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Abstract 
This paper introduces an innovative methodology for identifying pneumonia in thoracic X-ray images through the 
application of neural network classifiers. In our experiment, we employed a comprehensive training regimen 
involving multiple neural network classifiers, each trained on distinct sets of texture features meticulously extracted 
from thoracic X-ray images. Four different gray-level matrices and a neighboring gray-tone difference matrix 
(NGTDM) were used to generate these input features, guaranteeing a reliable depiction of the textural properties 
found in the X-ray pictures.  We carried out an extensive evaluation utilizing a number of performance criteria to 
gauge the trained classifiers' efficacy.  Classifying the thoracic X-ray pictures into two groups’ pneumonia and healthy 
state was the assignment assigned to the classifiers.  A thorough study of the classifiers' performance was provided by 
our assessment measures, which comprised accuracy, precision, recall, F1-score, and the area under the receiver 
operating characteristic curve (AUC-ROC).  The experimental findings showed that the suggested method 
accomplished a remarkable 91% overall test categorization accuracy, which was encouraging.  This degree of 
precision highlights how well our approach works to accurately diagnose pneumonia from thoracic X-ray images. 
Furthermore, the consistent performance across different metrics highlights the robustness and generalizability of 
the proposed strategy. 
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Introduction 
Pneumonia involves inflammation in the air sacs 

of the lungs and can lead to fluid buildup in the 

lungs, which can make it difficult to breathe.  

Chest pain, fever, chills, and shortness of breath, 

coughing, and trouble breathing are all signs of 

pneumonia.  Acute and chronic pneumonia are 

both possible.  Acute pneumonia is usually less 

severe and is typically caused by bacteria or 

viruses.  Bacteria are typically the cause of chronic 

pneumonia, which can be more serious.  

Depending on the reason, antibiotics, antiviral 

drugs, and other drugs can be used to treat 

pneumonia. Treatment is usually effective, but in 

some cases, it can be fatal. People who have 

underlying medical conditions like asthma, COPD, 

diabetes, or heart disease are more vulnerable.It 

is possible to detect pneumonia from chest 

radiographic images using a computer aided 

detection (CAD) system. In a CAD system, a 

computer algorithm is trained on a dataset of 

chest radiographic images (mostly X-Ray and CT 

scans) to detect the presence of pneumonia-

related abnormalities. After that, the system 

examines new X-ray images and finds regions that 

might suggest pneumonia.  Image categorization, 

the process of labeling medical images according 

to their content, is typically used in CAD systems. 

Image classification can be done using texture 

features by extracting features that represent the 

texture of an image and using them as inputs to a 

classification algorithm. Texture features are 

characteristics of the surface of an object that 

describe its visual texture. They can be 

determined by measuring the spatial arrangement 

of colors, intensities, and shapes in an image. 

Since X-ray images are grayscale, five Grey Level 

Matrices and features derived from them are used 

in the study. Each of these methods determines 

the texture of the image by examining the 

distribution of pixels with comparable gray levels. 

GLCM measures the occurrence of pairs of pixel 

values at a given offset or distance. GLSZM 

measures the distribution, size and shape of gray 

level zones. Count and length of gray level runs 

are measured by GLRLM.  The number of 

neighboring pixels with differing levels is 

measured using NGTDM.  GLDM determines the 

reliance between pixels with similar grey levels. 

The primary contributions of the manuscript are 

as follows: To classify pneumonia, a Deep neural  
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networks (DNN) classifier with fully connected 

layers was trained. The suggested method's input 

images were collected from several X-ray imaging 

databases, and appropriate pre-processing was 

carried out. Five different set of features (and a 

combined set) were extracted from gray level 

matrices. Six distinct DNN classifiers were trained 

using the retrieved features, and the integrated 

gradient approach was utilised to ascribe the 

features back.The classification performance of 

the individual sets were compared with the 

combined set based on various evaluation 

criterion 

The structure of the remaining sections is as 

follows:  The findings of the literature review are 

presented further in this section.  Section 

“Materials and Methods” outlines the 

recommended models and techniques for utilizing 

a DNN to classify pneumonia.  Section “Results 

and Discussion” presents and discusses the 

findings, accordingly.  The manuscript is 

concluded in the last section. 

