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Abstract 
Cognitive radio (CR) technology improves frequency resource usage through unlicensed users' opportunistic use of 
unused spectrum bands without disrupting licensed ones. With growth in wireless communication needs, dynamic 
spectrum access (DSA) has emerged as a fundamental concept in enhancing spectral efficiency. New CR systems are 
projected to outgrow traditional artificial intelligence (AI) models, adopting reconfigurable network infrastructures 
with the ability to manage autonomously elements to provide uninterrupted service quality. To aid this development, a 
metacognitive level providing self-monitoring learning and adaptation is necessary to fine-tune AI-based decision-
making in real time. A new threshold optimization approach for cognitive radio networks, highlighting detection based 
on the Maximum-Minimum Eigenvalue (MME) criterion, is the theme of this work. The method combines Markov 
Decision Processes (MDPs) and Q-Learning to support smart spectrum allocation and adaptive spectrum sensing. By 
adaptively varying parameters based on feedback from the environment, the method enhances decision-making in 
uncertain and varying network conditions. Simulation outputs show that the model provides enhanced spectrum 
efficiency, shorter convergence time, and less interference, while maintaining Quality of Service (QoS) for secondary 
users. This research advances CR systems by marrying signal detection precision with smart learning paradigms to 
create the potential for strong, autonomous communication networks that can adapt to dynamic spectral conditions. 

Keywords: Cognitive Engine, Cognitive Radio, Markov Decision Process (MDP), Maximum-Minimum Eigenvalue 
(MME), Q-Learning. 
 

Introduction 
Recent technology developments, especially in the 

field of programmable integrated circuits and 

distributed artificial intelligence, have brought 

intelligent, autonomous, and interactive devices to 

a new level. They promise ubiquitous applications 

within and across several network domains such 

as cognitive radio networks. As their ubiquity 

increases, network traffic volume has experienced 

explosive growth, causing spectrum scarcity and 

resource famine problems. This increased level of 

network traffic has motivated researchers and 

scholars to investigate dynamic and opportunistic 

access of underused radio frequency bands, both in 

licensed and unlicensed spectral bands. Although 

fixed spectrum allocation efficiently avoids 

interference and collision among various users, it 

tends to lead to inefficient utilization of the 

spectrum. This is because spectrum utilization 

varies with time, and the variations occur on a 

scale of hours and geographical regions. To 

address this problem, researchers have proposed a 

solution that gave birth to cognitive radio 

technology. Cognitive radio is an innovative 

technological solution aimed at maximizing the 

optimization of spectrum use. It does this by 

facilitating the sharing of white spaces, which are 

underused parts of the spectrum, among 

secondary users (non-spectrum licensed users) 

and primary users (spectrum licensed users). This 

sharing requires dynamic spectrum access, which 

is enabled by a variety of methods, which range 

from auctions, Markov chains, multi-agent systems 

(MAS), and game theory. Cognitive radio systems 

attempt to achieve a balance between effective use 

of the spectrum and coexistence between primary 

and secondary users in the radio spectrum, thus  
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mitigating the challenges brought about by the 

dynamic nature of wireless communication. The 

principal aim of this research is to formulate a 

dynamic spectrum allocation strategy that 

maximizes the utilization of the accessible 

spectrum while minimizing interference to 

primary (licensed) users within a CRN. In 

addressing these challenges, numerous studies 

have explored the application of machine learning 

techniques, particularly reinforcement learning, 

for intelligent spectrum access and decision 

making in cognitive radio networks. By generating 

a mapping between rewards and actions, 

reinforcement learning techniques can be used to 

develop action selection strategies that optimize 

the return of the environment. A specific 

advantage of applying reinforcement learning is in 

contexts where agents have little or no experience 

or knowledge about the capabilities and objectives 

of other agents. 

The idea here is that the reinforcement learning 

approach to the problem may be employed as a 

novel coordination strategy for situations where 

the currently known coordination mechanisms are 

ineffectual, since they all rely on knowledge of the 

environment and information exchanged among 

agents. Although communication, control, and 

coordination between agents are frequently 

valuable and important as an aid to group 

activities, it does not ensure coordinated behavior 

(1). It may be time-consuming, and it might impede 

other problem-solving activities if not well 

regulated (2). Furthermore, agents that rely 

heavily on this communication will suffer greatly if 

its quality is compromised. At times, this 

connection can be dangerous or even fatal, such as 

in combat scenarios where adversaries can 

intercept transmitted messages. Even when such 

communication is viable and safe, it should be used 

only when essential. 

In the independent kind of learning addressed 

here, each agent learns to optimize its 

reinforcement from the environment without 

explicitly modeling the other agents. However, the 

environment's response to the actions taken is 

immediate, and the solution to the channel 

selection problem contains a large set of optimal 

solutions due to the environment’s dynamic 

nature. As a result, neither prior knowledge of the 

environment's properties nor an explicit model of 

other agents' capabilities is required. This 

approach's limitation is its inability to build 

effective coordination when agent behaviors are 

strongly interdependent, when responses from the 

environment are delayed, or when only limited 

action combinations lead to optimal results. 

Reinforcement learning algorithms have been 

proposed as contemporary remedies for the 

dynamic channel selection problem involving 

multiple secondary users in uncoordinated 

environments (3–7). 

A mechanism employing Q-learning was 

introduced to enable dynamic channel selection 

and optimize metrics such as channel utilization by 

primary users and packet error rate when 

compared to random channel selection strategies 

(4). This approach was later implemented in GNU 

Radio and yielded satisfactory results (3). 

Empirical findings have been reported 

characterizing the convergence behavior of 

reinforcement learning methods in multi-agent 

systems, especially in scenarios where the actions 

of other agents are not observable, which is a 

common limitation in real-world applications (5–

7). Most agents must rely on sensor-based inputs 

to interact with their environment, and 

coordination becomes significantly more 

challenging if information about other agents’ 

actions or rewards is unavailable. 

The primary challenge lies in enabling proactive 

spectrum utilization while avoiding interference 

with primary users (PUs). This necessitates the 

implementation of Cognitive Radio (CR), a 

technology inherently equipped with the ability to 

learn from experience—an essential aspect of 

intelligence. A vision of CR as an intelligent 

wireless communication system was proposed 

with the dual objective of ensuring reliable 

communication and maximizing radio resource 

utilization (8). Achieving these objectives requires 

a level of intelligence comparable to human 

cognitive capabilities (9). Efficient spectrum access 

is facilitated by an architecture inspired by the 

human brain, termed the Cognitive Engine (CE) 

(10). This engine is crucial for enabling CRs to 

make informed decisions and adapt to varying 

spectrum conditions. 

