability to process real-time video feeds and 

identify drones swiftly and accurately. 
 

Methodology 
In our pursuit of creating an effective drone 

detection system, we followed a methodical 

process that combined precision in data 

preparation, leveraging advanced machine 

learning algorithms, and employing robust real-

time processing techniques. Our research 

endeavors to create an effective and reliable real-

time drone detection system, employing a carefully 

crafted methodology. The process involves several 

pivotal stages, each contributing to the 

development of a robust model. 

Dataset Collection and Organization - 

Diverse Drone Images 
Before our computer can recognize drones, it 

needs to learn from lots of pictures showing 

different types of drones. Imagine you're teaching 

a friend what a drone looks like—you'd show them 

many pictures of drones in various situations. The 

dataset is curated from open-source platforms 

such as Kaggle and GitHub, incorporating drones of 

varying models, sizes, and colors. Scenes included 

forests, urban skylines, clear and cloudy skies, and 

varied lighting conditions to ensure robustness 

and generalization. This diverse dataset simulates 

real-world complexity, improving the model’s 

resilience in different operational environments. 

Collection of Images: Building a Photo 

Album for Our Computer 
We created a big collection of images, like a 

massive photo album, to train our computer. This 

album had 1440 pictures of drones doing all sorts 

of things. We made sure to include different types 

of drones, in different sizes, and in various 

backgrounds. It's like having a diverse set of 

examples so that the computer learns to recognize 

all kinds of drones. 

Labelling of Images: Making Sure Each 

Photo Tells a Clear Story 
Just like in a photo album, each picture had to tell a 

clear story. We carefully labeled each image to let 

the computer know where the drones are and what 

they looked like. This labeling process is a bit like 

putting captions on photos so that our computer 

understands exactly what it's seeing. 
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Formatting: Getting the Data Ready for 

Training 
Once our photo album is ready, we needed to 

organize it in a way that our computer could 

understand. Think of it like arranging your photos 

in a neat order. We used a special tool called 

Roboflow to help us with this. It made sure our 

images are in a format that our computer, YOLOv5, 

could easily use for learning. 

Checking and Double-Checking for 

Accuracy 
We wanted to be super sure that our photo album 

is top-notch. So, we double-checked everything. 

We looked at each image, made sure the labels 

matched what is in the picture, and verified that 

our dataset covered a wide range of drone 

scenarios. This attention to detail is crucial to 

ensure our computer learns accurately. 

Creation of Dataset: Exporting Our 

Photo Album for YOLOv5 
Once we are confident that our photo album is 

perfect, we exported it into a format that YOLOv5 

could understand. It's like turning our photo album 

into a special book that YOLOv5 can read. This step 

is crucial for the computer to learn from the images 

and become really good at spotting drones. 

Rigorous Curation with Roboflow 
To prepare our dataset for training, we harnessed 

the capabilities of a remarkable tool known as 

Roboflow. Picture it as a wizard guiding us through 

the intricacies of dataset organization and 

structuring, ensuring our computer vision model, 

YOLOv5, comprehends the data seamlessly. 

Roboflow played a pivotal role in managing the 

nitty-gritty details, assuring that our dataset 

achieved the optimal shape for training our model. 

In this process, Roboflow served as a dedicated 

assistant, streamlining the organization of our 

images and associated information. Its role 

extended to formatting our images in a manner 

aligned with YOLOv5's requirements. Each image 

underwent meticulous labeling, providing 

annotations that would serve as a guide for 

YOLOv5 to understand the nuances of drone 

characteristics. 

One of the striking aspects of Roboflow is its 

adaptability to different models and algorithms. It 

ensures that our dataset conforms to the specific 

preferences of YOLOv5, eliminating potential 

roadblocks during the training phase. Essentially, 

Roboflow acts as a translator, ensuring our dataset 

speaks the same language as YOLOv5, facilitating a 

seamless learning process. 

Moreover, Roboflow boasts a user-friendly 

interface, making it accessible to both researchers 

and developers. Even without an extensive coding 

background, Roboflow guides users through the 

necessary steps, ensuring that the dataset is 

meticulously prepared for effective model training. 

Its automation of certain steps and workflow 

optimization significantly contributes to efficiency, 

a critical factor when dealing with large datasets 

containing numerous images. 

