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Abstract 
The presentation of colorectal diseases based on deep learning has attracted much research since it offers the 
development of correct and machine-driven diagnosis. The current study advents a new DenseNet-121 model with 
Squeeze-and-Excitation (SE) blocks that can enjoy better feature extraction and classification into colon diseases. The 
sample has four classes and 1,500 images each. In order to enhance the robustness of the models, the preprocessing 
pipeline is done completely, involving resizing of images, Gaussian smoothing, and Otsu thresholding. DenseNet-121 
model incorporating SE blocks is trained on an 80:20 training-testing split with data augmentation being used to deal 
with over-fitting. The performance assessment is performed as precision, recall, F1-score, and inference time in 
comparison to the classical architecture of ResNet-50 and VGG-16 with DenseNet-121. The results obtained on the 
experimental show that the proposed model scored 96.3 percent accuracy, 97.1 percent precision, 95.7 percent recall, 
and 96.4 percent F1-score with better performance on the colorectal disease category than the baseline models. Also, 
dimensionality is reduced because of the presence of Global Average Pooling (GAP), and the model is made more 
discriminative thanks to SE blocks that allow the recalibration of features. The analysis of confusion matrix proves high 
classification reliability indicating that there is minimal misclassification among the disease categories. The present 
article reveals the case of successful deep learning application in the analysis of endoscopy images and opens up the 
possibility of real-time application in clinical practice in the form of a computer-aided diagnosis system. 

Keywords: Colorectal Disease, Computer-Aided Diagnosis System, Deep Learning, DenseNet-121, Global Average 
Pooling, Image Segmentation.
 

Introduction 

The growing trend of colorectal diseases becomes 

one of the challenges in the sphere of 

contemporary healthcare due to the rising cases 

and high risk of developing colorectal cancer (CRC) 

without significant indications (1). An early and 

correct diagnosis of colorectal diseases is 

necessary so that effective measures can be taken 

to support the prognosis and increase the survival 

rate. Nevertheless, conventional methods of 

diagnosis including colonoscopy and biopsy are 

known to take a lot of time, are dependent on 

operators, and prone to interobserver variability 

among radiologists and gastroenterologists (2). 

The evolution of Wireless Capsule Endoscopy 

(WCE) revolutionized gastro-intestinal imaging 

procedure, as it provides a non-invasive 

examination of small intestine and colon. In 

contrast to conventional colonoscopy, WCE is the 

high-resolution internal examination that does not 

involve sedation and becomes one of the most 

interested diagnostic methods of colorectal 

disorders (3). However, WCE produces heavy 

video information volume and large manual 

viewing volumes by physicians, which can cause 

diagnostic delays and the high-volume problem. As 

a result, a need to implement the AI-based cross-

site medical technology to analyze the WCE images 

has appeared. Deep learning has obtained the 

status of the transformational technology in 

computer-aided diagnosis (CAD) specifically in the 

domain of medical imaging. The use of CNNs has 

achieved a higher performance in classification of 

images, feature extraction, and recognition of 

patterns (4). Among the architectures that one  
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could consider, it is recognized that DenseNet-121 

has dense connections that make the flow of 

gradients smooth, eliminate unnecessary features 

and increase the reuse of features. To further 

enhance its performance in analyzing medical 

images, Squeeze and Excitation (SE) Blocks have 

been suggested to be integrated into it. These 

blocks optimise feature representations by making 

them scale adaptively on a recalibration basis, and 

enable the model to concentrate on disease 

relevant regions of WCE images. The detection of 

this integration has been revealed to largely 

increase the diagnostic accuracy, stability, and 

transference (5, 6). 

Despite the diverse deep learning architecture 

being used in the diagnosis of gastrointestinal 

diseases, over fitting, inefficient and 

uninterpretable properties have been widely 

discussed in previous literature (7, 8). Also, 

colorectal diseases are difficult to classify because 

nearly all the classes have a high similarity and 

thus distinguishing conditions like ulcerative 

colitis and esophagitis, some abnormal 

appearances, is challenging due to subtle texture 

and morphological manifestation in these 

conditions. Such distinctions are common 

problems of traditional CNNs. This study suggests 

a more advanced DenseNet-121 model with SE 

Blocks to apply in the automatic classification of 

colorectal diseases. The architectural 

enhancement is what is new, and it operates a 

superior mechanism of feature recalibration 

mechanisms that are applicable in identifying the 

disease. Although publicly available datasets were 

used, the contribution is mostly architectural and 

devoted to attention mechanisms. This strategy 

has the benefits of providing strong benefits in 

feature isolation with the largest activations by 

matching disease prone areas and reducing noise 

by low strength activations. Also, the architecture 

contributes to enhanced generalizability through 

minimization of feature duplication as well as 

raising the model discriminative ability, which 

results in better classification. In terms of 

efficiency in parameter pricing, the DenseNet-121 

would be appropriate in real-time uses in the 

medical world than complex architectures. 

