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Abstract 
Cross-Lingual Machine Translation (CLMT) remains a complicated issue because of linguistic diversity, lack of parallel 
corpora, and the necessity of effective semantic alignment. ContextXL is a new and complete CLMT framework that 
combines sophisticated pre-processing, semantic representation, and feature optimization strategies. This method 
starts with Named Entity Recognition (NER) and Byte Pair Encoding (BPE) to maintain semantic units and to deal with 
rare words. It then improves language representation with Cross-Lingual Word Embeddings (MUSE) and sub word-
sensitive FastText embedding. Bidirectional Encoder Representations from Transformers (BERT) and Embedding from 
Language Models (ELMo) are used to extract richer features using contextual embedding. An effective feature selection 
is performed using a new Golden Hawk Search Optimization (GHSO) algorithm which is a combination of Golden 
Section Search and Chaotic Harris Hawk Optimization. Transformer-XL is the translation engine and models long-range 
dependencies with segment-level recurrence and memory caching. Experimental analysis reveals, ContextXL has a high 
translation accuracy of 98.77%, and good results in precision (98.97%), recall (98.57%), and F-score (98.85%). The 
model also performs better than the state-of-the-art baselines, Neural Machine Translation (NMT), BERT, Transformer, 
and RoBERTa in various evaluation metrics like Mathews Correlation Coefficient (MCC), sensitivity, and specificity, False 
Negative Rate (FPR), False Positive Rate (FPR) and Negative Predictive Value (NPV). Its effectiveness is also confirmed 
by a human evaluation, which gives it high scores in contextual preservation (4.52/5), fluency (4.47/5), and 
appropriateness (4.38/5). These findings point to the strength of ContextXL, which is appropriate to process low-
resource, morphologically rich, even informal or code-switched language data. 

Keywords: Bidirectional Encoder Representations from Transformers, Byte Pair Encoding, Cross-Lingual Machine 
Translation, Embedding from Language Models, Golden Hawk Search Optimization, Named Entity Recognition. 
 

Introduction 
Within Natural Language Processing (NLP), 

English is blessed with an abundance of labeled 

data, which feeds the appetite of data-hungry deep 

learning algorithms on tasks such as named entity 

identification, natural language inference, and 

part-of-speech tagging. Cross-lingual transfer 

learning is essential since many languages lack 

task-specific data (1-4); therefore, this benefit is 

not universal. This procedure entails using 

information from languages with a wealth of data 

to improve performance in languages that have 

little or no task-specific data. Advances in Neural 

Machine Translation (NMT) have led to the 

development of multilingual systems that can 

translate text between many source languages and 

numerous target languages all inside the same 

model. These Multilingual NMT (mNMT) systems 

demonstrate impressive gains in translation 

quality, particularly for low-resource languages, 

which is attributed to the models' capacity to 

acquire transferable representations between 

languages (5). Even with the increased scholarly 

focus on cross-lingual communication research, 

multilingual textual analysis is still difficult. This 

phrase emphasizes the necessity of extra 

procedures and efforts in processing such data and 

captures the challenge of gathering, disseminating, 

and evaluating multilingual textual data across 

national borders (6-8). Due to the increasing 

demand for multilingual analysis, communication 

scientists have resorted to two methods to address 

this problem: either train individual topic models 

for each language or use Machine Translation (MT) 

to translate multilingual content into a single 

language (e.g., English) for analysis. This work 

addresses the latter strategy, outlining its  
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drawbacks and putting forth a word embedding 

strategy that yields findings that are more valid, 

repeatable, and consistent with open research. 

Cross-Lingual Machine Translation becomes an 

important area of study when considering cross-

lingual problems in a larger sense (9-11). With a 

focus on overcoming the difficulties presented by 

linguistic variances and structures, this field aims 

to create techniques and algorithms that make it 

easier to translate text or voice between languages. 

Overcoming language barriers and improving 

comprehension and communication between 

speakers of various languages is the ultimate 

objective of cross-lingual machine translation (12, 

13). In an effort to take advantage of language 

similarities and differences to increase translation 

accuracy and fluency, researchers investigate a 

variety of approaches, including machine learning 

techniques, statistical models, and neural 

networks. 

Cross-Lingual Machine Translation systems are 

being developed in response to the growing need 

for efficient multilingual communication in a 

variety of fields (14, 15), including commerce, 

diplomacy, education, and information retrieval. 

By experimenting with novel approaches and 

integrating developments in artificial intelligence 

and natural language processing, researchers try 

to improve system performance and efficiency. 

The pursuit of smooth cross-lingual 

communication continues to be a motivating factor 

in an ever-changing environment, guiding the 

development of cross-lingual machine translation 

systems. The following are the paper's primary 

contributions: 

• Introducing effective pre-processing 

techniques such as Named Entity Recognition 

(NER) and Tokenization with Byte Pair 

Encoding (BPE) to preserve named entities and 

handle rare words and morphological 

variations, contributing to improved 

translation accuracy. 

• Enhancing language representation through 

the incorporation of Cross-Lingual Word 

Embedding, specifically utilizing MUSE 

embedding, and training language-specific 

embedding with models like FastText, 

including sub word information for better 

semantic understanding. 

• Implementing advanced feature extraction 

methods using Transformer Embedding, 

drawing on pre-trained models like BERT and 

ELMo to capture contextual and nuanced 

linguistic information, enhancing the overall 

translation process. 

• Introducing the Transformer-XL architecture 

for CLMT, emphasizing improved context 

modeling and efficient handling of longer 

sequences, leading to enhanced translation 

accuracy. 

The paper is organized as follows: Section 2 covers 

the literature review; Section 3 gives a detailed 

explanation of the proposed technique; Section 4 

talks about the results and discussion; and Section 

5 offers a conclusion. 

Cross-lingual text similarity has been studied using 

neural machine translation algorithms (16). This 

article uses neural machine translation models to 

study text similarities across languages. Using the 

translated text to make the problem monolingual 

was a simple machine translation method. Utilizing 

machine translation models' intermediate states, 

as recently proposed in related work, is an 

additional strategy that could prevent the spread 

of translation mistakes. Our goal was to enhance 

each method separately before merging 

translations and intermediate stages into a 

learning-to-rank framework to calculate cross-

lingual text similarity. 

Multilingual pertained encoders have been applied 

to address zero-shot cross-lingual transfer in 

neural machine translation (17). A zero-shot cross-

lingual transfer challenge in NMT is the main topic 

of this research. The NMT model was evaluated on 

zero-shot language pairings after being trained on 

a parallel dataset consisting of just one language 

pair and a commercially available MPE. For this 

goal, SixT, a straightforward yet powerful model 

was proposed. A position-disentangled encoder 

and a capacity-enhanced decoder help SixT to 

further develop by utilizing the MPE with a two-

stage training plan. 

Multimodal machine translation has been 

improved through cross-lingual visual pre-training 

techniques (18). To learn cross lingual 

representations with a visual basis, we integrate 

these two methods in this study. To be more 

precise, we use masked region classification to 

expand the translation language modeling and pre-

train using three-way parallel vision and language 

corpus. Our findings demonstrate that these 

models provide cutting-edge results when 
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optimized for multimodal machine translation. 

Furthermore, we offer qualitative perspectives 

about the efficacy of the acquired grounded 

models. 

