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Abstract 
 

The research focuses on developing a low-power and area-efficient approximate Booth multiplier architecture that 
leverages dynamic truncation to optimize performance for high-speed error-tolerant applications. Key aspects of the 
research include the design and implementation of the proposed multiplier architecture, the development of dynamic 
truncation algorithms tailored for real-time input data, and the evaluation of performance metrics such as power 
consumption, area efficiency, and error tolerance. The study explores the principles behind dynamic truncation and its 
application in approximate multiplication, emphasizing the trade-offs between accuracy and speed. Key aspects of the 
research include the design and implementation of the proposed multiplier architecture, the development of dynamic 
truncation algorithms tailored for real-time input data, and the evaluation of performance metrics such as power 
consumption, area efficiency, and error tolerance. Through simulations and synthesis, the study assesses the 
effectiveness of the proposed approach in achieving high-speed operation while maintaining acceptable levels of 
accuracy. The results reveal significant variations in output error across the different multipliers, with the proposed 
architecture demonstrating the lowest error rate of 0.001. In comparison, the Carry Width multiplier exhibits the 
highest error rate of 0.03, indicating relatively poorer accuracy. The Vedic and Voltage Mode multipliers perform better, 
with error rates of 0.025 and 0.002, respectively. Notably, the Wallace Tree multiplier shows the second-lowest error 
rate of 0.0015. The findings of this research contribute to advancing the field of digital arithmetic circuits, offering a 
promising solution for high-speed computing applications with stringent power and area constraints. 
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Introduction 

Power consumption is a crucial design constraint 

for digital systems. Important digital systems with 

low power, high reliability, and low overhanging 

area of operational components include space 

structures, observation units, system security, 

operational defenses, and medical supervision (1, 

2). Although the approximation computing idea 

reduces energy usage, exact results are never 

obtained. There is a trade-off between available 

space and power delay during the VLSI circuit 

design processes. In the domain of utilization of 

energy, data processing is mostly caused by 

arithmetic processes (3, 4). The three main parts of 

the arithmetic circuitry are the electronic, central, 

and graphical computational units. Amplification 

operations are often utilized to operate with high 

latency and low energy usage. In signal analysis 

units, multiplier approximations are used to create 

error-tolerant signals. As a result, numerous 

additional circuit level techniques are employed 

for fault-tolerant and addition design, accordingly 

(5, 6). In general, multipliers are utilized in VLSI, 

digital signal processing, and audio processing 

processes, such as adaptive filters, Fourier 

transforms, discrete wavelet transforms, finite 

impulse filters, and sinusoidal transforms (7, 8). 

Forty percent of the CPU power is wasted during 

arithmetic computing operations. Thus, the 

fundamental processing function requires a fixed 

coefficient for sampling input additions. By 

including the approximate calculation in the 

intermediate step of the multiplication method, the 

power usage or latency is reduced. Using this 

method makes use of the estimated compression 

(9, 10). Power usage and delay operations are 

greatly inflated in the last part of amplification. In  
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order to execute the calculation of numerals 

multipliers bits with its row products partial, the  

parallel multiplying structure technique also 

requires a number of analogous hardware that 

supplies an expanded bit product area. The 

resources consumer in the component's 

mathematical unit is the multiplier, and it 

contributes considerably to the chip area and 

critical path in similar fashion. Notably, the Baugh 

Wooley and Booth multiplier methods are 

commonly employed and yield potent hardware-

mediated results. The Booth methods were 

employed primarily successfully, and several 

modifications are reported in the research's part. 

Additionally, utilizing greater radix booth 

multiplying reduces the row of the complete 

production array and the adder performance. 

Thus, greater radix Booth method increases the 

generator and partial choice of products difficulty 

(11, 12). 

In the realm of digital signal processing and 

arithmetic computations, the quest for high-speed, 

low-power, and area-efficient multiplication 

techniques is perpetual (13, 14). Multiplication 

operations form the backbone of numerous 

computational tasks in diverse applications. 

Among various multiplication techniques, Booth 

multiplier stands out for its efficiency in reducing 

partial product computations, thereby offering 

significant speed improvements over conventional 

multipliers (15, 16). However, traditional Booth 

multipliers may suffer from high power 

consumption and large area footprint, which can 

be prohibitive in energy-constrained and area-

restricted environments. To address these 

challenges, researchers have delved into the realm 

of approximate computing, a paradigm that 

emphasizes trading off accuracy Approximate 

computing techniques have gained momentum in 

recent years due to their potential to offer 

substantial benefits in applications where exact 

precision is not paramount. In this context, 

approximate Booth multipliers have emerged as 

promising candidates for high-speed, low-power 

multiplication in error-tolerant applications (17). 

