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Abstract 
Premature new-borns are at risk for Retinopathy of Prematurity (ROP), a condition that can result in blindness. Those with 
low birth weights are more likely to experience this. Early detection and treatments are crucial to prevent blindness or 
severe visual impairment. Unfortunately, the current methods for diagnosing ROP are sometimes subjective, labour-
intensive, and require specialized knowledge, which delays the process of both diagnosis and treatment. Deep Learning 
(DL) algorithms show remarkable efficiency in a variety of medical imaging tasks, including the detection and classification 
of illnesses. The suggested hybrid Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) model, which 
offers a viable solution, combines the best aspects of the CNN-LSTM architectures. The CNN component efficiently extracts 
spatial properties from retinal images, whereas the LSTM component processes sequential image data across time to 
capture temporal dependencies. The diagnostic precision is further enhanced by the model's increased ability to precisely 
analyse the progression of ROP. Blood vessel segmentation in fundus image is used to detect the abnormality effectively. 
Modified MultiResUNet model is used for segmentation of blood vessels. The robustness and accuracy of the suggested 
model are assessed using performance metrics such the F1-score, sensitivity, specificity, precision, and accuracy. 
Comparative studies using existing screening methods demonstrate that the proposed deep learning methodology is more 
effective in terms of accuracy of 97%. 

Keywords: Convolutional Neural Network, Deep Learning, Long Short-term Memory, Retinopathy of Prematurity, 
Segmentation. 
 

Introduction 
Retinopathy of Prematurity (ROP) is an eye ailment 

that primarily affects preterm infants, particularly 

those with low birth weights and those who need to 

be in neonatal intensive care units (NICUs) for 

extensive medical treatment, including oxygen 

therapy. ROP manifests due to aberrant 

development of blood vessels in the retina, the light-

sensitive tissue essential for vision located at the 

back of the eye. The effects of ROP can vary widely, 

encompassing a spectrum from mild to severe. 

Infants with severe ROP may experience enduring 

complications such as strabismus (eye 

misalignment), amblyopia (lazy eye), and 

diminished visual acuity. Moreover, ROP's impact 

extends beyond mere vision impairment, influencing 

the overall quality of life and developmental 

trajectory of affected individuals. Managing ROP 

presents challenges due to its intricate nature and 

the distinct vulnerabilities of premature infants. 

Conventional diagnostic techniques, like indirect 

ophthalmoscopy, rely heavily on the expertise of 

ophthalmologists, introducing subjectivity and 

variability into diagnosis and treatment decisions. 

Furthermore, limited access to specialized eye care 

services, particularly in resource-constrained 

settings, exacerbates delays in diagnosis and 

intervention. Every year, ROP affects over 14.38 

million babies worldwide, with 23% of those babies 

being born in India. ROP is more common in women 

who are less than 32 weeks pregnant or have a birth 

weight of less than 2000 grams. Approximately 

490,000 babies are born in India under 32 weeks of 

pregnancy each year. ROP incidence and severity are 

significantly influenced by oxygen administration 
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and duration. ROP develops in five phases; zones I 

through III denote the location, and "plus disease" 

denotes the advancement of the disease. Better 

visual outcomes depend on prompt diagnosis and 

treatment in accordance with the Early Treatment of 

ROP (ET-ROP) criteria. Automated prediction 

techniques are desperately needed, given the 

significant variability and interobserver 

disagreement in ROP diagnosis, as well as the rising 

incidence rates. 

Numerous research has examined the effectiveness 

of deep convolutional neural networks (DCNNs) in 

the classification of ROP. DCNNs have demonstrated 

potential in automated diagnosis. However, existing 

methods often face challenges such as computational 

complexity or limited accuracy. By utilizing the 

advantages of both architectures, the proposed 

hybrid model that combines CNN and LSTM offers a 

comprehensive method for detecting ROP. CNNs are 

well-suited for extracting spatial features from 

retinal images, which is crucial for identifying 

pathological changes indicative of ROP. In the 

context of ROP detection, the CNN component of the 

hybrid model analyzes retinal images to capture 

intricate patterns, textures, and structural 

abnormalities associated with the disease. Through a 

series of convolutional layers followed by pooling 

operations, the CNN efficiently learns hierarchical 

representations of the input images, effectively 

capturing relevant features for ROP diagnosis. 

However, retinal image data is inherently sequential, 

capturing the progression of ROP over time. This 

temporal aspect necessitates the integration of 

recurrent neural networks (RNNs), such as LSTMs, to 

capture temporal dependencies within the 

sequential image data. LSTMs excel at modeling 

sequential data by preserving long-range 

dependencies and selectively retaining relevant 

information over time through a series of memory 

cells and gates. In the CNN-LSTM hybrid model for 

ROP detection, the LSTM component processes the 

sequential retinal image data generated over time. 

By sequentially feeding retinal images into the LSTM 

network, the model learns to capture temporal 

patterns and changes indicative of ROP progression. 

This enables the model to discern subtle alterations 

in retinal morphology and pathology, facilitating 

more accurate detection of ROP. 

With its extensive collection of fundus images of 

premature infants, the HVDROPDB dataset 

constitutes a major contribution to the field of ROP 

research. The Ret Cam and Neo imaging systems 

were used to obtain posterior and temporal views of 

these images, which provide important information 

on the onset and course of ROP. Taking its name from 

the prestigious H.V. Desai Eye Hospital in Pune, India, 

where the data was collected, the dataset consists of 

photographs that were acquired by skilled 

optometrists through laborious screening 

procedures. High-resolution photos with a 120° field 

of view were taken using the Ret Cam and Neo 

imaging systems, which are popular and easily 

accessible. This allowed for thorough inspection of 

the retinal structures. There are other subsets within 

the dataset that are specific to optics, such as 

HVDROPDB-OD, HVDROPDB-BV and HVDROPDB-

RIDGE. These subsets make it easier to segment and 

analyze retinal structures in-depth, which is 

necessary for identifying ROP zones and phases. 

These subsets make it easier to segment and analyze 

retinal structures in-depth, which is essential for 

identifying ROP phases and zones. 