Automatic machine translation has been evaluated 

using cross-lingual language models combined 

with source language inputs (19). The proposed 

approach uses a regression model to assess a 

translation hypothesis. The matched source, 

reference, and hypothesis sentence together were 

sent into the model. Sentence-pair vectors were 

generated from the input by a pretrained large-

scale cross-lingual language model, which then 

uses those vectors to predict a human assessment 

score. Compared to a baseline approach that 

merely employs hypothesis and reference phrases, 

our proposed strategy, uses a Cross lingual 

Language Model (XLM) trained with a Translation 

Language Modeling (TLM) goal, produces a 

stronger correlation with human assessments. 

Cross-lingual transfer learning has been 

investigated through unsupervised machine 

translation frameworks (20). We build a new CLTL 

model called TALL using a multilingual language 

model that has already been trained. Next, we 

teach TALL to perform CLTL via an NLU-oriented 

fine-tuning and an MT-oriented pre-training. Next, 

we employ UMT to leverage unannotated data in 

the MT-oriented pre-training of TALL. TALL 

continuously outperforms the baseline model, the 

pretrained multilingual language model that 

served as the foundation for the project, in CLTL 

performance without the need for additional 

annotated data, and the difference in performance 

was particularly noticeable when dealing with 

distant languages. 

The enhancement of unsupervised neural machine 

translation has been achieved through cross-

lingual supervision techniques (21). The aim of 

this article was to enhance unsupervised neural 

machine translation by applying CUNMT. This 

technique makes use of supervision signals from 

language pairings with high resources to enhance 

the translation of zero-source languages. With 

regard to the En-Ro system, we use the corpus 

from En-Fr and En-De to train the translation from 

one language into several languages using a single 

model, as opposed to requiring a parallel corpus. In 

benchmark unsupervised translation tasks, 

CUNMT was an easy-to-use and efficient method 

that greatly improves translation quality, even 

reaching equivalent performance to supervised 

NMT. 

Machine translation methods have been 

reexamined for their effectiveness in multilingual 

categorization tasks (22). Translate-test was far 

more capable than previously thought by utilizing 

a more robust MT system and reducing the 

discrepancy between training on original text and 

doing inference on machine translated material. 

Unfortunately, the best method depends a lot on 

the work at hand because there are several causes 

of cross lingual transfer gap that have varied 

effects on different tasks and methods. With regard 

to cross-lingual categorization, our study 

challenges the dominance of multilingual models 

and emphasizes the need for MT-based baselines. 

Implicit alignment of cross-lingual word 

embedding has been applied to assess machine 

translation without reference texts (23). An 

implicit cross-lingual word embedding alignment 

might be obtained by MKD for sentence embedding 

alignment, as this paper's simplified theoretical 

analysis reveals. Additionally, cross-lingual word 

embedding was employed as metrics (MKD-

BERTScore and MKD-WMD) for the reference-free 

MT assessments using the frameworks of 

BERTScore and WMD. It is important to keep in 

mind that in situations involving simultaneous 

interpretation, the metrics could not work well if 

the source phrases contain noise. 

Multilingual neural machine translation has been 

enhanced using adaptive token-level cross-lingual 

feature mixing (24). In order to capture various 

features and dynamically determine the feature 

sharing across languages, we present in this work 

a token-level cross lingual feature mixing 

approach. To get distinct characteristics and 

combine them in a certain ratio for every token 

representation, we utilize a series of linear 

transformations. This will allow us to accomplish 

greater language transfer and fine-grained feature 

sharing. 

Language branch knowledge has been distilled to 

improve cross-lingual machine reading 

comprehension (25). It addresses this issue in this 

study and improve the cross-lingual transferring 

performance through the use of a brand-new 

augmentation technique called Language Branch 

Machine Reading Comprehension (LBMRC). A set 

of passages in a single language accompanied with 

questions in each of the target languages was 
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called a language branch. Based on LBMRC, we 

train various Machine Reading Comprehension 

(MRC) models that were skilled in distinct 

languages.  

The problem revolves around the inefficiencies 

and limitations inherent in current CLMT systems. 

Despite the increasing demand for accurate and 

contextually nuanced translation across diverse 

languages, existing methodologies often fall short 

in addressing the complexities of linguistic 

variations, rare words, and named entities. 

Conventional approaches lack a holistic 

integration of advanced techniques, leading to 

suboptimal translation quality. Additionally, 

handling language pairs without parallel data 

remains a significant challenge. The absence of 

sophisticated feature selection mechanisms 

further impedes the overall performance of CLMT 

systems. Recognizing these challenges, there is a 

pressing need for an integrated and innovative 

methodology that leverages state-of-the-art 

techniques, such as advanced pre-processing, 

enriched language representation, and effective 

feature extraction, to enhance the accuracy and 

applicability of Cross-Lingual Machine Translation. 

Addressing these issues is crucial for meeting the 

demands of a globalized world where seamless and 

precise language translation is paramount for 

effective communication across linguistic 

boundaries. 

Methodology 
The proposed methodology for CLMT offers a 

comprehensive solution to the intricacies of 

accurate language translation. Commencing with 

meticulous pre-processing steps involving Named 

Entity Recognition and Tokenization with Byte 

Pair Encoding, the methodology ensures effective 

handling of linguistic nuances. Enriching language 

representation through Cross-Lingual Word 

Embeddings and language-specific embeddings 

trained with FastText, it enhances semantic 

understanding. Feature extraction utilizes 

Transformer Embeddings with pre-trained models 

like BERT and ELMo to capture contextual 

linguistic nuances. Innovative techniques for 

obtaining cross-lingual embeddings, such as 

Canonical Correlation Analysis and zero-shot 

learning, cater to language pairs without parallel 

data. The Golden Hawk Search Optimization 

Algorithm facilitates feature selection, while the 

proposed Transformer-XL architecture 

emphasizes improved context modeling for 

enhanced translation accuracy. This integrated 

approach promises to advance the landscape of 

Cross-Lingual Machine Translation, offering a 

systematic and innovative methodology for 

researchers and practitioners alike. The workflow 

of the machine translation model is shown in 

Figure 1. 

 

 
Figure 1: Block Diagram of the Cross-Lingual Machine Translation Model 
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Pre-processing 
In order to handle the complexities of linguistic 

differences and optimize the input data for later 

stages, pre-processing is a key step in the proposed 

CLMT technique. Tokenization using BPE and NER 

are the two main procedures involved in this 

crucial stage. 

Named entities are located and extracted from text 

using the pre-processing tool NER. It is significant 

to natural language processing because it serves as 

the foundation for numerous critical areas, 

including information extraction, machine 

translation, information retrieval, question-

answering, automatic text summarization, text 

clustering, opinion mining, knowledge bases or 

ontology population, and many more applications. 

Since proper names are necessary for IE systems to 

be accurate, NER is seen as a crucial stage in the 

information extraction process.  NER is crucial to 

machine translation since distinct methods must 

be used to translate named entities. Since named 

entities are regarded as a significant indicator of 

the text's topic, NER is also significant in automatic 

text summarization. 

The BPE compression technique is used to find 

patterns in time series with varied lengths. Using 

the BPE compression approach, a new symbol is 

used in place of the most frequent pair of 

successive symbols. Sub word tokenization was 

employed to tackle the issue of uncommon terms 

in neural machine translation. Words in texts were 

assumed as tokens. Characters are first treated as 

tokens when using sub word tokenization, then the 

two most popular tokens are combined to create a 

new token after each iteration. By dissecting 

complex terms like "authorship" into their 

constituent sub words, "author-" and "-ship," the 

model was able to comprehend them without prior 

observation. We apply the similar methodology to 

time series pattern recognition. As far as we are 

aware, this method has not yet been applied to 

time series. 