The study suggests an automated deep learning 

system in detection of colorectal disease that 

would be more accurate and clinically practicable. 

To facilitate exact classification, a DenseNet-121 

architecture including SE Block has been 

developed. Comparisons to end-to-end state-of-

the-art architectures have been performed, the 

model was shown to be interpretable using 

attention mechanisms and the model was proven 

to be efficient enough in terms of computation to 

deploy in clinical settings. The ability of such an 

improved architecture in carrying out learning 

cost-free activities (automated classification) is 

examined through applicable datasets. The 

proposed model should enhance diagnostics and 

decision making in clinical practice by far, through 

the mechanisms of adaptive feature recalibration 

and dense connections. The present study findings 

can contribute to the formulation of an AI-based 

diagnostics tool that could assist in the early 

detection and prognosis of colorectal diseases. 

The rest in the manuscript is organized as follows: 

in Section 2, the current experience in deep 

learning models applied to the diagnosis of 

colorectal diseases is evaluated, and the limitations 

of this experience are stated. Section 3 presents the 

suggested architecture DenseNet-121 + SE Block, 

provides an overview of preprocessing techniques 

and presents information on the training 

approach. The quantitative and qualitative 

outcomes, performance indicators, comparisons 

with the existing models, result interpretation, 

clinical impressions, and challenges are noted in 

section 4. Section 5 packs up the significant 

contributions and gives future research directions. 

Innovations in CRC classification have had to do 

with issues of optimization since accuracy is a 

paramount element. Although progress has been 

made, even more traditional CNNs have failed to 

follow traditional performance expectations in 

diagnosis. In the previous study, histopathology 

slides of gastric cancer were trained and tested on 

the LC25000 dataset using Vision Transformer 

(ViT) and Swin Transformer and ResNet34 and 

EfficientNet34 were used as control variants (9). 

The modified Swin Transformer was one of them, 

and its classification accuracy amounted to 

99.80%, signifying a high effectiveness level. 

Although ViT and Swin Transformer have a high 

degree of accuracy, some difficulties concerning 

practical realization have been noted. The 

emphasis has been also made on effects of these 

models on clinical decisions. 

Medical image analysis on ML and DL have allowed 

coming up with sophisticated disease detection 
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algorithms early and accurately. There are four 

significant categories of colon diseases problem 

that has been solved and examined as a full range 

of endoscopic images that consist of nearly 

100.000 images (10). Training A model developed 

based on its Adam optimizer reached 93.65 

percent accuracy in validation, making it 

applicable in early diagnosis. 

Massive datasets, such as PLCO screening trial 

(640 CRC patients) as well as TCGA data set (522 

CRC patients), have been used to train and perform 

classification and risk estimation duties (11). In 

the colorectal polyp detection and detection 

feature learning, deep learning models have 

proven their usefulness, resulting in the 

enhancement of the level of detection. Research 

has also been done on the Xception+ model, which 

has been reported as an excellent option with a 

percentage accuracy of 99.37 and GoogLeNet that 

had a little more precision on the cancer tissue 

categorization (12). The traditional diagnostic 

methods have been identified as being expensive, 

time-consuming, and they have restraints because 

of the amount of data and class imbalance. Image 

sets of 224 by 224 pixels in size were resized and 

run in ShuffleNet and ResNet-50 in the detection of 

polyp, delivering an accuracy of 98.36% which 

points to an opportunity to avoid CRC deaths (13). 

Photo augmentation and transfer learning 

methods were used based on KVASIR database 

providing 8,000 GI-endoscopic images, with the 

result of pathological cases finding to the extent of 

96.89 percent. 

Other experiments were conducted using 100,000 

non-overlapping patches of histology images of the 

CRC dataset used to determine the efficiency of 

CNNs-based architectures, such as DenseNet201, 

InceptionResNetV2, VGG16, VGG19, and Xception. 

Normalization and augmentation methods of data 

allowed proper survival prediction and 

classification of histology patterns based on 

prognosis (14). The other study featured the 

utilization of 3D CNN models to distinguish 

between colon carcinoma and acute diverticulitis 

pathology and in surgical patients on the basis of 

CT images (15). With the aid of an AI, sensitivity 

and specificity in diagnostics actually increased, 

which was proven in the study conducted with 10 

observers with different degrees of expertise. 

