

International Research Journal of Multidisciplinary Scope (IRJMS), 2025; 6(3):914-931

Original Article | ISSN (O): 2582-631X DOI: 10.47857/irjms.2025.v06i03.04370

Next-Generation Aerial Threat Detection Using Yolov5
Ayush Kumawat1, Anand Jawdekar2*, Vicky Gupta3, Shivam Kumar

Upadhyay4, Sandeep Wadekar2, Chandra Shekhar2

1Indian Space Research Organization, Space Application Centre, Ahmedabad, Gujarat, India, 2Parul Institute of Engineering and
Technology, Parul University, Vadodara, Gujarat, India, 3Jaypee Institute of Information Technology, Noida Uttar Pradesh, India, 4Parul
Institute of Technology, Parul University, Vadodara, Gujarat, India. *Corresponding Author’s Email: anand.cs2007@gmail.com

Abstract
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have emerged as versatile tools with applications
spanning surveillance, aerial photography, agriculture, and disaster response. However, their increasing presence raises
security concerns, necessitating robust detection systems. This research explores the development of a real-time drone
detection system using the state-of-the-art YOLOv5 algorithm. This paper presents a detailed methodology,
comparative analysis, and results demonstrating the efficacy of our approach in enhancing security measures against
UAV threats. Current detection technologies encompass a range of approaches, including computer vision, machine
learning, radar systems, and acoustic sensors. Traditional methods often rely on rule-based algorithms or handcrafted
features, exhibiting limited scalability and adaptability to dynamic environments. In this research paper, we present a
novel approach to drone detection utilizing the YOLOv5, a powerful object detection algorithm, with OpenCV, a versatile
computer vision library. The heart of our system lies in a meticulously curated dataset containing 1440 images,
showcasing a diverse array of drones. Each image tells a unique story, helping our system learn to recognize drones of
different types and sizes. Our methodology involves a detailed process of training YOLOv5 using the dataset, carefully
splitting the data into training, validation, and testing sets, and setting up a real-time detection system using OpenCV.
The system not only identifies drones but also issues warnings when a drone is detected within or near a specified area.

Keywords: Computer Vision, Custom Dataset, Drone Detection, Real-Time Detection, YOLOv5 Algorithm.

Introduction

In our rapidly advancing technological landscape,

the soaring popularity of drones brings both

excitement and challenges. Drones, or Unmanned

Aerial Vehicles (UAVs), have become increasingly

accessible to individuals and organizations

worldwide. While these flying gadgets offer

incredible possibilities in various fields, such as

photography, agriculture, and delivery services,

their misuse poses potential threats to privacy,

safety, and security. Additionally, many

Commercial-off-the-Shelf (COTS) drones come

equipped with cameras, facilitating First-Person

View (FPV) capabilities. This feature enables live

video streaming from the drone's camera to the

controller or a separate viewing device. However,

the ease of access to such live video feeds raises

concerns about potential privacy infringements.

To address these issues, the Federal Aviation

Administration (FAA), the civil aviation regulatory

body of the U.S. government, introduced a set of

policies on January 15, 2021. These policies,

known as Remote ID, establish guidelines for the

identification requirements of drones (1).

Numerous drone detection solutions are available

in the market, but their high costs often render

them inaccessible to many individuals (2, 3).

Furthermore, some of these solutions are designed

to detect only specific models of drones, thereby

limiting their effectiveness in detecting a wide

range of UAVs (4). Recognizing these limitations,

affordable drone detection solutions are

increasingly being developed through intensified

research efforts. These efforts primarily focus on

detecting unauthorized drones entering restricted

airspace or private areas. In recent years, methods

for detecting drones by analyzing their network

traffic patterns have been explored in several

studies (5, 6). This approach leverages insights

from network data to identify drones, offering a

promising avenue for cost-effective drone

detection solutions. However, these approaches

may fail to differentiate drones from other moving

radio sources. In response to these pressing

concerns, our research endeavors to pioneer an

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,

and reproduction in any medium, provided the original work is properly cited.

(Received 09th March 2025; Accepted 07th July 2025; Published 26th July 2025)

Kumawat et al., Vol 6 ǀ Issue 3

915

innovative solution aimed at detecting drones in

real-time. By harnessing the latest advancements

in computer vision and machine learning, our

system is designed to swiftly identify and alert

against unauthorized drone activities. Through

meticulous development and rigorous testing, we

aim to provide a robust and reliable defense

mechanism against potential threats posed by

drones in various settings, ranging from critical

infrastructure protection to public safety

enforcement. Our commitment to leveraging

cutting-edge technologies underscores our

dedication to safeguarding privacy, security, and

airspace integrity in the face of evolving UAV

challenges. With the proliferation of drones,

there's a growing need for robust detection

mechanisms to safeguard public spaces, events,

and critical infrastructure. The existing UAV

detection methods are mainly divided into the

following categories: audio signal-based detection

methods, radar-based detection methods, radio

frequency-based detection methods, and image

and video-based detection methods. Traditional

methods of monitoring, relying on human

surveillance alone, are becoming impractical due

to the sheer volume and agility of drones. Our

solution aims to automate the detection process,

reducing reliance on manual oversight and

providing a timely response to potential threats.

Our research leverages two powerful tools,

YOLOv5 (You Only Look Once, version 5) and

OpenCV. YOLOv5 is a state-of-the-art object

detection algorithm, allowing computers to rapidly

and accurately identify objects in images or video

frames. OpenCV, an open-source computer vision

library, serves as the backbone for implementing

our detection system. Together, they empower our

model to quickly analyze real-time video feeds and

pinpoint the presence of drones.

Our system boasts several features that set it apart:

Real-time Detection
The ability to identify drones instantly as they

appear in the video feed.

Interactive Rectangle Control
Users can define and adjust a detection area

interactively.