One of the key approaches to approximate 

multiplication is dynamic truncation, which 

selectively discards least significant bits during 

computation to reduce power consumption and 

area overhead. Dynamic truncation techniques 

offer a fine balance between computational 

accuracy and resource efficiency, making them 

well-suited for error-tolerant applications where 

minor deviations from exact results are acceptable. 

By judiciously applying dynamic truncation within 

the Booth multiplier architecture, it is possible to 

achieve significant improvements in power 

efficiency and area utilization without 

compromising speed or tolerable error margins 

(18). The integration of dynamic truncation within 

the Booth multiplier framework requires careful 

consideration of various design aspects, including 

error analysis, truncation control mechanisms, and 

optimization of hardware resources. Additionally, 

the choice of approximation technique and the 

determination of acceptable error bounds play 

crucial roles in defining the performance 

characteristics of the approximate multiplier. 

Through meticulous design and optimization, it 

becomes feasible to tailor the approximate Booth 

multiplier to meet the specific requirements of 

high-speed error-tolerant applications. 

Approximate computing is an efficient method to 

trade off small computational errors with compact 

hardware, low power consumption, and faster 

execution speed. In particular, this methodology is 

beneficial where optimal precision is not 

necessary, such as in image compression and 

sensor data processing, digital signal processing, 

and convolution of CNNs. 

The design of proposed Booth multiplier with 

dynamic truncation entails exploring innovative 

solutions to address the inherent trade-offs 

between accuracy, speed, power, and area. 

Leveraging advancements in semiconductor 

technology and algorithmic optimizations, 

researchers aim to push the boundaries of 

efficiency in approximate multiplication, unlocking 

new possibilities for energy-efficient computing in 

resource-constrained environments. Moreover, 

the proliferation of IoT devices and edge 

computing platforms further underscores the 

importance of developing lightweight yet powerful 

arithmetic units capable of delivering high 

performance within stringent power and area 

constraints. In this context, this paper proposes a 

novel approach to the design of a low-power, area-

efficient approximate Booth multiplier using 

dynamic truncation for high-speed error-tolerant 

applications. The proposed multiplier architecture 

integrates dynamic truncation mechanisms within 

the Booth encoding scheme to selectively truncate 
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partial products based on their significance, 

thereby reducing computational complexity and 

resource utilization. By dynamically adjusting the 

truncation levels according to the specific 

requirements of the application and the desired 

error tolerance, the proposed multiplier achieves a 

fine balance between accuracy and efficiency, 

enabling significant improvements in power and 

area efficiency without sacrificing performance. 

The key contributions of the article is, 

• The research proposes a novel dynamic 

truncation algorithm tailored for approximate 

Booth multipliers. This algorithm selectively 

discards less significant bits during multiplication, 

dynamically optimizing the trade-off between 

accuracy and speed based on real-time input data 

and computational constraints. 

• The study demonstrates the seamless 

integration of the Dynamic Truncation mechanism 

into the hardware architecture of the approximate 

Booth Multiplier. By adding control logic to adjust 

the truncation process during operation, minimal 

impact on performance and area efficiency is 

ensured, enhancing the practicality of the 

proposed approach. 

• Through evaluation and analysis, the 

research showcases significant improvements in 

efficiency achieved by the proposed methodology. 

By dynamically adjusting the truncation level, the 

multiplier achieves a better trade-off between 

accuracy and speed, resulting in reduced power 

consumption and area utilization, making it more 

suitable for low-power and area-constrained 

applications. 

• The study highlights the maintained high 

degree of error-tolerance of the approximate 

Booth multiplier with Dynamic Truncation, while 

achieving high-speed operation. Performance 

evaluation through simulations and synthesis 

demonstrates improved throughput and reduced, 

latency compared to conventional approaches, 

validating the effectiveness of the proposed 

methodology in practical applications. 

Approximate computing offers a solution by 

allowing minor errors in exchange for lower 

power, smaller area, and faster operation. This is 

particularly useful in applications where exactness 

is not critical, such as image compression, sensor 

data processing, digital signal processing, and 

convolution operations in CNNs. 