Several other studies have been carried out by 

researcher where texture features were used. A 

novel tumor detection method for mammograms 

was proposed using a combination of GLCM 

features and an SVM classifier, incorporating a 

double threshold segmentation technique to 

distinguish between background and target 

regions. After optimization, the GLCM features 

were fed into the SVM classifier, and the method 

showed strong performance when tested against 

a mammogram database (1). The use of GLCM 

features for analyzing dental panoramic imagery 

to enable early detection of osteoporosis was 

explored, demonstrating that GLCM effectively 

captures texture relevant to underlying medical 

conditions and can differentiate between healthy 

and osteoporotic mandibular bones (2). Machine 

learning algorithms, including XGBoost and 

Random Forest, were applied to radiological 

feature analysis to distinguish between normal 

and COVID-19-affected chest X-ray images, 

achieving up to 82% accuracy and sensitivity, 

with XGBoost yielding the best results (3). A 

model combining LBP and HOG texture features 

with deep features (FC-VGG) was developed to 

enhance pneumonia diagnosis in pediatric chest 

X-ray images, achieving an accuracy of 92.19%, 

average precision of 93.44%, recall of 92.19%, 

and F1-score of 92.81% (4). An approach using an 

open-source dataset and GLCM stride 

combinations demonstrated notable results 

across multiple metrics, highlighting its 

effectiveness in COVID-19 detection from X-ray 

images (5). A quadtree-based method was 

introduced to interpret nonlinear SVM predictions 

for medical image classification, validated through 

occlusion techniques, which helped in identifying 

discriminative image zones and improving 

interpretability (6). GLCM and GLRLM features 

were utilized to detect affected fissure regions in 

CT images, and a neural classifier trained on these 

features achieved classification accuracies of 86% 

and 87% (7). For accurate classification of teeth 

affected by caries, a binary classification method 

using optimized GLCM features and a DNN 

classifier was proposed, achieving an accuracy of 

99% (8). Texture analysis of lower limb bone X-

rays using GLCM and K-means clustering yielded 

an accuracy of 80%, supporting their combined 

application for fracture detection and structural 

analysis (9). The use of higher-order GLCM 

features for detecting malignant masses in 

mammogram images was demonstrated, marking 

a novel application of this method beyond its 

traditional use in remote sensing (10). A method 

was presented for detecting osteoarthritis in knee 

joints from MRI images using image processing 

and an SVM classifier, achieving an accuracy of 

86.6% (11). A CAD system trained with GLCM 

features and an ANN classifier was designed to 

distinguish between cancerous and non-

cancerous mammograms, achieving a sensitivity 

of 99.3% and a precision of 99.4% on the MIAS 

dataset (12). A tuberculosis detection system 

based on chest X-ray images was developed using 

optimized GLCM features and SVM classification, 

resulting in class-wise accuracies of 100% for 

normal, and 98.72% for both primary and 

secondary TB classes (13). Another study 

employed GLCM features and an SVM classifier to 

distinguish between benign and malignant 

mammography images, reporting 63.03% 

accuracy and 89% specificity (14). GLCM features 

and K-means clustering were used to classify 

contrast-enhanced dental radiographs, with 

performance evaluated based on accuracy metrics 

(15). 
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Methodology 
In this manuscript, a framework for pneumonia 

classification using DNN classifier is proposed. 

The images used in this framework are gathered 

from Guangzhou Women’s Children’s Hospital. 

The input images are preprocessed by the CLAHE 

method to enhance the contrast-value and clarity 

of the X-ray images. The texture features are then 

extracted using Gray Level Matrices.  In order to 

classify chest images, the collected features are 

then given into a DNN classifier. Figure 1 

illustrates the proposed framework and overall 

workflow.Figure 1 shows the image classification 

pipeline which includes input image pre-

processing, extracting texture features, training 

Deep Neural Network model, and applying 

interpretable AI techniques to better understand 

the classification process. Using individual 

matrices a 1xN vector was extracted for each 

image as well as a separate DNN classifier was 

trained on each. At last, for TexPneum Classifier 

all the features were concatenated and a separate 

DNN classifier had been trained for same. The 

architecture of the classifier can be seen in Figure 

2, for the entire instance only the input layer was 

different (depending on the number of features) 

rest of the architecture remained the same. 

 

 
Figure 1: Flowchart of the Implemented Work 

 

 
Figure 2: Architecture for the deep neural network 

Dataset 
A dataset of X-ray images from "Guangzhou 

Women's Children's Hospital" in Guangzhou, 

China, divided into two categories normal and 

pneumonia was used in this investigation (16). 

The labels were provided by expert radiologists as 

part of the original dataset. There were 5215 total 

images in the dataset, of which 25% were normal 

images and 75% were pneumonia images. To 

create train, validation, and test, the dataset was 

stratified and split in a ratio of 70:15:15 for each 

fold. For kids between the ages of one and five, the 

images were collected as part of routine checkups. 

The images utilised in our study were in PNG 

format and varied in size, but most of them were 

255x255 pixels with a bit depth of 24. Figure 3 

shown below shows the label distribution for 

dataset.  
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Figure 3: Label Distributions for Dataset 

 

In our study, we encountered an imbalanced 

dataset, consisting of roughly 25% of samples 

representing the normal class (minority negative 

class) and 75% representing the pneumonia class 

(majority positive class). Despite this, we 

intentionally chose not to employ specific 

balancing techniques for several compelling 

reasons, all of which align with the overarching 

objectives and priorities of our research. First and 

foremost, our primary focus in this study was 

accurate pneumonia detection. Given the critical 

medical context and the potential consequences, 

our priority was to minimize false negatives. In 

this context, a false negative signifies the failure to 

identify a patient with pneumonia, which could 

lead to delayed treatment and adverse health 

outcomes. By abstaining from balancing the 

dataset, our strategy aimed to reduce the 

probability of classifying any pneumonia image as 

normal, thus minimizing false negatives. In many 

real-world healthcare settings, class distribution 

tends to be imbalanced, and it becomes 

paramount to ensure high sensitivity for detecting 

critical conditions, even if this necessitate 

accepting a higher false positive (FP) rate for the 

minority class (normal cases). Furthermore, our 

dataset was collected from the radiology 

department and is a reflection of real-world 

scenarios where the prevalence of specific 

medical conditions, such as pneumonia, can be 

substantially higher than others. By deliberately 

refraining from artificially balancing the dataset, 

our approach aimed to accurately mirror this real-

world distribution, thereby rendering our results 

more applicable to practical clinical settings. 

 

 

 

Preprocessing 
Resizing 

Resizing images to the same size is important for 

a neural network to properly process them. We 

set out to resize every image in our dataset to a 

standardised 224x224 pixel size in order to 

ensure uniformity and consistency.  There were 

several reasons for this standardisation in the 

context of our study.  Above all, it helped us create 

a standard that made it possible to compare our 

dataset directly. This comparability is a crucial 

prerequisite for the effective functioning of our 

feature extractors. Furthermore, our decision to 

adopt the 224x224 dimension aligns our study 

with research conducted by the authors and the 

broader research community. This alignment 

facilitates the comparison of our findings with 

existing literature, fostering a more 

comprehensive understanding of the field. 

Additionally, the use of smaller image sizes offers 

practical advantages by reducing the 

computational resources required. 

CLAHE 

CLAHE “(Contrast Limited Adaptive Histogram 

Equalization)” is an algorithm employed to 

improve the contrast of images. It works by 

redistributing the light and dark pixels in an 

image while also limiting the contrast increase of 

any given area to avoid over-saturation. This 

algorithm is important for x-ray images 

classification because it helps to improve the 

visibility of features that may otherwise be 

obscured or not easily seen. It can help to identify 

objects, or detect abnormalities that may 

otherwise be difficult to detect. Additionally, any 

image-based classification algorithm can benefit 

from CLAHE’s assistance in reducing image noise, 
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which can have a big impact on how well it 

performs. 