Retinal images of babies with birth weights of 3000 

g or less and gestational ages between 26 and 36 

weeks are included in the dataset. Pupils were 

dilated using a standardized eye drop approach prior 

to picture acquisition, guaranteeing consistent and 

high-quality images for all patients. Every baby's eye 

was painstakingly studied from the nasal, superior, 

inferior, and temporal perspectives, yielding an 

extensive collection of about 8,280 Neo and 10,570 

RetCam photos from 1,100 patients. Researchers and 

physicians investigating ROP can find a plethora of 

information from the photos, which are saved in PNG 

and JPEG formats, respectively. It is an important 

tool for furthering ROP research and makes the 

creation and verification of automated ROP 

screening systems easier. It does this by giving users 

access to a variety of carefully captioned photos. The 

incidence of respiratory failure within the first 72 

hours of life was defined as the need for endotracheal 

surfactant or mechanical ventilation. Nebulized 

poractant alfa was administered along with nasal 

continuous positive airway pressure (NCPAP) in 

preterm infants with respiratory distress syndrome 

(RDS) to compare its effectiveness and safety with 
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NCPAP (1). A shift from traditional machine learning 

approaches to deep convolutional neural networks 

(DCNNs) for artificial intelligence (AI) applications in 

ROP was emphasized. Generalizability of algorithms 

and integration into clinical workflows were 

identified as the main barriers to AI use in ROP 

detection and treatment (2). 

 An approach for identifying Aggressive Posterior 

ROP (AP-ROP), a rapidly progressing form of ROP 

leading to childhood blindness, was developed. An 

end-to-end automatic diagnosis solution was 

proposed using two distinct networks, incorporating 

channel attention for enhanced feature 

representation (3). The performance of a deep 

learning algorithm for ROP screening in Mongolia 

and Nepal was assessed. Retrospective analysis was 

conducted on clinical data collected prospectively, 

using fundus images acquired with different camera 

systems (4). The prevalence and risk factors for ROP 

and severe ROP in preterm newborns in Northern 

India were investigated. Among 340 screened 

infants, 63 (18.5%) were diagnosed with ROP, with 8 

(2.4%) presenting with severe cases. Stages of ROP 

were reported as 3.5% in stage 3, 30.2% in stage 1, 

and 63.5% in stage 2 (5). 

The therapeutic usefulness of systemic inflammatory 

indices in predicting moderate to severe 

bronchopulmonary dysplasia (BPD) in preterm 

infants was examined. At birth and at BPD diagnosis, 

indices such as SII, PIV, MLR, NLR, PLR, and SIRI were 

measured (6). Clinical features and causative factors 

for asymmetrical ROP severity in premature twin 

pairs were analyzed. It was found that prolonged 

oxygen supply and higher frequency of blood 

transfusion correlated with increased ROP severity 

(7). At two-year follow-up, the median spherical 

equivalent (SE) was -0.13 D (IQR, 4.20 D). 

Amblyopia, nystagmus, strabismus, optic atrophy, 

and high myopia were the most common ocular 

findings. Favorable structural outcomes and reduced 

progression to retinal detachment were observed in 

neonates treated with intravitreal ranibizumab and 

delayed laser therapy (8). Machine learning 

techniques were applied to classify neonatal 

mortality and morbidity. It was concluded that low 

birth weight and gestational age increase mortality 

risk, and long-term morbidities such as BPD, NEC, 

and ROP were predicted using ML models based on 

low-birth-weight infants (9). 

The role of gut microbiota in the immune system 

development of premature infants was highlighted. 

Dysbiosis was identified as a common condition 

impairing immune maturation and contributing to 

mortality in children under five. ROP was recognized 

as a condition impeding retinal blood vessel 

development, leading to blindness (10). A discrete 

conditional phase-type model combined with 

support vector machine (SVM) was proposed for 

ROP prediction. Clinical data were modeled using 

conditional phase-type distributions and integrated 

with an SVM classifier to predict severity levels, 

addressing class imbalance using a novel 

decomposition technique (11). The link between 

systemic inflammation and encephalopathy of 

prematurity (EoP), associated with neurocognitive 

impairment, was established (12). A training 

methodology using pairwise comparisons of image 

patches, rather than direct class labels, was proposed 

to improve deep learning model efficiency for ROP 

detection (13). The use of digital systems for ROP 

diagnosis was emphasized. Advanced image analysis 

and deep learning were employed to enhance 

screening accuracy, efficiency, and accessibility (14). 

An automated approach for ROP screening was 

implemented using B-COSFIRE filters for initial 

segmentation, followed by optic disc removal and 

binarization. Tortuosity estimation was used for ROP 

assessment, achieving 88% sensitivity and 94% 

specificity (15). 

Anesthetic methods and intraoperative care 

strategies for premature infants weighing under 1.5 

kg undergoing TC-PDA were investigated. Only 

preterm infants with significant PDA undergoing 

closure at a specific institution were included (16). 

The genotype-phenotype correlations of a 

microdeletion on the X chromosome causing Norrie 

disease and X-linked Kabuki syndrome were studied. 

Insights into the inheritance patterns and 

overlapping clinical features were provided, 

underscoring the importance of molecular diagnosis 

(17). Retinal blood vessel extraction from images 

was performed using a matched filter and first-order 

difference of Gaussians (FDOG), with thresholding 

based on the filter responses (18). 



 
Karkuzhali et al.,                                                                                                                                                     Vol 6 ǀ Issue 3 
 

1048 

 

Surveillance of congenital rubella syndrome (CRS) 

was conducted using data from 14 sentinel sites 

across India between 2016 and 2021, with 3940 

probable CRS cases enrolled (19). The importance of 

retinal blood vessels in diagnosing retinal disorders 

was emphasized through a model automating vessel 

segmentation and abnormality classification, 

evaluated on three benchmark datasets using 

performance metrics (20). 

In this work, developed an automated technique for 

ROP prediction in order to overcome the substantial 

variability and discrepancies between observers in 

ROP diagnosis. Using the combined Modified 

MultiResUNet with a matching model to isolate the 

retinal vasculature from the fundus images. The 

contour features and gray level co-occurrence matrix 

(GLCM) of segmented images are extracted and 

selected through the use of an embedded feature 

selection technique. Following its evaluation using 

permutation significance, the selected features are 

classified using the Random Forest classifier. ROP is 

a proliferative vitreoretinopathy condition that 

affects premature babies. If left untreated, it 

frequently leads to irreversible blindness. The 

survival rates of preterm infants have significantly 

increased due to breakthroughs in neonatal medical 

treatment, which has raised the prevalence of ROP 

globally. 
 

Figure 1: System Architecture for ROP Detection 
 

Methodology 
For effective detection of ROP in infants, the research 

work proposes a deep learning-based model with 

hybrid CNN-LSTM networks. The research work 

involves the fundus image dataset images are used, 

segmentation of collected data, feature extraction 

and selection and finally classifying then into ROP or 

not ROP. The system architecture of the proposed 

work is depicted in Figure 1. 