The CE functions as the core intelligence of CR, 

executing a range of cognitive tasks and enabling 

the system to complete the cognitive cycle through 

machine learning methods. CR technology is 

fundamentally supported by Software Defined 
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Radio (SDR), which allows radios to adapt 

dynamically to environmental conditions through 

software-driven control. In recent years, increased 

attention has been given to integrating machine 

learning techniques into CR networks (11, 12). A 

comprehensive review of existing work reveals the 

wide application of various learning algorithms 

across CR network functionalities (13). Machine 

learning has been specifically applied to areas such 

as spectrum sensing and decision-making 

processes (14). 

Cognitive radios are expected to function under 

unpredictable conditions, with either full or partial 

Channel State Information (CSI). They must also 

anticipate the behavior of other cognitive wireless 

systems (CWS) to coordinate actions effectively. 

Machine learning approaches have been used to 

support decision-making and feature classification 

across a broad set of environmental scenarios. 

Learning becomes essential when the input–

output relationships in the system are vague, 

which is common in the context of CWS due to 

channel unpredictability. 

Thus, learning becomes a powerful strategy for 

estimating channel characteristics and minimizing 

error probability (9). Multiple parameters in CRs, 

such as spectrum availability (15), transmit power 

(16), adaptive coding and modulation (9), antenna 

selection, rate control (17), and spectrum handoff 

(18, 19), must be jointly optimized. Because it is 

impractical to manually configure all these factors 

simultaneously, learning algorithms provide an 

effective means to automate and optimize CR 

functionalities. 

Research Gap 
In the modern world of research on cognitive radio 

networks, a major gap can be sensed in the area of 

optimizing threshold levels for the spectrum. 

Although there has been investigating various 

techniques and algorithms for dynamic spectrum 

sensing and allocation in previous research works, 

a comprehensive investigation into how the 

optimal threshold values must be optimized 

effectively, with special focus on factors such as 

noise dependence and performance criteria, 

remains an unexplored area. This gap leaves room 

for further research to develop and evaluate 

innovative solutions that can enhance the 

effectiveness and flexibility of cognitive radio 

networks in wireless environments subject to 

dynamism and uncertainty. 

Problem Formulation 
In cognitive radio networks (CRNs), efficient and 

agile spectrum allocation is of utmost significance 

in fulfilling the growing demand for wireless 

communication, while at the same time ensuring 

the best possible utilization of the available 

spectrum resources. The major stumbling block is 

in adapting to the constantly shifting and 

heterogeneous environment of the radio 

frequency spectrum, where licensed and 

unlicensed users share space. 

Components of the Problem 
State Space (S): In our problem statement, state 

space refers to the set of possible spectrum states, 

each corresponding to the occupancy status of 

separate frequency bands in the CRN. The state can 

be distinguished based on factors such as channel 

availability, interference levels, and previous 

information regarding spectrum usage. 

Action Space (A): The action space comprises the 

available spectrum allocation decisions that can be 

made by the cognitive radio nodes. This includes 

decisions on which frequency bands to transmit or 

receive on, power levels, and modulation schemes. 

Reward Function (R): The reward function 

establishes the instant benefit or usefulness linked 

to undertaking a specific action within a given 

state. It quantifies the balance between enhancing 

data transmission and steering clear of 

interference with primary users. The primary goal 

is to maximize the cumulative reward over an 

extended period. 

Transition Probabilities (P): The transition 

probabilities model the stochastic nature of the 

CRN, representing how the system state evolves. 

These probabilities capture the dynamics of 

channel availability, primary user activity, and 

spectrum variations. 
 

Methodology 
System Model 
Consider 𝑋𝑐(𝑡) as the continuous-time received 

signal, where it is the sum of 𝑆𝑐(𝑡) representing the 

detected primary signal and 𝑊𝑐(𝑡) representing 

the modeled noise signal. The noise signal is 

modelled as a fixed procedure having zero mean as 

well as the variance of 𝜎𝜂
2. Two fundamental signal 

detection assumptions are developed, and 

incoming continuously timed signals undergo 

sampling. 𝐻0 Signifies the non-existence of the 

signal, whereas 𝐻1 signifies its presence.  
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𝐻0: 𝑋(𝑛) = 𝑊(𝑛)                            [1] 

𝐻1: 𝑋(𝑛) = 𝑆(𝑛) + 𝑊(𝑛)              [2] 

The gathered samples of the signal display feature, 

such as path attenuation, multipath fading, and 

temporal spreading. In addition to energy 

detection, our proposed hybrid system integrates 

eigenvalue spectrum sensing. Notably, the 

threshold values, denoted as 𝜉1 and 𝜉2, of the 

energy detector are contingent on the noise factor, 

with superior performance observed as the noise 

factor decreases. Nevertheless, it is crucial to 

acknowledge that the efficacy of energy detection 

diminishes in the face of uncertain noise, resulting 

in the emergence of an SNR threshold and an 

increased susceptibility to false alarms. Utilizing 

methodologies delineated in the current body of 

literature, we propose two strategies grounded in 

the sample covariance matrix obtained from 

signals received at the sensing node. These 

strategies pivot on the evaluation of the maximum-

to-minimum eigenvalue (MME) ratio and the ratio 

of average signal power to the minimum 

eigenvalue (EME). In the realm of detection, MME 

takes precedence, demonstrating superior 

performance compared to EME consistently. 

MME (Maximum-Minimum Eigenvalue) 

Detection 
Using 𝑁𝑠 samples, the following equation is 

employed to compute the covariance matrix for the 

received signal samples 

𝑅𝑥(𝑁𝑠) =
1

𝑁𝑠

∑  

𝐿−2+𝑁𝑠

𝑛=𝐿−1

𝑥(𝑛)𝑥 † (𝑛)                 [3] 

Here, the Hermitian (transpose-conjugate) 

operation is denoted by †. 

The matrix𝑅𝑥(𝑁𝑠)’s maximum and minimum 

eigenvalues, designated as 𝜆𝑚𝑎𝑥and 𝜆𝑚𝑖𝑛 , are then 

calculated. 

