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Abstract 
In the domain of computational biology and biomedical data analysis, classifying DNA sequences is a significant 
challenge. Identifying and classifying DNA sequences of various species is of utmost importance. Various Machine 
Learning (ML) techniques have been successfully applied to this task recently. This study introduces a new approach 
for effectively categorizing valid DNA sequences from unrelated sequences using different ML techniques. The valid 
datasets were systematically collected from the NCBI database, while the unrelated datasets were generated using 
random techniques. Various ML techniques were then applied to distinguish between these two categories. It was 
observed that Gradient Boosting Machine (GBM) performed the best, achieving 0.971 accuracy and a 0.975 F1 score. 
The outcome of XGBoost is also good that achieving 0.935 Accuracy and 0.93 F1 Score. It is also observed that this 
method consistently achieves the best execution time when compared to other existing machine learning methods. The 
results were also verified using a Phylogenetic Tree constructed through Clustal Omega, a well-known traditional 
alignment-based method for DNA sequence comparison. In both cases, the results were consistent, although Clustal 
Omega had a much higher execution time compared to the present method. Therefore, the proposed technique 
significantly enhances the efficiency of DNA sequence classification. 
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Introduction 

The comparison of DNA sequences plays a crucial 

role in understanding the genetic relationships 

among different species (1, 2). Traditional 

researchers have relied on methods such as 

sequence alignment and phylogenetic analysis to 

classify organisms based on their genetic 

information (3-6). Traditional methods are often 

slow and resource-intensive, particularly with 

large-scale datasets (7, 8). The rise of high-

throughput sequencing has led to an explosion in 

genetic data, highlighting the need for faster and 

more accurate techniques for DNA sequence 

analysis (9, 10). Machine learning (ML) offers 

powerful tools for handling large-scale biological 

data and has the potential to revolutionize the field 

of genomics (11, 12). By leveraging patterns in 

DNA sequences, ML algorithms can classify species 

with high accuracy and predict evolutionary 

relationships. Recent advancements in ML, 

including deep learning techniques, have shown 

promise in addressing the complexities of genomic 

data, enabling the development of more robust and 

scalable classification systems. In this study, we 

explore the application of machine learning 

methods to differentiate species based on their 

DNA sequence. To this end, we employ both 

original DNA sequences from various species and 

artificially generated unrelated sequences to train 

and test our models. The use of unrelated 

sequences serves as a control to assess the 

robustness and specificity of the ML algorithms in 

distinguishing genuine biological differences from 

random sequence variations. We pre-process DNA, 

extract features, train models, and evaluate using 

accuracy, precision, recall, F1. DNA sequence 

comparison plays an essential role in Sequence 

Data Analysis (SDA), particularly in predicting 

sequences and exploring evolutionary 

relationships (13, 14). Applying machine learning 

(ML) techniques to actual G4 datasets enables the 

extraction of relevant information from DNA 

sequences (15). This process is significantly  
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enhanced by feature engineering, which allows ML 

classifiers to predict specific DNA sequence 

comparisons. For instance, Touati et al., were 

attentive to the classification of the helitron family 

utilizing various machine learning algorithms and 

feature mining from FASTA DNA sequences (16). 

The study by Hamed et al., presents a DNA 

sequence categorization model that coalesces 

machine learning with pattern-matching 

techniques, showing high accuracy and efficiency, 

especially using SVM Linear across different 

pattern lengths (17). Their work underscores the 

importance of feature engineering in capturing 

helitron-specific characteristics.  

Furthermore, the research by Ryu et al., introduced 

Maximal Average Shift (MAS) algorithms to 

enhance the efficiency of Pattern Scan Order 

through the use of q-grams (18). The approach in a 

few research papers demonstrated superior 

performance compared to traditional methods (17, 

19-22). This body of work collectively highlights 

the key role of sophisticated ML techniques and 

feature engineering in advancing our 

understanding of DNA sequences and their 

functional and evolutionary properties. 

The study by Zhang et al., analyses the 

Chrysanthemum nankingense genome, noting a 

low presence of tandem repeats (1.02%) and an 

elevated number of low-density sequences, 

probably from identical elements (23). These 

findings offer insights into the genome's evolution 

and structure, aiding the understanding of 

diversity in both diploid and polyploid 

Chrysanthemum species. Furthermore, the 

research by Hamed et al., introduces a novel DNA 

sequence classification model that integrates 

machine learning and pattern-matching, with SVM 

Linear demonstrating superior accuracy and 

efficiency (17). The model outperforms existing 

methods, highlighting the significance of pattern 

length in DNA sequence classification, and holds 

potential for applications in drug detection, 

customized medicine, and disease finding. 