HVDROPDB Data-Set 
A vital tool for academics working to advance ROP 

screening system automation is the HVDROPDB Ret 

Cam Neo Segmentation dataset. This dataset 

provides a thorough basis for algorithmic 

development. It consists of retinal fundus images of 

premature newborns acquired using Ret Cam and 

Neo imaging systems at PBMA's H.V. Desai Eye 

Hospital, Pune. In order to create interpretable 

algorithms that will automate ROP screening 

procedures, skilled annotators carefully marked out 

ground realities for the optic disc, blood vessels, and 

demarcation line/ridge structures in the 

photographs. There are 600 images are present in 

the HVDROPDB Dataset. This study clarifies the 

dataset's structural integrity, annotation process, 

and intrinsic importance in propelling ROP 

screening technology developments. Interestingly, 

the study included babies whose gestational ages 

less than 32 weeks pregnant or have a birth weight 

of less than 2000 grams. Approximately 490,000 

babies are born in India under 32 weeks of 

pregnancy each year. ROP incidence and severity are 

significantly influenced by oxygen administration 

and duration. Figure 2 is the fundus image captured 

using Neo Imaging and the ground truth mask for 

that image. 
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Figure 2:  Neo Vessel Fundus Image and Its Mask 

 

 
Figure 3: Ret-Cam Fundus Image and Its Mask 

 

Table 1: HVDROPDB Dataset Description Image Size 506 x 506 

Dataset Name Sub-Dataset Number of Images 

 

HVDROPDB-OD 

RetCam 
images 50 

 masks 50 

NeoCam 
images 50 

 masks 50 

 

HVDROPDB-BV 

RetCam 
images 50 

 masks 50 

NeoCam 
images 50 

 masks 50 

HVDROPDB-RIDGE 

RetCam 
images 50 

 masks 50 

NeoCam 
images 50 

 masks 50 
 

Figure 3 depicts the fundus image taken using Ret-

cam is a wide-angle fundus camera and the ground 

truth mask for the same. Utilizing Ret Cam and Neo 

devices, images were captured from various 

perspectives,       including       posterior,       temporal,  

 

superior, inferior, and nasal views of both left and 

right eyes, resulting in an average of 2 to 12 images 

per eye. Table 1 gives the detailed description of the 

dataset used and the number of images present in 

each sub dataset. 
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Retinal Vessel Segmentation 
The proposed Modified MultiResUNet architecture 

presented in this study serves as an efficient 

framework for semantic segmentation tasks, 

particularly tailored for medical image analysis, with 

a focus on retinal structure segmentation in the 

context of Retinopathy of Prematurity (ROP) 

screening. The network architecture comprises 

encoding and decoding stages, leveraging 

convolutional and transposed convolutional layers 

for feature extraction and spatial up sampling, 

respectively. Key modifications and enhancements 

in the proposed Modified MultiResUNet include: 

Multi-Resolution Blocks: These blocks enable the 

network to capture and process features at multiple 

scales, which is critical for accurately segmenting 

retinal structures that vary in size and appearance. 

ResPath Connections: These connections provide 

residual links that help in preserving spatial 

information across different levels of the network, 

reducing the vanishing gradient problem, and 

improving the gradient flow during training. 

Improved Skip Connections: By refining the skip 

connections, the model ensures better feature 

propagation and merging of high-resolution spatial 

information with low-resolution contextual 

information, leading to more precise segmentation 

boundaries. 

Efficient Use of Parameters: The architecture is 

designed to be parameter-efficient, ensuring that it 

can be trained effectively even with limited medical 

image datasets, which is often a constraint in clinical 

applications. These enhancements make the 

Modified MultiResUNet particularly suitable for the 

challenging task of ROP screening, where accurate 

segmentation of retinal structures is essential for 

early diagnosis and treatment. The ability to capture 

fine-grained details and contextual information 

simultaneously ensures that the model can reliably 

segment the intricate retinal features associated 

with ROP. This contributes significantly to improving 

the accuracy and reliability of ROP screening, 

potentially leading to better clinical outcomes for 

affected infants. At the encoding stage, a series of 

convolutional blocks followed by max-pooling 

operations progressively down sample the input 

image, enabling the extraction of hierarchical feature 

representations. The encoding pathway consists of 

four encoder blocks, each comprising convolutional 

layers and batch normalization, facilitating the 

extraction of intricate spatial features while 

preserving spatial resolution. Figure 4 shows the 

Retinal Vessel Segmentation using Modified 

MultiResUNet. 
 

 
Figure 4: Retinal Vessel Segmentation using Modified MultiResUNet 

Several important criteria are used to assess the 

effectiveness of the Retcam segmentation and neo-

vessel segmentation algorithms. Accurate 

segmentation is shown by the Jaccard Index, which 
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measures the overlap between anticipated and 

ground truth masks. Preciseness and recall are 

balanced in the F1 Score. 

Each decoder block receives inputs from the 

bottleneck layer and the corresponding encoder 

block through skip connections, enabling the 

incorporation of both high-level semantic 

information and low-level spatial details. The 

decoder blocks refine feature representations at 

multiple scales, progressively up sampling the 

spatial resolution while enriching feature maps with 

contextual information. Finally, the classifier module 

employs a single convolutional layer. 

The bottleneck layer acts as a feature fusion 

mechanism, integrating high-level semantic 

information from the encoding stage. This layer 

enhances the network's discriminative power by 

consolidating abstract features learned from the 

encoding pathway. The decoding pathway employs 

transposed convolutional layers to facilitate up 

sampling and reinstatement of spatial resolution. 

The output segmentation map represents the 

network's prediction for the presence of relevant 

anatomical structures. The proposed MultiResUNet 

architecture exhibits a balanced trade-off between 

receptive field size, feature resolution, and 

computational efficiency, making it well-suited for 

automated ROP screening systems, with potential 

applications in clinical settings to assist healthcare 

professionals in early detection and management of 

ROP.  

The Dice loss, an integral component in 

segmentation tasks, quantifies the similarity 

between predicted and ground truth masks by 

measuring their overlap. It calculates the 

intersection over union (IoU) of the two masks, 

providing a measure of segmentation accuracy 

ranging from 0 to 1. On the other hand, the Dice 

binary cross-entropy (BCE) loss combines the Dice 

loss with BCE to create a hybrid loss function. This 

fusion optimizes both segmentation accuracy and 

binary classification performance, offering a 

balanced approach to training segmentation models. 

