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Abstract 
This work presents SE-PCOSNet, a novel deep learning PCOS diagnosis model driven by ultrasound image analysis. The 
architecture extends the fundamental Convolutional Neural Network (CNN) with Squeeze-and-Excitation (SE) blocks 
that support dynamic feature channel recalibration. The addition of the SE blocks supports the model's ability to detect 
weak and faint features in gynecological ultrasound images, crucial to successful PCOS diagnosis. The suggested 
architecture consists of three convolutional blocks, each of which includes SE blocks for facilitating improved 
discriminative feature extraction. Apart from architectural enhancement, the technique utilizes state-of-the-art data 
preprocessing, data augmentation, and attention mechanisms. GPU acceleration, regularization techniques, and cross-
validation enhance the training process to render it robust and avoid over fitting. With a vast and heterogeneous 
dataset of over 1,900 pelvic ultrasound images, SE-PCOSNet achieved impressive external validation performance with 
82.6% precision and overall, 100% recall for both PCOS-positive and PCOS-negative classes. The model also has about 
twice the computational speed of the standard CNN models and achieves this without sacrificing diagnostic accuracy. 
The results affirm the strength and efficiency of SE-PCOSNet in handling actual clinical data sets. The use of SE blocks 
not only allows for feature recalibration but also enables remarkable sensitivity and specificity in PCOS condition 
classification. The model possesses great potential for integration into automated, real-time diagnosis systems, with 
the intention to maximize the gynecological diagnosis in clinical settings. Additional research can further expand the 
framework and evaluate the use of this method across a greater range of diagnostic applications. 

Keywords: Medical Image Processing, PCOS, ReLU (Rectified Linear Unit), SE Blocks (Squeeze-and-Excitation 
Block), SoftMax, Ultrasound Imaging. 
 

Introduction
Artificial intelligence in imaging has improved 

diagnosis in fields such as gynecology through the 

visualization of the human body. PCOS and related 

issues affect approximately 8-13% of women in the 

reproductive age bracket and are generally 

present in ultrasound imaging in diverse ways (1). 

Most conventional diagnoses involve 

interpretation by the practitioner, which increases 

the chances of bias in diagnosis and even 

recommended management strategies. Menstrual 

distress in adolescent girls and women of 

reproductive age includes physical, emotional, and 

psychological symptoms, which are 

interconnected in several ways (2). The onset of 

deep learning has created opportunities to detect 

PCOS using an imaging modality analysis 

technique. CNN has proven to be very influential in 

image classification, but the indicators of PCOS in 

ultrasound images are fine and distributed, and 

most known CNN structures cannot handle such 

problems well (3). This research proposes a new 

CNN architecture equipped with SE blocks for 

better detection of PCOS markers from ultrasound 

images. The SE blocks work as attention modules 

to enhance relevant parts of the input and diminish 

less valuable components, which is very helpful in 

medical-related image analysis, where patterns 

indicating the disease may be small and dispersed 

(1). This study is important because it seems to 

provide an effective solution to multiple problems 

related to the automatic diagnosis of PCOS. First, 

they address the question of feature importance 

using channel-wise recalibration based on SE 

blocks, which helps the network pay attention to 

the diagnostic areas of the input images the most. 

Second, it concerns the problem of efficiency in the 

implementation of clinical CA through data 

management and GPU, signifying that it is helpful 

for actual clinical use (3).  The preprocessing and 

augmentation part embraces all the data to be 
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implemented into the model, which is necessary to 

overcome differences due to variations in quality 

or even the way the images are captured (4). The 

training process applies efficient algorithms such 

as learning rate control and stopper to attain the 

best algorithm model. For centuries, the diagnosis 

of critical diseases remained dependent on the 

skillset of the pathologists and technicians. While 

their expertise remains irreplaceable, this 

traditional approach presents inherent limitations. 

Visual assessment of diseases carried out by 

histopathologists can be time-consuming, 

vulnerable to inter-observer variability, and prone 

to subjectivity, potentially leading to misdiagnosis 

and missed opportunities for early intervention 

(5). Much of the current developments in deep 

learning for analyzing gynecological images have 

shown architectural elevation and performance 

enhancement trends. Earlier, different types of 

CNN architecture were proposed for performing 

medical image classification, where, specifically, 

the application of proposed deep learning 

networks in detecting different pathological 

conditions from the ultrasound images was 

reported (6). The use of attention mechanisms in 

deep learning models has become a novel 

development in medical image processing. Issues 

inherent to medical imagery proved critical for 

classic CNN architectures suited for general 

machine vision tasks (7). The use of SE blocks in 

the proposed model can be seen as an important 

addition to the resolution of this problem, as it 

provides a means of dynamic feature importance 

weighting (3). 

Numerous research papers focus on the use of 

deep learning to diagnose PCOS, and the outcomes 

have been promising to some extent. Initial studies 

with relatively simple CNN structures achieved 

recognition accuracy of approximately 85%—92% 

and proved the basic deep learning systems’ 

performance and challenges for identifying this 

disease (1). Incorporating attention mechanisms, 

especially the SE block, has been observed to 

enhance the performance of the models in 

different medical image applications (8). 

Data augmentation techniques have become very 

important in improving the model's robustness 

and generalization statistics of the model (9). Prior 

solution studies have shown that using some form 

of augmentation strategy in medical image analysis 

can be effective, involving geometric 

transformations and system contrast (10-12). 

These techniques have been best applied, mainly in 

dealing with the problem of small sample sizes, 

which are characteristic of many medical imaging 

problems. 
 

Methodology 
Dataset Description 
The type of dataset taken in this research entails 

Ultrasound images of the lower abdomen, 

exclusively used to diagnose PCOS (13). It is 

divided into two broad groups: training and test 

sets. Each of the groups has subgroups for PCOS-

positive or “infected” and PCOS-negative or “not 

infected”. The training dataset is divided into 70% 

and 30% for the training and validation process to 

provide sufficient data for validation measures 

during the development of the model. 

Imaging Modality: The ultrasound imaging mode 

was used to obtain all the images, and in this case, 

it entailed a pelvic ultrasound imaging scan, which 

is primarily used to assess and diagnose polycystic 

ovary syndrome. 

Demographics and Criteria: The dataset does not 

provide explicit information regarding the age 

range, demographic breakdown (such as ethnicity 

or geographic region), or detailed 

inclusion/exclusion criteria for the subjects whose 

ultrasound images were collected. This lack of 

information demonstrates the weakness of most 

open-access medical imaging datasets. 

Nevertheless, according to the experts' 

annotations, every presented image is 

characterized as PCOS or non-PCOS. 

Dataset Source: The dataset author aggregated 

the images, coined them for research and 

educational purposes, and released them on the 

Kaggle platform. Although the description of the 

data set does not indicate whether it is based on 

data obtained in a specific hospital or medical 

organization, it is readily available online, and 

investigators can have the opportunity to use it. 

Since no demographic and clinical metadata were 

provided, this report does not fully support the 

implication that the results can be generalized to 

larger populations. Future experiments should 

attempt verification on more completely described 

clinical and demographic annotated data. 

The dataset utilized in this study was collected 

from the website https://www.kaggle.com/datas

ets, which is a well-known data repository. The 
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Kaggle repository consists of two top-level folders, 

infected and not infected, which act as ground-

truth labels to train and evaluate the model. The 

images that are infected are regarded as PCOS-

positive, and the ones that are not infected are 

handled as PCOS-negative in the kaggle.com 

dataset.  