As an additional feature, Roboflow empowers us to 

generate an API for our model to facilitate the 

training process. Utilizing a code snippet provided 

by Roboflow, we seamlessly export our dataset. 

In summary, the second step of our methodology 

involves leveraging Roboflow not only for the 

organization, labeling, and formatting of our 

dataset but also for the generation of a convenient 

API. This step is pivotal, laying the foundation for a 

successful and efficient training process for our 

drone detection model, YOLOv5. 

Dataset Splitting for Training, 

Validation, and Testing 
We embarked on our journey by curating a rich 

dataset of 1440 images showcasing various drone 

scenarios. Each image is labeled with precision, 

indicating where the drones are located. This data 

collection phase is meticulous, ensuring diversity 

and accuracy in our dataset. To prepare our 

dataset for effective training, we engaged in data 

preprocessing. This involved refining and 

organizing the images, making sure they are in a 

standardized format. To streamline the data 

preparation process, we leveraged the power of 

Roboflow. It acted as our data organizing assistant, 

helping us import our meticulously prepared 

dataset and standardize it for optimal use in 

training our model. Roboflow served as a bridge 

between our curated images and the training 

process, ensuring that everything is in order. 

Now, for effective model training and evaluation, 

we split our dataset into three sets: a training set 

(1018 images), a validation set (270 images), and a 

test set (152 images). Figure 1 is from the 

Roboflow dashboard showing dataset splitting this 

division is crucial to ensure our model learns well 

from a variety of images, fine-tunes its 
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performance, and gets rigorously tested on new, 

unseen data. 

With our data neatly organized and standardized, 

we proceeded to split it into three distinct sets to 

facilitate effective model training and evaluation as 

seen in Figure 2. 

Training Set (71%) 
A significant portion of our dataset, constituting 

71%, is earmarked for training our model. This set, 

containing 1018 images, played a crucial role in 

teaching our computer vision system to recognize 

and understand the nuances of different drone 

scenarios. It's like giving our model a vast library 

of examples to study from. 

Testing Set (19%) 
To rigorously evaluate the performance of our 

trained model, we allocated 19% of the dataset for 

testing. This set, containing 270 images, 

represented unseen scenarios for the model. 

Testing on this set provided insights into how well 

our model could handle real-world situations 

beyond those encountered during training and 

validation. 
 

Figure 1: Data Split into Training, Testing and Validation 
 

 
Figure 2:  Process Flow of Training YOLOv5 

 

we initiated the training of our model using 

YOLOv5, a state-of-the-art object detection 

algorithm. Ultralytics, a platform supporting 

YOLOv5, played a key role in this process (14). The 

training involved multiple epochs, allowing 

YOLOv5 to learn from our diverse dataset and fine-

tune its ability to recognize drones. 
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Training the Model: Teaching the 

Computer to Recognize Drones 
The core of our research involves the intricate 

process of training our computer vision model, 

YOLOv5. Training is akin to teaching the model to 

recognize drones by exposing it to a curated 

dataset of labeled images. These images serve as 

the educational material for YOLOv5, guiding it to 

distinguish drones from their surroundings. The 

steps we took in training are specific and detailed: 

Image Size Definition (img): We defined the 

input image size for our training, ensuring 

consistency. The input image resolution of 

640x640 is selected to balance computational 

efficiency with the need to detect small-scale aerial 

targets. YOLOv5's auto-anchor feature is leveraged 

to tailor anchor boxes to the specific dimensions of 

drone instances in our dataset. Loss functions, 

including CIoU loss for bounding box regression 

and BCE loss for classification and objectness, are 

retained due to their robustness in handling scale 

and aspect ratio variations typical in drone 

imagery. 

Batch Size Determination (batch): We specified 

the batch size, determining how many images 

YOLOv5 processes in each training step. 

Training Epochs (epochs): We decided on the 

number of training epochs, essentially how many 

times YOLOv5 would go through our entire dataset 

during training. 

Training Data Location (data): We provided the 

location of our training dataset, ensuring YOLOv5 

knows where to find our labeled images. 

Starting with Pretrained Weights (weights): We 

initiated our training using pretrained weights 

from a generic COCO dataset, giving YOLOv5 a head 

start in learning. 