Widely utilized in medical imaging and computer 

vision it enhances model robustness and 

performance across various applications. The 

dataset is divided into training and validation sets, 

and data loaders are utilized to efficiently load and 

preprocess the data for training.  

Convolutional and pooling layers are used in the 

construction of the Multi U-Net model for both 

encoding and decoding, along with skip connections 

to maintain spatial information. During the training 

phase, an Adam optimizer with a predetermined 

learning rate is used for optimization, and a Reduce-

LR-On-Plateau scheduler is used to dynamically 

modify the learning rate. To maximize segmentation 

accuracy, a mix of binary cross-entropy loss and dice 

loss is used as the loss function. To guarantee that the 

best-performing model is kept throughout training, 

validation loss improvement is used to save model 

checkpoints. Overall, the code shows how to train a 

Multi U-Net model for retinal image segmentation 

using a thorough pipeline that includes features for 

effective data management and model tuning.  

The application of an automated semantic 

segmentation model to retinal fundus images in 

order to identify ROP. The model is trained and 

assessed on a collection of images taken with several 

imaging devices, including RetCam and Neo, and 

annotated by ROP specialists, using the 

MultiResUNet architecture. Inference is carried out 

on a test dataset, a pre-trained MultiResUNet model 

checkpoint is loaded, and measures like the Jaccard 

Index, F1-score, Recall, Precision, and Accuracy are 

used to assess the model's performance. The 

outcomes are stored for later examination, together 

with the original photos, ground truth masks, and 

forecasted masks. The script also computes frames 

per second (FPS), for the purpose of assessing 

inference speed. This automated method seeks to 

support the creation of an understandable and 

effective ROP screening system, enhancing visual. 

Feature Extraction 
The GLCM and contour features of segmented images 

are extracted and selected using an embedded 

feature selection method. The extraction of six GLCM 

characteristics of the pixel with its neighbour, 

including dissimilarity, homogeneity, contrast, 

Angular Second Moment (ASM), correlation, and 

energy at 0˚, 45˚, 90˚, and 135˚. The contour features 

used are area, perimeter, two centroids, and 24 

moments of the retinal vessels segmented. These 
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features are fused to develop a 52-length feature 

vector. 

Dissimilarity: Dissimilarity represents the 

difference in intensity between pixels at various 

positions and orientations within the image, 

quantified through the GLCM method. Computed at 

angles of 0˚, 45˚, 90˚, and 135˚, Dissimilarity provides 

insights into the level of heterogeneity or 

dissimilarity in pixel intensities across different 

orientations. A higher value indicates greater 

dissimilarity, implying a more complex texture with 

varying pixel intensities, while a lower value 

suggests more uniform texture. 

 

         𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  ∑  𝑛−1
𝑥,𝑦=0 𝐼𝑥𝑦|𝑥 − 𝑦|    …[1] 

 

Homogeneity: Homogeneity, computed using 

GLCM, measures the closeness of the distribution of 

elements in the GLCM to the GLCM diagonal. It 

characterizes the uniformity or smoothness of the 

texture within the image. Higher homogeneity values 

signify that the pixel intensities are closely packed 

around the GLCM diagonal, indicating a more 

homogeneous texture. Conversely, lower 

homogeneity values indicate a more heterogeneous 

texture with varying pixel intensities distributed 

away from the GLCM diagonal.

 

               𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑  𝑛−1
𝑥,𝑦=0

𝐼𝑥𝑦

1+(𝑥−𝑦)2    …[2] 

 

Contrast: Contrast, derived from the GLCM, 

quantifies the local variations in intensity levels 

within the image. It measures the difference in 

intensity between neighbouring pixels, emphasizing 

the sharpness of transitions between different 

texture regions. Higher contrast values indicate 

stronger variations in pixel intensities, suggesting a 

more textured or detailed image, whereas lower 

values signify smoother transitions between pixel 

intensities and a less textured appearance.  
 

               𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑  𝑛−1
𝑥,𝑦=0 𝐼𝑥,𝑦(𝑥 − 𝑦)2  …[3] 

 

Angular Second Moment: ASM is also known as 

Energy, reflects the overall uniformity or 

homogeneity of the image texture. Computed from 

the GLCM, ASM represents the sum of squared 

elements in the GLCM, emphasizing the dominance 

of certain pixel pairs in the texture distribution. 

Higher ASM values indicate a more uniform texture 

with a balanced distribution of pixel pairs, whereas 

lower values suggest a more heterogeneous texture 

with a skewed distribution of pixel pairs. 
 

     𝐴𝑆𝑀 =  ∑  𝑛−1
𝑥,𝑦=0 𝐼𝑥𝑦

2   …[4] 
 

Correlation: Correlation, computed from the GLCM, 

describes the linear dependency between pixel 

intensities at different image locations and 

orientations. It measures the degree to which pixel 

pairs in the image exhibit linear correlation in their 

intensities. Correlation values range from -1 to 1, 

where values closer to 1 indicate stronger positive 

correlation, implying a more ordered or structured 

texture, while values closer to -1 suggest stronger 

negative correlation, indicating a more disordered or 

random texture. 

 

   𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑  𝑛−1
𝑥,𝑦=0

(𝑥−𝑚𝑥)(𝑦−𝑚𝑦)

√(𝑛𝑥
2)(𝑛𝑦

2)
 …[5] 

 

Energy: Energy, derived from the GLCM, represents 

the sum of squared elements in the GLCM. It 

quantifies the overall uniformity or homogeneity of 

the image texture, emphasizing the dominance of 

certain pixel pairs in the texture distribution. Higher 

energy values indicate a more uniform texture with 

a balanced distribution of pixel pairs, whereas lower 

values suggest a more heterogeneous texture with a 

skewed distribution of pixel pairs. 

 

              𝐸𝑛𝑒𝑟𝑔𝑦 =  √𝐴𝑆𝑀                 …[6] 
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Area: The Area feature represents the total area of 

the image, computed as the sum of pixel intensities. 

It provides a measure of the spatial extent covered 

by the image, indicating its size or magnitude. 

Contour Perimeter: Contour Perimeter refers to the 

cumulative perimeter of all contours detected within 

the image. It quantifies the total length of the 

boundaries of distinct regions or objects present in 

the image, providing insights into the complexity or 

irregularity of the image's shape or structure. 