Using sophisticated embedding techniques, the 

Language Representation step of the CLMT 

methodology aims to capture and enhance the 

semantic knowledge of languages. This is an 

important phase when language-specific 

embedding is trained and Cross-Lingual Word 

Embedding are included. 

Word representations in several languages that 

reflect cross-linguistic semantic links and 

similarities are known as cross-lingual word 

embedding. One of the efforts that offers pre-

trained cross-lingual word embedding is the 

Multilingual Unsupervised and Supervised 

Embedding (MUSE) project. With the use of these 

embedding, it may map words between languages 

in a common embedding space, which makes 

cross-lingual analysis and applications easier. 

Utilizing sophisticated models such as FastText, 

train language-specific embedding with sub word 

information. With the help of sub word data from 

Common Crawl (600B tokens), FastText Sub word 

has 2 million-word vectors trained on it. Sub word 

embedding breaks down each word into its 

constituent sub words, giving us more information. 

The sub words that come from splitting the word 

"where" into its component words with n = 3 are 

"whe," "her," and "ere." It concludes with a 

dictionary of the union of these sub words. 

Feature Extraction 
In the Feature Extraction stage of the CLMT 

methodology, we employ advanced techniques to 

capture and distill meaningful information from 

the enriched language representation. This stage 

encompasses both Transformer Embedding and 

Cross-Lingual Embedding, each contributing to the 

model's ability to understand and contextualize 

linguistic nuances. 

To obtain more comprehensive contextual 

information, extract contextual embedding with 

trained models such as BERT. System pretraining 

for NLP tasks is done by the BERT using the 

encoders of a transformer as the framework. In 

order to develop models those NLP practitioners 

download and use for free; BERT is a way of 

pretraining language representations. These 

models used in one of two ways: either to extract 

high-quality language characteristics for a 

particular task (such as entity recognition, 

question answering, or classification) from 

embedded text input. Because the BERT word 

embedding is context-aware, or sensitive to the 

context in which a word appears, they are very 

helpful. This is unlike the case with many other 

word embedding techniques, which provide a fixed 

embedding for every word regardless of context. 

The creative process begins after a piece of data (a 

phrase, document, or image) is embedded. BERT 

uses this information to extract features from text 

data, namely word and sentence embedding 

vectors. Perhaps more significantly, these vectors 
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are employed as high-quality feature inputs to 

downstream models. The embedding’s helpful for 

information retrieval, semantic search, and 

keyword/search expansion. Regardless of the 

context a word comes in, BERT has an advantage 

over approaches such as Word2Vec. Word 

representations created by BERT are dynamically 

influenced by the words surrounding them. BERT, 

then, is an absolute position embedding model. 

The NLP framework ELMo was created by 

AllenNLP. A two-layer Bidirectional Language 

Model (biLM) is used to produce ELMo word 

vectors. Both forward and backward passes make 

up each layer. ELMo uses the entire phrase that 

contains a word to represent embedding for that 

word, in contrast to Glove and Word2Vec. For this 

reason, when a word is used in a phrase, ELMo 

embedding record its context and produce distinct 

embedding for the same word in a different 

sentence.  

The Cross-lingual Embedding sub-stage employs 

innovative techniques such as CCA and explores 

zero-shot learning to enhance the model's 

adaptability across diverse linguistic contexts. 

A pair of data matrices, 𝑋 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛]  ∈

 𝑅𝑃×𝑛 and𝑌 =  [𝑦1, 𝑦2, . . . , 𝑦𝑛]  ∈  𝑅𝑞×𝑛, are 

introduced. In addition to being scaled and 

centered, we also assume that X and Y are 

normalized with ‖𝑋‖𝐹  =  1 and ‖𝑌‖𝐹  =  1 

throughout this investigation. In order to achieve 

optimal correlation between the associated 

coordinates and the changed set of variables, CCA 

looks for a pair of linear transformations, one for 

each set of variables. The technique maximizes the 

canonical correlation coefficient by 

mathematically computing two projection 

vectors, 𝑉𝑋 ∈  𝑅𝑃  and 𝑉𝑌  ∈  𝑅𝑄: 
 

𝜒 =
𝑉𝑋

𝑇𝑋𝑌𝑇𝑉𝑌

√(𝑉𝑋
𝑇𝑋𝑋𝑇𝑉𝑋)(𝑉𝑌

𝑇𝑌𝑌𝑇𝑉𝑌)

        [1] 

Given that 𝑉𝑋 and 𝑉𝑌 are scaled and that the correlation coefficient is invariant, Eq. [1] may be expressed 

similarly as, 

𝑚𝑎𝑥 𝑉𝑋
𝑇𝑋𝑌𝑇𝑉𝑌  

𝑠. 𝑡. {𝑉𝑋
𝑇𝑋𝑋𝑇𝑉𝑋 = 1 𝑉𝑌

𝑇𝑌𝑌𝑇𝑉𝑌 = 1      [2] 

Using the generalized eigenvalue issue as a starting point, the Lagrange multiplier approach may be applied 

to solve this problem, 

(0 𝑋𝑌𝑇  𝑌𝑋𝑇 0 )(𝑉𝑋 𝑉𝑌 ) = 𝜇(𝑋𝑋𝑇 0 0 𝑌𝑌𝑇  )(𝑉𝑋 𝑉𝑌  )   [3] 

Should 𝑌𝑌𝑇  not be single, the aforementioned issue is comparable to 

𝑋𝑌𝑇(𝑌𝑌𝑇)−1𝑌𝑋𝑇𝑉𝑋 = 𝜇2𝑋𝑋𝑇𝑉𝑋     [4] 

And 

𝑉𝑌 =
(𝑌𝑌𝑇)−1𝑌𝑋𝑇𝑉𝑋

𝜇
      [5] 

 

In this case, 
𝑉𝑋

‖𝑋𝑇𝑉𝑋‖
 and 

𝑉𝑌

‖𝑌𝑇𝑉𝑌‖
 are referred to as the 

canonical vectors, and 𝜇 is the correlation 

coefficient of the two data matrices. In fact, several 

dominant eigenpairs of the extended eigenvalue 

problem is computed if more than one (let's say, k) 

canonical correlation coefficients and canonical 

vectors are required. 

The Small-Sample-Size (SSS) problem might 

provide a challenge to CCA as in real-world 

scenarios, both p and q are frequently (much) 

more than the total number of samples (n). A well-

known challenge that may arise in high 

dimensional feature spaces is the over-fitting issue. 

In this scenario, the extended Eigen problem Eq. 

[4] may not be regular, and all of the matrices𝑌𝑌𝑇 , 

𝑋𝑌𝑇 , and 𝑌𝑌𝑇  is singular. One frequently uses the 

regularization approach, which replaces 𝑋𝑋𝑇 and 

𝑌𝑌𝑇  with 𝑌𝑌𝑇 +  𝛼𝐼 and𝑌𝑌𝑇  +  𝛽𝐼, respectively, 

where 𝛼, 𝛽 >  0 are two regularization 

parameters, to address the SSS problem and 

address the downside of over-fitting. In other 

words, rather than Eq. [3], one solves 

 

(0 𝑋𝑌𝑇  𝑌𝑋𝑇 0 )(𝑉̂𝑋 𝑉̂𝑌 ) = 𝜇̂(𝑋𝑋𝑇 + 𝛼𝐼 0 0 𝑌𝑌𝑇 + 𝛽𝐼 )(𝑉̂𝑋 𝑉̂𝑌  ) [6] 

In the process of regularized CCA. Choosing the 

best regularization settings ahead of time is 

challenging. The regularization parameters are 

automatically chosen, for example, using the cross-

validation process, however there is significant 

computing burden. Therefore, it is worthwhile to 

look at a few parameter-free CCA techniques. 
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To manage translation for language pairings 

without parallel data, look at zero-shot learning 

techniques. ZSL algorithms are those that allow 

text translation between two languages even in the 

absence of direct translation pair instances during 

the training phase. They are relevant in the context 

of translation for language pairings without 

parallel data. Synchronous corpora of aligned 

sentences in the source and destination languages 

are the foundation of conventional supervised 

machine translation. Still, it is not be feasible to 

obtain such parallel data for every pair of 

languages. 