Cache for Faster Training (cache): We used 

caching to speed up the training process, making it 

more efficient. 

The culmination of our model training 

methodology involved the execution of a 

meticulously crafted training command. The 

Python script executed, encapsulated the entire 

training configuration. This command 

orchestrated the learning process, orchestrating 

the adjustments of internal parameters, optimizing 

model weights, and iteratively refining the model's 

ability to discern drones. 

Our custom training configuration incorporated 

the vital aspects necessary for effective model 

learning: 

Data Specification (data): The location of our 

curated training dataset is specified using the data 

parameter. This ensured that YOLOv5 knew 

precisely where to access our labeled images for 

learning. 

Pretrained Weights Initialization (weights): We 

kickstarted the training process by initializing 

YOLOv5 with weights pretrained on a generic 

COCO dataset. This strategic choice provided our 

model with foundational knowledge, accelerating 

the learning curve. 

Caching for Efficiency (cache): To enhance 

training efficiency, we implemented caching, a 

mechanism that stored images in memory for 

faster access during subsequent training 

iterations. This optimization contributed to a 

streamlined and resource-efficient learning 

process. 

The training process unfolded over multiple 

epochs, with YOLOv5 iteratively analyzing the 

dataset, adjusting its internal parameters, and 

incrementally improving its ability to accurately 

identify drones. The model's progress is closely 

monitored, and adjustments are made as needed to 

address any challenges encountered during the 

learning journey. 

Combined Detection Process Flow 
To visualize how our detection process works, we 

have a handy flowchart given at Figure 3. First, we 

divide the video frames. Then, we predict the 

target's bounding box and category, essentially 

telling our computer, "Hey, where is the drone, and 

what kind is it?" Next, we use a confidence rating 

method. It's like giving a grade to the computer's 

prediction. If the confidence is high (which means 

the computer is really sure about its prediction), 

we simply draw a bounding box around the drone 

and annotate its type and confidence score. But, if 

the confidence is not that high, we apply a 

technique called non-maximum suppression. It's 

like refining the computer's guess by filtering out 

less certain predictions. Finally, we output the 

target bounding box, annotate the target type, and 

show the confidence score. This process ensures 

that our computer is not only accurate but also 

cautious, double-checking its predictions when 

needed. 
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Figure 3:  Flow of Detection Process 

 

Real-Time Drone Detection 

Implementation with Warning System 

Integration 
Video Feed Processing: In the real-time 

implementation of our drone detection system, we 

utilized the OpenCV library to process video feeds. 

OpenCV served as the backbone, allowing us to 

capture and analyze each frame from the video 

source seamlessly. 

YOLOv5 Object Detection: With each frame 

processed, we engaged our trained YOLOv5 model 

to perform object detection. YOLOv5, having 

learned from our curated dataset, swiftly identified 

potential drones within the video frames. The 

algorithm not only recognized the presence of 

drones but also provided precise bounding box 

coordinates around the detected objects. 

Bounding Box Drawing and Confidence Score 

Display: Upon detecting a drone with confidence 

above a predefined threshold, our system drew a 

bounding box around the identified object within 

the frame. This bounding box served as a visual 

representation of the detected drone, enhancing 

the interpretability of the system's output. 

Simultaneously, the confidence score, denoting the 

algorithm's certainty about the detection, is 

displayed alongside the bounding box. 

Interactive Rectangle Creation and 

Adjustment: In parallel, we implemented an 

interactive rectangle feature as shown in Figure 4 

using mouse event handling in OpenCV. Users 

could define and adjust a rectangular area of 

interest on the video feed. This area acted as a 

virtual restricted zone, enabling the system to 

monitor drone activity within or near the specified 

region. 

Warning System Integration: To enhance the 

security capabilities of our system, we integrated a 

warning mechanism. If a detected drone 

intersected with or is inside the user-defined 

rectangle, a warning message is promptly 

displayed on the video feed. This immediate 

alerting feature ensures timely responses to 

potential drone threats. 

User Interaction and System Display: To ensure 

user-friendly interaction, we facilitated the 

creation and adjustment of the detection rectangle 

through mouse events. Users could also adjust the 
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detection area interactively, providing them with 

control over the monitoring process. The system 

displayed the live video feed with overlaid 

bounding boxes, confidence scores, and warning 

messages, providing real-time feedback to the 

user. 
 