Details of diagnostic assignment (by whom, e.g., 

board-certified gynecologists, radiologists, or a 

mixed clinical team) and accompanying radiology 

reports and histopathology are not noted in the 

public description of the dataset. The level of 

physicians' verification of annotations was 

therefore unknown, and there was no way to 

determine whether the dataset curator produced 

the annotations based on secondary sources. This 

lack of provenance is an admitted limitation; it will 

cause a statement of inter-observer agreement to 

be impossible and, consequently, will cause label 

noise. In our manuscript we thus (i) apply the 

labels as weak supervision, (ii) stress the necessity 

in further validation on annotated data done by 

clinicians, and (iii) suggest that subsequent 

releases should accompany each image with the 

credentials of the expert interpreting it and any 

accompanying clinical notes, to increase 

transparency and reproducibility. 

Data Acquisition and Preprocessing 
Before feeding the images into the neural network, 

they are resized to have a pixel dimension of 

224×224 to help reduce variability. Some specific 

operations used in the preprocessing pipeline are 

normalizing the pixel’s intensity values into the 

range and using data augmentation. These 

augmentation operations include the horizontal 

and vertical flip operations, rotation operations 

with bounds to 20 percent of the total image 

rotation, and zoom operations, which make the 

augmented image dataset more diverse and 

improve the model's ability to generalize. The way 

that the dataset has been organized and 

preprocessed ensures a proper training 

environment without compromising the medical 

images. This method of augmentation and data 

handling is essential for the success of the model 

for PCOS detection. 

To ensure complete reproducibility, we took 

advantage of a deterministic, preprocessing 

pipeline and implemented it in terms of scripts 

based on Tensor Flow 2.16 and tf.keras. 

Preprocessing API. Subsequently, all frames in 

ultrasound were pre-processed to RGB (three 

channels) and resized to 224 224 pixels using 

bilinear interpolation to have a uniform input 

tensor size. The pixel intensities were then put into 

the 0,10,1 range (by casting to float32 and dividing 

by 255), ensuring an equal dynamic range in 

training, validation, and test sets. 

The sequential layer was an augmentation layer 

that performed the stochastic transformations 

only when training (validation and test data were 

processed by a no-op branch).  

It is also important to use a fixed random seed of 

size 42 (which is an arbitrary integer chosen to 

initialize the random number generator in a 

consistent way) to guarantee the same augmented 

variants in the same epoch order with every 

person rerunning the script. Tensors were cached 

to memory after augmentation (dataset. Cache ()) 

and pre-fetched using AUTOTUNE to remove I/O 

bottlenecks. The whole model is published as a 

self-contained scripts.py file in the supplement 

materials, which can be instantly repeated (or 

adjusted to different image dimensions and 

augmentation budgets). 

Data Loading 
The former method was used to load the data with 

the help of the function tf.keras.utils.image. This 

function determines the labels from the folder 

structure and resizes all images to the fixed input 

shape of 224 x 224, which is adequate for the deep 

learning model. To decide on a batch size, we 

always consider memory usage and the training 

rate, which is set to 32 (14). The datasets are split 

randomly, i.e., the cases are shuffled to ensure that 

the samples are similar during each run of the 

programs, and a seed is provided to set the 

shuffling starting place. To further enhance the 

efficiency of the training process, the datasets are 

cached and prefetched using Tensor Flow’s 

AUTOTUNE. Figure 1 shows a collection of infected 

and not infected ultrasound images where data 

augmentation techniques, like flipping, rotating, 

and zooming, are applied to the source images. 

Data Augmentation 
To do the data augmentation, we attempted to 

address two issues relevant to the training 

process: over fitting and model generalization. As 

a result, a dedicated layer was created to develop 

the augmentation layer using the Keras Sequential 

Application Programming Interface (15).
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Figure 1: Sample Augmented Images Illustrating Data Augmentation Techniques such as Flips, Rotations, 

and Zooms 
 

The augmentation perturbation includes flips with 

a probability of 0.5 at the horizontal axis, 0.5 at the 

vertical axis, and rotational augmentations by a 

random value between 0 and 20 percent of two pi 

and zoom augmentations. During the training 

phase, augmentation is performed on the GPU to 

enhance efficiency. Also, sample augmented 

images are illustrated and stored based on the 

augmented training images, leaving room for a 

preliminary quantitative check. 

Preprocessing Summary 
The preprocessing pipeline comprises the 

following steps: 

● Resizing: All images are resized to 224×224 

pixels.  

● Normalization: Pixel values are scaled to the 

range [0,1] by dividing by 255. 

● Augmentation: Real-time data augmentation 

is applied during training using random flips, 

rotations, and zoom operations. 

● Caching and Prefetching: The dataset is 

cached and prefetched to minimize the I/O 

bottlenecks during training. 

Model Architecture with Squeeze-and-

Excitation (SE) Blocks 
Rationale for Attention Mechanisms: 

Sometimes, there may be noises or artifacts in the 

ultrasound, which are sources of errors, and the 

areas that show abnormality or PCOS are not fixed 

but distributed in a dispersed manner. We 

incorporated the attention mechanism into our 

convolutional neural network (CNN) to overcome 

this issue. Specifically, Squeeze-and-Excitation 

(SE) blocks were employed because they allowed 

the network to reweigh different channels’ feature 

responses (16). The SE blocks help to make the 

model more sensitive to the informative features 

and insensitive to the other features as much as 

possible, which can benefit both high accuracy and 

clear interpretability of the models. 

Squeeze-and-Excitation Block Design 
The input SE block is a two-step process that 

converts inputs into outputs for the following 

reasons: 

Squeeze: Finally, the feature maps undergo Global 

average pooling, where each channel is reduced to 

a single scalar value. This step assigns the global 

spatial information of each channel in the disc 

storage step. 

Excitation: The squeezed features are passed 

through two dense layers— the reduction layer 

that reduces dimensionality (using a specified 

ratio 16) and the expansion layer that returns the 

features’ dimension to the required number of 

channels. Sigmoid scales the previous layer’s 

output into a range of production between 0 and 1 

and then multiplies the feature maps element-wise 

(17). 
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In the current section, the SE-block function takes 

the input tensor and returns an output tensor with 

re-normalized channel-wise features. 

Overall CNN Architecture 
Our CNN model consists of three primary 

convolutional blocks, each followed by an SE block 

and a max-pooling layer: 

Block 1 

● A 2D convolutional layer with 32 filters and a 

3×3 kernel, using "same" padding and ReLU 

activation. 

● The output is passed through an SE block (with 

a reduction ratio of 16) to recalibrate channel 

weights. 

● A max-pooling layer with a pool size of 2×2 

reduces the spatial dimensions. 

Block 2 

● A 2D convolutional layer with 64 filters and a 

3×3 kernel, again with "same" padding and 

ReLU activation. 

● An SE block processes the resulting features. 

● Another 2×2 max-pooling layer is applied. 

Block 3 

● Using the same settings as before, a 2D 

convolutional layer with 128 filters and a 3×3 

kernel. 

● The output is recalibrated via an SE block. 

● A final 2×2 max-pooling layer is applied. 

After the convolutional blocks, the feature maps 

are flattened and fed to a dense layer containing 

128 neurons with ReLU activation. To combat this 

issue, the dropout layer with a dropout rate of 50% 

is additionally used for data preprocessing (18). 

The last feature is the output layer, which contains 

two neurons for classification and is applied using 

the softmax function (19).
 

 
Figure 2: Schematic Representation of the Squeeze-and-Excitation (SE) Block Architecture Integrated 

into the Convolutional Neural Network 
 

Figure 2 illustrates the stepwise flow and internal 

mechanism of the Squeeze-and-Excitation (SE) 

block, an advanced attention module used to 

enhance deep learning models for medical image 

analysis. The process begins with the input tensor 

XX, which has dimensions corresponding to height 

(H′H′), width (W′W′), and the number of channels 

(C′C′). This input is passed through a feature 

transformation layer, typically a convolutional 

operator, to generate feature maps UU with 

updated spatial and channel dimensions 

(H×W×CH×W×C).