Texture Features Extraction  

In our study, we use the whole X-ray image to 

create Texture based features and we do not 

select a region of interest (ROI). The decision to 

use the whole image was made for practical 

purposes and based on the results of our 

experiments. Initially, we attempted to perform 

lung segmentation using Unet-based techniques 

to isolate regions of interest, particularly lung 

regions. However, during our experiments, we 

encountered difficulties in correctly segmenting 

the lungs, especially in the case of pneumonia. The 

presence of opacities and varying degrees of lung 

involvement in pneumonia made the 

segmentation technique unreliable. We 

deliberately chose to use the full X-ray image for 

the extraction of textural features in light of these 

segmentation difficulties and the possibility of 

introducing segmentation errors that could 

degrade the quality of our analysis.  Below is a 

discussion of the features that were taken from 

the images. 

Gray Level Co-occurrence Matrix (GLCM) 

Features 

One kind of statistical technique is called GLCM, 

and it is used to extract texture information from 

digital images.  It is based on estimating the 

probability that two pixels of a specific gray level 

would appear together.  This 2-D matrix shows 

the probability that a pair of pixels with a 

particular gray level will occur for each element.  

The GLCM can be used to measure an image's 

texture or pixel layout.  It is used on X-ray 

pictures to measure the texture of a certain area.  

By counting the occurrences of each pair of Gray 

levels in a specific region of the image, the GLCM 

is determined.  It then divides the total number of 

pixel pairs in the region by each matrix element.  

Using the resulting matrix, other texture features 

are then calculated, such as entropy, contrast, 

correlation, as well as angular second moment.  It 

is therefore possible to use these qualities to 

distinguish between different textures in an 

image. 

Gray Level Size Zone Matrix (GLSZM) Features 

The features used in this method are based on a 

matrix that shows the number of regions in an 

image that are a specific size and are gray tones. 

The number of voxels (volumetric pixels) in a 

picture with a specific gray level and size is 

counted to create the matrix.  The resulting matrix 

is then used to calculate other statistics, such as 

the size zone non-uniformity (SZN), the Gray level 

non-uniformity (GLN), and coarseness.  These 

statistics can be used to evaluate the texture of 

the tissue and to distinguish between different 

tissue types. 

Gray Level Run Length Matrix (GLRLM) 

Features 

It is a statistical technique used in image analysis 

to look at the grayscale intensity and spatial 

distribution of pixel values. It is a matrix of counts 

of the quantity of runs (consecutive pixels) of a 

specific gray level in a particular direction of an 

image. GLRLM is particularly helpful for spotting 

subtle changes in an image and can be used to 

quantify texture in medical and other images. 

Neighboring Gray Tone Difference Matrix 

(NGTDM) Features  

The differences in the Gray tones of neighbouring 

pixels in an image are stored using NGTDM.  The 

texture of a picture is quantified by analysing the 

geographical changes in Grayscale values. An 

image’s homogeneity, complexity, and regularity 

can all be determined using the NGTDM. 

Gray Level Dependence Matrix (GLDM) 

Features 

The relationship between two or more Gray levels 

in an image is measured using GLDM.  It measures 

the degree of similarity between adjacent pixels.  

In contrast to GLCM, the GLDM takes into account 

the pixel's location within the image as well as its 

Gray level.  The linear correlation of the Gray 

levels of neighbouring pixels is measured by 

GLDM, whereas the second-order statistical 

features of a picture are measured by GLCM. 

Figure 4 shows the comparison of randomly 

sampled normal and pneumonia cases based on 

radiomics features. In Table 1 we have shown the 

features extracted from all the matrices with the 

formula used to derive these features. These 

extracted features will acts as the input for our 

classifier models. 
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Table 1: List of Features and Respective Formulas 

SNo. Matrix Features Formula Eq 

1 

GLCM 

AutocorrelationValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

𝑝(𝑖, 𝑗)𝑖𝑗 
[1] 

2 JointAverageValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

𝑝(𝑖, 𝑗)𝑖 
[2] 

3 ClusterProminenceValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)4𝑝(𝑖, 𝑗) 
[3] 

4 ClusterShadeValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)3𝑝(𝑖, 𝑗) 
[4] 

5 ClusterTendencyValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)2𝑝(𝑖, 𝑗) 
[5] 

6 ContrastValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

(𝑖 − 𝑗)2𝑝(𝑖, 𝑗) 
[6] 

7 CorrelationValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗)𝑖𝑗 − 𝜇𝑥𝜇𝑦

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
 

[7] 

8 DifferenceAverageValue 
∑  

𝑁𝑔−1

𝑘=0

𝑘𝑝𝑥−𝑦(𝑘) 
[8] 

9 DifferenceEntropyValue 
∑  

𝑁𝑔−1

𝑘=0

𝑝𝑥−𝑦(𝑘)𝑙𝑜𝑔2 (𝑝𝑥−𝑦(𝑘) + 𝜖) 
[9] 

10 DifferenceVarianceValue 
∑  

𝑁𝑔−1

𝑘=0

(𝑘 − 𝐷𝐴)2𝑝𝑥−𝑦(𝑘) 
[10] 

11 JointEnergyValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

(𝑝(𝑖, 𝑗))2 
[11] 

12 JointEntropyValue 
− ∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

𝑝(𝑖, 𝑗)𝑙𝑜𝑔2 (𝑝(𝑖, 𝑗) + 𝜖) 
[12] 

13 IMCValue 

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋, 𝐻𝑌}
 

[13] 

14 IMC2Value √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) [14] 

15 IDMValue 
∑  

𝑁𝑔−1

𝑘=0

𝑝𝑥−𝑦(𝑘)

1 + 𝑘2  
[15] 

16 
Maximal Correlation Coefficient 

(MCC)Value 

√𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄𝑄(𝑖, 𝑗)

= ∑  

𝑁𝑔

𝑘=0

𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)
 

[16] 

17 IDMNValue 

∑  

𝑁𝑔−1

𝑘=0

𝑝𝑥−𝑦(𝑘)

1 + (
𝑘2

𝑁𝑔
2)

 

[17] 