 
Figure 4: Demonstration of Real-Time UAV Detection System (A-D) 

 

Hardware and FPS Performance 

Benchmarking 
To ensure the practicality of our system in real-

world deployments, we evaluated performance 

across multiple hardware platforms: 

• Intel Iris Xe (Integrated GPU): ~12 FPS 

• Jetson Nano (Edge Device): ~7 FPS 

(optimized with TensorRT) 

• Raspberry Pi 4 (Minimum Viable Device): ~5–

6 FPS using quantized model with OpenCV 

backend 

• The minimum configuration to run our drone 

detection program smoothly includes: 

• Raspberry Pi 4 (4 GB RAM or above) 

• Raspbian OS / Ubuntu 20.04 ARM 

• Python 3.8+, OpenCV 4.5+, PyTorch 

(Lightweight version or TorchScript) 

• CSI/USB Camera with 15 FPS minimum 

capture rate 

• These results confirm that the model is 

deployable even on lightweight IoT edge 

devices such as Raspberry Pi 4, commonly 

used in real-time surveillance and smart 

security systems. The system performs 

reliably with 15 FPS camera input, which is 

sufficient for drone detection due to their 

relatively slow movement in localized areas. 
 

Results and Discussion 
In the realm of drone detection, the results and 

evaluation section serve as the compass guiding 

the success of our research. This critical phase 

unveils the performance and capabilities of our 

real-time drone detection system, showcasing how 

effectively it discerns drones from its 

surroundings. Through a series of meticulously 

crafted charts and graphs, we illuminate the 

model's learning journey, unraveling its 

capabilities in object localization, label attribution, 

and precise bounding box predictions. These visual 

representations, such as loss charts and mAP 

progression, offer a transparent narrative of the 

model's evolving accuracy throughout the training 

process. The ensuing F1-Confidence Curve, 

Precision-Recall Curve, and other insightful charts 

encapsulate the delicate balance between 

precision and recall, essential for robust drone 

detection. As we delve into numerical metrics, the 

summary reveals an impressive mAP of 97.23%, 

coupled with precision and recall rates of 95.82% 

and 96.42%, respectively. These metrics 

underscore the system's adeptness in identifying 
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drones while maintaining a high level of precision, 

validating the efficacy of our approach in 

enhancing security and automation in drone 

surveillance scenarios. 

Model Evaluation 
The success of any innovation lies in its ability to 

perform reliably and consistently. In this section, 

we rigorously evaluate the effectiveness of our 

real-time drone detection model. Through a series 

of metrics, charts, and comprehensive analyses, we 

assess how well our system has learned to identify 

and distinguish drones from the surrounding 

environment. 

Precision 
Understanding how our model's precision evolves 

over the course of training is crucial for gauging its 

accuracy in identifying drones. Precision is a 

measure of the accuracy of our model, indicating 

how many of the identified drones are drones (15). 

The formula for precision is given at equation 1: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                      [1] 

 

 

 
Figure 5: Outlines the Journey of Precision Values across 150 Training Epochs 

 

In Figure 5, the x-axis represents the training 

epochs, and the y-axis indicates the precision 

values. Precision, in simple terms, is a measure of 

how accurate our model is when it claims to have 

identified a drone. 

In the initial epochs, precision tends to be 

relatively low. This is expected as the model is just 

starting to learn and may make some errors in 

identifying drones. As the model undergoes more 

epochs, precision steadily improves. The model 

learns from its earlier mistakes and refines its 

ability to distinguish drones from other objects 

(16), resulting in a noticeable increase in precision. 

In the latter epochs, precision approaches its peak, 

reaching a commendable value of 0.95 on the 

150th epoch. This signifies that our model has 

become highly accurate in identifying 

drones, with only a minimal margin of 

error. 