Warning Mechanism
Immediate warnings are triggered when a drone is

detected within or near the defined area.

The benefits of our system extend to enhanced

security, automated monitoring, and adaptability

to diverse environments. Furthermore, our

approach is customizable, open-source, and cost-

effective. As drones become more accessible to

individuals and organizations alike, the need for

effective detection systems has never been more

critical. Ensuring that drones are used responsibly

and within legal boundaries is vital for

safeguarding public spaces, events, and critical

infrastructure.

Traditional surveillance methods, relying heavily

on human observation, struggle to keep pace with

the agility and prevalence of drones. To address

this challenge, our research focuses on developing

an advanced drone detection system that leverages

state-of-the-art technologies in computer vision

and machine learning.

In the past, various techniques, such as radar, were

used to detect drones. However, it is very difficult

for radar to do so, due to the low levels of

electromagnetic signals that drones transmit.

Similarly, other techniques, such as acoustic and

radio frequency-based drone detection, are costly

and inaccurate. Recently, machine learning-based

drone detectors, such as SVM and artificial neural

network classifiers, have been used to detect

drones, achieving better success than radar and

acoustic drone detection systems (7).

Different types of drone images are collected to

build a dataset (8). The images are then annotated

in the YOLO format for training a YOLOv3 model.

An NVIDIA GeForce GTX 1050 Ti GPU was used to

train the dataset with chosen parameter values,

such as a learning rate of 0.0001, batch size of 64,

and 150 total epochs. The best mAP value was 0.74.

PyTorch, an open-source machine learning

programming language, was used to train and test

the YOLOv3 model.

YOLOv4 was used to automatically detect drones

with the aim of integrating the trained model into

a CCTV camera, thereby reducing the need for

manual monitoring. The authors collected their

dataset from public resources such as Google

images, opensource websites, etc. The images then

converted into the YOLO format using free and

paid image annotation tools. They fine-tuned the

YOLOv4 architecture by customizing filters, max

batches, subdivisions, batches, etc. After training

the YOLOv4 model for 1300 iterations, the

researchers achieved a mAP of 0.99. Though their

mAP value was very high, they trained only 53

Kumawat et al., Vol 6 ǀ Issue 3

916

images and did not address model overfitting,

resulting in a greater improvement scope.

An approach based on YOLOv5 was presented,

utilizing a dataset of 1359 drone images. They fine-

tuned the model on a local system with an 8 GB

NVDIA RTX2070 GPU, 16 GB of RAM, and a 1.9 GHz

CPU. They employed a 60:20:20 split of the dataset

for training, testing, and validation. They trained

the model on top of COCO pre-trained weights and

obtained a precision of 94.70%, a recall of 92.50%,

and a mAP of 94.1%.

In their study, drones were suggested to be

detected by analyzing their First-Person View

(FPV) streams (9). They propose comparing the

bit rate of an FPV stream from a drone with that of

a previously recorded FPV data stream. However,

they note that the bit rate of an FPV stream tends

to increase as the scene becomes more dynamic.

This means that a drone capturing a highly

dynamic scene may not always match a specific set

of FPV bit rates accurately. Additionally, the

authors argue that the Received Signal Strength

Indicator (RSSI) of FPV channels differs from other

WiFi video streaming services due to the

movement of drones. However, they did not

consider the possibility of other moving video

streaming devices, such as Voice over Internet

Protocol (VoIP) applications on smartphones.

In their study, classical features similar to those

employed in previous research were utilized to

distinguish First-Person View (FPV) drones from

other devices, thereby enabling drone detection

(10-12). They demonstrate that their framework

achieves high accuracy in detecting drones by

analyzing features extracted from packet samples

exchanged between the drone and its controller,

with a minimum of 50 packets. However, the

authors acknowledge two unresolved issues: the

recognition of new types of unmanned aerial

vehicles (UAVs) and the detection of modified

video patterns. The findings of previous research

were built upon by enhancing detection accuracy

and addressing the challenges associated with

recognizing new UAV types (13). At the forefront

of our research are two key tools: YOLOv5 (You

Only Look Once) and OpenCV (Open Source

Computer Vision Library). YOLOv5 is an advanced

object detection algorithm known for its rapid

processing speed and accuracy. Paired with

OpenCV, a versatile toolkit for image and video

analysis, our drone detection system gains the

capability to process real-time video feeds and

identify drones swiftly and accurately.

Methodology
In our pursuit of creating an effective drone

detection system, we followed a methodical

process that combined precision in data

preparation, leveraging advanced machine

learning algorithms, and employing robust real-

time processing techniques. Our research

endeavors to create an effective and reliable real-

time drone detection system, employing a carefully

crafted methodology. The process involves several

pivotal stages, each contributing to the

development of a robust model.

Dataset Collection and Organization -

Diverse Drone Images
Before our computer can recognize drones, it

needs to learn from lots of pictures showing

different types of drones. Imagine you're teaching

a friend what a drone looks like—you'd show them

many pictures of drones in various situations. The

dataset is curated from open-source platforms

such as Kaggle and GitHub, incorporating drones of

varying models, sizes, and colors. Scenes included

forests, urban skylines, clear and cloudy skies, and

varied lighting conditions to ensure robustness

and generalization. This diverse dataset simulates

real-world complexity, improving the model’s

resilience in different operational environments.

Collection of Images: Building a Photo

Album for Our Computer
We created a big collection of images, like a

massive photo album, to train our computer. This

album had 1440 pictures of drones doing all sorts

of things. We made sure to include different types

of drones, in different sizes, and in various

backgrounds. It's like having a diverse set of

examples so that the computer learns to recognize

all kinds of drones.

Labelling of Images: Making Sure Each

Photo Tells a Clear Story
Just like in a photo album, each picture had to tell a

clear story. We carefully labeled each image to let

the computer know where the drones are and what

they looked like. This labeling process is a bit like

putting captions on photos so that our computer

understands exactly what it's seeing.