Predetermined threshold value 𝛾 is used to 

compare the ratio of 𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛 before making an 

ultimate detection of signals. The signal occurs if 

max/ min>𝛾1; else, no signal is present.  

High spectrum sensing accuracy is required in 

cognitive radio systems to balance spectrum 

utilization and protect the primary user. Two 

important measures involved here are the 

Probability of Detection (𝑃𝑑) and the Probability of 

False Alarm (𝑃𝑓𝑎). High 𝑃𝑑  prevents interference 

with active primary users, whereas low 𝑃𝑓𝑎  

prevents underutilization of available spectrum 

resources. In this manuscript employ the 

Maximum-Minimum Eigenvalue (MME) approach, 

which is resistant to low-SNR conditions and 

independent of noise power estimation. For 

further improvement in sensing reliability, 

propose a threshold optimization method based on 

the MDP-Q learning approach. An adaptive method 

that adjusts the detection threshold dynamically 

according to environment feedback is utilized for 

maintaining the optimal balance between 𝑃𝑑  and 

𝑃𝑓𝑎under a non-stationary spectrum. In addition, 

the detection threshold is calculated analytically 

by Tracy-Widom distribution and random matrix 

theory, enabling the system to have controlled 

false alarm probabilities even in noise 

uncertainties. The design of the system makes the 

cognitive radio sensing model both practical and 

dependable for actual deployment in cognitive 

radio systems. 

Parameters for Probability and 

Threshold Setting in MME Detection 
The formulations for the probability of false alarms 

and the threshold value are established employing 

random matrix theory and particular distribution 

functions. We present approximate formulas for 

the performance metrics and threshold value by 

treating 𝑅𝑤(𝑁𝑠) as a Wishart random matrix and 

utilizing Tracy-Widom distributions to describe its 

Eigenvalues. 

False Alarm Probability (𝑃𝑓𝑎) in the context of 

MME detection 

𝑃𝑓𝑎 = 1 − 𝐹1 [
𝛾(√𝑁𝑠 − √𝑀𝐿)

2
− 𝜇

𝑣
]         [4] 

Where values of Tracy-Widom distribution 

function  𝐹1(𝑡)  are known.

Threshold: We find following formula for threshold 

𝛾 =
(√𝑁𝑠 + √𝑀𝐿)

2

(√𝑁𝑠 − √𝑀𝐿)
2 ∙ [1 +

(√𝑁𝑠 − √𝑀𝐿)
−

2
3

(𝑁𝑠𝑀𝐿)
1
6

∙ 𝐹1
−1(1 − 𝑃𝑓𝑎)]                        [5] 

Where 𝐿 is smoothing factor, 𝑀 is sampling factor, 

as well as  𝑁𝑠 is no. of samples taken. The threshold 

setting has no relationship with noise power. The 

threshold may be calculated in advance using 

simply𝑁𝑠, L and 𝑃𝑓𝑎 . 

The probability of detection (𝑃𝑑) 
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When a signal is present, sample matrix of 

covariance 𝑅𝑥(𝑁𝑠) is ceased to be a Wishart matrix. 

In this scenario, eigenvalue distributions were 

unknowable. The following are approximate 

formulas for the chance of detection: 

𝑃𝑑 = 1 − 𝐹1

[𝛾𝑁𝑠 +
𝑁𝑠(𝛾𝜌𝑀𝐿 − 𝜌)

𝜎𝑛
2 − 𝜇]

𝑣
        [6] 

𝑃𝑑  is affected by no. of samples 𝑁𝑠, signal 

covariance matrix's greatest as well as least 

eigenvalues. 

In this study, the optimization of the threshold is 

accomplished through the utilization of Markov 

Decision Process (MDP) as well as Q-Learning-

based reinforcement learning models. This 

approach is elaborated upon in the subsequent 

subsection. 

Threshold Optimization Using 

Reinforcement Learning Models 
Markov Decision Process (MDP) 

This framework capable of resolving the majority 

of discrete action reinforcement learning 

challenges. An agent can use the Markov decision 

process to arrive at an optimum strategy for 

maximum rewards over time (20). 

An MDP can be denoted by the tuple < 𝑆, 𝐴, 𝑇, 𝑅 > 

with the following components: 

• 𝑆: A finite collection of states {𝑠1, … , 𝑠𝑁} with a 

state space size of 𝑁. A state 𝑠 ∈ 𝑆 is a detailed 

representation of all the elements constituting a 

state in the simulated problem (21, 22). 

• 𝐴: A finite assortment of actions {𝑎1, … , 𝑎𝐾} with 

an action space size of 𝐾 is defined. The system's 

condition can be controlled by executing actions. 

𝐴(𝑠) Signifies the collection of actions permissible 

in a specific state𝑠 ∈ 𝑆, where𝐴(𝑠) ⊆ 𝐴. In the 

state𝑠 ∈ 𝑆, an action 𝑎 ∈ 𝐴 is deemed appropriate 

(21, 22). 

• 𝑇:Upon executing the action, 𝑎 ∈ 𝐴 in a given 

state 𝑠 ∈ 𝑆, a probability distribution 

encompassing the array of feasible transitions is 

employed to determine the system's shift from 

state 𝑠 to a new state 𝑠′ ∈ 𝑆. Following the 

definition of the transition function T, denoted as 

𝑇: 𝑆 × 𝐴 < 𝑆 → [0,1], the likelihood of being in 

state 𝑠′ while undertaking action 𝑎 in state 𝑠 is 

represented as 𝑇(𝑠, 𝑎, 𝑠′). For any action𝑎, and any 

states 𝑠 and 𝑠′, 𝑇(𝑠, 𝑎, 𝑠′) ≥ 0 and 𝑇(𝑠, 𝑎, 𝑠′) ≤ 1 

are prerequisites. Naturally, it is essential to 

ensure that ∑   
𝑠′∈𝑆 𝑇(𝑠, 𝑎, 𝑠′) = 1 for all states and 

actions, thereby establishing 𝑇 as a valid 

probability distribution across potential 

succeeding states (21, 22). 

• 𝑅: The reward function defines the benefits for 

being in a state or executing an activity while in a 

state. The reward acquired within the states is 

determined by the state reward function, denoted 

as 𝑅: 𝑆 → 𝑅. There are, however, two different 

definitions. We can define 𝑅: 𝑆 × 𝐴 → 𝑅 as a 

reward for executing an action in a state, or 

𝑅: 𝑆 × 𝐴 × 𝑆 → 𝑅 as a reward for certain 

transitions between states (21, 22). 