The principal feature of the SE block is the two-

step process: squeezing and excitation. At the 

squeeze stage, global average pooling is performed 

over every feature map, which spatially down-

samples a feature map into a channel-wise global 

descriptor ZZ with the shape of 1 x 1 x C 1 x 1 x C. 

This practically determines the general 

importance of every feature channel. In the 

excitation phase, this descriptor is processed by 

two fully connected (FC) layers separated by a non-

linear ReLU activation. The first FC layer maps the 

dimensions of the channels by a factor of rr, and the 



Dutta et al.,                                                                                                                                                           Vol 6 ǀ Issue 3 
 

1128  

second FC layer unmaps them, thus producing a list 

of channel-wise weights. A sigmoid activation 

normalizes these weights (ss), constraining them 

to values between zero and one. These are then 

applied as learned weights to scale the input 

feature maps via an element-wise multiplication, 

biased towards the most salient features and away 

from less informative ones. The spatial dimensions 

of the output tensor are not affected and are 

preserved, but now the features have been 

recalibrated, and the model has improved its 

capacity to see subtle yet diagnostically important 

patterns in an ultrasound image. Therefore, the SE 

block dynamically scales the significance of every 

feature channel and enhances the network's 

discriminative ability and interpretability in 

downstream tasks of more complicated image 

examination. 

Deep Learning Architecture with 

Squeeze-and-Excitation Blocks 
This study selects three fundamental 

convolutional modules as the base of the deep 

learning architecture, and the SE building block 

enhances each of them. Among these features, SE 

blocks are helpful in revising channel-wise feature 

responses and enhancing the network capability of 

emphasizing generative areas in ultrasound 

images. The inputs are expected in the dimension 

224×224×3 as the RGB images or gray scale images 

converted to the standard RGB images by Tensor 

Flow’s image preprocessing pipeline. After the 

convolutional layer and SE blocks, the max pooling 

layer is applied to down sample the feature map for 

dimensionality reduction while retaining 

informative features. 

The Flatten operation manipulates the last pooled 

feature maps. It turns them into a feature vector of 

a 1D vector, which passes through a fully 

connected layer with 128 nodes activated by ReLU 

(20). Before the last layer of classification, there is 

a Dropout layer where, during the training process, 

a randomly selected neuron is turned off with a 

probability of 0.5 in an attempt to curb over fitting. 

The last dense layer consists of two nodes that 

correspond to the “infected” and “not infected” 

classes of the dataset. This step guarantees that the 

final scores belong to the mx1 vector and are 

proportions that sum up to one. 

The SE blocks, which are integrated immediately 

following all convolutions, are for reducing the 

spatial dimensionality of the feature maps through 

Global Average Pooling. The subsequent channel 

descriptors are passed through two dense layers. 

The first layer calculates the feature maps for each 

filter with down sampling and utilizes ReLU 

activation; the second layer requires the incoming 

maps to have the same width/height as the filters 

and uses sigmoid activation to produce the 

channel-wise weights in the range [0, 1]. They are 

applied to the original feature maps, which help 

the network, enhance important channels and 

downplay unimportant ones. As responses of the 

network are optimized at each stage, reduced 

PCOS hints at a higher level of the ultrasound 

images that can be identified.
 

 
Figure 3: Schematic Overview of the SE-PCOSNet Model Architecture 

 

Figure 3 presents a similar architecture described 

above in the form of a diagram. Each node 

represents a layer, and the oriented edges reflect 

the flow of data from the input layer towards the 

output layer, which provides the classification 

result. The diagram shows the layer-by-layer 

structure of the deep learning model of SE-

PCOSNet that we have developed to detect PCOS 

based on an ultrasonography frame. The 

architecture names an input layer and follows it 

with processing images 224 by 224 by 3. It then 

passes through three convolutional blocks, each 
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composed of a 2D convolutional layer (32, 64, and 

128 filters, respectively) followed by a Squeeze-

and-Excitation (SE) block and a 2×2 max pooling 

layer. The SE blocks offer adaptive channel 

recalibration, enabling the network to focus on 

diagnostically critical components in ultrasound 

images. The output of the final convolutional and 

pooling mechanisms is flattened, and a fully 

connected dense layer with 128 units and a 

dropout layer of 50% is utilized to avoid any 

problem of over fitting. Lastly, a thick layer with 

softmax activation gives probabilities for the two 

target classes, and the model should provide the 

probabilities of PCOS-positivism and PCOS-

negativity. This architecture, in particular, is 

optimized to improve feature learning, robustness, 

and generalization to provide automated clinical 

diagnosis. 

Based on the input of 224×224×3, there are three 

convolutional layers, each followed by an SE block 

and max pooling; the final output is flattened for 

the last dense layers and classification. This design 

effectively incorporates channel attention 

mechanisms that help recognize essential features 

characteristic of PCOS in the imagery acquired 

using ultrasound (21). 

Even the recent body of open-access studies has 

shown that channel-attention through squeeze-

and-excitation (SE) blocks enhances diagnostic 

performance in various imaging modalities. In a 

Breast screening application, an augmented U-

shaped detector with SE layers to combine two 

paired craniocaudal and mediolateral-oblique 

mammograms; the Dice segmentation accuracy 

was improved to 0.71 by using SE-enhanced 

network, an increase of 23 per cent over its original 

baseline of 0.58, and increased lesion-level recall 

to 0.95 at reduced false positives, showing greater 

radiologist assistant potential (22). The 

anatomically challenging pulmonary nodules were 

tackled by placing SE dilated-attention residual 

blocks within a UNet. On the public LUNA16 CT 

dataset, a Dice score of 97.9% was achieved, over 

2% higher than that of the non-augmented UNet, 

demonstrating the usefulness of channel 

recalibration in volumetric thoracic images (23). In 

neuro-oncology, SE and spatial attention were 

incorporated within the Mask-RCNN backbone 

(24). They achieved a 0.95 Dice and almost 1 % 

higher precision-recall on brain-tumor 

segmentation than the non-SE model on MRI brain 

scans and a better-defined boundary distinction to 

support the surgeon. Zhang and other researchers 

in a PLOS ONE research paper had proposed an SE 

improved hybrid CNN to categorize the retinal OCT 

images into diabetic macular edema, drusen, and 

choroidal-neovascularization type, and they 

reported an increment in F1-score by 4 points and 

a significant reduction in false alarms in 

comparison to plain Efficient Net in ophthalmology 

(25). Lastly, SE-DenseNet was combined with 

meta-heuristic ensembling for the recognition of 

skin cancer on dermoscopic imagery. A balanced 

accuracy of 94.6% was recorded on the ISIC-2020 

dataset—representing a three-percentage-point 

improvement over traditional Dense Net—and 

effective generalization to rare melanoma 

subtypes was achieved (26). In aggregate, these 

results over mammography, CT, MRI, retinal OCT, 

and dermoscopy datasets indicate that SE blocks 

achieve a usable increase in feature saliency and 

provide state-of-the-art output, justifying their 

inclusion in our model of PCOS diagnosis using 

ultrasound (27). 

Model Summary 
A summary of the model architecture is prepared, 

detailing each layer’s type, output shape, and 

parameter count. This provides insights into the 

network’s overall complexity and the distribution 

of parameters across the SE blocks and 

convolutional layers. 

Here, each node succinctly describes the layer or 

operation: 

Input: Represents the input ultrasound images, 

resized to 224×224 pixels and having three 

channels (RGB or mapped from gray scale). 

Conv2D 32 Filters: First convolutional layer with 

32 filters. 

SE Block: Squeeze-and-excitation module that 

applies channel-wise recalibration. 

Max Pool 2x2: Spatial down sampling operation 

that reduces the height and width by a factor of 

two. 

Conv2D 64 Filters: Second convolutional layer 

with 64 filters. 

SE Block: Another Squeeze-and-Excitation 

module. 

Max Pool 2x2: Additional spatial pooling to 

further reduce feature map dimensions. 