18 InverseDifference(ID)Value 
∑  

𝑁𝑔−1

𝑘=0

𝑝𝑥−𝑦(𝑘)

1 + 𝑘
 

[18] 

19 
InverseDifferenceNormalized 

(IDN)Value 

∑  

𝑁𝑔−1

𝑘=0

𝑝𝑥−𝑦(𝑘)

1 + (
𝑘

𝑁𝑔
)
 

[19] 
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20 InverseVarianceValue 
∑  

𝑁𝑔−1

𝑘=1

𝑝𝑥−𝑦(𝑘)

𝑘2  
[20] 

21 MaximumProbabilityValue 𝑚𝑎𝑥(𝑝(𝑖, 𝑗)) [21] 

22 SumAverageValue 
∑  

2𝑁𝑔

𝑘=2

𝑝𝑥+𝑦(𝑘)𝑘 
[22] 

23 SumEntropyValue 
∑  

2𝑁𝑔

𝑘=2

𝑝𝑥+𝑦(𝑘)𝑙𝑜𝑔2 (𝑝𝑥+𝑦(𝑘) + 𝜖) 
[23] 

24 SumSquaresValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

(𝑖 − 𝜇𝑥)2𝑝(𝑖, 𝑗) 
[24] 

25 

GLSZM 

SmallAreaEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑠
𝑗=1

𝑃(𝑖,𝑗)

𝑗2

𝑁𝑧
 

[25] 

26 LargeAreaEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑠
𝑗=1 𝑃(𝑖, 𝑗)𝑗2

𝑁𝑧
 

[26] 

27 GrayLevelNon-UniformityValue 

∑  
𝑁𝑔

𝑖=1 (∑  
𝑁𝑠
𝑗=1 𝑃(𝑖, 𝑗))2

𝑁𝑧
2  

[27] 

28 
GrayLevelNon-

UniformityNormalizedValue 

∑  
𝑁𝑔

𝑖=1 (∑  
𝑁𝑠
𝑗=1 𝑃(𝑖, 𝑗))2

𝑁𝑧
2  

[28] 

29 Size-ZoneNon-UniformityValue 

∑  
𝑁𝑠
𝑗=1 (∑  

𝑁𝑔

𝑖=1
𝑃(𝑖, 𝑗))2

𝑁𝑧
2

 
[29] 

30 
Size-ZoneNon-

UniformityNormalizedValue 

∑  
𝑁𝑠
𝑗=1 (∑  

𝑁𝑔

𝑖=1 𝑃(𝑖, 𝑗))2

𝑁𝑧
2  

[30] 

31 ZonePercentageValue 
𝑍𝑃 =

𝑁𝑧

𝑁𝑝
 

[31] 

32 GrayLevelVarianceValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑠

𝑗=1

𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2 
[32] 

33 ZoneVarianceValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑠

𝑗=1

𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2 
[33] 

34 ZoneEntropyValue 
− ∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑠

𝑗=1

𝑝(𝑖, 𝑗)𝑙𝑜𝑔2 (𝑝(𝑖, 𝑗) + 𝜖) 
[34] 

35 
LowGrayLevelZoneEmphasis 

Value 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑠
𝑗=1

𝑃(𝑖,𝑗)

𝑖2

𝑁𝑧
 

[35] 

36 
HighGrayLevelZoneEmphasis 

Value 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑠
𝑗=1 𝑃(𝑖, 𝑗)𝑖2

𝑁𝑧
 

[36] 

37 
SmallAreaLowGrayLevelEmphasis

Value 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑠
𝑗=1

𝑃(𝑖,𝑗)

𝑖2𝑗2

𝑁𝑧
 

[37] 

38 
SmallAreaHighGrayLevel 

EmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑠
𝑗=1

𝑃(𝑖,𝑗)𝑖2

𝑗2

𝑁𝑧
 

[38] 

39 
LargeAreaHighGrayLevelEmphasis

Value 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑠
𝑗=1

𝑃(𝑖,𝑗)𝑗2

𝑖2

𝑁𝑧
 

[39] 

40 
LargeAreaLowGrayLevel 

EmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑠
𝑗=1 𝑃(𝑖, 𝑗)𝑖2𝑗2

𝑁𝑧
 

[40] 

41 

GLRLM 

ShortRunEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑟
𝑗=1

𝑃(𝑖,𝑗|𝜃)

𝑗2

𝑁𝑟(𝜃)
 

[41] 

42 LongRunEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑟
𝑗=1 𝑃(𝑖, 𝑗|𝜃)𝑗2

𝑁𝑟(𝜃)
 

[42] 
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43 GrayLevelNon-UniformityValue 

∑  
𝑁𝑔

𝑖=1
(∑  

𝑁𝑟
𝑗=1 𝑃(𝑖, 𝑗|𝜃))2

𝑁𝑟(𝜃)2  
[43] 

44 
GrayLevelNon-

UniformityNormalizedValue 

∑  
𝑁𝑔

𝑖=1 (∑  
𝑁𝑟
𝑗=1 𝑃(𝑖, 𝑗|𝜃))2

𝑁𝑟(𝜃)2  
[44] 

45 RunLengthNon-UniformityValue 

∑  
𝑁𝑟
𝑗=1 (∑  

𝑁𝑔

𝑖=1
𝑃(𝑖, 𝑗|𝜃))2

𝑁𝑟(𝜃)
 

[45] 

46 
RunLengthNon-

UniformityNormalizedValue 

∑  
𝑁𝑟
𝑗=1 (∑  

𝑁𝑔

𝑖=1 𝑃(𝑖, 𝑗|𝜃))2

𝑁𝑟(𝜃)2  
[46] 

47 RunPercentageValue 

𝑁𝑟(𝜃)

𝑁𝑝
 

[47] 

48 GrayLevelVarianceValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑟

𝑗=1

𝑝(𝑖, 𝑗|𝜃)(𝑖 − 𝜇)2 
[48] 

49 RunVarianceValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑟

𝑗=1

𝑝(𝑖, 𝑗|𝜃)(𝑗 − 𝜇)2 
[49] 