The extensive body of research on DNA sequence 

analysis, including this study, underscores the 

ongoing efforts and diverse approaches in the field, 

highlighting the importance of continually refining 

models for improved accuracy and efficiency 

across various applications. 
 

Methodology 
ML Methodology for FASTA DNA 

Sequences 
In this study, a database was developed using 

FASTA-formatted DNA sequences (Table 1) to 

assess the performance of multiple machine 

learning algorithms. This dataset comprises 

mitochondrial DNA sequences from 41 

mammalian species, which serve as critical genetic 

markers for species identification, evolutionary 

analysis, and biodiversity assessment. These 

sequences are conserved yet exhibit species-

specific variations, making them ideal for studying 

phylogenetic relationships, tracing maternal 

lineage, and investigating evolutionary divergence 

among mammals. The aim was to implement 

automated classification models tailored to 

specific DNA sequences and construct a biological 

database for classification tasks. Various models, 

including K-Nearest Neighbors (KNN), Decision 

Tree (DT), Random Forest (RF), Naive Bayes (NB), 

Support Vector Machines (SVM), Logistic 

Regression (LR), Gradient Boosting Machine 

(GBM), XGBoost, Artificial Neural Network (ANN), 

and K-means classifier, were applied to the dataset 

(24-39). Their performance was calculated using 

accuracy, precision, recall, F1 score, and execution 

time to recognize the best appropriate model. 

Efficient DNA sequence comparison plays a vibrant 

role in molecular biology and genetics, facilitating 

faster and more accurate sequence analysis for 

diverse research applications. 
 

Table 1: Information on the 41 Mammalian Genomes 

Sl. No.  Accession Number Description 

1 V00662.1 Human 

2 D38116.1 Pigmy chimpanzee 

3 D38113.1 Common chimpanzee 

4 D38114.1 Gorilla 

5 X99256.1 Gibbon 

6 Y18001.1 Baboon 

7 AY863426.1 Vervet monkey 
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Sl. No.  Accession Number Description 

8 D38115.1 Bornean orangutan 

9 NC_2083.1 Sumatran orangutan 

10 U20753.1 Cat 

11 U96639.2 Dog 

12 AJ002189.1 Pig 

13 AF010406.1 Sheep 

14 AF533441.1 Goat 

15 V00654.1 Cow 

16 AY488491.1 Buffalo 

17 EU442884.2 Wolf 

18 EF551003.1 Tiger 

19 EF551002.1 Leopard 

20 X97336.1 Indian Rhinoceros 

21 Y07726.1 White Rhinoceros 

22 DQ402478.1 Black Bear 

23 AF303110.1 Brown Bear 

24 AF303111.1 Polar Bear 

25 EF212882.1 Giant Panda 

26 AJ001588.1 Rabbit 

27 X88898.2 Hedgehog 

28 NC_2764.1 MacacaThibet 

29 AJ238588.1 Squirrel 

30 AJ001562.1 Dormouse 

31 X72204.1 Blue whale 

32 NC_5268.1 Bowhead Whale 

33 NC_7441.1 Chiru 

34 NC_8830.1 Common warthog 

35 NC_1788.1 Donkey 

36 NC_1321.1 Fin Whale 

37 NC_5270.1 Gray Whale 

38 NC_1640.1 Horse 

39 NC_5275.1 Indus River Dolphin 

40 NC_006931.1 North Pacific Right Whale 

41 NC_010640.1 Taiwan serow 
 

The proposed technique involves several key 

phases. It begins with pre-processing the data of 

the FASTA DNA sequence, which includes cleaning 

and filtering to remove noise and irrelevant details. 

After pre-processing, feature extraction is 

performed to identify and extract relevant 

features. Separate features are operated to build a 

classification model that assesses DNA sequences 

upon their resemblance to the query patterns. This 

step involves applying numerous machine learning 

algorithms, encompassing both supervised and 

unsupervised approaches, to extend a robust and 

precise classification framework. Throughout this 

approach, the integration of ML methodologies 

enhances the efficacy of searching DNA sequences 

for a specific pattern, facilitating the extraction of 

perilous evidence essential for diverse 

applications in bioinformatics and genome 

sequence comparison techniques. By optimizing 

the identification and classification processes, the 

technique supports advancements in genome 

research and biotechnological applications, 

underscoring its significance in contemporary 

biological data analysis. 
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Figure 1: Structure of the Proposed Work 

 

Figure 1 depicts the comprehensive structure 

outlining various phases of our ML approach for 

the DNA sequence comparison study. 