Kumawat et al., Vol 6 ǀ Issue 3

917

Formatting: Getting the Data Ready for

Training
Once our photo album is ready, we needed to

organize it in a way that our computer could

understand. Think of it like arranging your photos

in a neat order. We used a special tool called

Roboflow to help us with this. It made sure our

images are in a format that our computer, YOLOv5,

could easily use for learning.

Checking and Double-Checking for

Accuracy
We wanted to be super sure that our photo album

is top-notch. So, we double-checked everything.

We looked at each image, made sure the labels

matched what is in the picture, and verified that

our dataset covered a wide range of drone

scenarios. This attention to detail is crucial to

ensure our computer learns accurately.

Creation of Dataset: Exporting Our

Photo Album for YOLOv5
Once we are confident that our photo album is

perfect, we exported it into a format that YOLOv5

could understand. It's like turning our photo album

into a special book that YOLOv5 can read. This step

is crucial for the computer to learn from the images

and become really good at spotting drones.

Rigorous Curation with Roboflow
To prepare our dataset for training, we harnessed

the capabilities of a remarkable tool known as

Roboflow. Picture it as a wizard guiding us through

the intricacies of dataset organization and

structuring, ensuring our computer vision model,

YOLOv5, comprehends the data seamlessly.

Roboflow played a pivotal role in managing the

nitty-gritty details, assuring that our dataset

achieved the optimal shape for training our model.

In this process, Roboflow served as a dedicated

assistant, streamlining the organization of our

images and associated information. Its role

extended to formatting our images in a manner

aligned with YOLOv5's requirements. Each image

underwent meticulous labeling, providing

annotations that would serve as a guide for

YOLOv5 to understand the nuances of drone

characteristics.

One of the striking aspects of Roboflow is its

adaptability to different models and algorithms. It

ensures that our dataset conforms to the specific

preferences of YOLOv5, eliminating potential

roadblocks during the training phase. Essentially,

Roboflow acts as a translator, ensuring our dataset

speaks the same language as YOLOv5, facilitating a

seamless learning process.

Moreover, Roboflow boasts a user-friendly

interface, making it accessible to both researchers

and developers. Even without an extensive coding

background, Roboflow guides users through the

necessary steps, ensuring that the dataset is

meticulously prepared for effective model training.

Its automation of certain steps and workflow

optimization significantly contributes to efficiency,

a critical factor when dealing with large datasets

containing numerous images.

As an additional feature, Roboflow empowers us to

generate an API for our model to facilitate the

training process. Utilizing a code snippet provided

by Roboflow, we seamlessly export our dataset.

In summary, the second step of our methodology

involves leveraging Roboflow not only for the

organization, labeling, and formatting of our

dataset but also for the generation of a convenient

API. This step is pivotal, laying the foundation for a

successful and efficient training process for our

drone detection model, YOLOv5.

Dataset Splitting for Training,

Validation, and Testing
We embarked on our journey by curating a rich

dataset of 1440 images showcasing various drone

scenarios. Each image is labeled with precision,

indicating where the drones are located. This data

collection phase is meticulous, ensuring diversity

and accuracy in our dataset. To prepare our

dataset for effective training, we engaged in data

preprocessing. This involved refining and

organizing the images, making sure they are in a

standardized format. To streamline the data

preparation process, we leveraged the power of

Roboflow. It acted as our data organizing assistant,

helping us import our meticulously prepared

dataset and standardize it for optimal use in

training our model. Roboflow served as a bridge

between our curated images and the training

process, ensuring that everything is in order.

Now, for effective model training and evaluation,

we split our dataset into three sets: a training set

(1018 images), a validation set (270 images), and a

test set (152 images). Figure 1 is from the

Roboflow dashboard showing dataset splitting this

division is crucial to ensure our model learns well

from a variety of images, fine-tunes its

Kumawat et al., Vol 6 ǀ Issue 3

918

performance, and gets rigorously tested on new,

unseen data.

With our data neatly organized and standardized,

we proceeded to split it into three distinct sets to

facilitate effective model training and evaluation as

seen in Figure 2.

Training Set (71%)
A significant portion of our dataset, constituting

71%, is earmarked for training our model. This set,

containing 1018 images, played a crucial role in

teaching our computer vision system to recognize

and understand the nuances of different drone

scenarios. It's like giving our model a vast library

of examples to study from.

Testing Set (19%)
To rigorously evaluate the performance of our

trained model, we allocated 19% of the dataset for

testing. This set, containing 270 images,

represented unseen scenarios for the model.

Testing on this set provided insights into how well

our model could handle real-world situations

beyond those encountered during training and

validation.

Figure 1: Data Split into Training, Testing and Validation

Figure 2: Process Flow of Training YOLOv5

we initiated the training of our model using

YOLOv5, a state-of-the-art object detection

algorithm. Ultralytics, a platform supporting

YOLOv5, played a key role in this process (14). The

training involved multiple epochs, allowing

YOLOv5 to learn from our diverse dataset and fine-

tune its ability to recognize drones.

Kumawat et al., Vol 6 ǀ Issue 3

919

Training the Model: Teaching the

Computer to Recognize Drones
The core of our research involves the intricate

process of training our computer vision model,

YOLOv5. Training is akin to teaching the model to

recognize drones by exposing it to a curated

dataset of labeled images. These images serve as

the educational material for YOLOv5, guiding it to

distinguish drones from their surroundings. The

steps we took in training are specific and detailed:

Image Size Definition (img): We defined the

input image size for our training, ensuring

consistency. The input image resolution of

640x640 is selected to balance computational

efficiency with the need to detect small-scale aerial

targets. YOLOv5's auto-anchor feature is leveraged

to tailor anchor boxes to the specific dimensions of

drone instances in our dataset. Loss functions,

including CIoU loss for bounding box regression

and BCE loss for classification and objectness, are

retained due to their robustness in handling scale

and aspect ratio variations typical in drone

imagery.