50 RunEntropyValue 
− ∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑟

𝑗=1

𝑝(𝑖, 𝑗|𝜃)𝑙𝑜𝑔2 (𝑝(𝑖, 𝑗|𝜃) + 𝜖) 
[50] 

51 LowGrayLevelRunEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑟
𝑗=1

𝑃(𝑖,𝑗|𝜃)

𝑖2

𝑁𝑟(𝜃)
 

[51] 

52 HighGrayLevelRunEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑟
𝑗=1 𝑃(𝑖, 𝑗|𝜃)𝑖2

𝑁𝑟(𝜃)
 

[52] 

53 
ShortRunLowGrayLevelEmphasisV

alue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑟
𝑗=1

𝑃(𝑖,𝑗|𝜃)

𝑖2𝑗2

𝑁𝑟(𝜃)
 

[53] 

54 
ShortRunHighGrayLevelEmphasisV

alue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑟
𝑗=1

𝑃(𝑖,𝑗|𝜃)𝑖2

𝑗2

𝑁𝑟(𝜃)
 

[54] 

55 
LongRunLowGrayLevelEmphasisVa

lue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑟
𝑗=1

𝑃(𝑖,𝑗|𝜃)𝑗2

𝑖2

𝑁𝑟(𝜃)
 

[55] 

56 
LongRunHighGrayLevelEmphasisV

alue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑟
𝑗=1 𝑃(𝑖, 𝑗|𝜃)𝑖2𝑗2

𝑁𝑟(𝜃)
 

[56] 

57 

NGTDM 

CoarsenessValue 

1

∑  
𝑁𝑔

𝑖=1 𝑝𝑖𝑠𝑖

 
[57] 

58 ContrastValue 

(
1

𝑁𝑔,𝑝(𝑁𝑔,𝑝 − 1)
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

𝑝𝑖𝑝𝑗(𝑖

− 𝑗)2)(
1

𝑁𝑣,𝑝
∑  

𝑁𝑔

𝑖=1

𝑠𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖

≠ 0, 𝑝𝑗 ≠ 0 [58] 

59 BusynessValue 

∑  
𝑁𝑔

𝑖=1 𝑝𝑖𝑠𝑖

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑔

𝑗=1 |𝑖𝑝𝑖 − 𝑗𝑝𝑗|
, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

[59] 

60 ComplexityValue 

1

𝑁𝑣,𝑝
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑔

𝑗=1

|𝑖 − 𝑗|
𝑝𝑖𝑠𝑖 + 𝑝𝑗𝑠𝑗

𝑝𝑖 + 𝑝𝑗
, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≠ 0, 𝑝𝑗

≠ 0 [60] 

61 StrengthValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑔

𝑗=1 (𝑝𝑖 + 𝑝𝑗)(𝑖 − 𝑗)2

∑  
𝑁𝑔

𝑖=1 𝑠𝑖

, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 
[61] 

62 

GLDM 

SmallDependenceEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑑
𝑗=1

𝑃(𝑖,𝑗)

𝑖2

𝑁𝑧
 

[62] 
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63 LargeDependenceEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑑
𝑗=1 𝑃(𝑖, 𝑗)𝑗2

𝑁𝑧
 

[63] 

64 GrayLevelNon-UniformityValue 

∑  
𝑁𝑔

𝑖=1 (∑  
𝑁𝑑
𝑗=1 𝑃(𝑖, 𝑗))2

𝑁𝑧
 

[64] 

65 DependenceNon-UniformityValue 

∑  
𝑁𝑑
𝑗=1 (∑  

𝑁𝑔

𝑖=1 𝑃(𝑖, 𝑗))2

𝑁𝑧
 

[65] 

66 
DependenceNon-

UniformityNormalizedValue 

∑  
𝑁𝑑
𝑗=1 (∑  

𝑁𝑔

𝑖=1
𝑃(𝑖, 𝑗))2

𝑁𝑧
2  

[66] 

67 GrayLevelVarianceValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑑

𝑗=1

𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2, 𝑤ℎ𝑒𝑟𝑒𝜇 = ∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑑

𝑗=1

𝑖𝑝(𝑖, 𝑗) 
[67] 

68 DependenceVarianceValue 
∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑑

𝑗=1

𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2, 𝑤ℎ𝑒𝑟𝑒𝜇 = ∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑑

𝑗=1

𝑗𝑝(𝑖, 𝑗) 
[68] 

69 DependenceEntropyValue 
− ∑  

𝑁𝑔

𝑖=1

∑  

𝑁𝑑

𝑗=1

𝑝(𝑖, 𝑗)𝑙𝑜𝑔2 (𝑝(𝑖, 𝑗) + 𝜖) 
[69] 

70 LowGrayLevelEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑑
𝑗=1

𝑃(𝑖,𝑗)

𝑖2

𝑁𝑧
 

[70] 

71 HighGrayLevelEmphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑑
𝑗=1 𝑃(𝑖, 𝑗)𝑖2

𝑁𝑧
 

[71] 

72 
SmallDependenceLowGrayLevelEm

phasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑑
𝑗=1

𝑃(𝑖,𝑗)

𝑖2𝑗2

𝑁𝑧
 

[72] 

73 
LargeDependenceLowGrayLevelEm

phasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑑
𝑗=1

𝑃(𝑖,𝑗)𝑗2

𝑖2

𝑁𝑧
 

[73] 

74 
 LargeDependenceHighGrayLevelE

mphasisValue 

∑  
𝑁𝑔

𝑖=1
∑  

𝑁𝑑
𝑗=1 𝑃(𝑖, 𝑗)𝑖2𝑗2

𝑁𝑧
 

[74] 

 

 

 
Figure 4: Comparison of Randomly Sampled Normal and Pneumonia Cases based on Radiomics 

Features 
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Deep Neural Network Classifier 
In our study, we employed a multilayer 

perceptron, which is a type of “artificial neural 

network”, as our classifying model. The term 

"deep" in the context of neural networks generally 

implies architecture with multiple layers designed 

to capture intricate patterns and hierarchical 

representations from the input data. Despite 

varying interpretations, we deliberately opted for 

a five-layer network structure. While this choice 

may appear modest when compared to the 

complex multi-level deep learning models, it was 

made based on several considerations. These 

considerations included the level of 

representation training required, the kind of the 

input data we were dealing with, and the 

complexity of the task we were doing. It's worth 

noting that while our model doesn't reach the 

depth of some other models, it is significantly 

more intricate than a shallow neural network 

with just one or two layers.It's important to stress 

that the definition of "deep" in machine learning is 

subjective and might vary according on the 

application and area.  In our investigation, the 

five-layer structure we selected worked well for 

identifying chest X-ray pictures using attributes 

that were extracted. 