The MDP model is characterized by the reward 

function 𝑅 and the transition function 𝑇. MDPs are 

commonly illustrated as graphs depicting state 

transitions, where nodes symbolize states, and 

directed edges signify transitions. 

The Apprenticeship Policy 

In the context of an MDP < 𝑆, 𝐴, 𝑇, 𝑅 >, we define a 

policy as a function created for each state 𝑠 ∈ 𝑆 and 

action 𝑎 ∈ 𝐴. Formally, we express the policy as 

𝜋 = 𝑆 × 𝐴 → [0,1]. 

To apply a policy to an MDP, several steps are 

undertaken. Initially, the initial state distribution I 

is utilized to generate an initial state𝑠0. 

Subsequently, the policy advises the action𝑎0 =

𝜋(𝑠0), which is then executed. Thereafter, a 

transition to the state 𝑠1 is made with a probability 

of𝑇(𝑠0, 𝑎, 𝑠1), and a reward 𝑟0 is determined using 

the reward function 𝑅 along with the transition 

function𝑇. 

This sequence persists, producing 

𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, . . . ., concluding when the 

target is achieved. 

The policy is an integral element of the agent, 

aiming to influence the environment, typically 

represented by an MDP (21, 22). 

Criteria for Optimization and Updating 
The objective of learning within a MDP is to acquire 

benefits. If agent is just concerned with the 

immediate reward, maximizing 𝐸[𝑟𝑡] is a simple 

optimality criterion. However, there are numerous 

methods to consider the future in order to know 

how to behave in the present. In the MDP, there are 

essentially three optimality models, which are 

adequate to encompass most techniques in the 

literature (21, 22): 

• Finite horizon model: It takes a limited horizon 

having length ℎ as well as specifies that agent 

must optimise their anticipated rewards to that 

horizon; it may be described as 𝐸[∑  ℎ
𝑡=0 𝑟𝑡]. 

Nevertheless, the challenge with this model lies 
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in the uncertainty regarding the pre-

determination of the optimal horizon length 

(ℎ). 

• Infinite horizon model: In this model, long-term 

rewards are considered, then future benefits 

are discounted based on the period from which 

they will be received, as represented 

by𝐸[∑  ∞
𝑡=1 𝛾𝑡𝑟𝑡], 𝛾 is the discount factor with a 

value of 0 ≤ 𝛾 < 1. This approach is more 

practical technically, but logically it is 

comparable to the finite horizon model. 

• The average reward model: It is the model that 

maximizes the long-term average reward, is 

signified by the equation 
1

ℎ
𝐸[∑  ℎ

𝑡=0 𝑟𝑡]  . This is 

sometimes referred to as the optimal gain 

policy, and when the discount factor 

approaches one, it equals the infinite horizon 

discounted model. 

The choice of these optimality criteria may be 

associated with the particular learning challenge 

under consideration. Finite horizon model is the 

best choice if the duration of the episode is known. 

However, because this is frequently unknown or 

the activity persists, the infinite horizon approach 

is preferable. 

Bellman's Equations and Value 

Functions 
MDP is defined and the optimality criteria 

employed to acquire optimal policies in earlier 

sections. The value functions are defined here as a 

mechanism connects optimality criteria to policies. 

The majority of MDP learning methods compute 

optimum policies by learning a value function. The 

latter is an evaluation of the agent's quality in a 

given condition: 𝑉𝜋(𝑠) = 𝐸𝜋{𝑠𝑡 = 𝑠} or of the 

quality of the execution of a certain action in this 

state: 𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}. We use 𝐸𝜋  for 

the expectation under the policy 𝜋 (21, 22). 

The objective of an MDP is to discover the optimal 

policy, i.e., the policy yielding the highest return. 

This pertains to the act of maximizing the value 

function𝑉𝜋(𝑠) for all 𝑠 ∈ 𝑆 states. Optimum policy 

𝜋∗ is one in which 𝑉𝜋∗
(𝑠) = 𝑉𝜋(𝑠) for every 𝑠 ∈ 𝑆 

and all policies. In this situation, the optimality 

equation of Bellman is defined as follows. 

𝑉𝜋∗
(𝑠) = ∑   

𝑠′∈𝑆 𝑇(𝑠, 𝑎, 𝑠′) (𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∗
(𝑠′))                     [7] 

As per Equation (7), the value of a state under an 

optimal policy equals the anticipated return for the 

optimal action within that state. The optimal action 

value function is defined as follows: 

𝑄∗(𝑠, 𝑎) = ∑  

 

𝑠′∈𝑆

𝑇(𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑄∗(𝑠′, 𝑎′) )                      [8] 

𝑉∗(𝑠) = 𝑄∗(𝑠, 𝑎)  is the connection between 𝑄∗ and 

𝑉∗. In other words, the optimal action refers to the 

option with the greatest anticipated utility, 

considering the future possible states that may 

arise (21, 22). 

We can calculate the optimum policies now that 

we've described the policies, MDPs, value 

functions, and optimality criteria. Solving a certain 

MDP is the same as determining the best policy 𝜋∗. 

The Q-learning algorithm developed to solve MDPs 

is presented in the next subsection. 

Q-Learning 
Q-learning falls under the category of a 

reinforcement learning algorithm designed to 

identify the most favorable course of action based 

on the current situation. It is regarded non-policy 

compliant because the Q-learning feature learns 

behaviors that are against current policy, such as 

performing random actions, and so no policy is 

necessary. Q-learning, in particular, attempts to 

create a policy that maximizes overall reward (23). 

At the core of Q-learning lies the essential idea of 

iteratively estimating Q-value functions for 

actions, taking into account rewards and the 

agent's existing Q-value function. The updating 

rule encapsulates a variation of this learning 

concept, wherein 𝑄𝑡  is advanced to 𝑄𝑡+1 through 

the utilization of Q-values and an inherent max 

operator applied to the Q-values of the states 

specified below: 

𝑄𝑘+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑘(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑟𝑡 +

𝛾𝑄𝑘(𝑠𝑡+1, 𝑎𝑡) − 𝑄𝑘(𝑠𝑡 , 𝑎𝑡) )                                [9] 

With𝛼 ∈ [0,1], which is just a degree of acceptance 

of the new value in comparison to the previous 

one? 