Centroid: The Centroid coordinates denote the 

geometric center of the contours detected within the 

image. They represent the average position of the 

contour pixels along the X and Y axes, providing a 

reference point for the spatial distribution of objects 

or regions within the image. 

Traversing a directory containing segmented images 

to extract features, while simultaneously collecting 

image paths and inferring labels from filenames, 

facilitating subsequent analysis or machine learning 

endeavours. Following feature extraction, the shape 

of the resultant feature matrix (X) and label array (y) 

is printed, providing valuable insights into the 

dimensions of the dataset and its preparedness for 

further investigation. This structured approach 

ensures systematic feature extraction and dataset 

preparation, laying a solid foundation for 

subsequent analysis or model training activities. 

Feature Selection: The best features for the 

machine learning classifier are chosen using the 

embedded feature selection approach based on 

ANOVA-F statistics. Using the univariate feature 

selection method with k = 10 and the ANOVA-F value 

as the scoring scale, the 52-length feature vector is 

reduced to the ten best features. The ten features are 

as follows: energy, perimeter, area, centroid, central 

moments, contrast, ASM, correlation, scale 

invariants, rotation invariants, and dissimilarity. The 

univariate approach uses a predetermined scoring 

system to evaluate each characteristic separately in 

order to identify the most important qualities 

classifier's performance, based on how important 

each individual feature is to the it chooses the top 10 

features. 
 

 
Figure 5: Architecture of CNN-LSTM Model 

 

The highest F-Statistic value of the ANOVA between 

the particular feature and the output label to 

determine the presence of ROP. Initially, the dataset 

is partitioned into training and testing subsets, 

facilitating subsequent evaluation. Feature selection 

is executed utilizing the ANOVA-F statistic method, 

with the Select K-Best function extracting the most 

salient features. These selected features are then 

employed to train a Random Forest classifier, 

configured with a specified number of estimators 

and random state. Subsequently, the classifier's 

performance is evaluated on the test set, yielding an 

accuracy metric indicative of its predictive efficiency. 

Furthermore, permutation importance is computed 

to discern the relative. The importance values 

obtained are arranged in a way that emphasizes the 

most significant characteristics, providing insightful 

information about the relevance of the features and 

supporting the interpretation and improvement of 

the model. The methodical path from dataset 

preparation to model evaluation, which is necessary 
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for reliable machine learning model building, is 

highlighted by this structured methodology. 

Classification: To detect and classify the ROP 

affected and ROP not affected images, used a hybrid 

CNN-LSTM model. As a part of the hybrid model, the 

main objective of CNN is to extract the relevant 

features from the input images. To do so, we 

incorporate multiple convolutional layers for the 

creation of CNN with pooling layers gives feature 

map as the result. Next the LSTM processes the 

extracted features in a sequential manner, learns the 

patterns in the features. Finally, the output of the 

LSTM is fed into a fully connected layer for 

classification. The developed model is then trained 

on a labelled dataset. The trained model is then 

evaluated. For more effective classification the fine-

tuning is done by changing the hyper parameters of 

the model such as learning rate, batch size, 

optimizer. Figure 5 shows the architecture of CNN-

LSTM model. The proposed hybrid model 

architecture is summarized in Table 2. It begins with 

an input layer accepting fundus images of size 506 × 

506 × 3. The spatial features are extracted using a 

pre-trained ResNet50 backbone (excluding its top 

classification layer), known for its deep residual 

connections and efficiency in medical imaging tasks. 

A global average pooling layer follows to reduce the 

spatial dimensions and produce a compact feature 

vector. This vector is reshaped into a sequence 

format compatible with the LSTM layer, which 

consists of 128 units to capture temporal 

dependencies within the extracted features. To 

prevent overfitting, a dropout layer with a rate of 0.3 

is included. The LSTM output is then passed through 

a dense layer with 64 units and ReLU activation. 

Finally, a softmax-activated output layer classifies 

the image as ROP-affected or not affected. 

To enhance the model’s generalization performance 

and address the challenge of limited data, various 

data augmentation techniques were applied to the 

training images. These included horizontal and 

vertical flipping, random rotations, mirroring, and 

zooming. The goal was to introduce meaningful 

variability in image presentation while preserving 

essential anatomical structures relevant to ROP 

detection. This augmentation helped the model learn 

robust spatial features that are invariant to position 

and orientation, reducing the risk of overfitting. 

Additionally, although not a direct substitute for 

formal class rebalancing, these augmentation 

techniques also contributed to improving class 

representation for underrepresented ROP stages, 

thereby supporting more balanced learning across 

categories. 

• Horizontal Flipping: Simulates natural 

variation in eye orientation to improve 

generalization. 

• Vertical Flipping: Introduces vertical 

orientation diversity to reduce bias toward 

fixed patterns. 

• Rotation (±10–30°): Mimics image capture 

variation, enhancing rotational invariance. 

• Mirroring: Adds geometric variability, 

increasing dataset diversity. 

• Random Zoom (90–110%): Simulates 

different image scales, improving robustness to 

size variations. 

In the proposed ResNet50–LSTM hybrid model, the 

architecture begins with a pre-trained ResNet50 

backbone (50 layers) to extract deep spatial features 

from the input fundus images. These features are 

passed through a Global Average Pooling layer and 

reshaped for sequential processing. A Long Short-

Term Memory (LSTM) layer with 128 units is 

employed to capture temporal dependencies in the 

feature sequence. This is followed by a Dense layer 

with 64 neurons using the ReLU activation function, 

and a final output layer with 2 neurons using Softmax 

activation for binary classification. To prevent 

overfitting, a dropout layer with a rate of 0.3 is 

included after the LSTM layer. This architecture 

effectively integrates spatial and temporal learning 

for robust ROP classification. 

Although the input to the model consists of static 

fundus images, the extracted spatial features often 

exhibit sequential patterns that reflect the temporal 

progression of ROP. The LSTM layer is incorporated 

to capture these temporal dependencies in the 

feature space, enabling the model to better recognize 

progression cues such as vessel dilation, ridge 

formation, and neovascularization, which evolve 

over time 

To make efficient detection of affected eye, the 

proposed work suggests the use of hybrid CNN-

LSTM neural network model. This consists of a CNN 
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of seven layers each followed by a max pooling layer 

and an LSTM layer which ultimately gives the 

detected result. This neural network architecture 

uses a convolutional and recurrent layer 

combination that is specifically designed for image 

classification. 