Other experiments under CNN models checked 

differences in sizes of test set (20%, 30%, and 

40%), and the classification performance (16, 17). 

The results supported the clinical relevance of 

deep learning models since they were very 

accurate and performed consistently. Also, to 

enhance the speed of computing in 

histopathological screening, an approach like low 

resolution processing as well as parameter-

reduced personal CNNs was developed, which 

yielded the same accuracy (99.4 percent) but half 

the computing burden (18). 

Early screening of colorectal diseases is important, 

as there have been medical concerns of their 

conversion into CRC. Other invasive instruments 

like the colonoscopy are likely to cause 

interobserver variability. WCE is available as a 

non-invasive alternative, but due to the large 

volume of data it is associated with delays in the 

diagnosis. To deal with it, an AI diagnostic model 

with DenseNet-121 with SE Blocks is suggested to 

increase accuracy in classification owing to paid 

attention to more significant elements. The 

proposed model will use the benefits of deep 

learning in handling medical images in order to 

maximize on the model accuracy, computation, 

and the real-time accessibility. Being more 

balanced in performance and complexity 

compared to the classical instance of CNNs and 

more modern ones (ViT, Swin Transformer), the 

model proves superior to both. The clinical 

significance of its evaluation is confirmed through 

the analysis with benchmark datasets and the 

suggested system can assist in the diagnostic of 

colorectal disease supported by AI. 
 

Methodology 

Dataset Description 
The WCE Curated Colon Disease Dataset is the 

primary dataset used in this study, offering a 

comprehensive collection of endoscopic images 

specifically designed for the classification of 

colorectal diseases. The dataset is comprised of 4 

distinct classes, each representing a different 

pathological condition of the colon, with 1,500 

images per class. These classes include Normal, 

Ulcerative Colitis, Polyps, and Esophagitis and an 

illustration of the dataset images, categorized as 

Normal (A), Polyps (B), Ulcer (C), and Esophagitis 

(D), is provided in Figure 1. The dataset comprises 

four balanced classes: Normal, Ulcerative Colitis, 

Polyps, and Esophagitis, with 1,500 images per 

class. Therefore, class imbalance was not a major 
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concern. However, data augmentation techniques 

were applied to improve generalization and reduce 

overfitting. 

Each class in the dataset is carefully labeled, 

offering clear differentiation between various 

disease types, which is essential for the 

development and evaluation of machine learning 

models. However, this dataset also presents 

several challenges for model training, including 

significant intra-class variations (e.g., differing 

appearances of Polyps or Ulcerative Colitis in 

different individuals) and inter-class similarities 

(e.g., normal colon tissue and mild inflammation in 

Esophagitis could appear similar). Furthermore, 

variations in lighting conditions, image resolution, 

and the complex nature of the disease 

manifestations make the dataset difficult to 

process effectively, emphasizing the need for a 

robust model that can handle these challenges. 

 

 

Figure 1: Shows the Dataset Images (A) Normal, (B) Polyps, (C) Ulcer, (D) Esophagitis 
 

The dataset is divided into three subsets for 

training, validation, and testing purposes. This 

division ensures that the model is evaluated on 

unseen data, which helps assess its ability to 

generalize. The Table 1 summarizes the dataset 

distribution. 
 

Table 1: Dataset Distribution 

Class 
Number of Images per 

Class 

Training 

Set 

Validation 

Set 
Testing Set 

0 - Normal 1,500 800 500 200 

1 - Ulcerative Colitis 1,500 800 500 200 

2 - Polyps 1,500 800 500 200 

3 - Esophagitis 1,500 800 500 200 
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Preprocessing Techniques 
To ensure the DenseNet-121 with SE Blocks model 

effectively classifies colorectal diseases, key 

preprocessing steps are essential. The selected 

techniques—Image Resizing, Image Denoising 

using Gaussian Filter, and Segmentation using 

Otsu’s Thresholding—help standardize input 

dimensions, reduce noise, and highlight relevant 

regions. Below is a detailed explanation of these 

preprocessing steps with corresponding formulas 

and equations. 

Image Resizing: The dataset consists of 

endoscopic images that vary in size, which can lead 

to inconsistencies during deep learning model 

training. DenseNet-121 requires a fixed input size 

of 224 × 224 pixels (19). Therefore, image resizing 

is applied to normalize dimensions while 

preserving essential features. 