Dataset 
In this study, the dataset was obtained from the 

National Center for Biotechnology Information 

(NCBI), consisting of FASTA files that include 

genomic sequence data. The dataset contains over 

twelve million characters, mainly compiled of the 

nucleotides A, C, T, and G. Each FASTA file includes 

one or more entries, with each entry generally 

corresponding to a full or partial DNA sequence. 

The dataset collection process is as follows: 

Number of Samples: The dataset includes a total 

of X genomic sequences (replace X with the actual 

number of samples). 

Sequence Length: The length of each sequence 

varies, with the longest sequence containing up to 

12 million characters. 

Features: The dataset is primarily characterized 

by the nucleotide sequences, which are categorical 

in nature (A, C, T, G). These sequences serve as the 

features for downstream analysis. 

The categorical nature of genomic sequences 

presents unique challenges for analysis, 

particularly due to the high dimensionality and the 

potential for unbalanced data distribution. An 

unbalanced dataset issue was identified, where 

certain sequences or nucleotide combinations 

were over-represented. To address this, extensive 

pre-processing was necessary. This involved not 

only cleaning the data to remove any redundant or 

irrelevant sequences but also implementing 

techniques to balance the dataset effectively. 

While tools like the `GET_DUMMIES` function in 

the pandas library can assist in handling 

categorical data, the contribution of the authors 

extends beyond basic preprocessing. The 

preprocessing steps taken by the authors were 

meticulously tailored to handle the complexities of 

genomic data, ensuring that the dataset was in 

optimal condition for analysis. This included 

custom scripts for sequence alignment, filtering 

out low-quality sequences, and implementing 

advanced techniques to manage the dataset's scale 

and complexity. The authors’ contribution lies in 

developing a comprehensive preprocessing 

pipeline that addresses the specific challenges 

posed by such large and intricate genomic 

datasets, going beyond standard library functions 

to ensure data quality and relevance. 

Pre-Processing of Data 
The DNA sequence data obtained from Table 1 is 

transformed for training via various ML 

algorithms. Based on the data type and the 

requirement of the output, the proper existing data 

transformation technique can be applied. In this 

study, the DNA sequences are converted from 

FASTA files to CSV files. The biological DNA 

sequences are then categorized and label 0 or 1 is 
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assigned. If the DNA sequence is relevant to the 

existing species given in the Table 1, then it is 

assigned to 1; otherwise, the unrelated sequences 

are assigned to 0. A sample dataset is given in Table 

2.  

 

Table 2: Sample Data Transformation 

DNA Sequence Label 

gtttatgtagcttaaacatacccaaagcaagacactgaaaatgcctag... 1 

gtttatgtagcttattccatccaaagcaatacactgaaaatgtctcga... 1 

gtttatgtagcttaaacatacccaaagcaagacactgaaaatgcctag... 1 

gttgatgtagcttaaacttaaagcaaggcactgaaaatgcctagatga... 1 

.............. ... 

.............. ... 

attcttactattaaaagtgccttgaactattcttaagtgccactactgcc... 0 

attcttactattaaaagtgccttgactattgtgccggaattccctagtgc... 0 

.............. ... 
 

After the conversion process, it is ensured that all 

the sequence is assigned to either “0” or “1”. Table 

2 provides a sample of the cleaned dataset in CSV 

format.  

Feature Mining 
The selection of correct features is crucial for 

enhancing the categorization accuracy and 

reducing the preparation time for the model. The 

ML algorithms cannot be performed on Sequence 

data in text formats. Therefore, this study needed 

to transform it into the required format. Hence, the 

numerical presentation is selected, and the entire 

DNA sequences are converted into numerical data. 

Here ‘a’ is denoted as 1, ‘c’ is denoted as 2, ‘t’ is 

denoted as 3 and ‘g’ is denoted as 4. To accomplish 

the above, GET_DUMMIES function of the Pandas 

Library is utilized (40-42). It helps to alter FASTA 

DNA Sequences to the corresponding numeric 

variable that encodes categorical evidence. After 

this conversion, the training and testing via 

different ML algorithms can be applied.  

Training and Testing  
To ensure unbiased model evaluation, the dataset 

was divided into 75% training and 25% testing 

subsets using the train_test_split function with 

stratified sampling, maintaining class proportions. 

The training set was used to build and tune models, 

while the testing set assessed generalization 

performance on unseen data. 