Batch Size Determination (batch): We specified

the batch size, determining how many images

YOLOv5 processes in each training step.

Training Epochs (epochs): We decided on the

number of training epochs, essentially how many

times YOLOv5 would go through our entire dataset

during training.

Training Data Location (data): We provided the

location of our training dataset, ensuring YOLOv5

knows where to find our labeled images.

Starting with Pretrained Weights (weights): We

initiated our training using pretrained weights

from a generic COCO dataset, giving YOLOv5 a head

start in learning.

Cache for Faster Training (cache): We used

caching to speed up the training process, making it

more efficient.

The culmination of our model training

methodology involved the execution of a

meticulously crafted training command. The

Python script executed, encapsulated the entire

training configuration. This command

orchestrated the learning process, orchestrating

the adjustments of internal parameters, optimizing

model weights, and iteratively refining the model's

ability to discern drones.

Our custom training configuration incorporated

the vital aspects necessary for effective model

learning:

Data Specification (data): The location of our

curated training dataset is specified using the data

parameter. This ensured that YOLOv5 knew

precisely where to access our labeled images for

learning.

Pretrained Weights Initialization (weights): We

kickstarted the training process by initializing

YOLOv5 with weights pretrained on a generic

COCO dataset. This strategic choice provided our

model with foundational knowledge, accelerating

the learning curve.

Caching for Efficiency (cache): To enhance

training efficiency, we implemented caching, a

mechanism that stored images in memory for

faster access during subsequent training

iterations. This optimization contributed to a

streamlined and resource-efficient learning

process.

The training process unfolded over multiple

epochs, with YOLOv5 iteratively analyzing the

dataset, adjusting its internal parameters, and

incrementally improving its ability to accurately

identify drones. The model's progress is closely

monitored, and adjustments are made as needed to

address any challenges encountered during the

learning journey.

Combined Detection Process Flow
To visualize how our detection process works, we

have a handy flowchart given at Figure 3. First, we

divide the video frames. Then, we predict the

target's bounding box and category, essentially

telling our computer, "Hey, where is the drone, and

what kind is it?" Next, we use a confidence rating

method. It's like giving a grade to the computer's

prediction. If the confidence is high (which means

the computer is really sure about its prediction),

we simply draw a bounding box around the drone

and annotate its type and confidence score. But, if

the confidence is not that high, we apply a

technique called non-maximum suppression. It's

like refining the computer's guess by filtering out

less certain predictions. Finally, we output the

target bounding box, annotate the target type, and

show the confidence score. This process ensures

that our computer is not only accurate but also

cautious, double-checking its predictions when

needed.

Kumawat et al., Vol 6 ǀ Issue 3

920

Figure 3: Flow of Detection Process

Real-Time Drone Detection

Implementation with Warning System

Integration
Video Feed Processing: In the real-time

implementation of our drone detection system, we

utilized the OpenCV library to process video feeds.

OpenCV served as the backbone, allowing us to

capture and analyze each frame from the video

source seamlessly.

YOLOv5 Object Detection: With each frame

processed, we engaged our trained YOLOv5 model

to perform object detection. YOLOv5, having

learned from our curated dataset, swiftly identified

potential drones within the video frames. The

algorithm not only recognized the presence of

drones but also provided precise bounding box

coordinates around the detected objects.

Bounding Box Drawing and Confidence Score

Display: Upon detecting a drone with confidence

above a predefined threshold, our system drew a

bounding box around the identified object within

the frame. This bounding box served as a visual

representation of the detected drone, enhancing

the interpretability of the system's output.

Simultaneously, the confidence score, denoting the

algorithm's certainty about the detection, is

displayed alongside the bounding box.

Interactive Rectangle Creation and

Adjustment: In parallel, we implemented an

interactive rectangle feature as shown in Figure 4

using mouse event handling in OpenCV. Users

could define and adjust a rectangular area of

interest on the video feed. This area acted as a

virtual restricted zone, enabling the system to

monitor drone activity within or near the specified

region.

Warning System Integration: To enhance the

security capabilities of our system, we integrated a

warning mechanism. If a detected drone

intersected with or is inside the user-defined

rectangle, a warning message is promptly

displayed on the video feed. This immediate

alerting feature ensures timely responses to

potential drone threats.

User Interaction and System Display: To ensure

user-friendly interaction, we facilitated the

creation and adjustment of the detection rectangle

through mouse events. Users could also adjust the

Kumawat et al., Vol 6 ǀ Issue 3

921

detection area interactively, providing them with

control over the monitoring process. The system

displayed the live video feed with overlaid

bounding boxes, confidence scores, and warning

messages, providing real-time feedback to the

user.

Figure 4: Demonstration of Real-Time UAV Detection System (A-D)

Hardware and FPS Performance

Benchmarking
To ensure the practicality of our system in real-

world deployments, we evaluated performance

across multiple hardware platforms:

• Intel Iris Xe (Integrated GPU): ~12 FPS

• Jetson Nano (Edge Device): ~7 FPS

(optimized with TensorRT)

• Raspberry Pi 4 (Minimum Viable Device): ~5–

6 FPS using quantized model with OpenCV

backend

• The minimum configuration to run our drone

detection program smoothly includes:

• Raspberry Pi 4 (4 GB RAM or above)

• Raspbian OS / Ubuntu 20.04 ARM

• Python 3.8+, OpenCV 4.5+, PyTorch

(Lightweight version or TorchScript)

• CSI/USB Camera with 15 FPS minimum

capture rate

• These results confirm that the model is

deployable even on lightweight IoT edge

devices such as Raspberry Pi 4, commonly

used in real-time surveillance and smart

security systems. The system performs

reliably with 15 FPS camera input, which is

sufficient for drone detection due to their

relatively slow movement in localized areas.