To resize an image I from its original size (H,W) to 

(H′,W′) bilinear interpolation is used and modelled 

in Eq. [1]: 

 

𝐼′(𝑥, 𝑦) = ∑  1
𝑖=0 ∑  1

𝑗=0 𝑤𝑖,𝑗𝐼(𝑥𝑖 , 𝑦𝑗)                      [1] 
 

Where 𝐼′(𝑥, 𝑦) is the interpolated pixel value in the 

resized image. 𝐼(𝑥𝑖 , 𝑦𝑗) represents the pixel values 

in the original image and 𝑤𝑖,𝑗   are the interpolation 

weights, calculated using Eq. [2]: 
 

𝑤𝑖,𝑗 = (1−∣ 𝑥 − 𝑥𝑖 ∣)(1−∣ 𝑦 − 𝑦𝑗 ∣)                     [2] 
 

This ensures a smooth transition between pixel 

values, avoiding distortion or loss of important 

features. 

Image Denoising using Gaussian Filter: 

Colorectal endoscopic images often contain noise 

due to sensor limitations, poor lighting, or 

reflections, which can obscure disease regions 

(20). Gaussian filtering is applied to remove high-

frequency noise while preserving important 

structures. 

A Gaussian filter convolves the image with a 

Gaussian kernel G(x,y) showing in Eq. [3]: 
 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) = ∑  𝑘
𝑖=−𝑘  ∑  𝑘

𝑗=−𝑘 𝐺(𝑖, 𝑗)𝐼(𝑥 − 𝑖, 𝑦 − 𝑗)                    [3] 
 

Where 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) is the denoised pixel value, 

𝐼(𝑥 − 𝑖, 𝑦 − 𝑗) are neighboring pixel intensities and  

G(i, j) is the Gaussian kernel is given as Eq. [4]: 

 

𝐺(𝑖, 𝑗) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑖2+𝑗2

2𝜋𝜎2 )       [4] 
 

Where σ controls the spread of the Gaussian 

function, k determines the kernel size, typically 

k=3or k=5. A higher σ value results in stronger 

blurring, while a smaller σ preserves more details. 

Figure 2 shows (A) Original Image (B) Denoised 

Image (C) Segmented Image. 

Segmentation Using Otsu’s Thresholding: After 

denoising, Otsu’s Thresholding is applied to 

segment disease regions by separating foreground 

(disease) from the background. This is particularly 

useful for highlighting ulcerative colitis, polyps, 

and esophagitis (21).  

Otsu’s method finds an optimal threshold τ\tauτ 

that maximizes the variance between two classes: 

• Background (ω1)  

• Foreground (ω2 ) 

The threshold τ is computed as Eq. [5]: 

 

𝜏 = 𝑎𝑟𝑔  𝜔1(𝜏)𝜎1
2(𝜏 ) + 𝜔2(𝜏)𝜎2

2(𝜏)]                                  [5] 
 

Where 𝜔1(𝜏) and 𝜔2(𝜏)  are the probabilities of 

background and foreground pixels, 

𝜎1
2(𝜏)𝑎𝑛𝑑 𝜎2

2(𝜏) are their variances. 

Steps in Otsu’s Method 

• Compute Histogram: Determine the 

intensity distribution of the image. 

• Calculate Between-Class Variance for 

different threshold values. 

• Select Optimal Threshold (τ) that 

maximizes variance. 

• Segment Image by converting it to a 

binary mask using Eq. [6]: 
 

𝐼𝑠𝑒𝑔(𝑥, 𝑦) = {1, 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝜏 (𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑) 0, 𝑖𝑓 𝐼(𝑥, 𝑦) ≤ 𝜏 (𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)        [6] 
 

The preprocessing pipeline includes Image 

Resizing to standardize image dimensions, 

ensuring uniformity across the dataset. Gaussian 

Filtering is applied to remove noise while 
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preserving important structural details. Otsu’s 

Thresholding is then used for effective 

segmentation, enhancing the visibility of diseased 

regions. These techniques ensure high-quality 

input data, facilitating better feature extraction 

and model performance. Overall, the pipeline 

optimizes the images for more accurate and 

efficient deep learning-based disease 

classification. These techniques prepare the 

Dataset for DenseNet-121 with SE Blocks, ensuring 

better feature extraction, higher classification 

accuracy, and improved generalization in 

colorectal disease prediction. 

 

 
Figure 2: (A) Original Image, (B) Denoised Image, (C) Segmented Image 

 

Feature Extraction for Colorectal 

Disease Prediction 
Feature extraction plays a crucial role in enhancing 

the classification performance of DenseNet-121 

with Squeeze-and-Excitation (SE) Blocks for 

colorectal disease detection. In this study, we 

extract spatial, texture, and deep hierarchical 

features from the Dataset to effectively distinguish 

between different classes. The feature extraction 

process involves convolutional feature learning, 

global average pooling (GAP), and Squeeze-and-

Excitation recalibration for disease classification. 