Recall 
Understanding how our model improved in 

recalling drones is essential for assessing its 

effectiveness. The Recall chart vividly illustrates 

this journey over the course of training, revealing 

notable patterns and milestones. Recall measures 

the model's ability to correctly identify all 

instances of drones in the dataset. The formula for 

recall is given at equation 2: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                        [2] 
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Figure 6: Outlines the Journey of Recall Metrics across 150 Training Epochs 

 

As seen in Figure 6, in the initial stages, the Recall 

is relatively modest, highlighting the model's 

learning curve. It started at a lower value, there is 

a notable surge in Recall around 0.93 till 20th 

epoch, indicating that the model is struggling to 

capture all instances of drones in the early training 

phases. Between epochs 20 and 40, the recall 

stabilizing at values between 0.90 and 0.95. This 

phase suggests that the model began to grasp more 

intricate features of drones, leading to a more 

consistent and reliable detection of these objects 

(17). Post the 40th epoch, there is a gradual and 

steady increase in Recall. This progressive climb is 

indicative of the model's continued learning and 

adaptation to diverse scenarios. As the training 

journey approached its culmination at the 150th 

epoch, the Recall surpassed 0.95 and reached 0.96. 

This signifies that the model achieved its peak 

performance, demonstrating a high level of 

proficiency in identifying drones across various 

conditions. 

MAP (Mean Average Precision) 
The mAP_0.5 chart provides a fascinating insight 

into how our model's performance evolved over 

the course of training (18), specifically concerning 

the Mean Average Precision (MAP) at a confidence 

threshold of 0.5. The mAP is calculated by taking 

the average of precision values at different recall 

levels as given in equation 3. 

 

𝑚𝐴𝑃 =  
1

𝐶
 ∑  𝐶

𝑖=1  𝐴𝑃𝑖                               [3] 
 

Where: 

• C is the total number of classes. 

• , is the average precision for class  
 

Mean Average Precision at a 0.5 threshold is a 

critical metric. It essentially quantifies how well 

our model balances precision and recall, 

emphasizing accuracy in detecting drones while 

minimizing false positives and false negatives. 
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Figure 7: Outlines the Journey of Mean Average Precision at 0.5 Confidence Threshold 

 

As shown in Figure 7, in the initial stages of 

training, our model demonstrated a rapid surge in 

mAP, reaching an impressive 0.96 within the first 

20 epochs. This early success indicates that the 

model quickly grasped essential patterns and 

features related to drone detection. As the training 

progressed, the mAP_0.5 curve exhibited a gradual 

and steady climb, showcasing the model's 

continuous learning and refinement. A notable 

highlight of the mAP_0.5 chart is the consistent 

progression observed up to the 150th epoch, 

where the mAP reached a commendable 0.97. The 

surge and subsequent steady climb in the mAP_0.5 

values affirm the robustness of our drone 

detection system. This suggests that our model 

achieved a balance where it confidently identifies 

drones with a high level of accuracy across various 

situations. 
 

Figure 8: Metrics Charts Showing Model’s Progress
 

Figure 8 shows the overall training summary of the 

model. The loss curves indicate a downward trend, 

meaning that during training, the losses are 

minimized both for training and validation. The 

metrics curves show upward trends, meaning the 

performance of the model improved over the 

iterations during training. 

 

Table 1: Overall Evaluation Metrics Results 

Class Precision Recall MAP 

Drone 95.82 % 96.42 % 97.23 % 
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Table 1 summarizes the core evaluation metrics. 

The drone class achieved a precision of 95.82%, 

indicating that false positives are minimal, while 

the recall of 96.42% shows that most actual drones 

are correctly detected. 

 

 
Figure 9:  F1-Confidence Curve Graph 

 

The Figure 9 F1-Confidence Curve illustrates the 

balance between precision and recall at different 

confidence thresholds. Finding an optimal 

threshold ensures a good balance between 

minimizing false positives and false negatives, 

contributing to effective drone detection (19). 
 

 
Figure 10:  Precision Recall Curve Graph 

 

The given Precision-Recall Curve in Figure 10 

showcases the trade-off between precision and 

recall at different classification thresholds (20). A 

curve that hugs the top-right corner indicates a 

model with high precision and recall, offering 

confidence in its detection capabilities. 
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Figure 11: Precision Confidence Curve Graph 

 

In Figure 11 the Precision Confidence curve 

illustrates how precision varies with different 

confidence thresholds. Identifying an appropriate 

threshold ensures that the system maintains a high 

level of precision in detecting drones (21). 