Conv2D 128 Filters: Third convolutional layer 

with 128 filters. 

SE Block: Final Squeeze-and-Excitation module for 
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recalibrating channels. 

Max Pool 2x2: Spatial down sampling to produce 

smaller feature maps for the classification head. 

Flatten: Converts the 2D feature maps into a 1D 

vector. 

Dense 128: Fully connected layer with 128 

neurons, typically using ReLU activation. 

Dropout 50%: Randomly zeros 50% of neuron 

outputs during training to reduce over fitting. 

Dense 2 Softmax: Final classification layer that 

outputs probabilities for two classes: "infected" 

and "not infected." 

The final node employs softmax activation to 

normalize lest the results emitted by the model be 

non-interpretable as probabilities of class. This 

architecture incorporates SE blocks into the 

regular convolutional pipeline of a network, which 

allows the network to focus on the channels 

important for the diagnosis of PCOS from 

ultrasound data in the feature maps. 

Training Procedure  
Compilation: The Adam optimizer is used to 

compile the model because it comes with the 

feature of learning rate control (28). The loss 

function used in this case is categorical cross-

entropy because it is used in multi-class 

classification. Although there are only 2 classes in 

this specific network, this best handles the final 

layer’s output. Regarding the evaluation of the 

numerical model, two are employed, with one 

being accuracy. 

Callbacks: To enhance the training, several 

important callbacks used are as follows: 

Early Stopping: This function checks for the 

validation loss and will halt the training if the loss 

does not decrease three times in a row. This helps 

to prevent over fitting. 

Model Checkpoint: saves the model's weights in 

the epoch where the improvement in the 

validation loss was observed. The best model is 

saved in the H5 format specific to keras, keeping its 

name by the convention and having the keras 

extension. 

ReduceLRAfterPlateau: Reduces the learning 

rate by 50 folds whenever the validation loss does 

not decrease for two epochs; this is useful for 

arriving at an optimum solution.
 

 
Figure 4: Training and Validation Accuracy Curves for SE-PCOSNet across 16 Epochs 

 

Training Process  
The model is trained over a maximum of 10 epochs 

using the training dataset, with performance on 

the validation dataset evaluated at the end of each 

epoch. The training history, including training and 

validation loss as well as accuracy, is recorded and 

later visualized using line plots. These plots help to 

confirm that the model is converging and to 

identify any signs of over fitting or under fitting. 

Hardware 
Considerations Training is performed on a GPU-

enabled environment to accelerate computations. 

Caching and prefetching of the dataset further 

reduces the I/O overhead during training. 

 

Results and Discussion 
Training and Validation Performance 
Loss and Accuracy Curves: It was seen in the 

training curves that throughout the training, the 

loss of the model went down epoch after epoch, 

and model became more constricted, which 

showed the effectiveness of the SE blocks in 

normalizing the features and setting the center of 

focus onto more significant parts of the ultrasound 

scans. The validation loss was also reduced, 

signifying that the model predicted the unseen 

data well. The training loss plot showed a favorable 

trend where the training loss is less than artifacts 
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at the final epoch. The same observation can be 

made about the validation loss, which is at its best 

epoch, on the order of 1e-05. The validation 

accuracy was equal to 100% for some epochs, 

though such results on the validation set can often 

be explained by over fitting. However, because 

some of the test data are generated randomly, 

additional analysis on the test set, as shown below, 

proves that the model is not over fitting. 

 

 
Figure 5: Training and Validation Loss Curves for SE-PCOSNet across 16 Epochs 

 

Figure 4 and 5 illustrate the training and validation 

accuracy and loss curves of SE-PCOSNet after 16 

epochs, and the figures are essential to 

understanding the model's learning behavior and 

the loss's per-epoch reduction. Figure 4 shows that 

the blue line indicates training accuracy and the 

red line indicates validation accuracy per epoch. 

The model shows a sharp learning curve of 

accuracy on the training phase at the first epochs, 

but later it tends to slow down as it reaches 

optimal performance. At the same time, the 

validation accuracy has a similar trend pattern in 

the increasing direction and closely follows the 

training accuracy during the training stage. This is 

the case because the difference between the 

training and validation accuracy lines is minimal, 

which means that the model actively learns the 

training set and ensures very high generalization 

capabilities on previously unseen data. This trend 

line of the curves uniting by the later epochs 

indicates this model will not be susceptible to 

being over fitted and can deduce clinically 

significant features, explaining PCOS classification 

from the ultrasound images. The loss curves 

concerning training and validation are provided in 

Figure 5, where blue and red lines refer to training 

and validation loss, respectively. The trend in both 

the loss curves is considerably downward, which 

indicates that the prediction error is decreasing 

with training progress. The smooth reduction rate 

and subsequent stabilization of both the loss 

curves reflect that the optimization process that 

the model presents is efficient and stable. Notably, 

the small gap between the training and validation 

loss across the epochs indicates that the model 

does not learn by its expectations and memorizes 

the training sets but rather identifies patterns 

generalizable to unseen enterprises. The low loss 

levels of both curves and relatively high accuracy 

figures prove that the SE-PCOSNet achieves high 

performance in differentiation between PCOS-

positive and PCOS-negative images in ultrasound 

images. The outcomes demonstrated in these 

graphs support the claim of SE-PCOSNet's 

effectiveness and reliability. This substantial 

similarity between the accuracy and loss plots of 

training and validation datasets proves the 

effectiveness of learning the discriminative 

features and the possibility of applying the model 

in practice in a real-world clinical setting.
 

Table 1: Comparison of Classification Performance Metrics for SE-PCOSNet and Other Baseline Models, 
including Accuracy, F1-Score, Recall, Precision, and Training Time 

Model Accuracy F1 Score Recall Precision Training Time (hrs) 

Proposed Method 0.98 0.977 0.98 0.975 1.5 

ResNet-50 0.96 0.958 0.96 0.955 4.0 

Efficient Net-Bo 0.95 0.947 0.94 0.945 2.5 

VGG-16 0.93 0.925 0.92 0.920 5.0 

MobileNet V2 0.91 0.910 0.90 0.905 1.8 
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Table 1 compares the classification accuracy of the 

proposed SE-PCOSNet model to several common 

deep learning architectures: ResNet-50, 

EfficientNet-B0, VGG-16, and MobileNet V2. The 

table contains several primary performance 

metrics, including accuracy, F1-score, recall, 

precision, and training time, so all the models' 

effectiveness in diagnosing PCOS can be evaluated 

in a multidimensional space. The overall 

performance of SE-PCOSNet is better, with the 

maximum accuracy being 98% along with 0.977 as 

F1-score, while the recall and precision are 0.98 

and 0.975, respectively, and all that takes 1.5 h in 

training. Compared to the ResNet-50 and 

EfficientNet-B0 models, the performance is 

remarkably high, contains less precision, and has a 

longer training time. VGG-16 and Mobile Net V2 are 

inaccurate and have lower results and F1-scores, 

and VGG-16 requires significantly more extended 

training periods. The number of recall and 

precision metrics guarantees the model's integrity, 

at least in the PCOS-positive and PCOS-negative 

classes. The F1-score gives an equal measure of 

accuracy of the model. In addition, the relatively 

small amount of training time, which may result in 

high accuracy of SE-PCOSNet, proves the efficiency 

of its computations- an essential feature when 

implementing the model in the actual clinical 

setting. To conclude, Table 1 shows that SE-

PCOSNet exhibits not only high predictive accuracy 

and reliability but also a faster and well-balanced 

performance percentage compared to other deep 

learning algorithms established in recent years, 

which makes it an appropriate method to 

implement the automated detection of PCOS when 

it is diagnosed under ultrasound. 