In order to overcome this difficulty, ZSL techniques 

try to extend the translation process to previously 

undiscovered language combinations without 

providing clear examples. Rather than depending 

on paired sentences, these methods make use of 

other techniques such as multilingual embedding, 

adversarial learning, or shared representations to 

let the model comprehend the connections 

between languages and translate without human 

oversight. In ZSL method, for example, a model is 

trained on several languages at the same time so 

that it picks up a shared representation for words 

or sentences in all of them. For language pairs that 

weren't included in the training set of data, 

translations are subsequently be done using this 

common representation. Creating models that are 

able to generalize and adapt to new language 

combinations without requiring labeled examples 

to those pairs is the aim. 

Feature Selection via Golden Hawk 

Search Optimization Algorithm (GHSO) 
The Feature Selection stage in the CLMT 

methodology is crucial for refining and optimizing 

the features extracted in earlier stages. In this 

phase, introduce the GHSO, a hybrid optimization 

approach combining the robustness of the Golden 

search optimization algorithm with the 

adaptability of the Chaotic Harris hawk’s 

optimization algorithm. In theory, the exploration 

and exploitation stages are covered by GSO, a 

global optimization algorithm, which offer a good 

compromise between these two opposing 

capabilities. The population evaluation, updating 

the existing population and population 

initialization are the three key components of the 

method. The following is a full step-by-step 

description of the proposed GSO. 

Step 1: Population Initialization  

Using a collection of randomly generated objects 

(possible solutions) in the search space, GSO 

begins the search process in accordance with the 

following Eq. [7]: 

𝑂𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖); 𝑖 = 1,2, . . , 𝑁         [7] 

Where 𝑂𝑖  displays the 𝑖𝑡ℎ object's position within 

the search space. Additionally, the object's lower 

and upper limits are denoted by 𝑢𝑏𝑖  and 𝑙𝑏𝑖 , 

respectively. 

Step 2 Population Evaluation  

The item with the highest fitness value will be 

chosen as 𝑂𝑔𝑏𝑒𝑠𝑡 (𝑖) in this stage after the original 

population has been assessed using the objective 

function. 

Step 3 Golden Changes  

In the third stage, the objects will be arranged in 

order of fitness, and a random solution will be 

applied to the item with the lowest fitness. 

Step 4 Step Size Evaluations  

The step size operator (𝑆𝑡𝑖) is used in each 

optimization iteration to shift the objects in the 

direction of the optimal solution. Three 

components make up the 𝑆𝑡 equation. In order to 

balance the algorithm's global and local searches, 

the transform operator (𝑇), which repeatedly 

reduces step size, multiples the previous value of 

the step size in the first phase. In the second 

section, the cosine of a random number between 0 

and 1 is used to calculate the distance between the 

𝑖𝑡ℎ object's current location and its best position to 

date. The last component multiplied by the sine of 

a random number between 0 and 1 indicates the 

separation between the current location of the  𝑖𝑡ℎ 

item and the best position among all objects thus 

far. During the first optimization iteration, 𝑆𝑡𝑖  is 

created at random and updated using the following 

equation: 

𝑆𝑡𝑖(𝑡 + 1) = 𝑇. 𝑆𝑡𝑖(𝑡) + 𝐶1.𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑟1) . (𝑂𝑏𝑒𝑠𝑡 (𝑖) − 𝑥𝑖(𝑡)) + 𝐶1.𝑠𝑖𝑛 𝑠𝑖𝑛 (𝑟2) . (𝑂𝑔𝑏𝑒𝑠𝑡 (𝑖) − 𝑥𝑖(𝑡))           [8] 
 

Where 𝑟1 and 𝑟2 are random numbers in the range 

of (0,1), 𝑂𝑏𝑒𝑠𝑡 (𝑖) is the best previous position that 

the 𝑖𝑡ℎ object has obtained thus far, and 𝑇 is the 

transfer operator. This operator changes the 

nature of search from exploration to exploitation 

in order to optimize search performance and 

maintain a balance between local search in later 

iterations and global search in earlier iterations. 𝑇 

is actually a decreasing function, and Eq. [9] is used 

to evaluate it. 
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𝑇 = 100 ×𝑒𝑥𝑝 𝑒𝑥𝑝 (−20 ×
𝑡

𝑡𝑚𝑎𝑥
)     [9] 

 

Where 𝑡𝑚𝑎𝑥  is the highest possible number of 

repetitions? 

Step 5- Step Size Limitation  

The method advances forward by modifying the 

distance that each item travels in each dimension 

of the issue hyperspace at each iteration. The step 

size is a stochastic variable, as demonstrated by Eq. 

[8], and it enables the objects to follow broader 

cycles in the problem space. An appropriate period 

is added to restrict the object's movement in 

accordance with in order to regulate these 

oscillations and prevent explosion and divergence.  

−𝑆𝑡𝑖𝑚𝑎𝑥 ≤ 𝑆𝑡𝑖 ≤ 𝑆𝑡𝑖𝑚𝑎𝑥      [10] 

where 𝑆𝑡𝑖𝑚𝑎𝑥  is a predefined maximum movement 

permitted, is defined as the greatest change in an 

object's positional coordinates that it can go 

through in an iteration using the following 

equation. 

𝑆𝑡𝑖𝑚𝑎𝑥 = 0.1 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖)   [11] 

Step 6- Update Position (Generate New 

Population)  

In this stage, the objects move toward the global 

optimum in the search space according to the 

following equation. 
 

𝑂𝑖(𝑡 + 1) = 𝑂𝑖(𝑡) + 𝐸[𝐶. 𝐽. 𝑆𝑡𝑖(𝑡 + 1) − 𝑆𝑡𝑖(𝑡)]   [12] 

𝐸 = 2𝐶. 𝐸0 (1 −
𝑡

𝑇
)     [13] 

𝐽 = 2(1 − 𝑟3)      [14] 
 

Where 𝐽 is the rabbit’s random jump procedure, C 

is the Chaotic value which is selected between 0 

and 1. 𝐸0 is the initial energy and determined 

randomly in each iteration, and 𝑟3 is randomly 

determined between 0 and 1.  The choice of GHSO 

over gradient-based optimization techniques is 

driven by the nature of the feature selection task, 

which is formulated as a combinatorial 

optimization problem rather than a differentiable 

objective. Gradient-based optimizers are widely 

used in training neural networks, but not well 

suited to discrete or non-convex spaces of features 

where gradients are either inaccessible or not 

informative. GHSO is a met heuristic algorithm 

which is a combination of Golden Section Search 

and Chaotic Harris Hawk Optimization, and it 

offers a powerful gradient-free method which is 

able to optimally balance the global exploration 

and local exploitation. Its stochastic search process 

avoids local minima and deal with high-

dimensional and irregular feature spaces, and is 

therefore more suitable to find the best feature 

subsets before the final translation prediction. This 

leads to better generalization and less feature 

redundancy. 