Results and Discussion
In the realm of drone detection, the results and

evaluation section serve as the compass guiding

the success of our research. This critical phase

unveils the performance and capabilities of our

real-time drone detection system, showcasing how

effectively it discerns drones from its

surroundings. Through a series of meticulously

crafted charts and graphs, we illuminate the

model's learning journey, unraveling its

capabilities in object localization, label attribution,

and precise bounding box predictions. These visual

representations, such as loss charts and mAP

progression, offer a transparent narrative of the

model's evolving accuracy throughout the training

process. The ensuing F1-Confidence Curve,

Precision-Recall Curve, and other insightful charts

encapsulate the delicate balance between

precision and recall, essential for robust drone

detection. As we delve into numerical metrics, the

summary reveals an impressive mAP of 97.23%,

coupled with precision and recall rates of 95.82%

and 96.42%, respectively. These metrics

underscore the system's adeptness in identifying

Kumawat et al., Vol 6 ǀ Issue 3

922

drones while maintaining a high level of precision,

validating the efficacy of our approach in

enhancing security and automation in drone

surveillance scenarios.

Model Evaluation
The success of any innovation lies in its ability to

perform reliably and consistently. In this section,

we rigorously evaluate the effectiveness of our

real-time drone detection model. Through a series

of metrics, charts, and comprehensive analyses, we

assess how well our system has learned to identify

and distinguish drones from the surrounding

environment.

Precision
Understanding how our model's precision evolves

over the course of training is crucial for gauging its

accuracy in identifying drones. Precision is a

measure of the accuracy of our model, indicating

how many of the identified drones are drones (15).

The formula for precision is given at equation 1:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 [1]

Figure 5: Outlines the Journey of Precision Values across 150 Training Epochs

In Figure 5, the x-axis represents the training

epochs, and the y-axis indicates the precision

values. Precision, in simple terms, is a measure of

how accurate our model is when it claims to have

identified a drone.

In the initial epochs, precision tends to be

relatively low. This is expected as the model is just

starting to learn and may make some errors in

identifying drones. As the model undergoes more

epochs, precision steadily improves. The model

learns from its earlier mistakes and refines its

ability to distinguish drones from other objects

(16), resulting in a noticeable increase in precision.

In the latter epochs, precision approaches its peak,

reaching a commendable value of 0.95 on the

150th epoch. This signifies that our model has

become highly accurate in identifying

drones, with only a minimal margin of

error.

Recall
Understanding how our model improved in

recalling drones is essential for assessing its

effectiveness. The Recall chart vividly illustrates

this journey over the course of training, revealing

notable patterns and milestones. Recall measures

the model's ability to correctly identify all

instances of drones in the dataset. The formula for

recall is given at equation 2:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 [2]

Kumawat et al., Vol 6 ǀ Issue 3

923

Figure 6: Outlines the Journey of Recall Metrics across 150 Training Epochs

As seen in Figure 6, in the initial stages, the Recall

is relatively modest, highlighting the model's

learning curve. It started at a lower value, there is

a notable surge in Recall around 0.93 till 20th

epoch, indicating that the model is struggling to

capture all instances of drones in the early training

phases. Between epochs 20 and 40, the recall

stabilizing at values between 0.90 and 0.95. This

phase suggests that the model began to grasp more

intricate features of drones, leading to a more

consistent and reliable detection of these objects

(17). Post the 40th epoch, there is a gradual and

steady increase in Recall. This progressive climb is

indicative of the model's continued learning and

adaptation to diverse scenarios. As the training

journey approached its culmination at the 150th

epoch, the Recall surpassed 0.95 and reached 0.96.

This signifies that the model achieved its peak

performance, demonstrating a high level of

proficiency in identifying drones across various

conditions.

MAP (Mean Average Precision)
The mAP_0.5 chart provides a fascinating insight

into how our model's performance evolved over

the course of training (18), specifically concerning

the Mean Average Precision (MAP) at a confidence

threshold of 0.5. The mAP is calculated by taking

the average of precision values at different recall

levels as given in equation 3.

𝑚𝐴𝑃 =
1

𝐶
 ∑ 𝐶

𝑖=1 𝐴𝑃𝑖 [3]

Where:

• C is the total number of classes.

• , is the average precision for class

Mean Average Precision at a 0.5 threshold is a

critical metric. It essentially quantifies how well

our model balances precision and recall,

emphasizing accuracy in detecting drones while

minimizing false positives and false negatives.

Kumawat et al., Vol 6 ǀ Issue 3

924

Figure 7: Outlines the Journey of Mean Average Precision at 0.5 Confidence Threshold

As shown in Figure 7, in the initial stages of

training, our model demonstrated a rapid surge in

mAP, reaching an impressive 0.96 within the first

20 epochs. This early success indicates that the

model quickly grasped essential patterns and

features related to drone detection. As the training

progressed, the mAP_0.5 curve exhibited a gradual

and steady climb, showcasing the model's

continuous learning and refinement. A notable

highlight of the mAP_0.5 chart is the consistent

progression observed up to the 150th epoch,

where the mAP reached a commendable 0.97. The

surge and subsequent steady climb in the mAP_0.5

values affirm the robustness of our drone

detection system. This suggests that our model

achieved a balance where it confidently identifies

drones with a high level of accuracy across various

situations.

Figure 8: Metrics Charts Showing Model’s Progress

Figure 8 shows the overall training summary of the

model. The loss curves indicate a downward trend,

meaning that during training, the losses are

minimized both for training and validation. The

metrics curves show upward trends, meaning the

performance of the model improved over the

iterations during training.

Table 1: Overall Evaluation Metrics Results

Class Precision Recall MAP

Drone 95.82 % 96.42 % 97.23 %

Kumawat et al., Vol 6 ǀ Issue 3

925

Table 1 summarizes the core evaluation metrics.