After pre-processing, multiple classification 

algorithms were applied to analyse FASTA DNA 

sequences. Ten machine learning models - KNN, 

RF, DT, LR, NB, SVM, GBM, XGBoost, K-Means, and 

ANN - were implemented. Model performance was 

evaluated using accuracy, precision, recall, F1-

score, and classification reports via SKLEARN 

metrics. Each algorithm offers distinct approaches; 

for example, KNN classifies based on the majority 

vote of k nearest neighbors. The prediction is made 

by: 

𝑦̂ =  𝑚𝑜𝑑𝑒(𝑦1, 𝑦2, … , 𝑦𝑘)                              [1] 

RF and DT utilize ensemble learning techniques. 

RF constructs numerous decision trees during 

training and harvests the methods of the classes 

for division or the mean prediction for regression: 

𝑦̂ =  
1

𝑇
∑  

𝑇

𝑡=1

ℎ𝑡(𝑥)                                              [2] 

where ht(x) signifies the prediction from the tth 

tree in the forest. The DT algorithm makes 

decisions based on feature splits that maximize 

information gain or minimize impurity, often using 

criteria like Gini impurity or entropy. LR is a 

probabilistic model for binary outcomes. The 

probability that input x belongs to class 1 is 

modeled as: 

𝑃(𝑥) =  𝜎 (𝑤𝑇𝑥 + 𝑏) =  
1

1+𝑒−(𝑤𝑇𝑥+𝑏)
             [3] 

where σ denotes the sigmoid function, 𝜔 is the 

weight vector, and b is the bias. NB applies Bayes’ 

theorem with intense assumptions between 

features. The posterior probability for classy given 

input x is given by: 

𝑃(𝑦|𝑥) =  
𝑃(𝑦)𝑃(𝑦)

𝑃(𝑥)
                                        [4] 

SVM excels in high-dimensional spaces by 

identifying the optimal hyperplane that maximizes 

the separation margin between classes: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
2

||𝜔||
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖  (𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖           [5] 

GBM and XGBoost, both boosting methods, 

iteratively refine weak learners by minimizing a 

differentiable loss function L(y, Fm(x)) at each 

iteration to create a strong predictive model: 
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𝐹𝑚+1(𝑥) =  𝐹𝑚(𝑥) +  𝛾𝑚ℎ𝑚𝑥                          [6] 

where γm is the step size, and hm(x) is the weak 

learner at iteration m. 

K-Means Clustering is employed for partitioning 

the dataset into k distinct clusters, minimizing the 

sum of squared distances between data points and 

their respective cluster centroids: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑  𝑘
𝑖=1 ∑   

𝑥𝑖∈𝑐𝑖
||𝑥𝑖 − µ𝑖||

2          [7] 

where 𝜇i is the centroid of cluster Ci. 

Finally, ANN, encouraged by the human brain, uses 

layers of consistent nodes (neurons) to discover 

complex patterns in data. The output of a neuron is 

typically given by: 

𝑎𝑗 =  𝜎 (∑  

𝑛

𝑖=1

𝜔𝑖𝑗𝑥𝑖 + 𝑏𝑗)                          [8] 

Here, ai represents the activation of neuron j, wij 

are the weights, xi are the input values, bj is the bias 

term, and σ denotes the activation function. These 

diverse techniques ensure a comprehensive 

approach to analyzing and interpreting data, 

catering to various aspects of the problem at hand. 

Model evaluation relies on four key metrics  

derived from the confusion matrix: accuracy, 

precision, recall, and F1-score. The confusion 

matrix summarizes true/false positives and 

negatives, reflecting actual vs. predicted outcomes. 

Accuracy measures overall correctness; precision 

and recall assess positive prediction quality and 

completeness, respectively; F1-score balances 

both, aiding in binary classification. 
 

Results and Discussion 
Table 3 presents the results of ten Machine 

learning algorithms, including their execution 

times. The metrics provided are accuracy, 

precision, recall, F1 score, and execution time. The 

Gradient Boosting Machine (GBM) demonstrates 

the highest performance, achieving a 0.975 F1 

score and a 0.971 accuracy. It indicates superior 

performance compared to the other algorithms. 

The outcome of XGBoost is 0.935 accuracy of and 

0.93 F1 score. Notably, XGBoost has a shorter 

execution time of 11.135 seconds, compared to 

GBM's 11.684 seconds as depicted in Figure 2 and 

the execution time comparison obtained in 

different ML Algorithms for DNA Sequence is 

depicted in Figure 3. 
 