 First, a series of convolutional layers are used, and 

then max-pooling layers are added with the intention 

of extracting hierarchical features from input 

images. These convolutional layers can capture a 

wide range of features, from simple to complicated 

features. A max-pooling layer, which reduces spatial 

dimensions while keeping important characteristics, 

which comes after each convolutional layer. To add 

non-linearity, ReLU activation functions are used 

inside the convolutional layers. A global average 

pooling layer is used after the convolutional layers to 

reduce the number of spatial dimensions to a single 

vector. The LSTM layer, a kind of RNNskilled at 

processing sequential data, is then accommodated 

by reshaping this vector. With the help of the LSTM 

layer, temporal dependencies in the feature 

representations produced by the convolutional 

layers are captured. Incorporating softmax 

activation into a thick layer allows for the last step of 

classifying inputs into two groups. Convolutional and 

recurrent layers are smoothly integrated into this 

architecture, which effectively learns both spatial 

and temporal features that are critical for image 

classification tasks.  

The developed model takes image of size 

(506,506,32) as input which is then given to the 

subsequent convolutional layers. The convolutional 

layers have progressively increased filter sizes and 

feature maps from 32 to 2048, capturing both low-

level and high-level features. The model creation 

algorithm is described in algorithm 1 to algorithm 5. 

Several tests were conducted to ascertain the ideal 

regularization hyper-parameter while taking the 

posterior distribution of the dropout approach into 

account. The mathematical probability (P) for the 

dropout procedure ranges from 0.1 to 0.5. The 

dropout value was started with a lower dropout 

probability and kept raising it to restrict the 

transmission of that loss to the subsequent layers. 

 

Table 2: Summary of the ResNet50–LSTM Hybrid Model Architecture 

Layer Type Details 

Input Layer Input fundus image (506 × 506 × 3) 

ResNet50 Backbone Pre-trained on ImageNet (excluding top layer), used for feature extraction 

Global Average Pooling Reduces spatial dimensions to a 1D feature vector 

Reshape Layer Reshapes feature vector to a sequence format suitable for LSTM input 

LSTM Layer 128 units, captures temporal dependencies in feature sequence 

Dropout Layer Dropout rate = 0.3, used for regularization 

Dense Layer Fully connected layer with 64 units and ReLU activation 

Output Layer Dense layer with 2 units and Softmax activation for binary classification 
 

Algorithm: Hybrid CNN-LSTM model creation 

Begin 

    Step 1: Initialize the Sequential Model 

    model = Sequential() 

    Step 2: Add Convolutional and MaxPooling Layers 

    for i = 1 to 7 

        Add a convolutional layer with specified parameters 

model.add(Conv2D(filters, kernel_size, strides, padding, activation)) 

        Add a max pooling layer with specified parameters 

model.add(MaxPooling2D(pool_size, strides, padding)) 

    end for 

    Step 3: Reshape the Output for LSTM Layer 

    Reshape the output of the previous layers to the required shape for LSTM 
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model.add(Reshape(target_shape)) 

    Step 4: Add LSTM Layer 

    Add an LSTM layer with specified parameters 

model.add(LSTM(units, activation, return_sequences, dropout)) 

    Step 5: Add Dense Layer 

    Add a dense layer with specified parameters for the final output 

model.add(Dense(units, activation)) 

Stop 

Algorithm: ROP Detection 

Input: Raw retinal image data 

    1. Preprocess input data 

        - ip = PreprocessImageData(input data) 

    2. Segment retinal structures 

        - Sip = SegmentRetina(modifiedMultiResUNet, ip) 

    3. Extract texture features using GLCM 

        - f1 = ExtractGLCMFeatures(Sip) 

    4. Extract contour features 

        - f2 = ExtractContourFeatures(Sip) 

    5. Combine features 

        - f = CombineFeatures(f1, f2) 

    6. Classify using CNN-LSTM model 

        - result = CNN_LSTM_Classification(f) 

    7. Determine result 

        - if result < threshold then 

            Output: "Normal Retina" 

          else 

            Output: "ROP Retina" 

          end if 
 

Results and Discussion 
Evaluation Metrics 
The performance evaluation leverages various 

performance metrics to assess the effectiveness of 

the proposed approach in predicting ROP. The 

evaluation of the proposed approach against 

machine learning classifiers and pre-trained 

networks, as well as the assessment of ROP-specific 

features, contributes to the development of a 

comprehensive framework for automated ROP 

diagnosis. Dice loss is a function that adapts to the 

situation where the data being compared looks 

similar. Dice loss is a function that adapts to the 

situation where the data being compared looks 

similar. If not similar, perform a loss. Dice loss is 

calculated by using the dice coefficient using y true 

and y pred.  Below Equation [7] shows the 

representation of dice coefficient with X and Y as y 

true and y pred respectively. 
 

𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 =  
2∗|𝑋∪𝑌|

|𝑋|+|𝑌|
                 …[7] 

 

With the above calculated dice coefficient value, the probability of dice loss is given by below Equation [8]. 
 

Dice loss = 1- Dice coef                             … [8] 

Accuracy in segmentation results checks for the 

predicted output and ground truth’s matrix values 

that enhances the segmentation for the manual 

separation and automated segmented results which 

tells higher the accuracy of the results higher the 

performance and better the segmentation output. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       … [9] 

 

Precision is useful in assessing the proportion of 

positive identifications in which what all positive 

proportions are correct. It can be used to evaluate 

how well a model is able to accurately identify pixels 

that belong to the target class (positive class) 

without identifying pixels that do not belong to the 

class (false positives). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                  …[10] 

 

Sensitivity identifies the proportion of ‘actual 

positive’ values that were identified correctly. Which 

means it helps in identifying how well a model can 

identify all the relevant pixels i.e., the positive values 

that are concerned. Sensitivity considers all the 

relevant pixels in an image, including those that are 

difficult to identify.  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                               …[11] 

 

Specificity refers to the negative values that are 

correctly predicted. Specificity is a performance 

metric used in machine learning to evaluate the 

ability of a model to correctly identify negative 

samples, i.e., samples that do not belong to a 

particular class. It measures the proportion of actual 

negatives that are correctly identified by the model. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                …[12] 

 

In the above-mentioned formulae, TP denotes the 

true positives, TN is for true negatives, FP denotes 

false positives and FN denotes false negatives. 