The drone class achieved a precision of 95.82%,

indicating that false positives are minimal, while

the recall of 96.42% shows that most actual drones

are correctly detected.

Figure 9: F1-Confidence Curve Graph

The Figure 9 F1-Confidence Curve illustrates the

balance between precision and recall at different

confidence thresholds. Finding an optimal

threshold ensures a good balance between

minimizing false positives and false negatives,

contributing to effective drone detection (19).

Figure 10: Precision Recall Curve Graph

The given Precision-Recall Curve in Figure 10

showcases the trade-off between precision and

recall at different classification thresholds (20). A

curve that hugs the top-right corner indicates a

model with high precision and recall, offering

confidence in its detection capabilities.

Kumawat et al., Vol 6 ǀ Issue 3

926

Figure 11: Precision Confidence Curve Graph

In Figure 11 the Precision Confidence curve

illustrates how precision varies with different

confidence thresholds. Identifying an appropriate

threshold ensures that the system maintains a high

level of precision in detecting drones (21).

Figure 12: Recall Confidence Curve Graph

In Figure 12 the Recall-Confidence Curve depicts

how recall changes with different confidence

thresholds. Striking a balance between recall and

precision is essential for an effective and reliable

drone detection system (22).

Visual Results
Our detailed methodology, from data collection to

real-time implementation, ensures a

comprehensive understanding of our drone

detection system. Our drone detection system, a

combination of meticulous training and

implementation, demonstrated significant

efficiency in real-time scenarios. The results

showcase the system's ability to accurately

identify and locate drones, providing a critical

layer of security in various environments.

Detection Accuracy
The above image illustrates the system's detection

accuracy, with bounding boxes accurately

outlining the detected drones as shown in Figure

13. Each box represents a successful identification,

demonstrating the model's ability to precisely

locate drones within the video frame.

Kumawat et al., Vol 6 ǀ Issue 3

927

Figure 13: Model Showing Confidence Score on Un-Trained Images

Figure 14: Multiple Result Images

System Robustness
To assess the system's robustness, we evaluated its

performance under varying environmental

conditions, such as changes in lighting and weather

(23). The model exhibited resilience, maintaining

high accuracy across diverse scenarios as seen in

Figure 14.

Real-Time Warning System

In this example, our system triggers a real-time

warning message upon detecting a drone within or

near a predefined area as seen in Figure 15. This

feature enhances the system's proactive

capabilities, providing immediate alerts in

potential security-sensitive situations.

Kumawat et al., Vol 6 ǀ Issue 3

928

Figure 15: Real-Time Detection Program with Custom Field of View (FoV) (A, B)

Comparative Analysis

To contextualize our system's performance, we

conducted a comparative analysis with existing

state-of-the-art drone detection methods (24, 25).

The results consistently demonstrated competitive

precision, recall, and mAP, affirming the

effectiveness of our approach.

Table 2 highlights the performance improvement

of our YOLOv5 model over YOLOv4 and previous

YOLOv5 implementations. The significant boost in

mAP from 0.90 to 0.97 reflects the benefits of

improved data diversity and optimized training

settings.

Table 2: Comparison between Previous and Proposed Model’s Performance

Models Precision Recall MAP

Previous YOLOv4 (2) 0.950 0.680 0.743

Previous YOLOv5 (1) 0.918 0.875 0.904

Proposed YOLOv5 0.958 0.964 0.972

Table 3: Comparison between Other Methods and Proposed Mode’s Precision and Proposed Mode’s

Precision

Unlike traditional CV approaches relying on

handcrafted features and classifiers (e.g., SVM,

KNN), which require significant feature

engineering and struggle with scalability, YOLOv5

offers end-to-end detection with real-time

performance. Compared to recent detectors like

Mask-RCNN, YOLOv5 achieves higher speed while

maintaining competitive precision as seen in Table

3. Although newer models like YOLOv8 exist,

YOLOv5 remains computationally efficient and is

well-supported for deployment, justifying its

selection. In a comparative analysis of existing

methods and our proposed approach, our YOLOv5-

based drone detection system outperforms

established models. Notably, while traditional CNN

achieved a precision of 95%, SVM and KNN lagged

with precisions of 88% and 80%, respectively.

YOLOv2, though efficient with a precision of 90%,

utilized a smaller dataset (215 images). The

advanced MaskRCNN exhibited a commendable

Reference Method Data Size Results (Precision)

6 CNN 712 95.0%

6 SVM 712 88.0%

7 KNN 712 80.0%

7 YOLOv2 215 90.0%

8 MaskRCNN 1359 93.0%

Proposed YOLOv5 1440 95.8%

Kumawat et al., Vol 6 ǀ Issue 3

929

precision of 93% with a substantial dataset of 1359

images. In contrast, our proposed YOLOv5 method

excels with a precision of 95.8%, leveraging a

diverse dataset of 1440 images, showcasing its

superior accuracy in real-world drone detection

scenarios.

Error and Misclassification Analysis
Despite the complexities of real-world

environments, our model demonstrated minimal

misclassification. Owing to the high precision

(95.82%) and a carefully set confidence threshold,

the system is conservatively tuned to avoid

mislabeling. Instead of falsely classifying other

objects (e.g., birds, clouds, or kites) as drones, the

model opts to withhold detection unless

sufficiently confident, thus prioritizing reliability

over over-detection.

This approach significantly reduces false positives

in cluttered or natural backgrounds. However,

detection failures may occur under certain

conditions:

• Poor lighting (e.g., dusk or backlighting).

• Low camera resolution or frame rate

(especially <15 FPS).

• Tiny drone sizes occupying very few pixels in

the frame (typically under 20×20 px).