 

 
Figure 12: Recall Confidence Curve Graph 

 

In Figure 12 the Recall-Confidence Curve depicts 

how recall changes with different confidence 

thresholds. Striking a balance between recall and 

precision is essential for an effective and reliable 

drone detection system (22). 

Visual Results 
Our detailed methodology, from data collection to 

real-time implementation, ensures a 

comprehensive understanding of our drone 

detection system. Our drone detection system, a 

combination of meticulous training and 

implementation, demonstrated significant 

efficiency in real-time scenarios. The results 

showcase the system's ability to accurately 

identify and locate drones, providing a critical 

layer of security in various environments. 

Detection Accuracy 
The above image illustrates the system's detection 

accuracy, with bounding boxes accurately 

outlining the detected drones as shown in Figure 

13. Each box represents a successful identification, 

demonstrating the model's ability to precisely 

locate drones within the video frame. 
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Figure 13:  Model Showing Confidence Score on Un-Trained Images 

 

Figure 14:  Multiple Result Images
 

System Robustness 
To assess the system's robustness, we evaluated its 

performance under varying environmental 

conditions, such as changes in lighting and weather 

(23). The model exhibited resilience, maintaining 

high accuracy across diverse scenarios as seen in 

Figure 14. 

Real-Time Warning System 

In this example, our system triggers a real-time 

warning message upon detecting a drone within or 

near a predefined area as seen in Figure 15. This 

feature enhances the system's proactive 

capabilities, providing immediate alerts in 

potential security-sensitive situations. 
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Figure 15: Real-Time Detection Program with Custom Field of View (FoV) (A, B) 

 

Comparative Analysis 

To contextualize our system's performance, we 

conducted a comparative analysis with existing 

state-of-the-art drone detection methods (24, 25). 

The results consistently demonstrated competitive 

precision, recall, and mAP, affirming the 

effectiveness of our approach. 

Table 2 highlights the performance improvement 

of our YOLOv5 model over YOLOv4 and previous 

YOLOv5 implementations. The significant boost in 

mAP from 0.90 to 0.97 reflects the benefits of 

improved data diversity and optimized training 

settings. 

 

Table 2: Comparison between Previous and Proposed Model’s Performance 

Models Precision Recall MAP 

Previous YOLOv4 (2) 0.950  0.680 0.743 

Previous YOLOv5 (1) 0.918 0.875 0.904 

Proposed YOLOv5 0.958 0.964 0.972 
 

Table 3: Comparison between Other Methods and Proposed Mode’s Precision and Proposed Mode’s 

Precision 

 

Unlike traditional CV approaches relying on 

handcrafted features and classifiers (e.g., SVM, 

KNN), which require significant feature 

engineering and struggle with scalability, YOLOv5 

offers end-to-end detection with real-time 

performance. Compared to recent detectors like 

Mask-RCNN, YOLOv5 achieves higher speed while 

maintaining competitive precision as seen in Table 

3. Although newer models like YOLOv8 exist, 

YOLOv5 remains computationally efficient and is 

well-supported for deployment, justifying its 

selection. In a comparative analysis of existing 

methods and our proposed approach, our YOLOv5-

based drone detection system outperforms 

established models. Notably, while traditional CNN 

achieved a precision of 95%, SVM and KNN lagged 

with precisions of 88% and 80%, respectively. 

YOLOv2, though efficient with a precision of 90%, 

utilized a smaller dataset (215 images). The 

advanced MaskRCNN exhibited a commendable 

Reference Method Data Size Results (Precision) 

6 CNN 712 95.0% 

6 SVM 712 88.0% 

7 KNN 712 80.0% 

7 YOLOv2 215 90.0% 

8 MaskRCNN 1359 93.0% 

Proposed YOLOv5 1440 95.8% 
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precision of 93% with a substantial dataset of 1359 

images. In contrast, our proposed YOLOv5 method 

excels with a precision of 95.8%, leveraging a 

diverse dataset of 1440 images, showcasing its 

superior accuracy in real-world drone detection 

scenarios. 