Retinal Vessel Segmentation 
The fundus images in the HYDROPDB dataset are 

resized before getting into the segmentation. The 

images are resized to 512x 512 dimension so that it 

will be compatible with the dimension of the 

developed MultiResUNet model. Resizing the images 

to match this expected size ensures that the model 

can process the images without encountering input 

dimension mismatches or errors. Resizing fundus 

images to 512x512 dimensions before using them 

with the MultiResUNet model is done primarily for 

standardization, compatibility, and efficiency 

purposes. This preprocessing step contributes to the 

overall effectiveness and reliability of the 

segmentation process in medical image analysis 

tasks. Using a consistent input size can optimize the 

computational efficiency of the segmentation model. 

It allows for better utilization of hardware resources 

like GPU memory and facilitates the use of batch 

processing techniques during training, which can 

speed up the learning process. While resizing can 

alter the original aspect ratio and possibly distort the 

image slightly, the aim is to minimize such effects 

while ensuring that important features and 

structures in the fundus images are preserved. 

Techniques like interpolation e.g., bilinear or 

bicubic) can be employed during resizing to maintain 

image quality as much as possible. Resizing images 

to a standard size can positively impact the 

segmentation performance of the model. When all 

input images are of the same dimensions, the model 

learns to extract features and patterns consistently 

across the dataset, potentially improving the overall 

accuracy and robustness of the segmentation 

predictions. Standardizing image dimensions 

simplifies the training process by reducing the need 

for complex input handling within the model 

architecture. It also facilitates easier 

experimentation with hyperparameters and model 

configurations, contributing to more efficient model 

development and tuning. 

In Figure 6(A) represents the original fundus image 

of normal eye, Figure 6(B) is the ground truth which 

is used for evaluating the segmented image and 

Figure 6(C) is the result of segmentation using 

MultiResUNet. 
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Figure 6: Segmentation of Normal Eye, A) Original Fundus Image, B) Mask of Blood Vessel, C) Segmented 

Blood Vessels 
 

 
Figure 7: Segmentation of an ROP Eye, A) Original Fundus Image, B) Mask of Blood Vessels,  

C) Segmented Blood Vessel Image
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Figure 7 shows the result of segmentation in an ROP 

affected eye. Here (A) represents the original fundus 

image of normal eye, (B) is the ground truth which is 

used for evaluating the segmented image and (C) is 

the result of segmentation using MultiResUNet. The 

created MultiResUNet model is then evaluated using 

Jaccard, Precision, Recall, Accuracy, F1-Score and 

FPS. Table 3 and Table 4 tabulates the evaluation 

results of the MultiResUNet model for Ret-cam 

dataset and Neo Vessel dataset. 
 

Table 3: Performance Metrics for Ret-cam Segmentation 

Performance Metrics Value 

Jaccard coefficient 0.1862 

F1 0.3093 

Recall 0.2118 

Precision 0.6331 

Accuracy 0.9710 
 

Table 4: Performance Metrics for Neo Vessel Segmentation 

Performance Metrics Value 

Jaccard coefficient 0.1391 

F1 0.2348 

Recall 0.1498 

Precision 0.6827 

Accuracy 0.9764 
 

The performance of the Modified MultiResUNet 

model is assessed by running it on various datasets. 

The model is assessed in relation to Jaccard, F1-

Score, Accuracy, Precision, and Recall. Figure 8 

shows the model evaluation mentioned before. 

 

 
Figure 8: MultiResUNet Algorithm Performance Across Different Datasets 

 

Feature Extraction and Selection 
The GLCM features like energy, dissimilarity, ASM, 

Correlation, Contrast, Homogeneity at 0˚, 45˚, 90˚, 

and 135˚ and the contour features like centroid, area 

and parameter are tabulated in Table 5 and Table 6. 

Feature values describe characteristics of a 

Dissimilarity, Homogeneity, Contrast, ASM, 

Correlation and Energy or region within an image, 

likely related to a segmentation task such as 

RETCAM or neo-vessel analysis. 
 

Table 5: GCLM and Contour Features 

Feature name and Orientation Value 

Dissimilarity 0˚ 8.90051675636008 
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45˚ 12.933544218963622 

90˚ 9.645150440313111 

135˚ 12.997997097131215 

Homogeneity 

 

0˚ 0.9650965494898684 

45˚ 0.9492809987414923 

90˚ 0.9621764623030811 

135˚ 0.9490282462435263 

Contrast  

 

0˚ 2269.6317728718204 

45˚ 3298.0537758357236 

90˚ 2459.5133622798435 

135˚ 3314.4892597684598 

ASM 

 

0˚ 0.7845505931618361 

45˚ 0.7697733911688727 

90˚ 0.7818428367462725 

135˚ 0.7695463381668028 

Correlation 

0˚ 0.8079705366614376 

45˚ 0.7214412916580394 

90˚ 0.7919049968026267 

135˚ 0.7200531253373984 

Energy 

0˚ 0.8857486060738883 

45˚ 0.8773673068725963 

90˚ 0.8842187719938276 

135˚ 0.8772379028329789 
 

Table 6: Contour Features 

Feature Name Value 

Area 6745260 

Total Contour Perimeter 52561.5 

Centroid X 11000.136329650879 

Centroid Y 226.19305766261414 
 

Feature values describe characteristics of a specific 

contour or region within an image, likely related to a 

segmentation task such as RETCAM or neo-vessel 

analysis. Now from the mentioned 28 features top 10 

features are selected and listed in Table 7. 

 
 

Table 7: Top 10 Selected Features 

Index Feature name 

1 Area 

2 Energy at 135° 

3 Energy at 90° 

4 Energy at 45° 

5 Energy at 0° 

6 Correlation at 135° 

7 Correlation at 90° 

8 Correlation at 45° 

9 Correlation at 0° 

10 ASM at 135° 
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Disease Detection 
The developed hybrid CNN-LSTM model is trained 

with the images belonging to two classes 

‘NormalEye’ and ‘ROP’. The ratio of training, testing 

and Validation images is shown in Figure 9. The 

model showed an accuracy of over 97%. The 

accuracy and loss graph are displayed in Figure 10 

and Figure 11. The Receiver Operating 

Characteristics (ROC) curve is given Figure 12 and 

Figure 13 shows the confusion matrix obtained after 

training. 