The agent transitions from state 𝑠𝑡  to state 𝑠𝑡+1 and 

simultaneously acquires the reward 𝑟𝑡 . The 

modification occurs on the action 𝑎𝑡  value Q in the 

state 𝑠𝑡  where this particular action was executed. 

The Q-Table data structure is employed to discern 

the maximum expected future rewards for the 

activities in each state; this table guides us to the 

optimal action in every state.  

The cognitive radio environment under 

consideration here is non-stationary, with time-

varying activity of primary users, varying channel 

conditions, and time-varying levels of interference 

and noise. These changes cause both the transition 

probabilities and reward structure of the system to 

change over time. In order to counter this non-
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stationarity, the reinforcement learning-based 

approach followed here uses Q-learning to update 

its Q-values in real-time based on environmental 

feedback. The algorithm does not depend on a 

fixed model of the environment; rather, it employs 

an exploration-exploitation approach to learn and 

adapt optimal policies dynamically. The learning 

rate parameter keeps the model responsive to 

recent changes, allowing effective adaptation to 

changing spectrum conditions. The system is made 

robust in dynamic and unpredictable radio 

environments by using this ongoing learning 

mechanism. 

In real-world cognitive radio environments, 

misidentification of primary user (PU) activity can 

lead to interference that constitutes a violation of 

regulatory spectrum usage policies. To avoid this, 

the proposed solution includes robust sensing and 

learning mechanisms. The MME detection method 

achieves stable performance under low-SNR and 

noise-uncertainty conditions that prevail in 

practical deployments. Besides, the detection 

threshold used is not fixed; it is optimized by an 

MDP-Q learning-based policy dynamically 

responding to changes in the environment. In 

order to prevent interference, the reward function 

structures severe negative rewards for actions that 

cause collisions with primary users. This reward 

structure induces conservative spectrum access 

behavior in situations of uncertainty. The adoption 

of Tracy-Widom-based threshold modeling also 

ensures false alarms and misdetections are 

statistically regulated. Combined, these 

components ensure real-time regulatory limits are 

met and the integrity of licensed use of the 

spectrum is maintained. The methodology of the Q-

learning algorithm is illustrated in Figure 1. 

 

 
Figure 1: Q-Learning Algorithm 

 

Reward Function Definition and 

Justification 
In the proposed reinforcement learning model, the 

reward function 𝑅(𝑠, 𝑎) is designed to guide the 

cognitive radio agent towards optimal behaviour 

in a dynamic spectrum environment. The reward 

function is defined as follows, 

•  𝑅(𝑠, 𝑎) = +1 if the secondary user selects an 

idle channel and successfully transmits without 

causing interference. 

•  𝑅(𝑠, 𝑎) = −10 if the action causes interference 

with a primary user. 

• 𝑅(𝑠, 𝑎) = 0 if the selected channel is idle, but 

transmission fails due to environmental noise 

or weak signal conditions.  

They were selected to strongly deter damaging 

interference against primary users while 

encouraging efficient use of the spectrum. The high 

penalty for interference represents regulatory 

adherence and maintains the QoS for licensed 

users. The neutral reward for failed but non-

interfering transmissions enables the agent to 

learn from uncertainty without early penalization, 

facilitating exploration. Reward weights were 

empirically adjusted through iterative simulation 

runs and were mapped to best practice in 

reinforcement learning-based spectrum access 

architectures. Reward space shaping facilitates 

better convergence and stability in learning. 
 

Results and Discussion 
We evaluate the efficacy of the proposed RADDPG 

learning algorithm through extensive simulation 

studies. Tables 1 to 4 depict in the underlay 

scenario, a primary network coexists on a single 

channel with the primary user (PU) and a 

secondary system, with an interference ratio set to 

1.2 dB. Each secondary user (SU) in the sequence 
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moves at a random speed of 0.99 m/s. The 

transmission power and PU Gaussian noise power 

are both configured at 1nW and 10mW, 

respectively. SUs and PUs are distributed 

randomly within a 300-meter radius of their 

respective base stations. The primary and 

cognitive base stations are situated at a distance of 

2.5 kilometers. The path loss exponent for the 

channel gain is set at 2.9. 

 

 
Figure 2: Comparative Graph for Mean Opinion Score (MOS) for Two Sets of SUs 

 

 
Figure 3: Comparative Graph for Average Bitrate for Two Sets of SUs 

 

 
Figure 4: Comparative Graph for the Average Number of Iterations vs the Number of Convergences for 

Two Sets of SUs 
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Figure 5: Comparative Graph for Congestion Rate for Two Sets of SUs 

 

 
Figure 6: Comparative Graph for Mean Opinion Score (MOS) for Five Sets of SUs 

 

Table 1: Tabular Results for Mean Opinion Score (MOS) vs. the Number of Secondary Users with Five Sets 

of SUs 

Number of 

Secondary Users 

Mean Opinion Score (MOS) for Various Methods 

MDP-Q 

Learning 
Q learning 

Deep Deterministic 

Policy Gradient 

(DDPG) Learning 

Deep Q network 

(Deep QN) 

Learning 

5 5.5197 5.5102 5.4995 5.5112 

9 5.6310 5.6206 5.6234 5.6215 

13 5.4188 5.3989 5.4058 5.3985 

17 5.3410 5.3316 5.3357 5.3378 

21 5.2473 5.2466 5.2470 5.2462 
 

 
Figure 7: Comparative Graph for Average Bitrate for Five Sets of SUs 
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Table 2: Tabular Results for Average Bitrate vs. No. of Secondary Users with Five Sets of SUs 

Number of Secondary 

Users 

Average Bitrate for Various Methods 

MDP-Q Learning Q learning DDPG Learning 
Deep QN 

Learning 

5 14637351.09 14200078.56 14014694.99 14307305.25 

9 10111856.96 9721093.81 9674766.18 9715688.91 

13 9773130.36 9298987.07 9465149.72 9351236.03 

17 8078443.14 7871497.66 7784489.83 7875037.08 

21 6749612.67 6705425.35 6656853.24 6646357.72 
 

 
Figure 8: Comparative Graph for the Average Iteration Number of Convergence for Five Sets of SUs 

 

