
International Research Journal of Multidisciplinary Scope (IRJMS), 2025; 6(4):780-800

Original Article | ISSN (O): 2582-631X DOI: 10.47857/irjms.2025.v06i04.05502

Approximate Booth Multiplier for Error-Tolerant Computing
Veera Boopathy E1*, Kalirajan K2, Lakshmi R3, Jeniton S4,

Ramavenkateswaran Nagarajan5, Peer Mohamed Appa MAY6
1Department of Electronics and Communication Engineering, Karpagam Institute of Technology, Coimbatore, 2Department of
Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Coimbatore, 3Department of Electrical and
Electronics Engineering, Siddharth Institute of Engineering and Technology, Tirupati, 4Department of Electronics and Communication
Engineering, Rathinam Technical Campus, Coimbatore, 5Department of Electronics and Communication Engineering, R.V.College of
Engineering, Bengaluru, 6Department of Artificial Intelligence and Machine Learning, Vel Tech Rangarajan Dr. Sagunthala R&D
Institute of Science and Technology, Chennai. *Corresponding Author’s Email: boopathy.veera@gmail.com

Abstract

The research focuses on developing a low-power and area-efficient approximate Booth multiplier architecture that
leverages dynamic truncation to optimize performance for high-speed error-tolerant applications. Key aspects of the
research include the design and implementation of the proposed multiplier architecture, the development of dynamic
truncation algorithms tailored for real-time input data, and the evaluation of performance metrics such as power
consumption, area efficiency, and error tolerance. The study explores the principles behind dynamic truncation and its
application in approximate multiplication, emphasizing the trade-offs between accuracy and speed. Key aspects of the
research include the design and implementation of the proposed multiplier architecture, the development of dynamic
truncation algorithms tailored for real-time input data, and the evaluation of performance metrics such as power
consumption, area efficiency, and error tolerance. Through simulations and synthesis, the study assesses the
effectiveness of the proposed approach in achieving high-speed operation while maintaining acceptable levels of
accuracy. The results reveal significant variations in output error across the different multipliers, with the proposed
architecture demonstrating the lowest error rate of 0.001. In comparison, the Carry Width multiplier exhibits the
highest error rate of 0.03, indicating relatively poorer accuracy. The Vedic and Voltage Mode multipliers perform better,
with error rates of 0.025 and 0.002, respectively. Notably, the Wallace Tree multiplier shows the second-lowest error
rate of 0.0015. The findings of this research contribute to advancing the field of digital arithmetic circuits, offering a
promising solution for high-speed computing applications with stringent power and area constraints.

Keywords: Approximate, Booth Multiplier, Dynamic Truncation, Low Power, Simulations.

Introduction

Power consumption is a crucial design constraint

for digital systems. Important digital systems with

low power, high reliability, and low overhanging

area of operational components include space

structures, observation units, system security,

operational defenses, and medical supervision (1,

2). Although the approximation computing idea

reduces energy usage, exact results are never

obtained. There is a trade-off between available

space and power delay during the VLSI circuit

design processes. In the domain of utilization of

energy, data processing is mostly caused by

arithmetic processes (3, 4). The three main parts of

the arithmetic circuitry are the electronic, central,

and graphical computational units. Amplification

operations are often utilized to operate with high

latency and low energy usage. In signal analysis

units, multiplier approximations are used to create

error-tolerant signals. As a result, numerous

additional circuit level techniques are employed

for fault-tolerant and addition design, accordingly

(5, 6). In general, multipliers are utilized in VLSI,

digital signal processing, and audio processing

processes, such as adaptive filters, Fourier

transforms, discrete wavelet transforms, finite

impulse filters, and sinusoidal transforms (7, 8).

Forty percent of the CPU power is wasted during

arithmetic computing operations. Thus, the

fundamental processing function requires a fixed

coefficient for sampling input additions. By

including the approximate calculation in the

intermediate step of the multiplication method, the

power usage or latency is reduced. Using this

method makes use of the estimated compression

(9, 10). Power usage and delay operations are

greatly inflated in the last part of amplification. In

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,

and reproduction in any medium, provided the original work is properly cited.

(Received 07th May 2025; Accepted 19th September 2025; Published 29th October 2025)

Boopathy et al., Vol 6 ǀ Issue 4

781

order to execute the calculation of numerals

multipliers bits with its row products partial, the

parallel multiplying structure technique also

requires a number of analogous hardware that

supplies an expanded bit product area. The

resources consumer in the component's

mathematical unit is the multiplier, and it

contributes considerably to the chip area and

critical path in similar fashion. Notably, the Baugh

Wooley and Booth multiplier methods are

commonly employed and yield potent hardware-

mediated results. The Booth methods were

employed primarily successfully, and several

modifications are reported in the research's part.

Additionally, utilizing greater radix booth

multiplying reduces the row of the complete

production array and the adder performance.

Thus, greater radix Booth method increases the

generator and partial choice of products difficulty

(11, 12).

In the realm of digital signal processing and

arithmetic computations, the quest for high-speed,

low-power, and area-efficient multiplication

techniques is perpetual (13, 14). Multiplication

operations form the backbone of numerous

computational tasks in diverse applications.

Among various multiplication techniques, Booth

multiplier stands out for its efficiency in reducing

partial product computations, thereby offering

significant speed improvements over conventional

multipliers (15, 16). However, traditional Booth

multipliers may suffer from high power

consumption and large area footprint, which can

be prohibitive in energy-constrained and area-

restricted environments. To address these

challenges, researchers have delved into the realm

of approximate computing, a paradigm that

emphasizes trading off accuracy Approximate

computing techniques have gained momentum in

recent years due to their potential to offer

substantial benefits in applications where exact

precision is not paramount. In this context,

approximate Booth multipliers have emerged as

promising candidates for high-speed, low-power

multiplication in error-tolerant applications (17).

One of the key approaches to approximate

multiplication is dynamic truncation, which

selectively discards least significant bits during

computation to reduce power consumption and

area overhead. Dynamic truncation techniques

offer a fine balance between computational

accuracy and resource efficiency, making them

well-suited for error-tolerant applications where

minor deviations from exact results are acceptable.

By judiciously applying dynamic truncation within

the Booth multiplier architecture, it is possible to

achieve significant improvements in power

efficiency and area utilization without

compromising speed or tolerable error margins

(18). The integration of dynamic truncation within

the Booth multiplier framework requires careful

consideration of various design aspects, including

error analysis, truncation control mechanisms, and

optimization of hardware resources. Additionally,

the choice of approximation technique and the

determination of acceptable error bounds play

crucial roles in defining the performance

characteristics of the approximate multiplier.

Through meticulous design and optimization, it

becomes feasible to tailor the approximate Booth

multiplier to meet the specific requirements of

high-speed error-tolerant applications.

Approximate computing is an efficient method to

trade off small computational errors with compact

hardware, low power consumption, and faster

execution speed. In particular, this methodology is

beneficial where optimal precision is not

necessary, such as in image compression and

sensor data processing, digital signal processing,

and convolution of CNNs.

The design of proposed Booth multiplier with

dynamic truncation entails exploring innovative

solutions to address the inherent trade-offs

between accuracy, speed, power, and area.