 

Table 2: Model Summary 

 Input Shape Output Shape Param 

Linear-1 [1,N] [1,240] (Nx240)+240 

Linear-2 [1, 240] [1,120] 28,920 

Linear-3 [1, 120] [1,60] 7,260 

Linear-4 [1, 60] [1,30] 1,830 

Linear-5 [1, 30] [1,15] 465 

Linear-6 [1,15 [1,2] 32 
 

The structure of our neural network can be better 

understood by considering that it contains input 

layer, five hidden layers, and output layer.  N in 

Table 2 indicates that the first layer corresponds 

to size of the features in the training data.  In the 

GLCM-DNN Classifier, for instance, we extracted 

24 features from the GLCM matrix (see Table 1 for 

a list of features). As a result, the DNN model will 

have 24 neurons in the input layer; similarly, the 

number will change based on how many features 

are utilised in the experiment. The rest of the 

architecture remains the same. The last layer 

consists of two output neurons, each representing 

the pneumonic class or normal class. For hidden 

layers, as you move from the first to the last layer, 

the number of neurons starts from 240 (which is 

three times the max features used) and the 

density of neurons progressively decreases by 

half in each hidden layer, leading to 120, 60, 30 in 

subsequent layers culminating in 15 neurons in 

the final layer (excluding output layer). The total 

trainable parameters for each layer are dependent 

on number of input and output neurons. In terms 

of activation functions, we employed the rectified 

linear unit (ReLU) and Leaky ReLU throughout 

this neural network. 

The formula for Leaky ReLU is:   

𝑓(𝑥)  =   { 𝑥, 𝑖𝑓 𝑥 >  0  𝑎𝑛𝑑 𝑎𝑥, 𝑖𝑓 𝑥 <  0}[75] 

Wherea is a small positive value. 

Because of its simplicity and efficiency, this 

function is often used in multilayer perceptrons. 

To avoid overfitting, the network also uses 

blackout technique that removes certain neurons 

from the network during training. This increases 

the generalization performance and makes it 

more likely that the model can be applied to new 

data. The Loss criterion and the optimizer are the 

network’s two additional crucial components. The 

Cross Entropy Loss and Adam optimizer are both 

employed while training this classifier. The 

optimizer is in charge of changing the neural 

network’s parameters to reduce loss, while the 

criterion is in charge of calculating the neural 

network’s loss or error during training. Cross 

Entropy Loss is a gauge of how well the model can 

categorize the data. Because it allows you to 

measure the probability of each class and 

calculate the loss based on the difference between 

the true and projected class probabilities, cross-

entropy loss is a common option when training 

classification models.  The following is the 

formula for cross entropy: 

Loss = - Σ (y * log(p) + (1-y) * log(1-p))[76] 

Where y is ground truth and p is probability of 

positive class. 
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To reduce the loss, Adam adjusts the network 

parameters by applying gradient descent. The 

neural network here trains with a learning rate 

(lr) of 0.01. A neural network learns faster with 

higher learning rate and slower with lower 

learning rate. If the learning is too high, the best 

solution will be skipped. If it is too small, it will 

take too long to reach the optimal value. 

Performance Metrics 
Accuracy: It is a metric for determining a 

classification model's effectiveness. The 

percentage of all cases in the dataset that are 

correctly classified is described.  It is calculated by 

taking the total number of instances and dividing 

it by the number of correctly classified cases. 

Precision: It indicates the percentage of cases that 

were successfully classified out of all the positive 

predictions made by the model.  It can be 

computed by dividing the total number of cases 

the model has projected to be true by the number 

of accurately classified true cases. 

Recall: Out of all the occurrences in the dataset 

that are truly positive, it indicates the percentage 

of correctly identified instances.  It can be 

computed as the sum of true positives (TP) and 

false negatives divided by the number of TPs. 

F1 Score: It is a weighted average of recall and 

precision.  It is computed by taking the accuracy 

and efficiency harmonic means.  When your data 

set includes a different class, the F1 score is 

helpful because it accounts for both FP and false 

negatives. 

Explainable Features 
In the paper Integrated Gradients have been used 

to find the feature importance for each prediction. 

Integrated Gradients is an explainable AI (XAI) 

algorithm developed by Microsoft Research, 

which provides an interpretable view of a model 

by attributing each input feature’s contribution to 

the model’s output. It serves as an explanation for 

a deep learning model's forecast.  A popular 

attribution technique that calculates the gradients 

of the output w.r.t the inputs of a neural network 

is extended by Integrated Gradients. 
 

Results and Discussion 
Five set of features based on GLCM, GLSZM, 

GLRLM, NGTDM and GLDM were used from all the 

radiographs. Based on the matrix used the 

number of features in each set varied accordingly. 

Multiple DNN classifiers were trained individually 

on these feature sets and the performance was 

recorded. At the end all the features were merged 

and a separate DNN was re-trained to check if 

there was any improvement. The architecture of 

the DNN remained fixed throughout for each 

training, only the number of input features 

changed. 

GLCM-DNN Classifier 
The first classifier GLCM-DNN, was trained using 

24 features (1 to 24 in feature list Table 1) 

extracted from the GLCM. The input layer for the 

classifier consisted of 24 neurons, while keeping 

the number of neurons intact in rest of the layers 

as shown in Figure 2. To create train, validation, 

and test sets, the dataset was stratified and split in 

a ratio of 70:15:15 for each fold. Shown in Table 3 

is the average of 5-fold training and testing. 

 

Table 3: Results for DNN Trained on GLCM Features 

GLCM: 24 Features Accuracy Precision Recall F1Score 

Training 0.897 0.931 0.929 0.930 

Testing 0.880 0.925 0.913 0.919 
 

The feature importance, as well as internal 

attribution to comprehend the network function 

was done using the integrated gradient method. 