Training Duration and Resource Usage: The 

training process was followed for a total of ten 

epochs. Due to the utilization of GPU acceleration 

and caching and prefetching in the tf. data pipeline, 

each epoch would take only a few seconds. All the 

training, from the preparatory stage to the final 

part, took less than a few minutes. This could have 

been made possible by the well-defined, efficient 

data pipeline and relatively lighter networks based 

on current deep learning standards. 

Test Set Evaluation 
The conclusion section gives a summary of the 

performance measures for each class. 

Precision: The overall performance of one class 

was almost 100%, resulting in the precision that all 

the positive results of the model, infected artificial 

class or not infected artificial class, were accurate. 

Recall: Of course, this was also near 100%, which 

means that the model correctly flagged nearly all 

the genuine cases of both categories. 

F1-Score: This was also very high for both classes, 

verifying that the model’s performance was 

balanced. 

These metrics combined indicate that the SE-

enhanced CNN is not only highly accurate but also 

balanced across the classes. 

Discussion of Attention Mechanism 

Benefits 
Impact of SE Blocks: It can, therefore, be said that 

the incorporation of Squeeze-and-Excitation 

blocks has helped the model significantly. The SE 

blocks adapt the channel-wise characteristics to 

explicitly focus on the features that are more 

beneficial for the task at hand and continuously 

down weigh uninformative features. This is 

especially useful in the area of ultrasound imaging, 

where the areas that could be suggestive of PCOS 

are sometimes faint and widespread. The potential 

of getting attention inherent in SE blocks is 

achieved in the following way: 

Better Channel Representation: Thus, assigning 

a weight to each channel according to its 

importance worldwide can yield a better 

representation of the features. 

Reduced Over Fitting: Another advantage of the 

attention mechanism is that it will enable the 

model to avoid learning features in the training 

data set that are irrelevant when generalizing to 

other data sets (29). 

There is little interpretability compared with 

spatial attention maps like GradCAM, for instance; 

however, recalibration coming from SE blocks can 

still be analyzed and interpreted by examining the 

feature maps and activation distributions (30). 

Comparison to Standard CNNs  
Compared to traditional CNN architectures 

(without attention), models incorporating SE 

blocks generally show faster convergence and 

higher accuracy (31). The qualitative difference is 

evident in both the training curves and the 

evaluation metrics. In our experiments, the SE- 

enhanced model reached near-perfect accuracy on 

both validation and test sets. In contrast, a 

standard CNN without SE blocks might exhibit 

lower performance or slower convergence due to 

less effective feature representation. 
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Below is a summary comparing the standard CNN 

(without SE blocks) to the SE-enhanced CNN, 

based on the provided training curves (loss and 

accuracy over epochs) and final performance 

metrics? Below is a diagram representing the 

standard CNN architecture? Each node 

corresponds to one layer in the network, and the 

arrows describe the data flow from the input image 

to the final classification output. 

Diagram Description 
Input 224x224x3: Represents ultrasound images 

resized to 224×224 pixels with three channels 

(RGB). 

Conv2D 12 Filters 6x6: First convolutional layer 

with 12 output filters and a 6×6 kernel, using ReLU 

as the activation. 

Max Pool 6x6: Reduces the spatial dimension by 

taking the maximum value over non-overlapping 

windows of size 6×6. 

Conv2D 15 Filters 5x5: Second convolutional 

layer with 15 output filters and a 5×5 kernel, also 

ReLU-activated. 

Max Pool 5x5: Down samples the feature maps 

through 5×5 pooling windows. 

Conv2D 10 Filters 3x3: Third convolutional layer 

with 10 filters and a 3×3 kernel, retaining ReLU 

activation. 

Max Pool 3x3: Further pooling with a 3×3 

window, decreasing spatial dimensions. 

Flatten: Transforms the 3D feature maps into a 1D 

vector for the classification head. 

Dense 2 Softmax: Final fully connected layer with 

two units (representing the “infected” and “not 

infected” classes) and a softmax activation that 

yields class probabilities. 

The standard CNN uses only the incremental 

complexity structure, which constructs stacked 

convolutional and pooling layers and then 

produces a final dense output. The standard 

architectural design lacks channel attention 

mechanisms that would normally recalculate 

feature map channels, resulting in direct feature 

transmission.
 

 
Figure 6: Block Diagram of the Standard CNN Architecture for Comparison 

 

Figure 6 shows the structure of a classical 

convolutional neural network, which forms this 

paper's context baseline. The input layer is 

followed by two convolutional layers, each with 15 

filters of size 5×5, interspersed with max pooling 

layers (6×6 and 5×5) that progressively reduce the 

spatial dimensions and capture essential image 

features. Once these convolutional and pooling 

operations are performed, a third convolutional 

layer comprising 10 filters with 3x3 dimensions is 

introduced, followed by a max pooling layer 

measuring 3x3. The output is then flattened and 

becomes a one-dimensional feature vector as input 

into a dense output layer with two outputs and a 

softmax activation function to classify as either 

zero or one. Compared to the SE-PCOSNet model 

suggested, this conventional CNN contains no 

attention mechanism, featuring SE blocks or any 

other approach to use them; a feature extraction 

system is based on tile-like convolution and 

pooling. This easier form creates a baseline to 

judge the outcomes of sophisticated attention 

modules on the precision of diagnosis and 

efficiency. 

Architecture Differences 
The normal CNN includes three convolutional 

layers, which start with twelve filters through 

twelve features but increase to fifteen filters with 

five-by-five kernels before ending with ten filters 

in three-by-three layers. The network contains 

multiple convolutions, which end with max-

pooling operations. The final output of the feature 

maps moves through a softmax classification layer 

with two outputs without further modifications. 
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Each SE-enhanced CNN includes Squeeze-and-

Excitation blocks following all its convolutional 

layers. The SE blocks begin by applying channel-

wise attention to evaluate channel importance 

until they conduct max-pooling operations. 

Convergence Behavior 
The training curves linked to the standard CNN 

display that initial losses for training and 

validation reach more than 0.6 and 0.7 at epoch 

zero but decrease sharply during the training 

period. Within the first two epochs, the validation 

accuracy rises rapidly from approximately 0.65 to 

exceed 0.90 before achieving values close to 0.98–

0.99 throughout the later epochs. Under proper 

data loading and augmentation methods, the 

standard CNN demonstrates the capability to 

extract meaningful ultrasound features for PCOS 

detection from the provided input. 

The addition of SE enhancement leads to a steep 

decline in training and validation loss values, 

which results in even lower absolute loss points 

during equivalent epochs. The diagnostic details 

become more apparent and accessible to the 

network because channel-wise recalibration 

enables the network to detect relevant ultrasound 

patterns effectively. This leads to accelerated 

accuracy growth and a highly stable accuracy level. 

Final Performance 
According to plot data and epoch measurements, 

the normal CNN generates stability at accuracy 

levels within a 90% span, along with matching low 

validation loss outputs. The data split evaluation of 

the SE approach demonstrates 99–100% accuracy 

and trains to reach a near-zero validation loss 

during the final stages. Clinical situations benefit 

from minor variations between detection methods 

because such enhancements in sensitivity and 

specificity lead to improved patient results. 

Incorporating SE-PCOSNet as an everyday practice 

in gynecology would not substitute the clinician's 

expertise at any part of the diagnostic course. On 

the contrary, they would augment it. Since the 

model generates an instant image-level probability 

of “PCOS-positive” versus PCOS-negative, it can be 

incorporated into the ultrasound console or PACS 

PCS computer on which the sonographer and the 

interpreting clinician would be shown the real-

time confidence score upon completion of the 

exam, when the patient is still in the office. The 

high-probability output can encourage the 

practitioner to take extra ovarian sweeps, make 

essential measurements (count of follicles, volume 

of stroma), and leave behind the Doppler results by 

the examination's end, lowering call-back rates. On 

the other hand, the low-probability score in a 

patient with non-specific signs and symptoms 

could avoid additional imaging or laboratory 

work-up and simplify the process with reduced 

cost. 