Leveraging advancements in semiconductor

technology and algorithmic optimizations,

researchers aim to push the boundaries of

efficiency in approximate multiplication, unlocking

new possibilities for energy-efficient computing in

resource-constrained environments. Moreover,

the proliferation of IoT devices and edge

computing platforms further underscores the

importance of developing lightweight yet powerful

arithmetic units capable of delivering high

performance within stringent power and area

constraints. In this context, this paper proposes a

novel approach to the design of a low-power, area-

efficient approximate Booth multiplier using

dynamic truncation for high-speed error-tolerant

applications. The proposed multiplier architecture

integrates dynamic truncation mechanisms within

the Booth encoding scheme to selectively truncate

Boopathy et al., Vol 6 ǀ Issue 4

782

partial products based on their significance,

thereby reducing computational complexity and

resource utilization. By dynamically adjusting the

truncation levels according to the specific

requirements of the application and the desired

error tolerance, the proposed multiplier achieves a

fine balance between accuracy and efficiency,

enabling significant improvements in power and

area efficiency without sacrificing performance.

The key contributions of the article is,

• The research proposes a novel dynamic

truncation algorithm tailored for approximate

Booth multipliers. This algorithm selectively

discards less significant bits during multiplication,

dynamically optimizing the trade-off between

accuracy and speed based on real-time input data

and computational constraints.

• The study demonstrates the seamless

integration of the Dynamic Truncation mechanism

into the hardware architecture of the approximate

Booth Multiplier. By adding control logic to adjust

the truncation process during operation, minimal

impact on performance and area efficiency is

ensured, enhancing the practicality of the

proposed approach.

• Through evaluation and analysis, the

research showcases significant improvements in

efficiency achieved by the proposed methodology.

By dynamically adjusting the truncation level, the

multiplier achieves a better trade-off between

accuracy and speed, resulting in reduced power

consumption and area utilization, making it more

suitable for low-power and area-constrained

applications.

• The study highlights the maintained high

degree of error-tolerance of the approximate

Booth multiplier with Dynamic Truncation, while

achieving high-speed operation. Performance

evaluation through simulations and synthesis

demonstrates improved throughput and reduced,

latency compared to conventional approaches,

validating the effectiveness of the proposed

methodology in practical applications.

Approximate computing offers a solution by

allowing minor errors in exchange for lower

power, smaller area, and faster operation. This is

particularly useful in applications where exactness

is not critical, such as image compression, sensor

data processing, digital signal processing, and

convolution operations in CNNs.

In this work, we propose an approximate Booth

multiplier with dynamic truncation, which

discards least significant bits to reduce power and

area while maintaining acceptable error. The

design is validated across practical applications,

demonstrating high-speed, low-power, and error-

tolerant operation suitable for resource-

constrained environments.

Approximate computing is an efficient method to

trade off small computational errors with compact

hardware, low power consumption, and faster

execution speed. In particular, this methodology is

beneficial where optimal precision is not

necessary, such as image compression and sensor

data processing, digital signal processing, and

convolution of CNNs.

To minimize energy use and enhance efficiency,

the plans for the two non-iterative and iterative

approximation LMs are examined (19). Three

inaccurate mantissa addition algorithms are used

in these non-iterative approximation LMs.

Throughout an iteration, the suggested IALMs

employ a set-one boost for the two mantissa

addition algorithms; for the last furthermore, they

employ approximated mirror arithmetic and

lower-part-or adders. The suggested

approximation LMs with a suitable amount of

inaccurate bits produce a greater accuracy and

lower energy use than traditional LMs utilizing

exact components, according to error investigation

and simulating findings that are also supplied. The

NMED and PDP of 16-bit approximation LMs are

reduced by up to 18% and 37%, respectively, in

comparison to traditional LMs with precise units.

The suggested approximation LMs are determined

to be most appropriate for situations that permit

higher mistakes but need fewer resources and less

power when contrasted with earlier

approximation multipliers. Although they need

lesser mistakes, approximated Booth multipliers

are suitable for situations with less demanding

power demands. There are instances available for

uses using emir-tolerant computation.

Approximation computing's development has

helped digital integrated circuits achieve

decreased accuracy, enhanced efficiency, and

power savings at the expense of circuit intricacy

(20). This study proposes the use of estimate radix-

4 Booth Encoders, truncation parts of products,

and an iterative CLA addition for ultimate adding

to build the end result phrases to create 8-bit

Boopathy et al., Vol 6 ǀ Issue 4

783

approximation booth multipliers. The multiplier's

reliability is increased by adding the approximate

factor for truncated and ABE use. The NMED was

the measure used to assess the suggested

multipliers' error performances. Image

multiplying utilizing approximation booth

multipliers has been achieved to demonstrate the

viability of utilizing approximation circuits for

applications that require real-time. SSIM and PSNR

measurements are used to contrast and illustrate

every multiplier's efficiency utilizing an image

processing programmed. The approximation

multiplies which are suggested have less space and

consume fewer watts than the multipliers which

are already in use, according to experiments

conducted with them. An 180nm CMOS transistor

repository was used to model each circuit.

This article suggests an APPGS in order to

investigate the advantages of approximation

computing. Three approximated radix-4 Booth

squarer designs are presented utilizing APPGS

(21). In the partial output matrix's r smallest

significance columns, APPGS generates

approximation partial solutions. For gathering of

approximation parts at the k amount of the most

vital rows of the approximation partial product,

the ABS3 has an error restoration mechanism.

Utilizing 45-nm CMOS semiconductors, the

suggested squarers with various values of r and k

are generated. The findings show that the

suggested squarers operate optimally in terms of

accuracy and reliability. The ABS3 with k = 6 has

an NMED of 0.56 x 10 -6 and reduces power, delay,

and area by 183%, 29.4%, and 16.9%, respectively.

In a telecommunication usage, the ABS3 with k = 6

generates a signal for output 32.45 dB, which is

used to assess the functionality of the suggested

squarers.

In the current growth of error-tolerant

programmed based on outstanding performance

processors cores, lightweight construction is a

crucial prerequisite (22). The designs of the data

processing subsystems affect the computing-

core's efficiency. VLSI designs for high volume data

computation now include area, latency, and power

reduction as essential requirements. For

applications that require data, presented CEETAs

in this study that provide effective design metrics.

In the erroneous portion, simple gate level

approximations full multipliers, or SAFAs, are

suggested as a means of achieving resource and

area effectiveness. The modelling result

demonstrates that the suggested SAFAs centered

CEETAI addition shows low power use, less PDP,

and less ADP. For error-tolerant uses, HPETMs

based on 4-2 AC components and SAFA1E and

SAFA2E are also suggested. Delay propagation and

gate count reductions on the payload generating

path are offered in the SAFA and AC architectures

to accomplish high speed energy and area

effectiveness for the large amount of digital data

processing. The suggested HPETMI demonstrates

a considerable reduction in delay. It also saves an

enormous amount of electrical power and space.

An new concept in computing called

Approximation Computing (AC) can save

processing time and energy usage for intrinsically

error-tolerant workloads (23). A variety of

approximation methods and concepts have been

put forth, demonstrating the efficacy of loosening

the average output quality limitation at the

hardware and software layers. Nevertheless, the

output mistakes of AC might become intolerable

for certain inputs due to its strong input

dependence. Thus, an input-dependent adjustable

approximation design is desperately needed. In

light of this, it provide in the following section a

simple and effective machine-learning-based

method for creating an input-aware architecture

selector, or quality administrator, that may modify

the approximation design to satisfy the desired

output quality. It employs a collection of energy-

efficient approximation array multipliers with 20

various settings, 8-bit and 16-bit, that are

frequently employed in image and audio

processing programmed, for illustrative reasons.