These situations may cause the drone to be

missed—not misclassified—highlighting the

importance of proper deployment conditions (e.g.,

1080p camera, stable lighting). Future

improvements may include integrating multi-

frame fusion or thermal vision to overcome these

edge cases.

Conclusion
In the pursuit of advancing drone detection

methodologies, our research has culminated in the

development and validation of a real-time drone

detection system. The systematic approach,

encompassing data preparation, model training,

and practical implementation, has yielded

promising results with far-reaching implications

for security and surveillance applications.

Integration with Threat Response

Frameworks
Our system is well-aligned with the requirements

of broader civil aviation and defence threat

response mechanisms. It incorporates a real-time

warning system, which activates when a drone

enters a user-defined restricted zone—a region

that can be dynamically adjusted based on the

surveillance perimeter or sensitive area

boundaries (e.g., airports, government facilities, or

military installations).

When an intrusion is detected, the system:

• Displays a visual warning on-screen.

• Can trigger an audio or network-based alert

(e.g., via siren or notification system) to

immediately notify security personnel.

• Outputs bounding box coordinates, which

can be used to calculate the approximate

location of the drone within the field of view.

• These features form the basis of a modular

real-time response pipeline. The system can

be extended to:

• Integrate with radar or RF-based drone

jammers.

• Send automatic alerts to command centers

via HTTP/REST endpoints or MQTT.

• Feed data to tracking systems or external

PTZ cameras for continuous monitoring.

• This modularity ensures the system's

suitability for civil aviation zones under

Remote ID policies as well as for defense-

grade installations requiring scalable drone

threat management solutions.

While our system performed exceptionally well, it

is essential to acknowledge its limitations. Future

iterations will focus on addressing challenges

related to crowded scenarios, occlusions, and

improving the system's adaptability to evolving

drone technologies.

Our primary objective is to design a robust drone

detection system capable of real-time

identification and warning in diverse

environments (26, 27). Through meticulous

dataset curation, leveraging the power of YOLOv5,

and integrating OpenCV for real-time processing,

we addressed this objective with a comprehensive

and practical approach. The system's detection

accuracy, illustrated through visual results,

showcases its ability to precisely locate drones

within video frames. The integration of a real-time

warning system further enhances its utility,

providing immediate alerts in response to

potential security threats. These achievements

underscore the system's significance in bolstering

security measures in sensitive areas, such as

airports, public events, and critical infrastructure.

Quantitative metrics, including precision, recall,

and mean Average Precision (mAP), underscore

the high performance of our system. Comparative

Kumawat et al., Vol 6 ǀ Issue 3

930

analyses against existing methods validate its

competitive standing within the realm of drone

detection technologies (28). The successful

development and validation of our drone detection

system hold significant implications for the field of

security and surveillance. The system's real-time

capabilities, coupled with its high accuracy,

position it as a valuable asset in safeguarding

public spaces, critical infrastructure, and events

where unauthorized drone activities pose

potential threats.

In conclusion, our research contributes to the field

of drone detection with a practical and effective

system. The amalgamation of advanced computer

vision techniques, machine learning, and real-time

processing heralds a new era in the proactive

identification of drone threats. As the technological

landscape continues to evolve, our system stands

poised to play a pivotal role in fortifying security

measures.

In the dynamic landscape of drone technology, our

research serves as a stepping stone, contributing

not only to the current state of the art but also

laying the groundwork for future innovations in

the realm of drone detection and security.

Abbreviations
CNN: Convolutional Neural Network, KNN: K-

Nearest Neighbors, mAP: Mean Average Precision,

MaskRCNN: Mask Regional Convolutional Neural

Network, OpenCV: Open Source Computer Vision

Library, SVM: Support Vector Machine, YOLO: You

Only Look Once,

Acknowledgement
None.

Author Contributions
The authors have collaborated equally on all

aspects of this study, including research design,

data analysis, manuscript preparation, and

revisions. They collectively accept responsibility

for the integrity of the work and have given their

approval for the final version.

Conflict of Interest
The authors declare that they have no competing

interests.

Ethics Approval
Not Applicable.

Funding
This research was conducted independently by the

authors and did not receive any external funding or

grant support.

References
1. Aydin B, Singha S. Drone detection using YOLOv5.

Eng. 2023;4:416–433.
2. Behera DK, Raj AB. Drone detection and

classification using deep learning. In: Proceedings of
the 2020 4th International Conference on Intelligent
Computing and Control Systems (ICICCS); Madurai,
India. 2020 May 13–15:1012–1016.
https://ieeexplore.ieee.org/abstract/document/91
21150/

3. Mishra A, Panda S. Drone detection using YOLOv4 on
images and videos. In: Proceedings of the 2022 IEEE
7th International Conference for Convergence in
Technology (I2CT); Mumbai, India. 2022 Apr 7–9:1–
4.
https://ieeexplore.ieee.org/abstract/document/98
25244/

4. Mahdavi F, Rajabi R. Drone detection using
convolutional neural networks. In: Proceedings of
the 2020 6th Iranian Conference on Signal
Processing and Intelligent Systems (ICSPIS);
Mashhad, Iran. 2020 Dec 23–24:1–5.
https://ieeexplore.ieee.org/abstract/document/93
49620/

5. Al-Qubaydhi N, Alenezi A, Alanazi T, Senyor A,
Alanezi N, Alotaibi B, Alotaibi M, Razaque A,
Abdelhamid AA, Alotaibi A. Detection of
unauthorized unmanned aerial vehicles using
YOLOv5 and transfer learning. Electronics. 2022 Aug
26;11(17):2669.

6. Ulzhalgas Seidaliyeva, Lyazzat Ilipbayeva, Kyrmyzy
Taissariyeva, et al. Advances and Challenges in
Drone Detection and Classification Techniques: A
State-of-the-Art Review. Sensors, vol. 24. 2023 Dec
26.