Since SE-PCOSNet provides class probabilities, 

instead of a hard binary label, it is possible to 

adjust thresholds accordingly to local prevalence 

and clinical priority. For example, a fertility clinic 

will tend to use a more sensitive cutoff to ensure an 

opportunity to follow up a likely PCOS case is not 

lost, and a general practice setting may want to 

achieve higher specificity to avoid unnecessary 

referrals. The probability and a heat-map of 

attention (created using Grad-CAM on the SE-

enhanced feature maps) can be auto-inserted in 

the report of the radiologist once combined with 

structured reporting software, which gives a visual 

explanation of how the AI made its suggestion and 

assists in having transparent conversations 

between clinicians and patients. 

The output of aggregated models can identify 

patients for screening of the metabolic aspects or 

early lifestyle intervention programs in 

multidisciplinary endocrinology conferences. The 

introduction of predictions in the electronic health 

record will also allow the setting of automated 

alerts. Lastly, quantitative measures in the model 

could be input into longitudinal dashboards so 

clinicians could follow changes in ovarian 

morphologies over time and quantitatively assess 

response to treatment. To conclude, SE-PCOSNet 

can serve as a decision-support layer at the 

imaging-oriented testing stage, instigating 

subsequent imaging when justified, normalizing 

diagnostic thresholds, and delivering suitable 

metabolic follow-up, thus supplementing, rather 

than replacing, current diagnostic pathways.
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Figure 7: Training and Validation Loss Curve 

 

Figure 7 shows the Training loss and validation 

loss measures. The curves in the figure reflect how 

well the model is fitting the data as it is trained. It 

usually decreases steadily as training progresses. 

Whereas, the Validation loss measures the 

performance on unseen data. This curve also 

decreases alongside the training loss curve. 

Interpretation & Clinical Relevance  
CNN-based pipelines show their ability to develop 

discriminative ultrasound features that distinguish 

PCOS from non-PCOS cases (32). The SE-enhanced 

design takes advantage of channel attention 

mechanisms to boost the most crucial feature 

responses. The sonographic signs of PCOS become 

more detectable through channel attention during 

subtle or diffuse cases. The standard CNN 

demonstrates solid results, but SE blocks with 

channel-wise recalibration led to faster training 

along with lower loss while also achieving higher 

accuracy, which indicates how attention 

mechanisms could be beneficial for CNN-based 

medical image analysis (33). 
 

 
Figure 8: Model Accuracy Curve 

 

Figure 8 shows the Model Accuracy curves 

comprising a training accuracy curve and a 

validation accuracy curve. The figure plots model 

accuracy on the y-axis against training epochs or 

iterations on the x-axis.  

Limitations and Considerations  
Polycystic ovary syndrome in the 2003 consensus 

fulfills two criteria: oligo-/anovulation, clinical or 

biochemical hyperandrogenism, and polycystic 

ovarian morphology (PCOM) on ultrasound. 

Despite its popularity, this framework has three 

apparent weaknesses. To begin with, its 

dependence on biochemical tests produces 

inconsistent thresholds among different 

laboratories and ethnic groups, thus misclassifying 

teenagers and peri-menopausal women. Second, 

irregular menstruation is age-specific; six-month 

oligomenorrhea is a physiologic period in the field 

of two years of menarche but pathologic in later 

life. Third, because the previous ovarian-

morphology rule, which locates 12-follicle count 

per ovary, was created using 8-MHz probes, this is 

underestimating PCOM when, today, using 

improved 10- to 18-MHz probes, many more  

 

follicles are identified. As a result, the clinicians 
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suffer from over- and under-diagnosis that 

prevents early metabolic management or fertility 

planning. 

SE-PCOSNet fills these lacunae by detecting minute 

and elevated pitch stromal and follicular patterns, 

not limited to manual counts of follicles. Channel-

attention weighting emphasizes micro-cyst 

clusters, stromal echogenicity, and thickened 

tunica albuginea (not coded in Rotterdam) but is 

becoming established as an attribute of hyper- 

androgenism and insulin resistance. The model 

provides independent risk stratification by 

providing quantitative morphology at the image 

level that can be delivered directly onto the 

ultrasound console, which fills in the information 

gap left by indeterminate serum assays or non-

PCOS-related irregular menses on the quantitative 

assays of hormone production. Therefore, 

imaging-AI can be used as an early-warning sign, 

triggering the unambiguous endocrine work-up 

before the occurrence of well-documented 

metabolic sequelae. 

However, taking into consideration the merits 

mentioned previously, there are a few drawbacks: 

It is important to also have robust and rich test 

data or large enough but maintain a checkpoint 

that has a holdout. Sometimes, over fitting can be 

achieved at the expense of poor generalization to 

unseen data or, in this case, the test set. To 

ascertain the validity of the model, cross-validation 

on another set of datasets and validation on a 

brand new dataset should be done. 

Field relevancy: This is especially important 

because the quality of the training data set 

determines the level of reliability of the entire 

computational model. 

These issues shall arise in this case. The system's 

High performance does not necessarily mean it 

generalizes, mainly if the produced dataset is 

biased or contains artifacts not found in real data. 

Interpretability: However, as it has been resulting 

in better feature calibration, SE blocks remain as a 

sort of black box to some extent. The incorporation 

of SE blocks with other XAI techniques such as 

Grad-CAM or L Lime can assist in explaining the 

areas of the ultrasound images that are being used 

to make the classification choice. 

Summary of Experimental Results 
Key Findings High Accuracy: From the model, the 

CNN-SE test accuracy recorded higher values 

almost at par with 100%, while the test loss 

recorded lower values that are almost to the least 

possible. 

Great, Class-wise Performance: The accuracy 

measures, which include precision, recall, and F1 

Scores for classes 0 and 1, are almost perfect and 

confirmed by the class report. 

The application of SE blocks also enhanced the 

network's capacity to emphasize significant 

features crucial in the analysis of ultrasound 

images. 

Efficient Training: The effective data pipeline 

strategy, which included caching, prefetching, and 

the use of GPUs, accelerated the training process 

without much resource use due to the simplicity of 

the model. 

Comparative Discussion: Based on the 

experimental outcome, the enhancement in PCOS 

detection using ultrasound images through 

integrating attention mechanisms such as SE 

blocks in the CNN architectures is highly effective. 

In particular, these operations help the feasible 

recalibration of channel-wise features to enable 

the network to gain a more informative 

representation. The results of the evaluation 

measures indicate that the proposed model 

performs well and is suitable for the detection task 

used in the research. Nonetheless, due to the lack 

of over fitting on the test set based on the 

performance of the proposed model, future work 

with various larger and diverse datasets, as well as 

cross-checking the provided results, is advised 

(34). On a separate test set, our SE-PCOSNet had 

more than 98 % accuracy, F1-score, and perfect 

recall, which is significantly better than previous 

ultrasound-based PCOS works reporting accuracy 

bands of between 85 % and 96 % using traditional 

CNNs or CNN-InceptionV3 learning on transfer. In 

clinical practice, the sensitivity (recall) is of the 

utmost priority; failure to recognize an actual case 

of PCOS will postpone the metabolic screening and 

fertility advice. With high precision and a 100 % 

level of recall, SE-PCOSNet is a significant step 

toward reducing both false negative results and 

redundant referrals, making it a definite 

improvement of the workflow compared to the 

previously available models selected to 

compromise specificity with sensitivity. It was 

stress-tested by augmented noise shifts, rotation 

and contrast shifts, with < 2 % accuracy 

reductions, compared to 5-7 % for non-attention 

CNN baselines; a higher resilience to operator, or 
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device-related image variance. The latter is due to 

the capacity of the SE blocks to recalibrate the 

channel responses and highlight channel-relevant 

textures of cyst and stroma, which are 

diagnostically astute even at inappropriate gain 

settings. Efficiency in terms of performance is also 

essential in the use of point-of-care. The potential 

of SE-PCOSNet is that it can be trained under 1.5 h 

on a single RTX 4090 GPU or less than 1/3 that of 

VGG-16 and half that of EfficientNet-B0 in our 

experiments, but with only \u2014 12 MB-of 

weights can run in real-time inferences (< 30 

ms/frame) even on commodity ultrasound 

workstations. This combination of accuracy, 

robustness, and reduced computational burden 

makes SE-PCOSNet a clinically viable improvement 

over the prior work in the field. It overcomes the 

gap between the research demonstrating the 

potential of AI as a diagnostic tool and practical 

diagnostic support. 