Shown in Figure 5 are the top five features that 

had the highest magnitude for mean attribution 

score. 

GLSZM-DNN Classifier 
The second classifier GLSZM DNN, was trained 

using 16 features (25 to 40 in feature list Table 1) 

extracted from the GLSZM. The input layer for the 

classifier consisted of 16 neurons, while keeping 

the number of neuron intact in rest of the layers 

as shown in Figure 2. Table 4 is the average of 5 

fold training and testing. 

Shown in Figure 6 are the top five features that 

had the highest magnitude for mean attribution 

score. 

GLRLM-DNN Classifier 
The third classifier GLRLM –DNN, was trained 

using 16 features (41 to 56 in feature list Table 1) 

extracted from the GLRLM. The input layer for the 

classifier consisted of 16 neurons, while keeping 

the number of neuron intact in rest of the layers 
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as shown in Figure 2. Shown in Table 5 is the average of 5 fold training and testing. 
 

Table 4: Results for DNN trained on GLCM Features 

GLSZM: 16 Features Accuracy Precision Recall F1Score 

Training 0.906 0.953 0.918 0.935 

Testing 0.865 0.933 0.881 0.906 
 

Table 5: Results for DNN trained on GLRLM Features 

GLRLM: 16 Features Accuracy Precision Recall F1Score 

Training 0.884 0.921 0.923 0.922 

Testing 0.857 0.900 0.908 0.904 
 

Shown in Figure 7 are the top five features that 

had the highest magnitude for mean attribution 

score. 

NGTDM-DNN Classifier 
The fourth classifier NGTDM –DNN, was trained 

using 5 features (57 to 61 in feature list Table 1) 

extracted from the NGTDM. The input layer for 

the classifier consisted of 5 neurons, while 

keeping the number of neurons intact in rest of 

the layers as shown in Figure 2. Shown in Table 6 

is the average of 5-fold training and testing.

 

Table 6: Results for DNN trained on NGTDM Features 

NGTDM: 5 Features Accuracy Precision Recall F1Score 

Training 0.743 0.743 1.000 0.852 

Testing 0.743 0.743 1.000 0.853 
 

Table 7: Results for DNN trained on GLDM Features 

GLDM: 14 Features Accuracy Precision Recall F1Score 

Training 0.908 0.952 0.922 0.937 

Testing 0.892 0.934 0.919 0.926 
 

Shown in Figure 8 are the top five features that 

had the highest magnitude for mean attribution 

score. 

GLDM-DNN Classifier 
The fifth classifier GLDM –DNN, was trained using 

14 features (62 to 74 in feature list Table 1) 

extracted from the GLDM. The input layer for the 

classifier consisted of 14 neurons, while keeping 

the number of neuron intact in rest of the layers 

as shown in Figure 2. Shown in Table 7 is the 

average of 5 fold training and testing.Shown in 

Figure 9 are the top five features that had the 

highest magnitude for mean attribution score. 

Figures 5 to 10 present the feature importance 

visualizations generated using Integrated 

Gradients for each of the trained DNN classifiers. 

Figures 5 through 9 correspond to models trained 

individually on GLCM, GLSZM, GLRLM, NGTDM, 

and GLDM features, respectively, while Figure 10 

illustrates the feature attributions for the 

combined TexPneum classifier. Each figure 

highlights the top five features contributing most 

significantly to the model’s predictions. For 

instance, the GLSZM-based classifier (Figure 6) 

emphasizes features like Small Area Emphasis 

and Zone Entropy, which reflect the presence of 

small, dense, high-intensity regions—typical 

markers of pneumonia. Similarly, the GLDM 

classifier (Figure 9) identifies Dependence 

Variance and Gray Level Variance as dominant 

features, indicating structural irregularities in 

lung textures. The TexPneum classifier (Figure 

10), which integrates all feature sets, shows that 

the most influential predictors are drawn from 

GLSZM, GLDM, and GLRLM matrices, confirming 

that combining diverse texture representations 

enhances performance and interpretability. These 

visualizations provide a transparent 

understanding of the decision-making process 

and support the clinical trustworthiness of the 

proposed model. 
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Figure 5: Top Five Features Based on Integrated Gradients for DNN trained on GLCM Features 

 
 

 
Figure 6: Top Five Features Based on Integrated Gradients for DNN trained on GLSZM Features 

 
 

 
Figure 7: Top Five Features Based on Integrated Gradients for DNN trained on GLRLM Features 

 
 

 
Figure 8: Top Five Features Based on Integrated Gradients for DNN trained on NGTDM Features 
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Figure 9: Top Five Features Based on Integrated Gradients for DNN trained on GLDM Features 

 

 
Figure 10: Top Five Features based on Integrated Gradients for TexPneum Classifier 

 

 
Figure 11: ROC Curve for all the Classifiers 

 

 

Table 8: Comparison of Results for DNN Trained on Different Features and TexPneum Classifier 

Feature 

Matrix 

No. of 

Features 

Training Testing 

Accuracy Precision Recall 

F1 

Score Accuracy Precision Recall 

F1 

Score 

GLCM-DNN 

Classifier 24 0.897 0.931 0.929 0.930 0.880 0.925 0.913 0.919 

GLSZM-DNN 

Classifier 16 0.906 0.953 0.918 0.935 0.865 0.933 0.881 0.906 

GLRLM-DNN 

Classifier 16 0.884 0.921 0.923 0.922 0.857 0.900 0.908 0.904 

NGTDM-DNN 

Classifier 5 0.743 0.743 1.000 0.852 0.743 0.743 1.000 0.853 

GLDM-DNN 14 0.908 0.952 0.922 0.937 0.892 0.934 0.919 0.926 



Shubhra and Ramamurthy,                                                                                                                       Vol 6 ǀ Issue 3 

1347 

 

Classifier 

TexPneum 

Classifier 75 0.946 0.970 0.958 0.964 0.907 0.937 0.938 0.937 
 

TexPneum Classifier 
This classifier, TexPneum, was trained using all 

the features combined from all the matrices. The 

input layer for the classifier consisted of 75 

neurons, while keeping the number of neurons 

intact in rest of the layers as shown in Figure 2. 