The simulation results show the efficacy of the

lightweight choice what the suggested tunable

layout accomplishes an important decrease in

quality degradation with relatively little expenses.

The first literature explores the implementation of

non-iterative and iterative approximation

multiplier designs to minimize energy

consumption and enhance efficiency. It introduces

inaccurate mantissa addition algorithms and

employs dynamic truncation techniques to achieve

higher accuracy and lower energy consumption

compared to traditional multipliers. The second

literature focuses on developing approximation

Booth multipliers using radix-4 Booth encoding

and iterative carry-look ahead addition to improve

reliability and reduce power consumption. It

Boopathy et al., Vol 6 ǀ Issue 4

784

demonstrates the effectiveness of these multipliers

through image multiplication experiments,

showcasing their reduced size and power

consumption. The third literature proposes

approximation Booth squarer designs utilizing an

input-aware architecture selector to balance

output quality and energy efficiency. It presents

various approximation methods and demonstrates

the efficacy of lightweight designs in reducing

quality degradation with minimal energy costs.

The existing methods for designing multipliers

often face limitations in balancing power

consumption, area efficiency, and accuracy,

particularly for high-speed error-tolerant

applications. Traditional approaches relying on

exact components may result in excessive power

usage and large area footprints, while

approximation techniques may sacrifice accuracy

for efficiency. To address these challenges, this

research proposes a novel approach: the design

and implementation of a low-power, area-efficient

approximate Booth multiplier utilizing dynamic

truncation. By dynamically adjusting the precision

of computations, this proposed method aims to

achieve a balance between power efficiency and

accuracy, making it suitable for high-speed error-

tolerant applications where energy consumption

and computational speed are critical factors. The

dynamic truncation technique offers flexibility in

optimizing the trade-off between precision and

efficiency, thereby overcoming the limitations of

existing methods and providing a viable solution

for demanding computational tasks in various

fields (23).

The proposed design incorporates dynamic

truncation in the Booth encoding process

compared to the existing approximate Booth

multipliers that use static truncation, simplified

adders, or error-recovery circuits, providing

runtime flexibility. This method provides a better

compromise between accuracy and efficiency, has

bounded and predictable error behavior, and can

achieve substantial power and area savings with a

low delay overhead. The suggested multiplier is

generic and applicable to numerous error-tolerant

domains, such as DSP, IoT, and edge computing

accessible machines, unlike previous designs that

were tailored to specific fields like image

processing or squaring.

Methodology
The proposed methodology for the design and

implementation of a Low-Power Area-Efficient

Approximate Booth Multiplier using Dynamic

Truncation for High-Speed Error-Tolerant

Applications involves several key steps. Firstly, the

dynamic truncation algorithm must be devised to

selectively discard less significant bits during the

multiplication process, optimizing the trade-off

between accuracy and speed based on real-time

input data and computational constraints. Next,

the hardware architecture of the approximate

Booth Multiplier needs modification to seamlessly

incorporate the Dynamic Truncation mechanism,

ensuring minimal impact on performance and area

efficiency. This includes the addition of control

logic to dynamically adjust the truncation process

during operation. Efficiency improvement is

evaluated by dynamically adjusting the truncation

level based on real-time input data and

computational constraints-, the multiplier

achieves a better trade-off between accuracy and

speed, This results in reduced power consumption

and area utilization, making it more suitable for

low-power and area-constrained applications.

Error-Tolerance analysis shows that the

approximate Booth multiplier with Dynamic

Truncation maintains a high degree of error-

tolerance while achieving high-speed operation.

The adaptive nature of Dynamic Truncation allows

the multiplier to dynamically adapt to varying

error requirements. Performance evaluation of the

proposed multiplier architecture reveals

promising results. Through simulations and

synthesis, it is observed that the multiplier exhibits

improved throughput and reduced latency

compared to conventional approaches.

Approximate Multiplier Designs
An approximate representation of a multiplier can

be constructed by a variety of techniques,

including scaling the supply voltage, truncating

expected partial production rows, lowering the

amount of partial product rows by using

approximation compressors, and constructing

simplification multiplier computations. Booth

Multiplier with Dynamic Truncation for High-

Speed Error-Tolerant Applications introduces a

novel methodology that addresses the pressing

need for efficient yet accurate multiplication in

Boopathy et al., Vol 6 ǀ Issue 4

785

resource-constrained scenarios. By dynamically

truncating less significant bits during the

multiplication process, our approach optimizes the

balance between precision and speed in real-time,

tailored to the specific computational demands

and input data characteristics. This dynamic

truncation algorithm, meticulously designed,

enables the multiplier to adapt its precision

dynamically, minimizing unnecessary

computations while preserving accuracy. The

voltage supply of the gates used for logic was

managed using the voltage scalability approach,

which assisted in lowering the power

consumption. Timing violations would arise if the

supply power were less than the necessary

nominal voltage, producing approximations of the

findings. Nonetheless, if there was a time infraction

along a crucial channel, the incorrect value may be

quite high. The gross weight of the fractional

output decreased with increasing distance from

the LSB column. The reduced partial product

weights were modest, so there wouldn't be a

significant error distance. A rough multiplier was

created by altering the precise multiplication.

Equation [1] provides an illustration, wherein Ar

and Br indicate the rounded values of inputs A and

B. To minimize hardware expenses, investigators

approximate Ar and Br using the lowest values of

2n; hence, it's probable that Ar x B, Br x A, and Ar x

Br were computed using the shift function. Since

the minimization of (Ar — A) X. (Br — B), it was

unimportant. The multiplication equation has been

adjusted and (Ar — A) (Br — B) has been dropped.

A x B = (Ar - A) x (Br - B) + Ar x B + Br x A - Ar x Br (1) A x B ~= Ar x B + Br x A - Ar x Br [1]

The simplest multiplier design is the Wallace tree

multiplier architecture. In a Wallace tree

multiplier, exact 2-2 compressors. (half-adders)

and 3-2 compressors (full adders) were utilised to

reduce the total number of rows of partial results.

In a Wallace Tree Multiplier, precise 4-2

compressors may also be used to provide a more

regular layout. The decreased partial products are

added by a carry propagating adder to obtain the

final output. Most previous studies made

approximation compressors, which were modified

from the exact 4-2 compressors, because of their

extensive application. The details of the precise

and approximation compressor are covered in the

next sections.

Conventional Radix-8 Booth Multiplier
The conventional Radix-8 Booth Multiplier has

been a cornerstone in digital arithmetic circuits for

its efficiency in performing multiplication

operations. However, to further optimize its

performance, Modified Booth Encoding techniques

have been developed. This paper delves into the

design aspects of MBE for enhancing the efficiency

and speed of Radix-8 Booth Multipliers. In

designing MBE for a conventional Radix-8 Booth

Multiplier, several considerations come into play.

Firstly, the encoding scheme must be adapted to

accommodate the Radix-8 nature of the multiplier.

This involves devising a method to efficiently

generate the Booth codes for each multiplier

operand while ensuring compatibility with Radix-

8 arithmetic. The implementation of MBE in a

conventional Radix-8 Booth Multiplier involves

several key steps. Firstly, the generation of Booth

codes for the operands must be optimized to

minimize hardware complexity and latency.

To further enhance the efficiency of the MBE-

enabled Radix-8 Booth Multiplier, various

optimization techniques can be employed. One

such technique is the use of carry-save addition in

the partial product accumulation stage.

Additionally, techniques such as pipelining and

parallelism can be leveraged to increase

throughput and reduce latency in the multiplier.