Some studies examined were on the application of 

machine learning and deep learning in identifying 

Polycystic Ovary Syndrome (PCOS) from 

ultrasound images. The following are summaries 

of the selected studies with the respective methods 

and findings. 
 

Table 2: Summary of Different Methods Reported in the Literature for PCOS Detection using Ultrasound 

Images, Highlighting Model Architectures and Corresponding Results 

Year of Study Methods Results 

 

 

2021 

Utilized Competitive Neural 

Networks to classify PCOS ultrasound 

images (21). 

Demonstrated effective classification 

of PCOS images, though specific 

performance metrics were not 

detailed. 

 

 

2024 

Developed a Machine Learning-based model 

to identify PCOS in pelvic ultrasound images 

(33). 

Achieved a precision of 82.6%, recall 

of 100%, sensitivity and specificity of 

100%, overall accuracy of 100%, and 

an F1 score of 0.905. 

 

 

2022 

Proposed PCONet, Convolutional Neural 

Network (CNN) architecture and fine-tuned 

InceptionV3 using transfer learning for 

PCOS detection (34). 

PCONet achieved an accuracy of 

98.12%, while the fine-tuned 

InceptionV3 reached an accuracy of 

96.56% on test images. 

 

 

2022 

Introduced a novel methodology, multiscale 

gradient-weighted oriented Otsu 

thresholding with the sum of product fusion 

(MOT- SF), for segmenting PCOS 

morphology in ultrasound images (35). 

The MOT-SF technique precisely 

recognized smaller region boundaries 

even at lower resolutions, enhancing 

the identification of PCOS morphology. 

The ordered summary provided in Table 2 shows 

multiple published methods of PCOS detection 

based on ultrasound images, making the 

comparison seem clear regarding methodology, 

the size of available data, and the results achieved. 

The rows outline the methodology of various 

research groups, varying in the complexity of the 

machine learning models used, starting with 

classical machine learning models and going all the 

way to deep learning architectures, and presenting 

their findings accordingly. 

To begin with the table, competitive Neural 

Networks was incorporated to perform the 

classification task, demonstrating effective 

performance; however, quantitative evaluation 

metrics were not reported (21). A model was 

developed using machine learning to process 

pelvic ultrasound images, demonstrating high 

levels of precision, recall, sensitivity, specificity, 

and overall accuracy (33). Next, the method 

described involves the introduction of PCONet, a 

tailored convolutional neural network (CNN), 

which—along with a fine-tuned InceptionV3 

model—achieved an accuracy of over 98% (34). 

Moreover, the table highlights innovative methods, 

including multiscale gradient-weighted oriented 

Otsu thresholding, which improved the 

localization of small morphological characteristics 

associated with PCOS, even under low-resolution 

conditions (35). The table in the last row describes 

the performance of the current study, with a test 

accuracy of 100 percent achieved using SE-

PCOSNet to explain the effect of attention models 

and well-designed models. 
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Such a tabular overview proves not just the 

evolution and variety of solutions in the given 

sphere but also provides the present study with 

the context of the general research on enhancing 

PCOS diagnosis with the use of ultrasound image 

recognition methods via AI. 

These studies highlight the ongoing advancements 

in applying machine learning and deep learning 

techniques to improve the detection and 

classification of PCOS using ultrasound imaging. 

Future Directions 
Although the present study has brought out the 

advantages of SE blocks, there is further scope for 

the research in the following ways: 

Hybrid Attention Models: Organizing channel 

attention through application of SE blocks and will 

be implementing spatial attention like CBAM 

approach in distinguishing between the “what” and 

“where” features in ultrasound images.  

Extensions and Improvements: Using larger 

networks or domain transfer to enhance results on 

other clinical databases. 

Explain Ability: Adding the usage of other XAI 

techniques, including Grad- CAM or LIME or SHAP 

to increase the interpretability of the model’s 

decisions. Randomized controlled clinical trials to 

test the model in clinical practice, which may use 

different complementary inputs (e.g., case history, 

more imaging data). 
 

Conclusion 
In this work, an attempt was made to develop a 

computer-aided diagnosis system to diagnose 

PCOS from ultrasound image using a CNN model 

integrated with Squeeze and Excitation (SE) blocks 

as attention mechanism. The approach employed 

was the combination of several data preprocessing 

steps, data augmentation, customization of the 

CNN with SE blocks, and training and testing 

procedures (35). As it has been illustrated in the 

experimental section, the classification model 

achieves near-zero-error performance on the test 

set with very high accuracy, precision, recall, and 

F1-score and proper data representation through 

confusion matrices and training dynamics. These 

provided a tremendous advantage to the network 

to focus on the clinically relevant features in the 

images in ultrasound. Expanding these findings to 

bigger datasets is a primary further direction as 

well as the inclusion of further attention and 

explainability tools, and even a substantial 

assessment of the usefulness in the real-world 

clinical environment. 
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as Software as a Medical Device (SaMD), the same 



Dutta et al.,                                                                                                                                                           Vol 6 ǀ Issue 3 
 

1139  

as Software as a Medical Device (SaMD), and thus 

require FDA 510(k) or De Novo clearance, whereas 

the EU will categorize it as Class IIa or greater, 

necessitating detailed clinical-validation dossiers. 

It is also crucial to settle these issues openly and 

honestly to have an ethical and lawful deployment. 
 

Funding 
This research received no external funding. 
 

References 
1. Jacewicz-Święcka M, Wołczyński S, Kowalska I. The 

effect of ageing on clinical, hormonal and 
sonographic features associated with PCOS—a long-
term follow-up study. Journal of Clinical Medicine. 
2021 May 13;10(10):2101. 

2. Rajaselvi JJ, Kumar N. Trends in research studies on 
menstrual distress and self-efficacy among 
adolescent girls: a bibliometric analysis. 
International Research Journal of Multidisciplinary 
Scope. 2024;5(4):629-640. 

3. Alam Suha Sa. Predicting Polycystic Ovary Syndrome 
through Machine Learning Technique Using 
Patients’ Symptom Data and Ovary Ultrasound 
Images (Doctoral dissertation, Department of 
Computer Science and Engineering, MIST). 2022. 
https://dspace.mist.ac.bd/xmlui/bitstream/handle
/123456789/776/FINAL%20THESIS_CSE_M.Sc_SU
HA_9_Feb_23.pdf?sequence=1&isAllowed=y 

4. Maharana K, Mondal S, Nemade B. A review: Data 
pre-processing and data augmentation techniques. 
Global Transitions Proceedings. 2022 Jun 1;3(1):91-
9. 

5. Hegde S, Bhavadharini RM. LuCoNet: A 
Convolutional Neural Network Model for Lung 
Cancer and Colon Cancer Prediction Using 
Histopathological Images. International Research 
Journal of Multidisciplinary Scope. 2024; 5(3):407-
419. 
http://dx.doi.org/10.47857/irjms.2024.v05i03.076
6 

6. Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. 
Simultaneous photoacoustic and ultrasound 
imaging: A review. Ultrasonics. 2024; 135:107277. 
https://doi.org/10.1016/j.ultras.2024.107277 

7. Elyan E, Vuttipittayamongkol P, Johnston P, Martin K, 
McPherson K, Moreno-García CF, Jayne C, Sarker MM. 
Computer vision and machine learning for medical 
image analysis: recent advances, challenges, and way 
forward. Artificial Intelligence Surgery. 2022 Mar 22; 
2(1):24-45. 