Compared to common optimizers like Adam and 

Adafactor that are commonly used to update the 

weights of neural networks in differentiable 

training goals, GHSO is optimized to work in the 

non-differentiable, combinatorial search space of 

feature selection. These gradient-based optimizers 

assume continuous and smooth loss landscapes 

that are not provided in the discrete feature subset 

selection issue. On the same note, although 

Bayesian Optimization is good at tuning low-

dimensional hyper parameters, it does not scale 

well to high-dimensional or binary feature 

selection tasks and frequently needs a surrogate 

model, which introduces a computational burden. 

GHSO, however, integrates exploration with 

Chaotic Harris Hawk dynamics and the directional 

efficiency of Golden Selection Search and therefore 

effectively explore large and irregular feature 

spaces without the need of gradient information or 

probabilistic models. This renders it more 

appropriate in the wrapper-based feature 

selection method, where the objective is to 

determine the most pertinent feature subsets that 

improve the translation accuracy across several 

languages. 

Machine Translation Using 

Transformer-XL 
Machine translation, a pivotal application in 

natural language processing, has witnessed 

significant advancements with the introduction of 

state-of-the-art models like Transformer-XL. This 

powerful architecture, an extension of the original 

Transformer model, excels in capturing long-range 

dependencies and contextual information, making 

it particularly well-suited for the intricacies of 

language translation. Here, the key components 

and the workflow involved in leveraging 

Transformer-XL for machine translation is 

explained. Despite being regarded as the best RNN-

based models, LSTM and GRU have both reported 
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issues with long-term dependencies. The 

shortcomings of RNN-based models have been 

addressed with the introduction of the 

Transformer model. Transformer models use a 

self-attention mechanism to calculate the 

outcomes in parallel rather than sequentially, 

which makes it possible for a Transformer-based 

model to train faster. Transformers outperform 

RNN-based models on a range of natural language 

tasks, achieving superior outcomes at a lower 

computational cost. 

A feed forward (FFD) block and an attention block 

which is also known as the self-attention 

mechanism both are computed in parallel are 

essential to the Transformer's performance. In a 

computationally efficient way, the feed forward 

block examines the data without regard to the 

sequence, whereas the attention block permits a 

model to observe all the data throughout a series 

without any hindrance. In comparison to RNNs, 

transformer-based neural networks utilize less 

memory, train faster, and have a smaller token loss. 

Mathematically, a single layer of the Transformer 

for the 𝑙𝑡ℎ layer is defined as: 

 

𝑥0 = 𝑖𝑛𝑝𝑢𝑡𝑠      [15] 

𝐴𝑙 = 𝑆𝑒𝑙𝑓_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑙−1)     [16] 

𝑥𝑙 = 𝐴𝑑𝑑𝑁𝑜𝑟𝑚(𝐴𝑙 , 𝑥𝑙−1)     [17] 

𝑓𝑓𝑑𝑙 = 𝐹𝐹𝐷(𝑥𝑙)                      [18] 

𝑥𝑙 = 𝐴𝑑𝑑𝑁𝑜𝑟𝑚(𝑓𝑓𝑑𝑙 , 𝑥𝑙)     [19] 

Inputs are defined as the token sequence that is entered. The following defines the functions𝐴𝑑𝑑𝑁𝑜𝑟𝑚, 

𝐹𝐹𝐷, and 𝑆𝑒𝑙𝑓_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑙−1): 

𝐴𝑑𝑑𝑁𝑜𝑟𝑚(𝑥, 𝑦) = 𝑙𝑎𝑦𝑒𝑟𝑛𝑜𝑟𝑚(𝑥) + 𝑦   [20] 

𝐹𝐹𝐷(𝑥𝑙) = 𝑊1,2 ∗ 𝑎𝑐𝑡(𝑊1,1 ∗ 𝑥𝑙 + 𝑏1,1) + 𝑏1,2  [21] 

𝑆𝑒𝑙𝑓𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑙−1) = 𝑊𝑂 ∗ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄 ∗
𝐾𝑇

√𝑑𝑘
) ∗ 𝑉  [22] 

𝑄, 𝐾, 𝑉 = 𝑊𝑄 ∗ 𝑥𝑙 , 𝑊𝐾 ∗ 𝑥𝑙 , 𝑊𝑉 ∗ 𝑥𝑙                     [23] 
 

The variables 𝑏1,1 and 𝑏1,2 are trainable bias 

vectors, the variables𝑊1,1, 𝑊1,2, 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 are 

all trainable weight matrices, and the function act 

is a user-defined non-linear activation function. 

The Gaussian Error Linear Unit (GELU) activation 

function is applied to all models utilized in this 

work. A categorical probability distribution over 

each token is obtained by applying the softmax 

function over the output. The input token at time-

step t + 1 is determined by the Transformer at 

time-step t. 

The Transformer-XL performs data analysis in the 

same way as a standard transformer, with the 

exception that it saves and re-inputs the results of 

each sequence's calculations for each transformer 

layer without using gradients. Because of its ability 

to view past sequences, the Transformer-XL 

process and interpret more data, leading to 

increased expressiveness and accuracy. Formally, 

Transformer-XL rewrites the following equation to 

produce the attention mechanism's values 

𝑄, 𝐾, 𝑎𝑛𝑑 𝑉: 
 

𝑄 = 𝑊𝑄𝑥     [24] 

𝐾, 𝑉 = 𝑊𝐾,𝑉[𝑆𝐺(𝑥𝑡−1) ∗ 𝑥]   [25] 
 

Where 𝑥𝑡−1 is the input to the attention mechanism 

from the preceding sequence, 𝑆𝐺 is the stop-

gradient function, and [*] denote the 

concatenation. The Transformer-XL model's 

construction is depicted in Figure 2. The 

Transformer-XL layer is the same as the 

Transformer layer but for the memory-specific 

self-attention mechanism. After layer 

normalization and a residual link, an FFD network 

is used to normalize the self-attention. The 

transformer-XL model is shown in Figure 2. 
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Figure 2: Structure of the Transformer-XL Model 

 

The proposed ContextXL model has considerable 

contributions to the three fundamental 

dimensions: 

• Embedding of BERT and ELMo are used 

together to provide contextual knowledge, 

which enables the model to learn subtle 

linguistic characteristics and semantic 

connections across languages. 

• The use of GHSO algorithm that combines 

Golden Section Search and Chaotic Harris Hawk 

Optimization to filter input features and 

minimize redundancy enhances feature 

selection. 

• The model uses the Transformer-XL 

architecture, which builds on the standard 

transformer by adding memory caching and 

segment-level recurrence to better handle 

long-range dependencies when translating. 

Contextual Understanding of 

Discourse-Level Phenomena 
The proposed ContextXL model deals with 

complicated cross-linguistic discourse phenomena 

like anaphora resolution, discourse markers, 

ellipsis, and coreference mainly by its contextual 

and memory-aware structure. The combination of 

BERT and ELMo in the dual embedding mechanism 

enables deep contextual encoding with the ability 

to learn the relationships between pronouns and 

their antecedents (anaphora), and trace referents 

across discourse to resolve reference. 

Transformer-XL also improves this ability by 

retaining memory segments across sequence 

boundaries, allowing the model to use information 

outside the current sentence, a necessary feature 

to resolve ellipsis and comprehend the role of 

discourse markers in multi-sentence settings. 

ContextXL retains a long-term contextual 

information and integrates bidirectional semantics 

of pretrained models, which makes it coherent in 

translation and makes sure that referential and 

implicit aspects are properly translated across 

languages. 