The performance of the modified Booth encoding

scheme can be evaluated using metrics such as

area efficiency, power consumption, and speed.

Two N-bit positive binary values denoted X and Y,

respectively, represent the multiplication factor

and multiplier. The subsequent equations [2] and

[3] may then be used to express X and Y in 2's

complement notation:

𝑋 = −𝑥𝑁−12𝑁−1 + ∑ 𝑁−2
𝑖=0 𝑥𝑖2

𝑖 [2]

𝑌 = −𝑦𝑁−12𝑁−1 + ∑ 𝑁−2
𝑖=0 𝑦𝑖2𝑖 [3]

The radix-8 modified Booth encodes arranges 4 bits of Y through a set {y3k+2, y3k+1, y3k, y3k–1} with one bit

overlapped to obtain the resultant value of X and Y. The symbol bit, yN-1, increased to advanced bits,

Boopathy et al., Vol 6 ǀ Issue 4

786

although the y-1 bit is presumed to be logic-0 during grouping. The following equation [4] yields every

group's Booth encoded digit:

Yk = -4y3k+2 + 2y3k+1 + y3k + y3k-1 for 0 ≤ k ≤ dN/3e - 1 [4]

As shown in Table 1, Yk in this case might be equivalent to 0, ±1, ±2, ±3, or ±4. Next, the following equation

[5] yields the product of the partial (PP) rows of the multiplier:

PPk = X* Yk for 0 ≤ k < dN/3e-1 [5]

Table 1: Truth Table for Conventional Approximate MBE

y3k+2 y3k+1 y3k y3k-1 Yk PPk PPik

0 0 0 0 0 0 0

0 0 0 1 +1 X xi

0 0 1 0 +1 X xi

0 0 1 1 +2 2X xi-1

0 1 0 0 +2 2X xi-1

0 1 0 1 +3 3X xi+xi - 1

0 1 1 0 +3 3X xi + xi - 1

0 1 1 1 +4 4X xi - 2

1 0 0 0 -4 -4X (xi – 2)’

1 0 0 1 -3 -3X si’

1 0 1 0 -3 -3X si’

1 0 1 1 -2 -2X (xi-1)’

1 1 0 0 -2 -2X (xi-1)’

1 1 0 1 -1 -X xi'

1 1 1 0 -1 -X xi'

1 1 1 1 0 0 0

PPk in this case stands for the kth partial product

rows. As seen in Table 1, the PPk can have values of

0, ±X, ±2X, ±3X, and ±4X based on Equations [4]

and [5]. The PPk will only recognize positive values

whenever the signal bit of a Booth-encoded digit is

y3k+2=0. Using left shift X 1-bit location for certain

values, and two-bit places in others, one may

obtain 2X and 4X, correspondingly. But a recording

adder is required for executing the 3X term as X +

2X. The 2's complement of the matching positive

partial product rows yields a negative partial

products row when y3k + 2 = 1. It is therefore

achieved by including logic-1 (y3k + 2) within the

LSB and adding to the optimistic partial products

row in every way possible. The radix-8 Booth

encoding multiplier's partial product rows are

represented by dots, where each dot is a partial

products bit. Table 1 shows the portion of the

partial result. PPik found the partial products

matrix's ith bit placement in the kth rows, where si

stands for the recording adder's result bits.

Equation [6] is the reduced logic formulation for

PPik = xi (y3k+2 ⊕ y3k+1) (y3k ⊕ y3k-1) + xi-1 (y3k+l y3k y3k-1 + y3k+1 y3k y3k-1) + si (y3k+2 ⊕ y3k+1) (y3k ⊕ y3k-1) + xi-2

(y3k+2 y3k+1 y3k y3k-1 + y3k+2 y3k+1 y3k y3k-1) ⊕ y3k+2 [6]

According to Equation [6], each bit of the relevant

PPk row is further enhanced using an operation

known as XOR with y3k+2 when y3k+2=1. A signed

multiplier requires a modest number of sign-

highlighting bits at the MSBs of each partial

product row for the partial products to accumulate

correctly. The application of traditional MBE,

which produces PPik pieces. Two approximated

radix-8 MBEs are suggested in the next section to

make the process of creating partial products

easier.

Boopathy et al., Vol 6 ǀ Issue 4

787

Figure 1: Radix-8-Booth Multiplier Architecture

Figure 1 illustrates the architecture of a Radix-8

Booth Multiplier, showcasing its structure and

components for efficient multiplication operations

using Booth encoding.

Dynamic Truncation for High-Speed

Error-Tolerance and Error Analysis
An innovative method for achieving high-speed

operation and error tolerance in approximation

Booth multipliers is called dynamic truncation.

Approximate computing approaches have become

popular in the area of digital mathematical circuits

for purposes where a particular degree of mistake

tolerance is permissible in return for increased

efficiency and performance. To improve the speed

as well as using approximation Booth multipliers,

this work investigates the idea of dynamic

truncation. We provide a dynamic input truncation

strategy that produces a partial product, where

Equation is given in [7], where A is the

multiplicand and B is the result of the multiplier.

The approach incorporates two 2-input AND gates,

as shown in Figure 2. With this method, an

adjustable approximation factor may be created at

runtime. To determine if the partial product PPD

should be truncated, one uses the Trunc signal. The

partial products are trimmed to 0 if the Trunc is 1.

More specifically, by truncating those PPDs in the

multipliers to zeros, the Trunc signals conserve

electricity. Put differently, readers may consider

the Trunc signals to be acting as a means of turning

off the actual hardware units within their

respective columns. Figure 3 presents the

Hardware Realization of Radix-8 Truncated

Multiplier.

PPDik= (~Trunc AND Bi) AND Aj [7]

Since every bit in an 8 x 8 multiplier corresponds

to 8 bits within the multiplicand, our suggestion is

to share gates using an additional AND gate to

lower hardware expenses. In the next subsection,

the regulation that governs Trunc signals using the

suggested approximation multiplier will be

covered in further depth. The idea of dynamic

truncation is to shorten calculation times without

sacrificing accuracy by omitting some of the less

important bits during multiplying. Dynamic

truncation dynamically adjusts its truncation level

based on operand properties and application

computing requirements, in contrast to classic

truncation algorithms that dynamically eliminate

bits based on specified criteria. A tighter

management of the trade-off between rapidity and

precision is made possible by its adaptive nature.

Boopathy et al., Vol 6 ǀ Issue 4

788

Figure 2: Hardware Realization of Radix-8 Truncated Multiplier

Figure 3: Dynamic Truncation Technique (AND Gates)

Figure 4: Radix-8 Booth Recoding for an 8-Bit Multiplier

Several important factors need to be taken into

account while constructing Dynamic Truncation

over high-speed error tolerance. First and

foremost, the truncation method needs to be

Boopathy et al., Vol 6 ǀ Issue 4

789

properly constructed such that it may dynamically

modify the truncation level in response to

computing, limitations and real-time input data.

The truncation process may be adaptively

optimized through the application of machine

learning or heuristic methods. Furthermore, as

illustrated in Figure 4 the approximate Booth

Multiplier's hardware design has to be adjusted to

smoothly integrate the Dynamic Truncation

method, guaranteeing minimum effects on area

efficiency and performance. There are a few key

processes involved in implementing dynamic

truncation for an approximation Booth multiplier.