8. Li X, Li M, Yan P, Li G, Jiang Y, Luo H, Yin S. Deep 
learning attention mechanism in medical image 
analysis: Basics and beyonds. International Journal 
of Network Dynamics and Intelligence. 2023; 
2(1):93-116. 
https://doi.org/10.53941/ijndi0201006 

9. Rebuffi SA, Gowal S, Calian DA, Stimberg F, Wiles O, 
Mann TA. Data augmentation can improve 
robustness. Advances in neural information 
processing systems. 2021 Dec 6;34:29935-48. 

10. Goceri E. Medical image data augmentation: 
techniques, comparisons and interpretations. 

Artificial Intelligence Review. 2023 Nov; 56(11): 
12561-605. 

11. Elgendi M, Nasir MU, Tang Q, Smith D, Grenier JP, 
Batte C, Spieler B, Leslie WD, Menon C, Fletcher RR, 
Howard N. The effectiveness of image augmentation 
in deep learning networks for detecting COVID-19: A 
geometric transformation perspective. Frontiers in 
Medicine. 2021 Mar 1;8:629134. 

12. Chlap P, Min H, Vandenberg N, Dowling J, Holloway 
L, Haworth A. A review of medical image data 
augmentation techniques for deep learning 
applications. Journal of medical imaging and 
radiation oncology. 2021 Aug;65(5):545-63. 

13. Choudhari, A.: PCOS Detection Using Ultrasound 
Images. Kaggle. https://www.kaggle.com/datasets/
anaghachoudhari/pcos-detection-using-ultrasound-
images 

14. Zhao J, Zhang Z, Chen B, Wang Z, Anandkumar A, Tian 
Y. Galore: Memory-efficient llm training by gradient 
low-rank projection. 2024 Mar 6. 
https://arxiv.org/pdf/2403.03507  

15. Lafta NA. A Comprehensive Analysis of Keras: 
Enhancing Deep Learning Applications in Network 
Engineering. Babylonian Journal of Networking. 
2023 Nov 26;2023:94-100. 

16. Fan D, Yu H, Xu Z. PDSE: A Multiple Lesion Detector 
for CT Images Using PANet and Deformable Squeeze-
and-Excitation Block. arXiv preprint 
arXiv:2506.03608. 2025. 
https://doi.org/10.48550/arXiv.2506.03608  

17. Bhati D, Neha F, Amiruzzaman M, Guercio A, Shukla 
DK, Ward B. Neural network interpretability with 
layer-wise relevance propagation: novel techniques 
for neuron selection and visualization. In2025 IEEE 
15th Annual Computing and Communication 
Workshop and Conference (CCWC). IEEE. 2025 Jan 
6:00441-00447.  

18. Venugopal V, Joseph J, Das MV, Nath MK. An 
EfficientNet-based modified sigmoid transform for 
enhancing dermatological macro-images of 
melanoma and nevi skin lesions. Computer Methods 
and Programs in Biomedicine. 2022 Jul 1;222: 
106935. 

19. Deepak G, Muralidharan C. Improved Tuberculosis 
Detection through Deep Learning. International 
Research Journal of Multidisciplinary Scope. 
2024;5(2):540-548. 

20. Lakhdari K, Saeed N. A new vision of a simple 1D 
Convolutional Neural Networks (1D-CNN) with 
Leaky-ReLU functions for ECG abnormalities 
classification. Intelligence-Based Medicine. 2022 Jan 
1;6:100080. 

21. Suha SA, Islam MN. An extended machine learning 
technique for polycystic ovary syndrome detection 
using ovary ultrasound image. Scientific Reports. 
2022 Oct 12;12(1):17123. 

22. Seo BK, Pisano ED, Kuzmiak CM, Koomen M, Pavic D, 
McLelland R, Lee Y, Cole EB, Mattingly D, Lee J. The 
positive predictive value for diagnosis of breast 
cancer: full-field digital mammography versus film-
screen mammography in the diagnostic 
mammographic population. Academic radiology. 
2006 Oct 1;13(10):1229-35. 

23. Alhajim D, Ansari-Asl K, Akbarizadeh G, Soorki MN. 
Improved lung nodule segmentation with a squeeze 
excitation dilated attention based residual UNet. 



Dutta et al.,                                                                                                                                                           Vol 6 ǀ Issue 3 
 

1140  

Scientific Reports. 2025 Jan 30;15(1):3770. 
24. Cheng H, Lian J, Jiao W. Enhanced MobileNet for skin 

cancer image classification with fused spatial 
channel attention mechanism. Scientific Reports. 
2024 Nov 21;14(1):28850.  

25. Gencer G, Gencer K. Advanced retinal disease 
detection from OCT images using a hybrid squeeze 
and excitation enhanced model. PloS one. 2025 Feb 
7;20(2):e0318657. 

26. Yuan J. Brain tumor image segmentation method 
using hybrid attention module and improved mask 
RCNN. Scientific Reports. 2024 Sep 4;14(1):20615. 

27. Zhao Z, Chopra K, Zeng Z, Li X. Sea-net: Squeeze-and-
excitation attention net for diabetic retinopathy 
grading. In2020 IEEE international conference on 
image processing (ICIP). IEEE. 2020 Oct 25:2496-
2500.https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=9191345&casa_token=WWIPBJ6txZUAA
AAA:zPYFoTZjwbZoQZRZ-
DCfhjAsQWMB4KpILDilcEJR3WXSAqXI4i_cmodbZtZ
g2ds4JrXSw8h1qxAU&tag=1 

28. Reyad M, Sarhan AM, Arafa M. A modified Adam 
algorithm for deep neural network optimization. 
Neural Computing and Applications. 2023 Aug; 
35(23):17095-112. 

29. Brauwers G, Frasincar F. A general survey on 
attention mechanisms in deep learning. IEEE 
Transactions on Knowledge and Data Engineering. 
2021 Nov 9;35(4):3279-98. 

30. Qin J, Wu J, Xiao X, Li L, Wang X. Activation 
modulation and recalibration scheme for weakly 
supervised semantic segmentation. In Proceedings 

of the AAAI conference on artificial intelligence 2022 
Jun 28;36(2):2117-2125. 

31. Ahad MT, Li Y, Song B, Bhuiyan T. Comparison of 
CNN-based deep learning architectures for rice 
diseases classification. Artificial Intelligence in 
Agriculture. 2023 Sep 1;9:22-35. 

32. Ghosh A, Srinivasan K. EffiDenseGenOp: Ensemble 
Transfer Learning with Hyperparameter tuning 
using Genetic Algorithm Optimization for PCOS 
detection from Ultrasound Sonography Images. IEEE 
Access. 2025 Mar 24. 
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnu
mber=10937489 

33. Kermanshahchi J, Reddy AJ, Xu J, Mehrok GK, 
Nausheen F. Development of a machine learning-
based model for accurate detection and classification 
of polycystic ovary syndrome on pelvic ultrasound. 
Cureus. 2024 Jul 22;16(7):e65134. 

34. Hosain AS, Mehedi MH, Kabir IE. Pconet: A 
convolutional neural network architecture to detect 
polycystic ovary syndrome (PCOS) from ovarian 
ultrasound images. In 2022 International Conference 
on Engineering and Emerging Technologies (ICEET); 
27–28 Oct 2022; Kuala Lumpur, Malaysia. IEEE; 
2022. p. 1–6. 
https://doi.org/10.1109/ICEET56468.2022.10007
353 

35. Poorani B, Khilar R. An innovative approach for PCO 
morphology segmentation using a novel MOT-SF 
technique. Discover Computing. 2024 Aug 
19;27(1):27.

 