Shown in Table 8 is the comparison with other 

classifiers. 

TexPneum Classifier was the best model in 

comparison. The GLDM and GLSZM classifiers also 

showed good results with test accuracy of 0.892 

and 0.865. The combined feature set only 

provides a slight improvement in the test 

accuracy, and it can be seen in the combined 

feature set importance chart below that out of 5 

top features, 3 are from GLSZM matrix and 2 from 

GLDM and GLRLM matrices. The ROC curves for 

all the classifiers are shown in Figure 11. 

As seen in the above sections, the texture based 

features are able to distinguish between Normal 

and Pneumonia images. In Figure 10, we can see 

that TexPneum classifier does better than rest of 

the classifiers and slightly better performance 

than GLDM and GLSZM-based DNN classifiers, 

which are the close challengers. Figure 9 displays 

the results of the analysis on the GLSZM-based 

area features, as well as one GLDM and one 

GLRLM feature. The distribution of small size 

zones, their corresponding gray-level values, their 

variability, the variance in dependence size, and 

the joint distribution of shorter run lengths with 

greater gray-level values are clearly the key 

features that ranked higher in predicting 

pneumonia and can be used to distinguish 

between the x-ray images, according to the 

Integrated Gradients.  Table 9 illustrates this 

concept by displaying six randomly selected 

photos, three of which are from each class and 

have feature values that the TexPneumClassifier 

evaluated as the highest.  

As discussed earlier, we can see there is a clear 

separation boundary between first 4 features in 

the sampled images GLSZM small area emphasis, 

GLSZM small area high gray level emphasis, 

GLSZM size zone non-uniformity normalized and 

GLDM dependence variance. Higher values for 

these features lead to a higher prediction score for 

pneumonia class. 

Model Comparison 
In this part, we compare our suggested model's 

performance to other Texture feature-based 

methods being used in the field to detect 

pneumonia.  In comparison to the other research, 

ours shows significant progress, but with just 

slight improvements. 

 

Table 9:Sample Pneumonia and Normal Images with top Five Features from TexPneum Classifier 
Class Sample 

Images 

GLSZM 

Small 

Area 

Emphasis 

GLSZM Small 

Area High 

Gray Level 

Emphasis 

GLSZM Size 

Zone Non-

Uniformity 

Normalized 

GLDM 

Dependen

ce 

Variance 

GLRLM 

Short Run 

High Gray 

Level 

Emphasis 

Prediction 

Score(Pneumo

nia) 

Pneumonia 

 

0.5384 

 

24.5657 

 

0.2692 

 

4.9234 

 

25.1884 

 

0.97066146 

 

Pneumonia 

 

0.5752 

 

24.1918 

 

0.3060 

 

4.5891 

 

21.1753 

 

0.9291196 

 

Pneumonia 

 

0.5236 

 

29.2045 

 

 

0.2553 

 

4.7401 

 

29.9130 

 

0.9992085 

 

Normal 

 

0.4870 

 

20.5730 

 

0.2219 

 

 

4.3713 

 

23.7380 

 

0.27677116 

 

Normal 

 

0.4958 

 

21.2272 

 

0.2295 

 

4.3050 

 

25.4438 

 

0.18925022 
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Normal 

 

0.4972 

 

20.4960 

 

0.2328 

 

4.0692 

 

28.1906 

 

0.11549588 

 

Table 10: Comparison of Results from Different Studies 

 Model Accuracy Precision Recall F1Score 

Moura et al., (3) XGB 0.82 0.82 0.82 0.82 

Random Forest 0.77 0.75 0.81 0.78 

Wang et al., (4) LBP+SVM 77.59 76.18 77.59 76.87 

HOG+SVM 83.49 85.91 83.49 84.68 

VGG16 72.01 53.53 72.01 61.4 

MobileNet 85.32 82.68 85.32 83.97 

Inception V3 67.54 68.88 67.54 68.2 

ChexNet 79.8 88.05 79.8 83.72 

Proposed Model 92.19 93.44 92.19 92.81 

Thepade et al., (5) Random Forest + MLP 84.814 88.835 56.7 74.784 

MLP 82.22 86.8 51.7 70.685 

Shukla et al., (6) SVM 87.79 92.43 90.16 91.28 

Panwar et al., (17) nConvNet 88.10 97.62 82 89.13 

Konar et al., (18) Shallow Learning 

Network 93.1 89 83.5 82.6 

Sousa et al., (19) SVM 77    

KNN 70    

Depeursinge et al., 

(20) 

Naïve Bayes 78.73    

SVM 77.31    

Fernandez et al., (21) SVM (HOG + GLCM) 93.73    

KNN (HOG + GLCM) 93.43    

PneumTexClassifier  94.6 97.0 95.8 96.4 
 

The aforementioned outcome in Table 10 

demonstrates how our method may improve the 

efficiency of medical image classification. 
 

Conclusion 
The study conducted in this research paper has 

demonstrated the potential of GLCM, GLSZM, 

GLRLM, NGTDM, and GLDM for classifying 

pneumonia. It was observed that these five image 

texture features can accurately differentiate lung 

images of pneumonia patients from those of 

healthy individuals, achieving good test 

classification accuracy. All the matrices except 

NGTDM showed promising results, with test 

accuracies exceeding 85%. Furthermore, the 

combination of all five feature sets proved to be 

more effective than any individual set, yielding an 

overall accuracy of 91%. This suggests that when 

used as part of a classifier, the combined texture 

features offer an effective and reliable method for 

identifying pneumonia in lung images. 

Additionally, due to its lightweight architecture 

and explainable output, the proposed system can 

serve as a triage tool or second-reader to assist 

radiologists in low-resource settings. However, a 

key limitation of this study is that the model has 

not yet been evaluated across diverse 

radiography settings, equipment types, and 

patient populations. Further validation in varied 

clinical environments is essential to assess its 

generalizability and practical utility. 
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