Convolutional Feature Learning in 

DenseNet-121 
The dense connectivity of DenseNet-121 ensures 

that the feature maps from each layer are used by 

subsequent layers. Let’s consider the feature map 

and how it depends on all previous layers. The 

output at each layer is computed as shown in Eq. 

[7]: 
 

𝑋(𝑙) = 𝐹(𝑋(𝑙−1), 𝑊(𝑙)) = 𝑅𝑒𝐿𝑈(𝑊(𝑙) ∗ [𝑋(𝑙−1), 𝑋(𝑙−2), … , 𝑋(0)] + 𝑏(𝑙))    [7] 
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The concatenation ∗

[𝑋(𝑙−1), 𝑋(𝑙−2), … , 𝑋(0)]involves all the feature maps 

from the previous layers. 

By concatenating all feature maps ups, DenseNet-

121 leverages a feature reuse mechanism, making 

it easier for the model to recognize complex 

patterns in the medical images. In conventional 

CNNs, each layer learns features from scratch. 

However, DenseNet-121 takes a different 

approach, where each layer reuses features from 

all previous layers. This makes the model more 

parameter-efficient, as the need for redundant 

feature learning is eliminated. The feature maps at 

each layer are concatenated, creating a wider 

feature map. The concatenation operation at layer 

lll is as follows in Eq. [8]: 
 

𝑋(𝑙) = [𝑋(𝑙−1), 𝑋(𝑙−2), … , 𝑋(0)] + 𝑏(𝑙)) (𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑠)   [8] 
 

This feature reuse leads to more discriminative 

features that help detect specific patterns in the 

Dataset, such as the irregular texture of polyps or 

the inflammation seen in ulcerative colitis. The 

reuse of features leads to significant 

improvements in classification accuracy. Figure 3 

shows the architecture of DenseNet-121. 

 

 
Figure 3: Architecture of DenseNet-121 

 

Due to the dense connectivity, each layer has 

access to gradients from all previous layers, 

allowing for more efficient gradient flow and 

better weight updates. 

The gradients for each layer l during 

backpropagation can be computed as Eq. [9]: 

 

𝜕𝐿

𝜕𝑊(𝑙) = ∑  𝐿
𝑘=1

𝜕𝐿

𝜕𝑊(𝑘)  
𝜕𝑋

𝜕𝑊(𝑙)          [9] 
 

The gradients from all subsequent layers 

contribute to the backpropagation process, 

ensuring efficient weight updates. This 

characteristic is particularly beneficial for medical 

image analysis, where deeper models are often 

required to capture intricate features but can 

suffer from gradients diminishing as the network 

depth increases. DenseNet-121 excels in extracting 

high-level features that are essential for accurate 

classification, especially in the context of detecting 

diseases like polyps or ulcerative colitis in 

colorectal disease images. These features capture 

both low-level edge information (such as 

boundaries of lesions) and high-level contextual 

information (such as shapes or textures that 

correspond to different disease categories). 

Mathematically, DenseNet-121’s feature 

extraction ability can be represented as in Eq. [10]: 

 

𝐹𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 − 121(𝐼) = 𝐹(𝐼, 𝑊)        [10] 

Where, I is the input image (e.g., colonoscopy 

image), W are the learned parameters of 

DenseNet-121. By integrating features from all 

preceding layers, DenseNet-121 produces highly 

discriminative features that can be directly used 
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for disease classification, improving the model’s 

accuracy and robustness. 

Global Average Pooling (GAP) for 

Dimensionality Reduction 
A potent method frequently employed in deep 

learning models; global average pooling (GAP) is 

especially useful for convolutional neural 

networks' (CNNs') dimensionality reduction. GAP 

drastically lowers the amount of network 

parameters while preserving the crucial 

characteristics that were taken from the input 

data, in contrast to conventional fully linked layers. 

In applications like disease classification from 

medical photos, this helps avoid overfitting and 

guarantees that the model is both computationally 

efficient and useful in identifying significant 

patterns. 

The primary goal of GAP is to convert the spatial 

dimensions of a feature map into a single value per 

feature map. This process of dimensionality 

reduction helps in aggregating the information 

over the entire spatial domain and reduces the 

complexity of the network. GAP is particularly 

advantageous because it produces a fixed-length 

output, independent of the input image size, 

making it highly suitable for classification tasks. 

Instead of flattening the entire feature map (which 

leads to a large number of parameters), GAP 

computes a single scalar value for each channel by 

averaging the values in that channel. This 

significantly reduces the number of parameters 

and retains essential information, allowing the 

model to focus on the most important features 

shown in Eq. [11]. 