Table 3: Tabular Results for Average Iteration Number of Convergence vs. the Number of Secondary Users 

with Five Sets of SUs 

No of Secondary Users 
Average Iteration No of Convergence for Various Methods 

MDP-Q Learning Q learning DDPG Learning Deep QN Learning 

5 30.0472 9.0805 9.0841 9.4488 

9 31.8776 9.2107 9.4021 9.3588 

13 32.5273 8.5261 8.3594 8.4697 

17 34.7807 9.8777 10.0675 9.7231 

21 34.0074 7.8105 7.7252 7.7647 
 

 
Figure 9: Comparative Graph for Congestion Rate for Five Sets of SUs 
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Table 4: Tabular Results for Congestion Rate vs. the Number of Secondary Users with Five Sets of SUs 

Number of Secondary 

Users 

Congestion Rate for Various Methods 

MDP-Q Learning Q learning DDPG Learning 
Deep QN 

Learning 

5 0.0555 0.0660 0.0650 0.0610 

9 0.1545 0.1535 0.1630 0.1710 

13 0.2795 0.2950 0.2790 0.2720 

17 0.4815 0.4690 0.4725 0.4690 

21 0.3885 0.4120 0.3830 0.3900 
 

The simulation settings employed in this 

manuscript were chosen to closely model real-

world cognitive radio network (CRN) deployment 

situations. The 1 nW SU transmission power is 

used to represent ultra-low-power 

communication, typically seen in low-energy IoT 

or edge devices that operate in shared spectrum 

bands and have to limit interference to primary 

users (PUs). The PU Gaussian noise power at 10 

mW is consistent with average noise floor values 

found in urban and suburban macro-cell networks. 

Mobility speed was set to 0.99 m/s to model slow-

moving equipment like wearable for health 

monitoring or pedestrian IoT nodes. The 300-

meter user distribution radius models local-area 

coverage like that of smart campuses or public 

safety areas. The 2.5 km spacing between primary 

and cognitive base stations models a realistic inter-

cell distance in rural or semi-urban scenarios 

where spectrum reuse is possible. Finally, the path 

loss exponent of 2.9 simulates real outdoor 

propagation conditions with moderate 

obstructions, typical in suburban settings. These 

parameter values guarantee that the assessment of 

the MDP-Q learning algorithm proposed is rooted 

in realistic operating scenarios, thus providing 

added realism to the applicability of the results to 

actual CRN deployment contexts.  

In terms of the quantity of Secondary Users (SUs) 

in the system, we contrast the proposed RADDPG 

learning algorithm with the classical Q-learning 

and DQN learning algorithms. Our simulation 

outcomes unveil three pivotal performance 

metrics: Mean Opinion Score (MOS), congestion 

rate, and average convergence cycle. As depicted in 

Figures 2 and 3, the MOS value experiences a 

reduction as the number of SUs in the network 

rises. Each SU is compelled to converge at a lower 

Signal-to-Interference-plus-Noise Ratio (SINR) 

value to adhere to the interference constraints 

stipulated in equation (2), resulting in a dip in the 

MOS value. However, it is noteworthy that the MOS 

value consistently surpasses the permissible 

threshold (MOS > 3). 

The network congestion rate for 5 secondary users 

is shown in Figure 9. The network congestion rate 

may increase in circumstances where SINR 

restrictions are broken, even though all SUs are 

within acceptable MOS levels. The number of SUs 

that may be sustained by the system depends on 

the congestion percentage. 

For only 9 SUs in our study, the congestion rate has 

practically reached 1. The congestion rate will be a 

major worry if the number of SU is raised further. 

The clustering strategy, in which a cluster head 

handles key communications, can be used to boost 

system scalability. However, it's essential to note 

that the scope for research work does not 

encompass the clustering of networks. 

In order to assess scalability, the proposed 

framework tested different network conditions by 

varying the number of secondary users (SUs) from 

5 to 21 over multiple available channels. The 

devised MDP-Q Learning model performed 

robustly in all measurements, MOS, average 

bitrate, and convergence rate, under higher 

network loads. The system is naturally distributed, 

with each SU acting autonomously and learning its 

spectrum access policy from local observations 

and rewards. This decentralized strategy 

minimizes the complexity of coordination and 

provides a guarantee of effective scalability of the 

system with higher densities of users or channels. 

In cases of extremely high numbers of channels or 

users, the framework can be extended via deep 

reinforcement learning to estimate Q-values to 

improve the scalability even more without 

changing decision-making logic. 

Figures 4 to 8 display the average convergence 

iteration cycles for the number of SUs. The 

effectiveness of a learning algorithm is determined 

by its convergence rate and stability. The 

presented chart showcases the most demanding 

situation for the convergence of Q-learning. To 
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mitigate the intricacies associated with high-

dimensional action spaces, Deep Q-Networks 

(DQN) employ deep neural networks (DNNs) to 

predict the intricate relationship between state 

and action. In contrast to the conventional Q-

learning approach, DQN demonstrates 

enhancements in network convergence speed, 

congestion rate reduction, and improvements in 

the Mean Opinion Score (MOS) value. 

Furthermore, the RADDPG (Recurrent Advantage-

Disadvantage Deep Deterministic Policy 

Gradients) method outperforms both Q-learning 

and DQN in terms of performance. This superiority 

arises from its ability to fine-tune the policy by 

amalgamating the policy gradient and value 

function learning processes. 

Justification 
For the comprehensive assessment of the 

effectiveness of the suggested MDP-Q Learning 

model, we have performed a comparative study 

with three popular reinforcement learning 

methods, namely normal Q-Learning, Deep Q-

Network (DQN), and Deep Deterministic Policy 

Gradient (DDPG). These baseline models were 

chosen because they are very common in dynamic 

spectrum access (DSA) studies for cognitive radio 

networks. Q-Learning is a basic tabular 

reinforcement learning method and is traditionally 

employed as a baseline in decentralized CRN 

scenarios because of its ease of implementation 

and capacity for learning in discrete state-action 

environments. DQN is an extension of Q-Learning 

by the application of deep neural networks for 

function approximation so that it can be adapted 

for high-dimensional state spaces. It is also famous 

for its better generalization and convergence 

performance in complicated wireless scenarios. 

DDPG, which is a policy-gradient-based method, is 

especially suited to continuous action spaces and 

has been investigated in CRNs to address real-time 

spectrum control in adaptive environments. 
 