Distinctive Features of ContextXL 

Compared to Other Multilingual 

Transformers 
The proposed ContextXL model introduces several 

distinctive innovations that clearly differentiate it 

from conventional multilingual transformer 

architectures such as BERT, mBERT, XLM-R, and 

standard Transformer models. Unlike traditional 

models that process input sequences 

independently and lack memory mechanisms, 

ContextXL is built upon the Transformer-XL 

framework, which incorporates segment-level 



Narasimharao and Jayasri,                                                                                                                             Vol 6 ǀ Issue 3 

1262 
 

recurrence and memory caching to model long-

range dependencies more effectively. This allows 

the model to retain contextual information across 

input segments, which is essential for handling 

complex linguistic structures and improving the 

coherence of translated text. Additionally, 

ContextXL integrates a novel feature selection 

strategy using the GHSO algorithm, which 

combines Golden Section Search and Chaotic 

Harris Hawk Optimization to dynamically refine 

the feature space. This enables the model to 

maintain contextual information between input 

segments, which is necessary to process complex 

linguistic structures and enhance the coherence of 

the translated text. Also, ContextXL incorporates a 

new feature selection approach based on the GHSO 

algorithm, which is a combination of the Golden 

Section Search and Chaotic Harris Hawk 

Optimization, and dynamically optimizes the 

feature space. This will make sure that only the 

most significant and contextually important 

features are used in downstream processing. The 

other interesting feature of ContextXL is its hybrid 

embedding mechanism that uses both BERT based 

and ELMo based transformer embeddings to 

capture rich and context sensitive representations 

of language unlike single source embedding 

models. Moreover, ContextXL is used to improve 

cross-lingual flexibility by using CCA and zero-shot 

learning methods, allowing it to handle translation 

between language pairs without parallel training 

data. A combination of these developments in 

memory-aware attention, adaptive feature 

selection, hybrid contextual embeddings and 

language-agnostic transfer capabilities makes 

ContextXL a powerful and future-proof model in 

cross-lingual machine translation tasks. 
 

Results  
The Transformer-XL architecture-based CLMT 

approach achieves impressive results, with an 

accuracy rate of 98.77%. The translation quality of 

long words is greatly enhanced by Transformer-

XL's capacity to grasp long-range relationships, 

guaranteeing contextual coherence. A major factor 

in feature selection and a factor in the model's 

exceptional performance is GHSO, a hybrid 

optimization technique. The Python platform is 

used for implementation. The Understanding cross 

lingual models is utilized for machine translation 

(26). 

 

 
Figure 3: Training and Validation Loss over Epochs for the Proposed Model 

 

Figure 3 shows the training and validation loss 

graphs of the proposed model during 100 training 

epochs. First, the training and validation losses 

begin at approximately 1.0, which means that the 

model has a large error at the beginning of the 

training. The training loss gradually drops as 

training continues, to around 0.05 by epoch 100, 

and the validation loss also follows the same trend, 

to around 0.08. The gradual decrease of the two 

curves indicates a stable learning and efficient 

generalization. The small changes in validation loss 

past epoch 40 are normal and not a sign of over 

fitting since the difference between the two curves 

is very small. This stable convergence pattern 

proves the stability of the training procedure and 

justifies the argument that ContextXL, with the 

help of the GHSO-based feature selection and 

Transformer-XL architecture, demonstrates 

reliable and stable optimization in the cross-

lingual machine translation tasks. 
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Performance Metrics 
The performance metrics and their calculation 

formulas are given in this section. 

Sensitivity: Simply dividing the total positives by 

the percentage of genuine positive forecasts yields 

the sensitivity value. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                           [26] 

Specificity: Specificity is determined by dividing 

the number of accurately anticipated negative 

outcomes by the total number of negatives. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡 𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
    [27] 

Accuracy: The proportion of correctly identified 

information to all of the data in the record is known 

as the accuracy. The precision is described as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
    [28] 

Precision: By employing the entire samples used 

in the classification process, precision is the 

representation of the total number of genuine 

samples that are appropriately taken into 

consideration during the classification process.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    [30] 

Recall: Recall rate is a measure of how many 

genuine samples overall are considered when 

categorizing data using all samples from the same 

categories from the training data.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            [31] 

 F- Score: The definition of the F-score is the 

harmonic mean of recall rate and accuracy.  

𝐹𝑆𝑐𝑜𝑟𝑒 =
2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   [32] 

NPV: The NPV is defined as the ratio of TN and the 

sum of TN and FN. 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
      [33] 

MCC: The two-by-two binary variable association 

measure, sometimes referred to as MCC, is shown 

in the equation below, 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑃+𝐹𝑃)
      [34] 

FPR: The FPR is computed by dividing the total 

number of adverse events by the total number of 

adverse events that were incorrectly classified as 

positive. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                      [35] 

FNR: It is often known as the "miss rate," is the 

probability that a true positive may go unnoticed 

by the test. 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
                      [36] 

Comparison of the Performance 

Metrics 
In this section, the proposed Transformer-XL 

model is compared with the existing techniques 

like NMT (17), BERT (23), Transformer and 

RoBERTa. The comparison is shown in Table 1. 

 

Table 1: Overall Comparison Table for the Proposed and Existing Techniques  

Model 
Accura

cy 

Precisi

on 

Reca

ll 

F-

Scor

e 

FNR 
Sensitiv

ity 
MCC FPR 

Specific

ity 
NPV 

Transfor

mer-XL 
0.9877 0.9897 

0.98

57 

0.98

85 

0.04

32 
0.9896 

0.98

66 

0.03

23 
0.9970 

0.99

99 

NMT (17) 0.9091 0.9063 
0.93

88 

0.93

75 

0.06

98 
0.9355 

0.92

86 

0.07

16 
0.9444 

0.92

59 

BERT (23) 0.9250 0.9231 
0.94

00 

0.93

48 

0.07

19 
0.9406 

0.92

86 

0.06

16 
0.9483 

0.94

39 

Transfor

mer 
0.9302 0.9167 

0.93

68 

0.93

75 

0.06

14 
0.9368 

0.94

12 

0.05

96 
0.9444 

0.92

59 

RoBERTa 0.9189 0.8966 
0.93

62 

0.93

75 

0.06

19 
0.93814 

0.92

86 

0.05

16 
0.9500 

0.94

29 
 

Table 1 presents a detailed evaluation of several 

NLP models, each assessed on various 

performance metrics for a specific task. 

Transformer-XL emerges as the top-performing 

model with an impressive accuracy of 98.77%, 

high precision (98.97%) indicating accurate 

positive predictions, and robust recall (98.57%) 

capturing a substantial portion of actual positive 

instances. The model achieves a harmonious 

balance with an F-score of 98.85% and exhibits a 

low FNR of 4.32%. Notably, its MCC stands at 

98.66%, underlining its overall excellence. Other 

models, such as NMT, BERT, Transformer, and 

RoBERTa, demonstrate competitive performances 

but with varying emphases on precision, recall, and 

trade-offs between the two. NMT excels in recall, 
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BERT in precision, while Transformer and 

RoBERTa strike a balance. These nuanced metrics 

collectively offer a comprehensive view of each 

model's strengths and weaknesses, aiding in 

informed decisions based on task-specific 

requirements. Accuracy, as reflected in the 

provided table (table 1), serves as a key metric to 

gauge the overall effectiveness of classification 

models. In this context, Transformer-XL attains a 

notably high accuracy of 98.77%, signifying that 

the model correctly predicts the class labels for 

nearly 99% of instances in the evaluated dataset. 

This implies a robust and accurate performance 

across both positive and negative classes. Figure 4 

shown below. 

 

 
Figure 4: Comparison of the Accuracy 

 

NMT, with an accuracy of 90.91%, demonstrates a 

comparatively lower rate of correct classifications, 

suggesting a higher degree of misclassifications. 