 

𝐺𝐴𝑃(𝐹) = [
1

𝐻 𝑋 𝑊
 ∑  𝐻

𝑖=1 ∑  𝑊
𝑗=1 𝐹(𝑖, 𝑗, 𝑐)]

𝑐=1

𝑐

        [11] 

 

Where F(i,j,c) denotes the value at position (i,j) in 

the c-th feature map of the feature map F.  GAP 

plays a crucial role in deep learning architectures 

by efficiently reducing the spatial dimensionality 

of feature maps, resulting in fewer parameters and 

lower computational complexity. This reduction 

leads to faster training times, lower memory usage, 

and a decreased risk of overfitting, particularly in 

models with limited training data. Unlike 

traditional fully connected layers, which require a 

large number of parameters, GAP eliminates 

excessive weights, improving model 

generalization and minimizing overfitting. 

Additionally, GAP provides invariance to spatial 

resolution by aggregating entire feature maps into 

single values per channel, allowing the model to 

handle input images of varying sizes effectively. 

This property enhances the robustness of the 

model, making it more adaptable to real-world 

medical imaging scenarios where endoscopic 

images may differ in resolution and scale. 

Global Average Pooling (GAP) plays an essential 

role in modern CNN architectures like DenseNet-

121 by reducing the dimensionality of feature 

maps and focusing on aggregated feature 

information. This operation ensures that the 

model remains computationally efficient, robust to 

spatial variations, and less prone to overfitting, 

which is critical for accurate and reliable disease 

classification in medical imaging applications. The 

following algorithm gives step-by-step guide for 

performing GAP. 
 

Algorithm: Global Average Pooling (GAP) 

• Input: A feature map F of dimensions H×W×C. 

• For each channel c: 

Calculate the average of all values in the c-th feature map: 

𝑎𝑣𝑔(𝐹𝑐) =  [
1

𝐻 𝑋 𝑊
 ∑  

𝐻

𝑖=1

∑  

𝑊

𝑗=1

𝐹(𝑖, 𝑗, 𝑐)] 

• Output: A vector of size C is obtained, with each entry corresponding to the average value 

of a feature map computed across the spatial domain. 

 

Squeeze-and-Excitation (SE) Feature 

Recalibration 
Squeeze-and-Excitation (SE) is a powerful 

mechanism designed to enhance the 

representational capacity of neural networks by 

dynamically recalibrating channel-wise feature 

responses and it is shown in Figure 4. It has been 

demonstrated that such technique can vastly 
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enhance network performance, as it allows 

concentrating on the most informative features 

and suppressing the irrelevant and redundant 

ones (22). Being a computationally efficient and 

lightweight technique, the Squeeze-and-Excitation 

(SE) block can be easily incorporated into any 

convolutional neural network (CNN) and be 

applied to any task, including the often challenging 

and complicated task of medical image 

classification in DenseNet-121. 
 

 
Figure 4: Block Diagram of Squeeze-and-Excitation (SE) Feature Recalibration 

 

The goal of SE is to address the challenge of feature 

redundancy and selective emphasis within feature 

maps, particularly when the network has many 

layers or channels. SE achieves this by introducing 

a recalibration mechanism that can selectively 

weigh the importance of each channel in the 

feature map. By doing so, SE allows the model to 

focus on more informative features while 

suppressing noise and irrelevant details. 

This recalibration is achieved through a two-step 

process: 

Squeeze: The feature map is globally summarized 

into a channel-wise descriptor. 

Excitation: These descriptors are used to generate 

a set of channel-wise attention weights, which are 

then used to recalibrate the feature map. 

The squeeze operation performs global average 

pooling (GAP) on each channel, which aggregates 

spatial information into a single scalar for each 

feature map. This is done by averaging over all 

spatial locations are founded using Eq. [12]: 

 

𝑧𝑐 =
1

𝐻 𝑋 𝑊
 ∑  𝐻

𝑖=1 ∑  𝑊
𝑗=1 𝐹(𝑖, 𝑗, 𝑐) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑐 = 1,2, … , 𝐶     [12] 

 

The excitation step involves passing the squeezed 

feature vector z through two Fully Connected (FC) 

layers with ReLU and sigmoid activations, 

respectively. The goal is to learn the channel-wise 

attention weights that allow the model to 

emphasize the most informative channels. The 

excitation step can be formulated as Eq. [13]:  

 

𝑠 = 𝜎(𝑊2𝛿(𝑊1𝑧))          [13] 
 

Where δ denotes the ReLU activation,  𝑊1 and 𝑊2  

are learned weights. σ represents the sigmoid 

activation, which ensures that the output lies in the 

range [0, 1]. The vector s∈RC represents the 

channel-wise attention weights, where each 

element sc corresponds to the importance of 

channel c. The learned attention weights shown in 

Eq. [14]: 
 