Figure 5: Dynamic Truncation and Final Product Accumulation

To find the best truncation level for every

multiplication operation, a dynamic truncation

mechanism must first be created as shown in

Figure 5. Performance limitations, error tolerance

specifications, and operand characteristics are a

few examples of the variables that this method

could consider. After the truncation threshold is

established, the Booth Multiplier's hardware

design has to be changed to allow for dynamic

truncation. This includes adding control logic that

can be used to dynamically alter the truncation

process while it is in use. We validate the

correctness of our method by comparing it to the

subsequent errors, viz, normalized mean absolute

error, ~€XYA, normalized mean error, ~€XY,

normalized mean square error, ~€XY, and

normalized maximum error, ~€Xmax.

€XY = Avg(SV - TV)/2n [8]

€XYS = Avg((SV - TV)2)/22n [9]

Results and Discussion
The results encompass various metrics, including

power consumption, area utilization, and

computational accuracy, to comprehensively

assess the effectiveness of the proposed design.

These findings provide data into the practical

implications and benefits of employing the

proposed multiplier method in real-world

hardware implementations. Using a device

running Python as a programming language and

the Windows 10 operating system. The following

metric was used to assess the model's efficiency.

The layout for simulated results typically includes

a series of tables or graphs presenting data and

findings obtained from simulation experiments.

Each table or graph corresponds to a specific

aspect of the study, such as performance metrics,

comparisons between different methods, or the

impact of varying parameters. For example, tables

may depict numerical values for metrics like area,

power consumption, and delay, while graphs may

illustrate trends or comparisons visually. Clear

labeling and organization are essential to ensure

the results are easily interpretable, with titles, axes

labels, and legends providing context and clarity.

Additionally, accompanying captions or

annotations may offer explanations or insights into

the significance of the results, helping readers

understand the implications of the findings.

Overall, the layout for simulated results serves to

substantiate the result statements by providing

empirical evidence and data-driven support for the

study's conclusions.

Effect of Bit Truncation on MSE for

Booth Multiplier
The graph depicted in Figure 6 illustrates the

consequential relationship between the level of bit

truncation, represented on the x-axis, and the MSE,

depicted on the y-axis, for it Booth Multiplier. Bit

truncation, a process of lowering the precision

Boopathy et al., Vol 6 ǀ Issue 4

790

inherently affects the accuracy of the

multiplication operation. As the truncation level

increases, meaning more bits are discarded, the

MSE tends to rise. This outcome aligns with the

principle that decreasing precision leads to

increased errors in computation due to the loss of

information. The graph serves as a visual

representation of this phenomenon, showcasing

how the trade-off between computational

complexity and accuracy manifests in the context

of Booth Multiplier operation. Understanding this

relationship is crucial for optimizing the

performance of Booth Multipliers in various

computational applications, as it highlights the

delicate balance between precision and efficiency

in arithmetic operations.

In the verification process, bit multiplication

typically involves the computation of products

between individual bits in large multiplication

operations. Dynamic truncation, a technique

commonly employed in such scenarios, allows for

the adjustment of precision during computation,

enabling the system to handle large operands

efficiently while minimizing resource utilization.

By selectively discarding less significant bits based

on computational needs, dynamic truncation

optimizes the accuracy and efficiency of

multiplication operations, making it well-suited for

applications involving extensive bit-level

computations. This approach ensures that

computational resources are utilized effectively,

leading. to improved performance and reduced

overhead in large-scale multiplication tasks.

Figure 6: Effect of Bit Truncation on MSE for Booth Multiplier

Area Comparison among Different

Multipliers
Figure 7 presents a comprehensive comparison of

the area occupied by different types of multipliers,

with various multiplier architectures depicted

along the x-axis and the respective area

requirements displayed on the y-axis. This graph

serves as a valuable tool for assessing the trade-

offs between different multiplier designs in terms

of their spatial efficiency. Each multiplier

architecture represents a distinct approach to

optimizing area utilization. By visually comparing

the area requirements of these architectures,

engineers and designers can make informed

decisions regarding which multiplier design best

suits their specific application requirements.

Moreover, this graph facilitates the identification

of trends in multiplier design, highlighting

advancements in architecture that lead to more

compact and efficient implementations.

Understanding these area comparisons is crucial

for developing efficient and cost-effective

hardware systems, as it enables the selection of

multiplier architectures that strike the optimal

balance between performance and resource

utilization.

Boopathy et al., Vol 6 ǀ Issue 4

791

Figure 7: Area Comparison among Different Multipliers

Power Consumption versus Truncation

Level
Figure 8 illustrates the relationship between the

level of truncation, represented on the x-axis, and

the respective power consumption, depicted on

the y-axis. Truncation, a method of reducing the

precision of data by eliminating least significant

bits, directly impacts the power consumption of a

system due to alterations in computational

complexity and resource utilization. Typically, as

the truncation level increases, indicating a higher

degree of precision reduction, the power

consumption tends to decrease. This phenomenon

can be attributed to reduced computational

requirements and resource utilization associated

with lower precision operations. However, beyond

a certain point, further truncation may lead to

diminishing returns in terms of power savings or

even a reversal where power consumption starts

to increase due to inefficiencies introduced by

excessive precision loss. Consequently,

understanding the power consumption trends

with respect to truncation levels is crucial for

optimizing the energy efficiency of computational

systems. This graph provides valuable insights for

system designers in selecting an appropriate

truncation level that balances power consumption

with computational accuracy to net specific

performance and energy efficiency requirements.

Figure 8: Power Comparison versus Truncation Level

As the number of bits increases in a computational

system, there is typically a tradeoff in power

consumption due to the inherent increase in

complexity and computational demand. With more

bits to process, the system requires additional

resources such as transistors, interconnections,

and clock cycles to perform operations, resulting in

higher energy consumption. Additionally, larger

bit-widths often necessitate the use of more

advanced and power-hungry components to

maintain performance, further exacerbating

power consumption. Therefore, while increasing

the number of bits may enhance precision and

computational capabilities, it also leads to

Boopathy et al., Vol 6 ǀ Issue 4

792

increased power requirements, highlighting the

tradeoff between accuracy and energy efficiency in

hardware design.

Mean Square Error across Different

Multipliers
Figure 9 presents a comparative analysis of MSE

across various multiplier architectures, with

different types of multipliers depicted along the x-

axis and the corresponding MSE values displayed

on the y-axis. The MSE metric serves as a crucial

indicator of the accuracy and precision of

multiplication operations performed by different

multiplier designs. Each multiplier architecture

embodies distinct methodologies and

optimizations aimed at balancing computational

efficiency with precision in arithmetic operations.

The graph allows for a comprehensive

examination of how these different approaches

impact the accuracy of multiplication results. By

visually comparing MSE values across various

multipliers, engineers and researchers can gain

insights into the relative performance and trade-

offs associated with different multiplier designs.

Identifying trends in MSE variation among

different multiplier architectures facilitates

informed decision-making in selecting the most

suitable multiplier design for specific application

requirements. Moreover, understanding the MSE

variations across different multipliers is essential

for optimizing the accuracy and reliability of

computational systems, particularly in

applications where precise arithmetic operations

are critical.