Error and Misclassification Analysis 
Despite the complexities of real-world 

environments, our model demonstrated minimal 

misclassification. Owing to the high precision 

(95.82%) and a carefully set confidence threshold, 

the system is conservatively tuned to avoid 

mislabeling. Instead of falsely classifying other 

objects (e.g., birds, clouds, or kites) as drones, the 

model opts to withhold detection unless 

sufficiently confident, thus prioritizing reliability 

over over-detection. 

This approach significantly reduces false positives 

in cluttered or natural backgrounds. However, 

detection failures may occur under certain 

conditions: 

• Poor lighting (e.g., dusk or backlighting). 

• Low camera resolution or frame rate 

(especially <15 FPS). 

• Tiny drone sizes occupying very few pixels in 

the frame (typically under 20×20 px). 

These situations may cause the drone to be 

missed—not misclassified—highlighting the 

importance of proper deployment conditions (e.g., 

1080p camera, stable lighting). Future 

improvements may include integrating multi-

frame fusion or thermal vision to overcome these 

edge cases. 
 

Conclusion 
In the pursuit of advancing drone detection 

methodologies, our research has culminated in the 

development and validation of a real-time drone 

detection system. The systematic approach, 

encompassing data preparation, model training, 

and practical implementation, has yielded 

promising results with far-reaching implications 

for security and surveillance applications. 

Integration with Threat Response 

Frameworks 
Our system is well-aligned with the requirements 

of broader civil aviation and defence threat 

response mechanisms. It incorporates a real-time 

warning system, which activates when a drone 

enters a user-defined restricted zone—a region 

that can be dynamically adjusted based on the 

surveillance perimeter or sensitive area 

boundaries (e.g., airports, government facilities, or 

military installations). 

When an intrusion is detected, the system: 

• Displays a visual warning on-screen. 

• Can trigger an audio or network-based alert 

(e.g., via siren or notification system) to 

immediately notify security personnel. 

• Outputs bounding box coordinates, which 

can be used to calculate the approximate 

location of the drone within the field of view. 

• These features form the basis of a modular 

real-time response pipeline. The system can 

be extended to: 

• Integrate with radar or RF-based drone 

jammers. 

• Send automatic alerts to command centers 

via HTTP/REST endpoints or MQTT. 

• Feed data to tracking systems or external 

PTZ cameras for continuous monitoring. 

• This modularity ensures the system's 

suitability for civil aviation zones under 

Remote ID policies as well as for defense-

grade installations requiring scalable drone 

threat management solutions. 

While our system performed exceptionally well, it 

is essential to acknowledge its limitations. Future 

iterations will focus on addressing challenges 

related to crowded scenarios, occlusions, and 

improving the system's adaptability to evolving 

drone technologies. 

Our primary objective is to design a robust drone 

detection system capable of real-time 

identification and warning in diverse 

environments (26, 27). Through meticulous 

dataset curation, leveraging the power of YOLOv5, 

and integrating OpenCV for real-time processing, 

we addressed this objective with a comprehensive 

and practical approach. The system's detection 

accuracy, illustrated through visual results, 

showcases its ability to precisely locate drones 

within video frames. The integration of a real-time 

warning system further enhances its utility, 

providing immediate alerts in response to 

potential security threats. These achievements 

underscore the system's significance in bolstering 

security measures in sensitive areas, such as 

airports, public events, and critical infrastructure. 

Quantitative metrics, including precision, recall, 

and mean Average Precision (mAP), underscore 

the high performance of our system. Comparative 
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analyses against existing methods validate its 

competitive standing within the realm of drone 

detection technologies (28). The successful 

development and validation of our drone detection 

system hold significant implications for the field of 

security and surveillance. The system's real-time 

capabilities, coupled with its high accuracy, 

position it as a valuable asset in safeguarding 

public spaces, critical infrastructure, and events 

where unauthorized drone activities pose 

potential threats. 

In conclusion, our research contributes to the field 

of drone detection with a practical and effective 

system. The amalgamation of advanced computer 

vision techniques, machine learning, and real-time 

processing heralds a new era in the proactive 

identification of drone threats. As the technological 

landscape continues to evolve, our system stands 

poised to play a pivotal role in fortifying security 

measures. 

In the dynamic landscape of drone technology, our 

research serves as a stepping stone, contributing 

not only to the current state of the art but also 

laying the groundwork for future innovations in 

the realm of drone detection and security. 
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