7. Aker C, Kalkan S. Using deep networks for drone
detection. In: Proceedings of the 2017 14th IEEE
International Conference on Advanced Video and
Signal Based Surveillance (AVSS); Lecce, Italy. 2017
Aug 29:1-6.
https://ieeexplore.ieee.org/abstract/document/80
78539/

8. Wu Q, Feng D, Cao C, Zeng X, Feng Z, Wu J, Huang Z.
Improved mask R-CNN for aircraft detection in
remote sensing images. Sensors. 2021 Apr 8;21(8):
2618.

9. Case EE, Zelnio AM, Rigling BD. Low-cost acoustic
array for small UAV detection and tracking. In: 2008
IEEE National Aerospace and Electronics
Conference; IEEE. 2008:110–113.
https://ieeexplore.ieee.org/abstract/document/48
06528/

10. Cheng Y, Ji X, Lu T, et al. DeWiCam: Detecting hidden
wireless cameras via smartphones. In: Proceedings
of the 2018 on Asia Conference on Computer and
Communications Security. 2018:1–13.
https://dl.acm.org/doi/abs/10.1145/3196494.319
6509

Kumawat et al., Vol 6 ǀ Issue 3

931

11. Sciancalepore S. Detecting drones status via
encrypted traffic analysis. In: Proceedings of the
ACM Workshop on Wireless Security and Machine
Learning; 2019:67–72.
https://dl.acm.org/doi/abs/10.1145/3324921.33
28791

12. Sciancalepore S, Ibrahim OA, Oligeri G, Di Pietro R.
PiNcH: An effective, efficient, and robust solution to
drone detection via network traffic analysis.
Computer Networks. 2020 Feb 26;168:107044.

13. Conti M, Rigoni G, Toffalini F. ASAINT: A spy app
identification system based on network traffic. In:
Proceedings of the 15th International Conference on
Availability, Reliability and Security. 2020:1–8.
https://dl.acm.org/doi/abs/10.1145/3407023.340
7076

14. DJI. AeroScope: Drone Detection System Shenzhen
(China): DJI. https://www.dji.com/aeroscope

15. Ezuma M, Erden F, Anjinappa CK, et al. Micro-UAV
detection and classification from RF fingerprints
using machine learning techniques. In: 2019 IEEE
Aerospace Conference. IEEE. 2019:1–13.
https://ieeexplore.ieee.org/abstract/document/87
41970/

16. Alipour-Fanid A, Dabaghchian M, Wang N, Wang P,
Zhao L, Zeng K. Machine learning-based delay-aware
UAV detection and operation mode identification
over encrypted Wi-Fi traffic. IEEE Transactions on
Information Forensics and Security. 2019 Dec 16;15:
2346-60.

17. Ganti SR, Kim Y. Implementation of detection and
tracking mechanism for small UAS. In: 2016
International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE. 2016:1254–1260.
https://ieeexplore.ieee.org/abstract/document/75
02513/

18. Kershner I. Israel builds a laser weapon to zap
threats out of the sky. The New York Times. 2022 Jun
3.
https://www.nytimes.com/2022/06/03/world/mi
ddleeast/israel-laser-rockets.html

19. Li W. Drone profiling through wireless
fingerprinting. In: 2017 IEEE 7th Annual
International Conference on CYBER Technology in
Automation, Control, and Intelligent Systems
(CYBER). IEEE. 2017:858–863.
https://ieeexplore.ieee.org/abstract/document/84
46096/

20. Liu T, Liu Z, Huang J, Tan R, Tan Z. Detecting wireless
spy cameras via stimulating and probing. In:
Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and
Services. 2018:243–255.
https://dl.acm.org/doi/abs/10.1145/3210240.321
0332

21. Trinh H, Calyam P, Chemodanov D, Yao S, Lei Q, Gao
F, Palaniappan K. Energy-aware mobile edge
computing and routing for low-latency visual data
processing. IEEE Transactions on Multimedia. 2018
Aug 17;20(10):2562-77.

22. Bisio I, Garibotto C, Lavagetto F, Sciarrone A,
Zappatore S. Improving WiFi statistical fingerprint-
based detection techniques against UAV stealth
attacks. In2018 IEEE Global Communications
Conference (GLOBECOM).IEEE. 2018 Dec 9:1-6).

https://ieeexplore.ieee.org/abstract/document/86
47288/

23. Zhu P, Wen L, Bian X, Ling H, Hu Q. Vision meets
drones: A challenge. arXiv preprint arXiv:1804.
07437. 2018 Apr 20.
https://arxiv.org/abs/1804.07437

24. Nassi B. Drones’ cryptanalysis – smashing
cryptography with a flicker. In: 2019 IEEE
Symposium on Security and Privacy (SP). IEEE.
2019:1397–1414.
https://ieeexplore.ieee.org/abstract/document/88
35328/

25. Seufert M, Schatz R, Wehner N, et al. QUICker or not?
– An empirical analysis of QUIC vs TCP for video
streaming QoE provisioning. In: 2019 22nd
Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN). 2019:7–12.
https://ieeexplore.ieee.org/abstract/document/86
85913/

26. Soyata T, Muraleedharan R, Funai C, Kwon M,
Heinzelman W. Cloud-vision: Real-time face
recognition using a mobile-cloudlet-cloud
acceleration architecture. In2012 IEEE symposium
on computers and communications (ISCC). IEEE.
2012 Jul 1 :000059-000066.
https://ieeexplore.ieee.org/abstract/document/62
49269/

27. Robin Radar Systems B.V. Robin Radar Systems:
drone and avian radar solutions. Noordwijk (The
Netherlands): Robin Radar Systems.
https://www.robinradar.com

28. US Department of Transportation, Federal Aviation
Administration. Remote Identification of Unmanned
Aircraft. Final rule, 14 CFR Part 89. Federal Register.
2021 Jan 15.
https://www.faa.gov/uas/getting_started/remote_i
d