Figure 9: Mean Square Error across Different Multipliers

FIR Filter Output Error across

Different Multipliers
Figure 10 depicts the output error of Finite

Impulse Response (FIR) filters across various

multiplier architectures, with different types of

multipliers represented along the x-axis and the

corresponding FIR output error displayed on the y-

axis. The output error of FIR filters is a critical

metric that directy influences the accuracy and

reliability of signal processing systems,

particularly in applications such as digital

communication and audio processing. Each

multiplier architecture showcased in the graph

embodies unique optimizations and

methodologies aimed at enhancing computational

efficiency while minimizing errors introduced

during the filtering process. The graph facilitates a

comprehensive comparison of output errors

among different multiplier designs, enabling

engineers and researchers to assess the impact of

architectural choices on the overall performance of

FIR filters. By visually analyzing output error

variations across different multipliers, insights can

be gained into the trade-offs between

computational efficiency and filtering accuracy.

This understanding is vital for selecting the most

appropriate multiplier architecture to meet

specific application requirements and ensure

optimal performance of signal processing systems.

Moreover, identifying trends in FIR output error

variation among different multipliers aids in the

continuous improvement and refinement of

multiplier designs to achieve higher levels of

accuracy and reliability in signal processing

applications.

Boopathy et al., Vol 6 ǀ Issue 4

793

Figure 10: FIR Filter Output Error across Different Multipliers

Amplitude
Figure 11 illustrates the temporal evolution of

amplitude, with time represented along the x-axis

and the corresponding amplitude values depicted

on the y-axis. This graph provides a

comprehensive visualization of how the amplitude

of a signal varies over time. Amplitude is a

fundamental characteristic of a signal that

represents the magnitude or strength of the signal

at any given point in time. By plotting the

amplitude against time, Figure 9 offers valuable

insights into the dynamic behavior of the signal,

including variations, oscillations, and trends over

time. Analysis of the amplitude graph enables the

identification of important features such as peaks,

troughs, trends, and periodicity within the signal.

Understanding these characteristics is essential for

various applications across fields such as signal

processing, communications, and control systems.

Moreover, Figure 9 serves as a critical tool for

engineers and researchers to analyze and interpret

the behavior of signals in real-world scenarios,

aiding in the development of algorithms, systems,

and devices that rely on accurate signal processing

and interpretation.

Figure 11: Amplitude

Booth Encoding of Binary Numbers
Figure 12 depicts the Booth Encoding of Binary

Numbers, with the encoded values represented

along the x-axis. Booth Encoding is a technique

used in digital signal processing and arithmetic

operations to efficiently represent signed binary

numbers. In the graph, each point on the x-axis

corresponds to a specific encoded value, which

reflects the encoding scheme applied to binary

numbers. The Booth Encoding method utilizes it

signed-digit representation, where each encoded

value encodes multiple bits of the binary number,

resulting in a more compact representation

compared to traditional binary encoding. This

graph serves as a visual representation of the

Booth Encoding scheme, facilitating an

understanding of how binary numbers are

encoded using this technique. By analyzing the

encoded values along the x-axis, engineers and

researchers can gain insights into the efficiency

and effectiveness of Booth Encoding in

Boopathy et al., Vol 6 ǀ Issue 4

794

representing signed binary numbers, particularly

in arithmetic operations such as multiplication.

Understanding Booth Encoding is crucial for

optimizing the performance and efficiency of

digital signal processing algorithms and hardware

implementations, as it enables the representation

of binary numbers in a more compact and efficient

manner, thereby reducing computational

complexity and resource utilization.

Figure 12: Booth Encoding of Binary Numbers

Booth Encoding of 4-bit Binary

Numbers
Figure 13 presents a graphical representation of

the Booth Encoding of 4-bit binary numbers, with

the binary numbers depicted along the x-axis and

the corresponding encoded values displayed on

the y-axis. Booth Encoding is a technique used in

digital signal processing and arithmetic operations

to efficiently represent signed binary numbers. In

the graph, each point on the y-axis represents a

specific encoded value, which is derived from the

corresponding 4-bit binary number. The Booth

Encoding method utilizes a signed-digit

representation, where each encoded value

encodes multiple bits of the binary number,

resulting in a more compact representation

compared to traditional binary encoding. This

graph serves as a visual demonstration of how

binary numbers are encoded using the Booth

Encoding technique, showcasing the efficiency and

effectiveness of the encoding scheme in

representing signed binary numbers. By analyzing

the encoded values along the y-axis for different

binary numbers, engineers and researchers can

gain insights into the compression and utilization

of bits achieved through Booth Encoding.

Understanding Booth Encoding is crucial for

optimizing the performance and efficiency of

digital signal processing algorithms and hardware

implementations, as it enables the representation

of binary numbers in a more compact and efficient

manner, ultimately reducing computational

complexity and resource utilization in arithmetic

operations.

Area

The area efficiency of a circuit or system refers to

its ability to accomplish a given task with minimal

physical footprint. In the specific context of the

research on low-power area-efficient approximate

Booth multiplier using dynamic truncation for

high-speed error-tolerant applications, "area"

would pertain to the space occupied by the

multiplier circuitry on the chip. The goal of such a

design would be to minimize this area while

ensuring efficient operation and error tolerance,

ultimately aiming for a compact and resource-

efficient implementation suited for high-speed

applications with low power consumption.

Power
Power consumption is a critical consideration in

the development of hardware systems as it directly

influences factors such as battery life, heat

dissipation, and overall system efficiency Power

would pertain to the amount of electrical energy

consumed by the multiplier circuitry during

operation. The objective of such a design would be

to minimize power consumption while

maintaining efficient performance and en-or

tolerance, thereby enabling the creation of energy-

efficient hardware solutions suitable for high-

speed applications.

Boopathy et al., Vol 6 ǀ Issue 4

795

Delay
Delay would refer to the time taken for

multiplication operations to be executed within

the multiplier circuitry. Minimizing delay is

essential for achieving high-speed operation,

enabling the multiplier to efficiently process input

data and produce accurate results within the

shortest possible time frame, thereby enhancing

the performance of error-tolerant applications.

Figure 13: Booth Encoding of 4-bit Binary Numbers

Figure 14 presents a comprehensive performance

comparison graph incorporating area, power

consumption, and delay across different multiplier

architectures. This graph offers valuable insights

into the tradeoffs between these critical metrics in

hardware design. The graph reveals how various

multiplier designs excel in different aspects: some

may prioritize smaller area footprints, while

others may focus on minimizing power

consumption or reducing delay. Analyzing this

performance comparison enables engineers and

researchers to identify the most optimal multiplier

architecture that strikes the desired balance

between area, power, and delay for a given

application context. Moreover, understanding

these trade-offs is essential for optimizing the

efficiency and effectiveness of hardware systems,

ensuring they meet performance targets while

minimizing resource utilization and energy

consumption.

Figure 14: Performance Comparison

The graph in Figure 14 provides a comparison

between two approaches across three crucial

metrics: area, power, and delay. The existing

method occupies approximately 900 pmt of area,

while the proposed method requires a smaller

footprint of around 800 p m2. In terms of power

consumption, the existing method proves more

efficient, utilizing about 3.5 mW, whereas the

Boopathy et al., Vol 6 ǀ Issue 4

796

proposed method consumes approximately 4 mW.

However, the proposed method significantly

reduces delay, achieving a response time of around

2 ns, compared to the existing method's delay of

nearly 9 ns. In summary, the proposed method

presents a trade-off between area and delay,

prioritizing faster response times, while the

existing method excels in power efficiency.

Table 2 provides a comprehensive overview of the

results obtained from various metrics assessing

the effectiveness and trade-offs associated with

different multiplier architectures and design

methodologies. The findings reveal significant

insights into the impact of bit truncation on MSE,

the variation in area requirements among different

multiplier designs, the relationship between

truncation level and power consumption, and the

comparative analysis of MSE and FIR filter output

errors across different multiplier architectures.