𝐹̂(𝑖, 𝑗, 𝑐) = 𝐹(𝑖, 𝑗, 𝑐) ⋅ 𝑠𝑐           [14] 
 

 

 

This recalibration step ensures that more 

important features (channels) are enhanced while 

less relevant ones are suppressed. Despite its 

performance boost, the SE block is 

computationally efficient and does not add 

significant overhead. The number of parameters 

added by SE is relatively small, as it only involves 

two fully connected layers with the number of 

channels C as input and output. This makes SE 

highly suitable for resource-constrained 

environments, such as medical imaging tasks 

where real-time performance is crucial. By 

emphasizing informative channels and 

suppressing less important ones, SE improves the 



Parimala et al.,                                                                                                                                                Vol 6 ǀ Issue 3 

 

1752 
 

discriminative power of the features. This is 

particularly beneficial for complex tasks, such as 

disease classification from medical images, where 

subtle differences between classes need to be 

captured by the network. SE can be seamlessly 

integrated into any CNN architecture. By adding SE 

blocks to architectures like DenseNet-121, it 

enhances the feature extraction capabilities 

without requiring major modifications to the 

original network. This allows for easy adaptation 

and improvement of existing models. The 

following algorithm shows the squeeze-and-

Excitation (SE) process (23). 

 

Algorithm for Squeeze-and-Excitation (SE) block: 

Input: Feature map F∈RH×W×C  

▪ Squeeze Step: 

o Apply global average pooling (GAP) on the feature map to generate the channel 

descriptor vector z∈RC. 

▪ Excitation Step: 

o Pass z through two fully connected layers with ReLU and sigmoid activations to 

generate the attention vector s∈RC. 

▪ Recalibration: 

o Multiply each channel ccc in the feature map F by its corresponding attention weight sc 

to obtain the recalibrated feature map 𝐹̂. 

Output: The recalibrated feature map 𝐹̂. 
 

In the context of colorectal disease classification, 

the SE block enhances the model's ability to focus 

on the most discriminative features in medical 

images, such as polyps or inflammation areas in 

colonoscopy images. By recalibrating the channels 

to emphasize relevant features (e.g., areas with 

disease signs), SE improves the classification 

accuracy, enabling better detection of disease 

categories such as ulcerative colitis, polyps, 

esophagitis, and healthy tissue. DenseNet-121 

architecture with ReLU activation and SE blocks 

was used. Dropout layers with a 0.3 rate were 

included after dense layers. This information will 

be added with a visual representation of the 

architecture in the Methods section. 

Squeeze-and-Excitation (SE) offers a powerful and 

efficient mechanism for recalibrating the 

importance of channels within a CNN. By focusing 

on the most important features, SE enhances the 

discriminative power of the model, improving its 

performance in complex tasks like medical image 

classification. Its integration into DenseNet-121 

can significantly enhance diagnostic accuracy for 

tasks like colorectal disease detection, leading to 

better clinical outcomes. The feature extraction 

process using DenseNet-121 with SE Blocks 

ensures that the model effectively captures spatial, 

texture, and hierarchical deep features crucial for 

colorectal disease classification. The integration of 

GAP and SE Blocks improves the model’s ability to 

focus on informative disease patterns, ultimately 

leading to higher diagnostic accuracy. 
 

Results and Discussion 
Experimental Setup 
The colorectal disease classification model was 

developed using the Dataset, which is divided into 

four categories. The dataset was divided into 

training (80%) and testing (20%) subsets. The 

model training was conducted with a batch size of 

32 for 50 epochs, utilizing the Adam optimizer and 

a learning rate of 0.0001. Data augmentation 

techniques were applied to enhance model 

generalization and minimize overfitting. The 

training process was performed on an NVIDIA GPU 

(RTX 2080 Ti) to ensure high-speed computations. 

This setup was designed to achieve high 

performance in classifying colorectal diseases and 

was compared to other established models like 

ResNet-50 and VGG-16 to evaluate the impact of 

the DenseNet-121 with SE blocks architecture. 

Performance Metrics 
We compared the performance of the DenseNet-

121 with SE blocks model with other traditional 

architectures like ResNet-50 and VGG-16 to 

understand the impact of DenseNet-121's dense 

connectivity and the SE block's feature 

recalibration on colorectal disease classification. 