BERT and Transformer achieve accuracies of 

92.50% and 93.02%, respectively, showcasing 

strong overall performance, while RoBERTa, with 

an accuracy of 91.89%, slightly lags behind. 

Accuracy, while informative, will not provide a 

complete picture in scenarios with imbalanced 

datasets, warranting consideration of additional 

metrics for a comprehensive assessment of model 

performance. 

Precision, a pivotal metric in evaluating 

classification models, is a measure of the accuracy 

of positive predictions, representing the ratio of 

true positive predictions to the total instances 

predicted as positive. Transformer-XL excels with 

a precision of 98.97%, signifying that it predicts a 

positive instance, it is accurate nearly 99% of the 

time. Figure 5 shown below. 
 

 
Figure 5: Comparison of the Precision 

 

NMT achieves a respectable precision of 90.63%, 

indicating a solid capability in making accurate 

positive predictions. BERT demonstrates a 

precision of 92.31%, showcasing its reliability in 

positive classifications. Transformer follows 

closely with a precision of 91.67%, while RoBERTa 

slightly lags behind at 89.66%. These precision 

values underscore the models' abilities to 

minimize false positives, which is crucial in 

scenarios where the consequences of incorrectly 



Narasimharao and Jayasri,                                                                                                                             Vol 6 ǀ Issue 3 

1265 
 

identifying positive instances are significant. It is 

essential to consider precision along with other 

metrics to obtain a holistic view of a model's 

performance in different contexts. Recall, a pivotal 

metric in evaluating classification models, 

measures the model's ability to capture and 

identify all actual positive instances. Transformer-

XL stands out with an impressive recall of 98.57%, 

indicating its capacity to effectively identify nearly 

all positive instances in the dataset. Figure 6 shown 

below. 

 

 
Figure 6: Comparison of the recall 

 

NMT follows closely with a recall of 93.88%, 

showcasing its commendable sensitivity to actual 

positive cases. BERT and Transformer both 

demonstrate strong performance in recall, 

achieving values of 94.00% and 93.68%, 

respectively, underscoring their effectiveness in 

capturing a significant proportion of true positive 

instances. RoBERTa, with a recall of 93.62%, also 

exhibits a robust ability to identify the majority of 

actual positive cases. High recall is particularly 

crucial in applications where missing positive 

instances carries substantial consequences, 

emphasizing the models' effectiveness in 

minimizing false negatives. However, a 

comprehensive evaluation of model performance 

considers recall alongside other metrics to gain a 

holistic perspective in diverse contexts. 

The F-Score, a key composite metric in assessing 

classification models, encapsulates the equilibrium 

between precision and recall, offering a 

consolidated measure of overall performance. 

Transformer-XL demonstrates an exceptional F-

Score of 98.85%, signifying a harmonious balance 

between accurate positive predictions and 

effective capture of actual positive instances, 

Figure 7 shown below. 
 

 
Figure 7: Comparison of the F-Score 

 

NMT follows suit with an F-Score of 93.75%, 

illustrating a commendable trade-off between 

precision and recall, showcasing balanced 

performance in both aspects. BERT achieves a 

robust F-Score of 93.48%, indicating a model that 

excels in making accurate positive predictions 

while not missing a substantial number of actual 

positive instances. Similarly, Transformer and 
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RoBERTa both achieve an F-Score of 93.75%, 

reflecting a harmonized combination of precision 

and recall. The F-Score proves valuable in 

scenarios where both false positives and false 

negatives carry significant consequences, 

providing a comprehensive metric to evaluate the 

holistic effectiveness of classification models 

Sensitivity, a critical metric in the evaluation of 

classification models, measures the ability of a 

model to accurately identify and capture all actual 

positive instances within a dataset. Transformer-

XL demonstrates an exceptional sensitivity of 

98.96%, highlighting its efficacy in minimizing 

instances of missed positive cases by correctly 

identifying nearly 99% of positive instances. 

Figure 8 shown below. 

 

 
Figure 8: Comparison of the Sensitivity 

 

NMT follows closely with a sensitivity of 93.55%, 

showcasing a commendable capacity to capture a 

significant proportion of actual positive instances. 

BERT and Transformer both exhibit strong 

sensitivities of 94.06% and 93.68%, respectively, 

emphasizing their effectiveness in minimizing 

false negatives by correctly identifying and 

capturing a substantial number of true positive 

instances. Similarly, RoBERTa achieves a 

sensitivity of 93.81%, underscoring its ability to 

correctly identify and capture the majority of 

actual positive instances. High sensitivity is crucial 

to identify positive instances, making it an 

essential metric in the holistic assessment of model 

performance.  Specificity, a vital metric in 

evaluating classification models, gauges the 

model's ability to accurately identify and capture 

all actual negative instances within a dataset. 

Transformer-XL leads with an impressive 

specificity of 99.70%, indicating its exceptional 

capability to correctly classify nearly 100% of the 

actual negative instances. Figure 9 shown below. 
 

 
Figure 9: Comparison of the Specificity 

 

NMT follows suit with a specificity of 94.44%, 

showcasing its effectiveness in accurately 

identifying and capturing a significant proportion 

of true negative instances. BERT and Transformer 

both exhibit strong specificities of 94.83% and 

94.44%, respectively, emphasizing their prowess 
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in minimizing instances of false positives by 

accurately classifying the majority of negative 

cases. RoBERTa achieves a specificity of 95.00%, 

highlighting its ability to accurately identify and 

capture the majority of actual negative instances. 

High specificity is crucial in applications where 

precision in identifying negative instances is 

paramount, making it an integral metric in the 

comprehensive assessment of model performance. 

The MCC, a comprehensive metric for evaluating 

classification models, encapsulates the model's 

overall performance by considering true positives, 

true negatives, false positives, and false negatives. 

Transformer-XL leads with an outstanding MCC of 

98.66%, signifying an exceptional ability to make 

accurate predictions while effectively minimizing 

both false positives and false negatives. Figure 10 

shown below. 
 

 
Figure 10: Comparison of the MCC 

 

NMT and BERT both exhibit strong MCC values of 

92.86%, emphasizing their robust overall 

performances with a balanced consideration of 

true positives and true negatives. Transformer 

follows closely with an MCC of 94.12%, indicating 

a high correlation between its actual and predicted 

classifications. Similarly, RoBERTa achieves an 

MCC of 92.86%, showcasing a strong overall 

performance with accurate and reliable 

predictions. The MCC's balanced nature makes it a 

valuable metric, providing a comprehensive 

assessment of a model's effectiveness in making 

accurate classifications across both positive and 

negative classes. 

The NPV, a critical metric in classification models, 

provides insights into the reliability of a model in 

accurately predicting negative instances. 

Transformer-XL leads with an exceptionally high 

NPV of 99.99%, signifying an almost perfect 

likelihood that predicted negative instances are 

indeed true negatives. Figure 11 shown below. 

 

 
Figure 11: Comparison of the NPV 

NMT follows closely with an NPV of 92.59%, 

reflecting a robust probability that instances 

predicted as negative are accurate, albeit slightly 

lower than Transformer-XL. BERT and 

Transformer both exhibit strong NPVs of 94.39% 

and 92.59%, respectively, underscoring their 

reliability in excluding actual negative cases from 

positive predictions. Similarly, RoBERTa achieves 
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an NPV of 94.29%, emphasizing its effectiveness in 

accurately predicting and excluding negative 

cases. High NPV is particularly crucial in scenarios 

where the consequences of false negatives are 

substantial, ensuring a high likelihood that 

predicted negative instances are genuinely 

negative. As with other metrics, NPV should be 

considered alongside sensitivity, specificity, and 

other relevant measures for a comprehensive 

assessment of model performance. 