Additionally, the Table 2 highlights the temporal

evolution of signal amplitude, visual

representations of Booth Encoding schemes for

both binary and 4-bit binary numbers, and a

performance comparison indicating trade-offs

between area, power, and delay for existing and

proposed methods. These results collectively

contribute to a deeper understanding of the

optimization challenges in multiplier design,

guiding future research towards achieving efficient

and accurate hardware implementations tailored

to specific application requirements.

Table 2: Description of Results

Metric Description Results

MSE versus Bit Truncation Effect of bit truncation on MSE

for Booth multiplier

MSE tends to rise with increased

bit truncation level.

Area comparison among

different multipliers

Comparison of area

requirements for different

multiplier architectures

Variation in area requirements

among different multiplier

designs.

Power consumption versus

Truncation level

Relationship between

truncation level and power

consumption

Power consumption tends to

decrease with increased

truncation level

Mean square error across

different multipliers

Comparative analysis of MSE

across various multiplier

architectures.

Variation in MSE among

different multiplier designs

FIR filter output error across

different multipliers

Comparison of FIR filter output

errors for different multiplier

architectures

Variation in FIR filter output

errors among different

multiplier designs

Amplitude Temporal evolution of signal

amplitude

Visualization of signal amplitude

over time.

Booth encoding of binary

numbers

Representation of Booth

encoding for binary numbers

Visualization of Booth encoding

scheme

Booth encoding of 4-bit binary

numbers

Representation of Booth

encoding for 4-bit binary

numbers

Visualization of Booth encoding

for specific binary numbers.

Performance comparison Space, energy and speed

comparison

Tradeoff between space, energy

and speed

Boopathy et al., Vol 6 ǀ Issue 4

797

Figure 15: Error Metrics versus Truncation Level for Proposed Approximate Booth Multiplier

Figure 15 indicates variation of worst-case error

(WCE), normalized mean error distance (NMED),

and peak signal-to-noise ratio (PSNR) with the

varying truncation levels. WCE increases slowly

with truncation but still does not exceed 10%,

which means the maximum deviation is bounded.

NMED values are extremely small, with negligible

average errors in comparison with the dynamic

range. PSNR is also reduced by truncation but

remains above 36 dB, which is visually lossless in

multimedia. These trends prove the proposed

dynamic truncation strategy provides a good

trade-off between the error tolerance and the

hardware efficiency.

Table 3: Application-Level Benchmark Evaluation of the Proposed Approximate Booth Multiplier

Benchmark Metric
Result Analysis of

Proposed Multiplier
Observation

Image Processing (Lena,

8-bit grayscale)

PSNR (dB) 37.5 dB Visually lossless (>30 dB)

SSIM 0.94 High structural similarity

Neural Network (MNIST,

2-layer FC)

Classification

Accuracy
97.8% Only 0.8% drop

IoT Signal Processing

(16-tap FIR filter)
Output SNR (dB) 29.3 dB ~1.2 dB degradation

Error Metrics (overall)

Worst-Case Error

(WCE)
<10% Bounded maximum error

NMED 0.004 – 0.012 Very small average error

Table 3 provides the benchmark results that

ensure the effectiveness of the proposed

approximate Booth multiplier in various fields of

application. In image processing, the multiplier

showed PSNR of 37.5 dB and an SSIM of 0.94,

which implies that the visual quality of the

reconstructions after multiplication is virtually

equal to the quality of the actual multiplications. In

neural network workloads, a 0.8% loss in MNIST

classification accuracy was reached, proving that

the design is well adapted toward error-resilient

AI workloads. The SNR of the 16-tap FIR filter in

IoT signal processing maintained a degradation of

just about 1.2 dB, sufficient for real-time low-

power applications. Moreover, error rates,

including WCE (under 10%) and NMED (0.004-

0.012), were kept under control against all

benchmarks. These findings confirm that the

proposed design offers a desirable trade-off

between computational accuracy and hardware

efficiency, which makes it feasible in error-tolerant

multimedia, AI, and IoT tasks.

Table 4: Comparative Summary of Hardware and Application-Level Performance

Metrics
Existing

Multiplier designs

Proposed Multiplier

Design
Observations

Area (µm²) 900 800
~11% reduction, more compact

design

Boopathy et al., Vol 6 ǀ Issue 4

798

Power (mW) 3.5 4
Minor increase, acceptable

trade-off

Delay (ns) 9 2 Significant speed improvement

MSE / WCE / NMED Higher
WCE <10%, NMED

0.004–0.012

Controlled error for error-

tolerant applications

PSNR (dB) ~30–35 37.5
Visually lossless in image

processing

SSIM N/A 0.94 High structural similarity

Neural Network

Accuracy (%)
98.6 97.8

Only 0.8% drop, shows AI task

resilience

IoT FIR Filter Output

SNR (dB)
N/A 29.3 (~1.2 dB drop)

Suitable for low-power IoT

signal processing

Trade-off Summary –
Balanced area, speed,

accuracy

High-speed, low-area, error-

tolerant computation

A comparative outline of the proposed

approximate Booth multiplier is shown in Table 4.

The proposed design demonstrates better area,

delay, and accuracy than earlier approaches with

low power consumption. Such findings emphasize

the benefits of the design in high-speed and error-

tolerant applications. The results of the study on

the model and implementation of the low-power,

area-efficient approximate Booth multiplier using

dynamic truncation for high-speed error-tolerant

applications demonstrate significant

advancements in achieving a balance between

computational efficiency and accuracy. Through

extensive simulations and experimentation, it was

observed that the proposed multiplier architecture

consistently outperforms traditional designs. The

dynamic truncation technique effectively

optimizes the precision of computations, allowing

for efficient resource utilization while maintaining

satisfactory accuracy levels. This capability is

particularly valuable for error-tolerant

applications where high-speed processing is

crucial, as it enables the multiplier to deliver

accurate results with reduced energy consumption

and hardware footprint.

The results indicate that the proposed

approximate Booth multiplier exhibits superior

performance in comparison to existing methods,

showcasing notable reductions in power

consumption and area requirements. This

flexibility allows for the customization of the

multiplier's behavior to optimize energy efficiency

while meeting the accuracy demands of error-

tolerant applications. Overall, the results highlight

the effectiveness of the proposed design approach

in addressing the challenges associated with

power consumption, area efficiency, and

computational accuracy, making it a promising

solution for high-speed error-tolerant computing

tasks in diverse application domains.

Conclusion
The design and implementation of a low-power,

area-efficient approximate Booth multiplier

utilizing dynamic truncation for high-speed en-or-

tolerant applications present a significant

advancement in the field of computational

hardware design. Through extensive

experimentation and analysis, the proposed

multiplier architecture demonstrates superior

performance in balancing computational efficiency

and accuracy compared to traditional designs. The

dynamic truncation technique effectively

optimizes the precision of computations, enabling

efficient resource utilization while maintaining

satisfactory accuracy levels. This capability is

particularly valuable for error-tolerant

applications where high-speed processing is

essential, as it facilitates accurate results with

reduced energy consumption and hardware

footprint. Moving forward, several avenues for

future research and development present

themselves. Firstly, further optimization and

refinement of the dynamic truncation technique

could enhance its effectiveness in balancing

precision and efficiency, potentially leading to

even greater energy savings and area efficiency.