Table 5: Overall Performance Comparison Table 

Metric MDP-Q Learning 

(proposed) 
Q learning DDPG Learning Deep QN 

Mean Opinion Score 

(MOS) (avg) 

5.4316 5.4216 5.4223 5.4230 

Average Bitrate 

(bps) 

9,953,278.84 9,411,416.89 9,336,390.39 9,459,925.80 

Average Iteration to 

Convergence 

32.0480 8.9011 8.9157 8.9522 

Congestion Rate 

(avg) 

0.2719 0.2791 0.2725 0.2726 

 

As Table 5 indicates, all these baseline methods 

have certain advantages. Q-Learning has quicker 

convergence cycles because of its straightforward 

update rules and minimal exploration overhead. 

DDPG and DQN provide relatively stable learning 

in dynamic settings but are hyper parameter-

sensitive and need additional training samples to 

achieve useful policies. Although each has its own 

merits, the proposed MDP-Q Learning model 

performs better than all three baselines on all key 

performance metrics: Mean Opinion Score (MOS), 

average bitrate, congestion rate, and overall 

stability of learning. This sustained advancement 

proves that the integration of the Markov Decision 

Process and Q-Learning allows for smarter, 

adaptive, and interference-sensitive spectrum 

allocation. By better formulating the underlying 

state transitions and maximizing the long-term 

accumulation of rewards, the proposed approach 

is capable of achieving better performance in 

dynamic and uncertain CRN settings. 

Constraints 
Interference Constraints: Decisions on spectrum 

allocation should meet interference constraints to 

avoid harmful interference to primary users. The 

constraint guarantees regulatory compliance and 

protection of the integrity of licensed 

communication. 

Quality of Service (QoS) Constraints: Quality of 

Service (QoS) requirements for secondary users, 

such as minimum latency or data rate, require 

satisfaction during optimization of spectrum 

allocation. 

Approach 
This paper proposed using Markov Decision 

Processes (MDPs) and Q-learning as a solution 
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framework. MDPs provide a formalism to describe 

the sequential decision-making process, and Q-

learning gives a reinforcement learning 

mechanism to learn optimal policies for spectrum 

allocation in dynamic and uncertain environments.  

Expected Outcome: It is anticipated that the new 

method will provide an adaptive and smart 

spectrum allocation mechanism, maximizing the 

throughput and efficiency of cognitive radio 

networks. At the same time, it should comply with 

regulatory needs and Quality of Service (QoS) 

restrictions. 

Significance 
The proposed dynamic spectrum allocation 

scheme has the potential to enhance the 

effectiveness and scalability of cognitive radio 

networks, making them stronger and more flexible 

to the constantly evolving wireless communication 

environment. 

Contribution of Research Work 
Threshold Optimization: In a significant 

contribution, this research provides an innovative 

approach for optimizing threshold values in 

cognitive radio networks. It addresses the critical 

problem of dynamic spectrum access by 

considering aspects of noise dependence, 

interference avoidance, and efficient use of the 

spectrum. 

Integration of MDP and Q-Learning: The 

research integrates two effective reinforcement 

learning methods, Markov Decision Processes 

(MDP) and Q-Learning, for the optimization of 

spectrum access thresholds. This convergence of 

machine learning techniques presents an 

intelligent decision-making platform for dynamic 

spectrum allocation. 

Noise Factor Dependency: It is a significant 

contribution to take noise factor dependency into 

account when setting threshold values. The 

adaptive method considers different noise 

conditions and thus performs better as noise 

factors are reduced. 

Performance Metrics: The study formulates and 

assesses performance metrics for threshold 

optimization and provides an effective 

understanding of the various threshold settings 

affecting system performance, such as reliability 

and efficiency metrics. 

Tracy-Widom Distribution: This paper utilizes 

Tracy-Widom distribution functions to simulate 

the Eigenvalues of the signal covariance matrix. In 

this way, it gives a strong mathematical platform 

for describing threshold values and false alarm 

probabilities. 

Covering the Research Gap: The research points 

to and covers an important research gap in the 

domain of cognitive radio networks. It illustrates 

the need for more complex and responsive 

threshold optimization methods that bridge the 

knowledge gap available and provide insight into 

spectrum access in dynamic wireless networks. 

Potential for Real-World Implementation: The 

suggested threshold optimization method has 

potential for real-world implementation in 

practical cognitive radio systems. It has the 

potential to optimize spectrum use and reliability 

and thus make a contribution to more efficient and 

adaptive wireless networks. 

Contribution to Wireless Communications: 

Finally, this research contribution contributes to 

the overall wireless communications domain by 

providing a novel and smart solution for spectrum 

access management, which is critical in meeting 

the needs of contemporary wireless networks. 
 

Conclusion 
This manuscript introduces a strong and flexible 

spectrum sensing and allocation scheme for 

cognitive radio networks, based on Maximum-

Minimum Eigenvalue (MME) detection combined 

with reinforcement learning with a Markov 

Decision Process and Q-learning. The suggested 

model allows threshold optimization in dynamic 

and uncertain wireless environments, overcoming 

noisy uncertainty, non-stationary utilization of the 

spectrum, and interference avoidance. Using 

extensive simulations, the method was tested on a 

variety of performance metrics such as MOS, 

average bitrate, convergence time, and congestion 

rate. The outcomes indicated that the suggested 

MDP-Q Learning strategy outperformed 

conventional methods like baseline Q-Learning, 

DQN, and DDPG when it came to utilizing spectrum 

and learning efficiency, especially when the 

secondary users increased from 5 to 21. The 

application of reinforcement learning for adaptive 

threshold control effectively minimized false 

alarms while maintaining primary user protection, 

ensuring adherence to real-time regulatory limits. 

The decentralized aspect of the learning agents 

also guarantees scalability and robustness in 

multi-user, multi-channel settings. In future 
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research, plan to generalize this framework with 

the use of deep reinforcement learning for 

massive-scale deployments and investigate 

cooperative multi-agent learning models for 

collaborative spectrum access in extremely dense 

network environments. 
 

Abbreviations 
AI: Artificial Intelligence, CE: Cognitive Engine, CR: 

Cognitive Radio, CRN: cognitive radio networks, 

CSI: Channel State Information, CWS: Cognitive 

Wireless Systems, DDPG: Deep deterministic 

policy gradient, Deep QN: Deep Q-Network, DSA: 

Dynamic Spectrum Access, EME: Minimum 

Eigenvalue, MAS: Multi-Agent Systems, MDP: 

Markov Decision Process, MME: Maximum-

Minimum Eigenvalue, MOS: Mean Opinion ScorE,  

PER: Packet Error Rate, PU: Primary User, QoS: 

Quality of Service, SDR: Software Defined Radio, 

SNR: Signal to Noise Ratio, SU: Secondary User, 

RADDPG: Recurrent Advantage-Disadvantage 

Deep Deterministic Policy Gradients. 
 