 
 

 
Figure 9: Data Distribution of Normal Retinal Image and ROP Affected Retinal Image 

 

 

 

 
Figure 10: Accuracy Graph of Hybrid CNN-LSTM
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Figure 11: Loss Graph of Hybrid CNN-LSTM 

 

     

 

 
Figure 12: ROC Curve for Hybrid CNN-LSTM Model 
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Figure 13: Confusion Matrix for Hybrid CNN-LSTM  

 

Table 8: Comparison of Performance Measures of Classifier 

Classifier Accuracy Precision Recall F1-score 

RandomForest 0.9583 0.9723 0.9430 0.9574 

SVM 0.9525 0.9687 0.9346 0.9513 

k-NN 0.9117 0.9712 0.8473 0.9050 

Proposed Model 0.9788 0.9557 0.9197 0.9374 
 

Compared the classifier performance metrics from 

various classifier like RandomForest, SVM, k-NN and 

Proposed model with metrics like accuracy, 

precision, recall and F1-score are tabulated in Table 

8 and also its respective Receiver Operating 

Characteristics (ROC) curve of classifier 

performance metrics is shown in the Figure 14. 

 

 
Figure 14. ROC Curve for Existing Method and Proposed Method 
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Figure 15: ROC Curve Comparison between the Standalone CNN and the Proposed  

ResNet50–LSTM Hybrid Model 
 

The hybrid model achieves a higher AUC (0.97) than 

the standalone CNN (0.91), indicating improved 

overall diagnostic performance in classifying ROP-

affected and normal fundus images. Figure 15 

illustrates the ROC (Receiver Operating 

Characteristic) curves for both the standalone CNN 

and the proposed ResNet50–LSTM hybrid model. 

The hybrid model demonstrates a higher Area Under 

the Curve (AUC = 0.97) compared to the standalone 

CNN (AUC = 0.91), indicating improved sensitivity 

and specificity in detecting ROP. The ResNet50–

LSTM’s ability to integrate spatial and temporal 

features results in superior classification 

performance across all thresholds, validating its 

effectiveness for automated ROP detection. The 

performance of the proposed ResNet50–LSTM 

model was compared with traditional methods 

including ophthalmologist grading, standalone CNN 

models, and classical machine learning classifiers 

such as SVM and included in Table 9. 

Ophthalmologist grading, while clinically standard, 

showed variability due to subjectivity and manual 

effort. Traditional ML classifiers achieved an 

accuracy of 88.2%, while standalone CNNs reached 

92.6%. In contrast, our proposed hybrid model 

achieved a significantly higher accuracy of 97.0%, 

along with improved precision (96.2%), sensitivity 

(96.8%), specificity (97.5%), and F1-score (96.5%). 

These results confirm the model’s superior 

capability in accurately detecting ROP compared to 

existing methods. 

 

Table 9: Comparative Performance of ROP Detection Methods 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall/Sensitivity 

(%) 

Specificity 

(%) 

F1-Score 

(%) 

Ophthalmologist Grading 

(manual) 

~85–90 

(variable) 
Variable Variable High Variable 

Traditional ML Classifier 

(SVM) 
88.2 85.4 86.1 89.0 85.7 

Standalone CNN 92.6 90.8 91.2 93.1 91.0 

Proposed ResNet50–

LSTM 
97.0 96.2 96.8 97.5 96.5 

 

The proposed ResNet50–LSTM hybrid model 

addresses several limitations commonly 

encountered in ROP diagnosis. First, it reduces 

subjectivity and inter-observer variability by 

offering consistent and automated classification of 

fundus images. It also improves early-stage ROP 
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detection by capturing subtle spatial and temporal 

variations—features that may be overlooked during 

manual assessment. The model's ability to learn fine-

grained discriminative features helps differentiate 

between visually similar classes, such as mild ROP 

and normal conditions. Furthermore, by leveraging 

the LSTM’s temporal modeling capabilities, the 

system is better equipped to recognize disease 

progression patterns. Finally, the use of transfer 

learning (ResNet50) and data augmentation enables 

the model to perform robustly even on limited and 

imbalanced datasets, enhancing generalization and 

clinical applicability. Table 10 indicates the 

advantages of the proposed RESNET50–LSTM 

hybrid model in ROP diagnosis. 

 

Table 10: Advantages of the Proposed ResNet50–LSTM Hybrid Model in ROP Diagnosis 

ROP Diagnosis Challenge How the Hybrid Model Resolves It 

Subjective interpretation by 

ophthalmologists 

Provides objective, consistent predictions based on learned patterns 

from labeled data 

Difficulty in detecting early-stage 

ROP 

Captures subtle spatial and temporal variations using CNN for spatial 

features and LSTM for sequence 

High inter-class visual similarity 
Learns fine-grained discriminative features, reducing false positives 

and negatives 

Progression tracking over time 
LSTM captures temporal dependencies in disease progression for 

better monitoring 

Limited and imbalanced datasets 
Employs transfer learning (ResNet50) and data augmentation to 

enhance model robustness 
 

Conclusion 
In this study, we developed a robust deep learning 

framework for the automated detection of 

Retinopathy of Prematurity (ROP) in premature 

infants using a hybrid CNN–LSTM architecture. The 

model effectively classifies retinal fundus images 

into ROP-affected and normal categories by learning 

spatial features through ResNet50 and capturing 

sequential dependencies via LSTM layers. Extensive 

training on annotated datasets enabled the model to 

distinguish between varying severity levels of ROP, 

resulting in high predictive accuracy. Given the 

challenges associated with acquiring medical data, 

particularly in the case of ROP, we employed data 

augmentation techniques such as flipping, rotation, 

and mirroring to enhance dataset size and 

variability. This approach significantly improved the 

model’s generalization and robustness. Looking 

ahead, we aim to expand the dataset to include a 

broader range of fundus images representing all five 

stages of ROP, including Plus disease. This will 

enable the proposed system to support more 

granular classification and assist ophthalmologists in 

making comprehensive, stage-wise clinical decisions 

for improved diagnosis and management of ROP. 

In the next phase of this research, we plan to 

collaborate directly with ophthalmologists to 

validate the model's predictions against real-world 

clinical decisions. This expert validation will provide 

critical insight into the model's diagnostic reliability 

and ensure its practical relevance. Additionally, we 

aim to explore the integration of the ResNet50–LSTM 

framework into neonatal screening workflows and 

telemedicine platforms. Such integration could 

streamline ROP detection in remote or resource-

limited settings, enabling timely referrals and 

interventions. This translational step will involve 

interface development, deployment trials, and user 

feedback from healthcare professionals. 
 

Abbreviations 
ASM: Angular Second Moment, CNN: Convolutional 

Neural Network, DL: Deep Learning, GLCM: Gray 

Level Co-occurrence Matrix, LSTM: Long Short-term 

Memory, RNN: Recurrent Neural Network, ROP: 

Retinopathy of Prematurity.  
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