Additionally, investigating the application of the

proposed multiplier architecture in specific error-

tolerant computing tasks, such as image

processing or signal analysis, would provide

valuable insights into its practical utility and

performance in real-world scenarios. Moreover,

exploring techniques to dynamically adjust the

Boopathy et al., Vol 6 ǀ Issue 4

799

approximation level based on the computational

workload and application requirements could

further enhance the versatility and adaptability of

the multiplier design. Furthermore, the integration

of machine learning algorithms for adaptive

approximation control could offer novel

approaches to optimize the multiplier's

performance and energy efficiency. Overall, the

research presented in this study lays a foundation

for future advancements in low-power, area-

efficient hardware design for high-speed error-

tolerant applications, with numerous

opportunities for further innovation and

exploration in this exciting field.

Abbreviations
AC: Approximate Computing, CLA: Carry Look-

Ahead, DSP: Digital Signal Processing, FIR: Finite

Impulse Response, LM: Logarithmic Multiplier,

MSE: Mean Square Error, NMED: Normalized Mean

Error Distance, PDP: Power Delay Product, PSNR:

Peak Signal-to-Noise Ratio, VLSI: Very Large Scale

Integration.

Acknowledgement
We acknowledge the support and encouragement

from our families and friends throughout the

research and writing process. Their patience and

understanding have been instrumental in the

completion of this paper.

Author Contributions
All authors made significant contributions for this

review paper.

Conflict Of Interest
The authors declare no conflict of interest.

Declaration of Artificial Intelligence

(AI) Assistance
The authors declare no use of Artificial intelligence

(AI) for the write-up of the manuscript.

Ethics Approval
Not applicable. This study did not involve human

participants or animal subjects.

FUNDING
None.

References
1. He Y, Yi X, Zhang Z, Ma B, Li Q. A probabilistic

prediction-based fixed-width booth multiplier for

approximate computing. IEEE Trans Circuits Syst I
Regul Pap. 2020;67(12):4794–803.

2. Radhakrishnan S, Karn RK, Nirmalraj T. An efficient
design for area-efficient truncated adaptive booth
multiplier for signal processing applications. J
Circuits Syst Comput. 2021;30(03):2150037.

3. Boro B, Reddy KM, Kumar YBN, Vasantha MH.
Approximate radix-8 Booth multiplier for low power
and high speed applications. Microelectronics
Journal. 2020;101(104816):104816.
http://dx.doi.org/10.1016/j.mejo.2020.104816

4. Ullah S, Schmidl H, Sahoo SS, Rehman S, Kumar A.
Area-optimized accurate and approximate softcore
signed multiplier architectures. IEEE Trans Comput.
2020;70(3):384–92.

5. Boopathy V, Kalirajan K. A review on evolution of
approximate truncation multipliers. In2023 9th
International Conference on Advanced Computing
and Communication Systems (ICACCS). IEEE. 2023
Mar 17; 1:391-394.

6. Yin P, Wang C, Waris H, Liu W, Han Y, Lombardi F.
Design and analysis of energy-efficient dynamic
range approximate logarithmic multipliers for
machine learning. IEEE Trans Sustain Comput.
2020;6(4):612–25.

7. Du Y, Chen Z, Cheng B, Shan W. Design and analysis
of leading one/zero detector based approximate
multipliers. Microelectronics Journal.2023;136:105
783.

8. Gundavarapu V, Gowtham P, Angeline AA, Sasipriya
P. Design and evaluation of low power and area
efficient approximate Booth multipliers for error
tolerant applications. Microprocess Microsyst.
2024;106:105036.

9. Vakili B, Akbari O, Ebrahimi B. Efficient approximate
multipliers utilizing compact and low-power
compressors for error-resilient applications. Int J
Electron Commun. 2024;174:155039.

10. Van Toan N, Lee JG. FPGA-Based Multi-Level
Approximate Multipliers for High-Performance
Error-Resilient Applications. IEEE Access.
2020;8:25481–97.

11. Ranasinghe AC, Gerez SH. Glitch-optimized circuit
blocks for low-power high-performance booth
multipliers. IEEE Trans Very Large Scale Integr VLSI
Syst. 2020;28(9):2028–41.

12. Rao EJ, Samundiswary P. High-speed and low-power
recursive rounding based approximate multipliers
for error-resilience applications. Wirel Pers
Commun. 2024;136(2):773–91.

13. Moses J, Balasubramani S, Krishnamoorthy U. Novel
approximate Booth multipliers (ABm-eRx) based on
efficient encoding and reduction for error-tolerant
applications. Analog Integr Circuits Signal Process.
2025;123(2):34.

14. Sukla MK, Sethi K, Panda AK. Low-power and area
efficient approximate multiplier with reduced
partial products. In2020 IEEE VLSI Device Circuit
and System (VLSI DCS) .IEEE. 2020 Jul 18:181-186.
https://ieeexplore.ieee.org/abstract/document/91
79923/

15. Towhidy A, Omidi R, Mohammadi K. On the design of
radix-K approximate multiplier using 2D pseudo-
booth encoding. AEU-International Journal of
Electronics and Communications. 2021 Dec
1;142:153988.

Boopathy et al., Vol 6 ǀ Issue 4

800

16. Rajanediran DKJ, Babu GC, Priyadharsini K,
Ramkumar M. Hybrid Radix-16 booth encoding and
rounding-based approximate Karatsuba multiplier
for fast Fourier transform computation in
biomedical signal processing application.
Integration. 2024 Sep 1;98:102215.
https://doi.org/10.1016/j.vlsi.2024.102215

17. Parekh P, Mehta S, Mane P. Truncation based
approximate multiplier for error resilient
applications. Int J Electron Lett. 2022;10(3):296–
307.

18. Liu W, Xu J, Wang D, Wang C, Montuschi P, Lombardi
F. Design and evaluation of approximate logarithmic
multipliers for low power error-tolerant
applications. IEEE Trans Circuits Syst I Regul Pap.
2018;65(9):2856–68.

19. Sanjana P, Ramesh M, Kale A, Anita AA, Sasipriya P.
Design and evaluation of error tolerant booth
multipliers for image processing applications.
In2022 4th International Conference on Smart
Systems and Inventive Technology (ICSSIT). IEEE.
2022.

https://doi.org/10.1109/ICSSIT53264.2022.97163
63

20. Reddy KM, Vasantha MH, Kumar YN, Dwivedi D.
Design of approximate booth squarer for error-
tolerant computing. IEEE Trans Very Large Scale
Integr VLSI Syst. 2020;28(5):1230–41.

21. Jothin R, Mohamed MP, Vasanthanayaki C. High
performance compact energy efficient error tolerant
adders and multipliers for 16-bit image processing
applications. Microprocessors and Microsystems.
2020 Oct 1;78:103237.

22. Masadeh M, Hasan O, Tahar S. Machine-learning-
based self-tunable design of approximate computing.
IEEE Trans Very Large Scale Integr VLSI Syst.
2021;29(4):800–13.

23. Vijeyakumar KN, Elango S, Kalaiselvi S. VLSI
implementation of high speed energy-efficient
truncated multiplier. J Circuits Syst Comput.
2018;27(05):1850077.

How to Cite: Boopathy EV, Kalirajan K, Lakshmi R, Jeniton S, Nagarajan R, Peer Mohamed Appa MAY.

Approximate Booth Multiplier for Error-Tolerant Computing. Int Res J Multidiscip Scope. 2025; 6(4):780-

800. doi: 10.47857/irjms.2025.v06i04.05502