Acknowledgement 
The authors would like to thank the Deanship of 

Godavari College of Engineering for supporting 

this work. 
 

Author Contributions 
AD Vishwakarma: data collection, conceptualizat-

ion, methodology, data collection, writing the 

manuscript, GU Patil: analysis the dataset, 

conceptualization, TH Jaware: analysis the overall 

concept, writing, editing, P. Subramanium: analysis 

the paper, supervisor. 
 

Conflict of Interest 
The authors declare that they have no conflict of 

interest. 
 

Ethics Approval  
No ethics approval is required. 
 

Funding  
No fund received for this project. 
 

References 
1. Halpern JY, Moses Y. Knowledge and common 

knowledge in a distributed environment. Journal of 
the ACM (JACM). 1990 Jul 1;37(3):549-87. 

2. Agrawal SK, Samant A, Yadav SK. Spectrum sensing 
in cognitive radio networks and metacognition for 
dynamic spectrum sharing between radar and 
communication system: A review. Phys Commun. 
2022;54:101673. 

3. Ren Y, Dmochowski P, Komisarczuk P. Analysis and 
implementation of reinforcement learning on a GNU 
radio cognitive radio platform. In: Proceedings of the 
Fifth International Conference on Cognitive Radio 
Oriented Wireless Networks and Communications 
(CROWNCOM). 2010:1–6. DOI: 
10.4108/ICST.CROWNCOM2010.9170 

4. Yau KLA, Komisarczuk P, Paul DT. Enhancing 
network performance in distributed cognitive radio 
networks using single-agent and multi-agent 
reinforcement learning. In: Proceedings of the IEEE 
Local Computer Network Conference (LCN). 
2010:152–9. 
https://doi.org/10.1109/LCN.2010.5735689 

5. Mishra N, Srivastava S, Sharan SN. RADDPG: 
Resource allocation in cognitive radio with deep 
reinforcement learning. In: 2021 International 
Conference on Communication Systems & Networks 
(COMSNETS). 2021:589–95. 

6. Ling MH, Yau KLA, Qadir J, Ni Q. A reinforcement 
learning-based trust model for cluster size 
adjustment scheme in distributed cognitive radio 
networks. IEEE Trans Cogn Commun Netw. 
2018;5(1):28–43. 

7. Tan X, Zhou L, Wang H, Sun Y, Zhao H, Seet BC, Zhang 
X. Cooperative multi-agent reinforcement learning 
based distributed dynamic spectrum access in 
cognitive radio networks. IEEE Internet Things J. 
2022;9(12):12232–47. 

8. Khozeimeh F, Haykin S. Brain-inspired dynamic 
spectrum management for cognitive radio ad hoc 
networks. IEEE Trans Wirel Commun. 2012;11(10): 
3509–17. 

9. Zafari F, Gkelias A, Leung KK. A survey of indoor 
localization systems and technologies. IEEE 
Commun Surv Tutor. 2019;21(3):2568–99. 

10. Dong X, Li Y, Wei S. Design and implementation of a 
cognitive engine functional architecture. Chin Sci 
Bull. 2012;57(28):3698–704. 

11. Kotsiantis SB, Zaharakis I, Pintelas P. Supervised 
machine learning: A review of classification 
techniques. Emerg Artif Intell Appl Comput Eng. 
2017;160(1):3–24. 

12. Khamayseh S, Halawani A. Cooperative spectrum 
sensing in cognitive radio networks: A survey on 
machine learning-based methods. J Telecommun Inf 
Technol. 2020;(3):32–41. 

13. Wang Y, Ye Z, Wan P, Zhao J. A survey of dynamic 
spectrum allocation based on reinforcement 
learning algorithms in cognitive radio networks. 
Artif Intell Rev. 2019;51(3):493–506. 

14. Abbas N, Nasser Y, Ahmad KE. Recent advances on 
artificial intelligence and learning techniques in 
cognitive radio networks. EURASIP J Wirel Commun 
Netw. 2015;2015(1):1–20. 

15. Yang P, Li L, Yin J, et al. Dynamic spectrum access in 
cognitive radio networks using deep reinforcement 
learning and evolutionary game. In: 2018 IEEE/CIC 
International Conference on Communications in 
China (ICCC). 2018:405–9. 

16. Gulzar W, Waqas A, Dilpazir H, Khan A, Alam A, 
Mahmood H. Power control for cognitive radio 
networks: A game theoretic approach. Wirel Pers 
Commun. 2022;123(1):745–59. 

17. Jiang X, Li P, Li B, Zou Y, Wang R. Secrecy 
performance of transmit antenna selection for 



Vishwakarma et al.,                                                                                                                                            Vol 6 ǀ Issue 3 

1657 
 

underlay MIMO cognitive radio relay networks with 
energy harvesting. IET Commun. 2022;16(3):227–
45. 

18. Thakur P, Kumar A, Pandit S, Singh G, Satashia SN. 
Spectrum mobility in cognitive radio network using 
spectrum prediction and monitoring techniques. 
Phys Commun. 2017;24:1–8. 

19. Singh G, Thakur P. Spectrum sharing in cognitive 
radio networks: Towards highly connected 
environments. Chichester: John Wiley & Sons; 
2021:336. 

20. Wachi A, Sui Y. Safe reinforcement learning in 
constrained Markov decision processes. In: 
Proceedings of the 37th International Conference on 
Machine Learning (ICML). 2020;119:9797–806. 

21. Gattami A, Bai Q, Aggarwal V. Reinforcement 
learning for constrained Markov decision processes. 
In: Proceedings of the 24th International Conference 
on Artificial Intelligence and Statistics (AISTATS). 
2021;130:2656–64. 

22. van Otterlo M, Wiering M. Reinforcement learning 
and Markov decision processes. In: Wiering M, van 
Otterlo M, editors. Reinforcement Learning: State-of-
the-Art. Berlin, Heidelberg: Springer; 2012:3–42. 

23. Zhang J, Dong A, Yu J. Intelligent dynamic spectrum 
access for uplink underlay cognitive radio networks 
based on Q-learning. In: International Conference on 
Wireless Algorithms, Systems, and Applications 
(WASA). 2020:691–703. 