As shown in Figure 6, Accuracy (Acc) in the work 

suggested is the percentage of correctly identified 

occurrences among all predictions, indicating the 
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model's overall efficacy.a. As shown in Figure 5, 

Precision (Pre) ensures a lower false positive rate 

by measuring the ratio of accurately predicted 

positive instances to the total anticipated 

positives.a. As seen in Figure 5B, Recall (Rec) 

calculates the ratio of true positives to the sum of 

true positives and false negatives, hence assessing 

the model's capacity to detect all genuine positive 

cases. By taking into account both precision and 

recall, the F1-Score (F1), which is shown in Figure 

6B, offers a balanced metric and a thorough 

assessment of categorization performance. 
 

 
Figure 5: (A) Precision, (B) Recall 

 

 
Figure 6: (A) Accuracy, (B) F1-Score 

 

The training and testing accuracy and loss were 

evaluated over 50 epochs, showing a consistent 

improvement in model performance. The training 

accuracy steadily increased, reaching high 

convergence, while the validation/testing accuracy 

demonstrated stability with minimal fluctuations. 

The loss function progressively decreased, 

indicating effective learning and reduced error 

rates, ensuring the model's robust generalization 

to unseen data. Figure 7 shows the training and 

testing accuracy and loss of the proposed model. 
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Figure 7: Training and Testing Metrics (A) Loss, (B) Accuracy 

 

The confusion matrix demonstrates the model's 

strong classification performance across all four 

classes. High true positive values and minimal 

misclassifications indicate the model’s robust 

accuracy and reliability in colorectal disease 

detection and it is mentioned in Figure 8. 
 

 
Figure 8: Confusion Matrix 

 

These metrics are commonly used in medical 

image classification tasks to assess the balance 

between precision and recall, ensuring that the 

model does not overfit or underperform in 

detecting important features like polyps, 

ulcerative colitis, and esophagitis. 

The Table 2 summarizes the performance of 

DenseNet-121 with SE blocks as compared to 

ResNet-50 and VGG-16. 
 

Table 2: Performance of DenseNet-121 with SE Blocks as Compared to ResNet-50 and VGG-16. 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Inference Time 

(ms) 

DenseNet-121 with SE 

Blocks 

96.3 97.1 95.7 96.4 120 

ResNet-50 93.8 94.5 92.0 93.2 160 

VGG-16 89.5 88.4 90.2 89.3 180 
 

The DenseNet-121 with SE blocks outperforms 

both ResNet-50 and VGG-16, achieving an accuracy 

of 96.3%, which is higher than other nets. Table 3 

represents the performance metric of the 

proposed work. Table 4 shows the comparison 

with DenseNet-121 (No SE) and DenseNet-121 

with SE Blocks. 
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Table 3: Performance Metric of the Proposed Work 

Class Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Normal 97.1 95.7 96.5 96.8 

Ulcerative Colitis 95.3 94.9 95.5 95.6 

Polyps 96.7 96.3 96.1 97.3 

Esophagitis 97.2 97.0 97.5 98.1 
  

Table 4: Comparison with DenseNet-121 (No SE) and DenseNet-121 with SE Blocks 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

DenseNet-121 (No SE) 93.4 94.0 92.8 93.4 

DenseNet-121 with SE Blocks 96.3 97.1 95.7 96.4 
 

Conclusion 
In this research work an improved version of 

DenseNet-121 convolutional neural network with 

Squeeze-and-Excitation (SE) blocks was proposed 

to classify colorectal diseases. This model 

succeeded into capitalizing on dense connectivity 

and feature recalibration to increase the diagnostic 

precision of four types of diseases. Experiments 

were done and showcased better results with 96.3 

accuracy, 97.1 precision, 95.7 recall, and 96.4 F1-

score, beating other classical deep learning 

models, including ResNet-50 and VGG-16. 

Computational cost was further cut down by 

combining with Global Average Pooling (GAP) 

which keeps the feature representation robust. 

Although the results are promising, a number of 

difficulties exist. Although the data was curated, 

variations in the lighting conditions and the noises 

in the endoscopic imaging still exist and may 

influence the performance when applied to real-

life clinical situations. Along with that, there are 

more methods to optimize its use in clinical real-

time practice, making it less time-consuming in 

terms of inference. In future, we would investigate 

self-supervised learning and transformer-based 

models to improve further the feature extraction. 

Besides, adding multi-modal data like the history 

of the patient, biopsy outcomes, and genetic 

markers may enhance the robustness of disease 

classification. An investigation into federated 

learning techniques will also be provided to make 

it possible to train models in privacy with a variety 

of healthcare organizations and have a more 

general and diverse model. Finally, clinical 

endoscopic validation on patients will also be done 

to determine practical enforceability and optimize 

the model to be used in computer aided diagnosis 

(CAD) systems. 
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