 
Figure 2: ML Algorithm Metric for a DNA Sequence 

 

 
Figure 3: Execution Time in Different ML Algorithms for a DNA Sequence 
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Table 3: Results of Different ML Algorithm for DNA Sequence Classification 

ML Algorithm Accuracy Precision Recall F1-Score Execution Time 

KNN 0.795 0.622 0.635 0.81 13.5 

DT 0.825 0.91 0.73 0.82 13.45 

RF 0.71 0.66 0.57 0.59 12.865 

NB 0.865 0.84 0.865 0.94 12.065 

SVM 0.91 0.821 0.87 0.91 13.25 

LR 0.87 0.81 0.86 0.92 12.854 

ANN 0.88 0.86 0.87 0.88 13.746 

K-means 0.89 0.91 0.89 0.88 12.75 

GBM 0.971 0.912 0.95 0.975 11.684 

XGBoost 0.935 0.84 0.89 0.93 11.135 
 

This study highlights that while several algorithms 

perform well, GBM and XGBoost are particularly 

effective for analyzing FASTA DNA sequences, with 

GBM achieving the best overall performance and 

XGBoost offering a competitive balance of accuracy 

and speed.  

The eight other algorithms also demonstrate 

strong performance. However, upon this study, we 

can conclude that XGBoost and Gradient Boosting 

Machine (GBM) are particularly effective for 

analyzing FASTA DNA sequences. Their superior 

performance in this context suggests they may be 

the most suitable choices for such tasks. After 

applying ten different machine learning 

algorithms, the outcome of the proposed work is 

assessed with a few traditional methods depicted 

in Figure 4. The graphical comparison analysis 

ensures that the Gradient Boosting Machine (GBM) 

gains the highest accuracy of 97.1% comparative 

to the other traditional method. 
 

 
Figure 4: Comparison Analysis of Current Work with Previous Work (17, 43–45) 

 

To justify the results of the intended method, we 

compared it with Clustal Omega, a well-known 

alignment-based method for sequence 

comparison. The same dataset was used to 

construct the phylogenetic tree with Clustal Omega 

method, as shown in Figure 5 (46). It is observed 

that the original species were clustered in the same 

group, while the sequence of dummy species is 

separated into different clusters. Therefore, the 

results of our method are consistent with those  

obtained from the Clustal Omega method (46). 

The clustering pattern observed in the 

phylogenetic tree reflects known taxonomic 

relationships among the mammalian species, 

indicating that the ML-classified sequences 

correspond to functionally conserved genomic 

regions. This provides indirect biological 

validation, supporting the robustness of our 

classification approach. 
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Figure 5: Phylogenetic Tree for FASTA DNA Sequence of the Original Species and Unrelated Species 

 

Conclusion 
The study for the classification of FASTA DNA 

sequence represents a significant advancement 

with potential practical applications in the medical 

sector, various discoveries of drugs, and the 

diagnosis of disease. This study outlines several 

key steps: constructing a dataset from the FASTA 

DNA files, thereafter altering it into CSV format, 

importing and pre-processing the collected data, 

altering the inputs in text format into arithmetical 

data, and then keeping fit through diverse 

classification methods. Evaluation using various 

ML algorithms reveals that the Gradient Boosting 

Machine (GBM) accomplishes the highest 0.971 

accuracy and 0.975 F1 score among the tested 

methods, highlighting its superior performance in 

FASTA DNA sequence classification. Moreover, the 

XGBoost achieves a decent result of 0.935 accuracy 

and 0.93 F1 score. Furthermore, the results of the 

proposed method are also validated using Clustal 

Omega.  

Assessing performance on diverse FASTA DNA 

sequences, including those from various animals, 

would assist in identifying the boundaries and 

opportunities for refinement. This comprehensive 

evaluation could guide enhancements in feature 

extraction methods and algorithmic design 

tailored to specific biological contexts. Overall, 

while the current study underscores the 

effectiveness of the SVM linear classifier in DNA 

sequence classification, ongoing research in these 

directions promises to unlock further 

advancements in accuracy, efficiency, and 

application versatility. Future extensions of this 

work may involve functional enrichment analyses 

such as Gene Ontology (GO) or pathway analysis on 

gene-annotated subsets of the classified 

sequences, which could further improve the 

translational relevance and biological 

interpretability of the results. 
 

Abbreviations 
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Regression, NB: Naive Bayes, NCBI: National 
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Forest, SVM: Support Vector Machine. 
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