The FPR, a pivotal metric in classification models, 

gauges the propensity of a model to incorrectly 

predict negative instances as positive. 

Transformer-XL leads with an exceptionally low 

FPR of 0.03%, signifying its high precision in 

minimizing false alarms and accurately classifying 

negative instances. Figure 12 shown below. 
 

 
Figure 12: Comparison of the FPR 

 

NMT follows with a comparatively higher FPR of 

7.16%, indicating a moderate level of false positive 

predictions in contrast to Transformer-XL. 

Similarly, BERT, Transformer, and RoBERTa 

exhibit FPR values of 6.16%, 5.96%, and 5.16%, 

respectively. These models maintain a moderate 

rate of false positive predictions, striking a balance 

between avoiding false alarms and accurately 

predicting positive instances. FPR is particularly 

pertinent in applications where the cost of false 

alarms is significant, making it essential to assess 

with other metrics like sensitivity, specificity, and 

precision for a comprehensive evaluation of model 

performance. 

The FNR, a critical metric in classification models, 

gauges the propensity of a model to incorrectly 

predict positive instances as negative. 

Transformer-XL stands out with an exceptionally 

low FNR of 0.04%, underscoring its robust 

capability to accurately capture and classify actual 

positive cases. Figure 13 shown below. 

 

 
Figure 13: Comparison of the FNR 

 

NMT follows with a comparatively higher FNR of 

6.98%, indicating a moderate rate of false 

negatives in contrast to Transformer-XL. Similarly, 

BERT, Transformer, and RoBERTa exhibit FNR 

values of 7.19%, 6.14%, and 6.19%, respectively, 

are reflecting a balanced approach between 

minimizing false negatives and accurately 

predicting negative instances. These models 

maintain a moderate rate of false negatives, 

emphasizing a balance between sensitivity to 

positive instances and precision. FNR is 

particularly significant in applications where 
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missing positive instances has substantial 

consequences, making it essential to assess with 

other metrics like sensitivity, specificity, and 

precision for a comprehensive evaluation of model 

performance. 

Human Evaluation of Translation 

Quality 
In order to complement automatic evaluation 

measures, a micro-scale human evaluation was 

performed to assess the contextual retention, 

fluency, and suitability of the translated products. 

A bilingual annotator was requested to check a 

random sample of 100 translated sentences of 

different language pairs. Each translation was 

scored on a 5-point Likert scale (1 = poor, 5 

excellent) on the following dimensions. 

Contextual Preservation: how well the 

translation retained the original meaning 

 Fluency: grammatical correctness and natural 

flow in the target language, 

Appropriateness: cultural or idiomatic suitability 

for the target context. 

The average scores were: 

Contextual Preservation: 4.52, 

Fluency: 4.47, 

Appropriateness: 4.38. 

These results indicate that the ContextXL model is 

capable of producing translations that are not only 

accurate in structure but also contextually 

meaningful and fluent from a human perspective.  
 

Discussion 
The proposed model shows better results in terms 

of training stability and translation quality 

compared to the existing models, including NMT, 

BERT, Transformer, and RoBERTa. Throughout 

training, the loss of the proposed model steadily 

reduced, starting at a value of about 1.0 and ending 

at 0.05 after 100 epochs, and the validation loss 

showed the same trend, ending at a value of about 

0.08, showing that the proposed model was not 

over fitting. ContextXL scored 98.77%, which is 

better than BERT (92.50%), Transformer 

(93.02%), RoBERTa (91.89%), and NMT (90.91%) 

in terms of accuracy. The precision, recall and F-

score of the model were also very high at 98.97%, 

98.57%, and 98.85% respectively indicating a 

balanced ability to correctly identify and classify 

positive and negative instances. On the contrary, 

NMT and BERT had comparatively low precision 

(90.63% and 92.31%) and recall (93.88% and 

94.00%), whereas Transformer and RoBERTa had 

comparable, but slightly worse scores in both 

measures. The MCC of ContextXL was 98.66% as 

opposed to 92.86% of NMT and BERT, which 

proves its high predictive reliability. Moreover, 

ContextXL had very high sensitivity (98.96%) and 

specificity (99.70%), and its false negative rate 

(0.04%) and false positive rate (0.03%) were very 

low, which indicates that it can be effective in 

addressing the class imbalance problem. The 

quality of output of the model was also verified by 

a human assessment, where the contextual 

preservation was 4.52, fluency 4.47, and 

appropriateness 4.38 on a scale of 1-5. These 

results indicate that the proposed model perform 

better than the existing models in terms of 

quantitative measures and also has a high 

linguistic and contextual accuracy, which makes it 

a strong and stable solution to the cross-lingual 

machine translation task. 
 

Conclusion 
In conclusion, this study introduces an innovative 

and comprehensive approach for CLMT that 

amalgamates cutting-edge techniques and models 

to significantly elevate the quality of translation 

outcomes. The proposed methodology 

encompasses a series of meticulously designed 

pre-processing steps, including NER and 

Tokenization through BPE, ensuring the 

preservation of named entities and effective 

handling of rare words and morphological 

variations. Language representation is enriched by 

incorporating Cross-Lingual Word Embedding; 

specifically MUSE embedding, and training 

language-specific embedding with models like 

FastText, incorporating sub word information. 

Feature extraction leverages Transformer 

Embedding, drawing on pre-trained models such 

as BERT and ELMo for nuanced linguistic 

information. Cross-lingual embedding are 

obtained through CCA and harnessed in zero-shot 

learning approaches to adeptly handle language 

pairs lacking parallel data. The feature selection 

process is enhanced by the GHSO, a novel hybrid 

optimization algorithm amalgamating Golden 

search optimization with Chaotic Harris hawk’s 

optimization. The proposed Transformer-XL 

architecture is then introduced, demonstrating 

superior context modeling and proficiency in 

handling longer sequences. Notably, the 
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Transformer-XL model achieved an impressive 

accuracy of 98.77%, surpassing existing 

techniques. This study thus contributes a robust 

and advanced framework for CLMT, offering a 

promising avenue for future advancements in 

cross-lingual translation research. While the 

current evaluation focuses on language pairs 

available within the selected dataset, the 

ContextXL framework is inherently suited for 

morphologically rich, typologically distant, and 

low-resource languages. This is enabled through 

zero-shot learning, sub word-based embedding, 

and CCA-based alignment. Future work will 

include empirical validation on language pairs 

such as English–Tamil and English–Amharic to 

demonstrate the adaptability and robustness of the 

model across diverse linguistic structures. 

Even though the present assessment did not 

explicitly involve code-switched, noisy, or informal 

text, the ContextXL model is naturally built to 

accommodate such variation to some degree 

because it uses sub word tokenization (Byte Pair 

Encoding), contextual embedding (BERT and 

ELMo), and the Transformer-XL memory 

mechanism. BPE is useful to decompose rare and 

hybrid words that are common in informal or 

code-switched texts, and contextual embedding 

are useful to capture meaning based on the 

language context around it, even when grammar or 

word choice is not standard. Moreover, FastText 

subword-based embedding give resilience to 

misspellings, slang, and morphological variations. 

All these elements add to the generalizing ability of 

the model over syntactically irregular or 

stylistically informal language. Future research 

includes expanding the dataset to have code-

switched and user-generated content in order to 

empirically evaluate and optimize performance 

under these conditions in the real world 

environment. 
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