In this work, we propose an approximate Booth 

multiplier with dynamic truncation, which 

discards least significant bits to reduce power and 

area while maintaining acceptable error. The 

design is validated across practical applications, 

demonstrating high-speed, low-power, and error-

tolerant operation suitable for resource-

constrained environments. 

Approximate computing is an efficient method to 

trade off small computational errors with compact 

hardware, low power consumption, and faster 

execution speed. In particular, this methodology is 

beneficial where optimal precision is not 

necessary, such as image compression and sensor 

data processing, digital signal processing, and 

convolution of CNNs. 

To minimize energy use and enhance efficiency, 

the plans for the two non-iterative and iterative 

approximation LMs are examined (19). Three 

inaccurate mantissa addition algorithms are used 

in these non-iterative approximation LMs. 

Throughout an iteration, the suggested IALMs 

employ a set-one boost for the two mantissa 

addition algorithms; for the last furthermore, they 

employ approximated mirror arithmetic and 

lower-part-or adders. The suggested 

approximation LMs with a suitable amount of 

inaccurate bits produce a greater accuracy and 

lower energy use than traditional LMs utilizing 

exact components, according to error investigation 

and simulating findings that are also supplied. The 

NMED and PDP of 16-bit approximation LMs are 

reduced by up to 18% and 37%, respectively, in 

comparison to traditional LMs with precise units. 

The suggested approximation LMs are determined 

to be most appropriate for situations that permit 

higher mistakes but need fewer resources and less 

power when contrasted with earlier 

approximation multipliers. Although they need 

lesser mistakes, approximated Booth multipliers 

are suitable for situations with less demanding 

power demands. There are instances available for 

uses using emir-tolerant computation. 

Approximation computing's development has 

helped digital integrated circuits achieve 

decreased accuracy, enhanced efficiency, and 

power savings at the expense of circuit intricacy 

(20). This study proposes the use of estimate radix-

4 Booth Encoders, truncation parts of products, 

and an iterative CLA addition for ultimate adding 

to build the end result phrases to create 8-bit 
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approximation booth multipliers. The multiplier's 

reliability is increased by adding the approximate 

factor for truncated and ABE use. The NMED was 

the measure used to assess the suggested 

multipliers' error performances. Image 

multiplying utilizing approximation booth 

multipliers has been achieved to demonstrate the 

viability of utilizing approximation circuits for 

applications that require real-time. SSIM and PSNR 

measurements are used to contrast and illustrate 

every multiplier's efficiency utilizing an image 

processing programmed. The approximation 

multiplies which are suggested have less space and 

consume fewer watts than the multipliers which 

are already in use, according to experiments 

conducted with them. An 180nm CMOS transistor 

repository was used to model each circuit. 

This article suggests an APPGS in order to 

investigate the advantages of approximation 

computing. Three approximated radix-4 Booth 

squarer designs are presented utilizing APPGS 

(21). In the partial output matrix's r smallest 

significance columns, APPGS generates 

approximation partial solutions. For gathering of 

approximation parts at the k amount of the most 

vital rows of the approximation partial product, 

the ABS3 has an error restoration mechanism. 

Utilizing 45-nm CMOS semiconductors, the 

suggested squarers with various values of r and k 

are generated. The findings show that the 

suggested squarers operate optimally in terms of 

accuracy and reliability. The ABS3 with k = 6 has 

an NMED of 0.56 x 10 -6 and reduces power, delay, 

and area by 183%, 29.4%, and 16.9%, respectively. 

In a telecommunication usage, the ABS3 with k = 6 

generates a signal for output 32.45 dB, which is 

used to assess the functionality of the suggested 

squarers. 

In the current growth of error-tolerant 

programmed based on outstanding performance 

processors cores, lightweight construction is a 

crucial prerequisite (22). The designs of the data 

processing subsystems affect the computing- 

core's efficiency. VLSI designs for high volume data 

computation now include area, latency, and power 

reduction as essential requirements. For 

applications that require data, presented CEETAs 

in this study that provide effective design metrics. 

In the erroneous portion, simple gate level 

approximations full multipliers, or SAFAs, are 

suggested as a means of achieving resource and 

area effectiveness. The modelling result 

demonstrates that the suggested SAFAs centered 

CEETAI addition shows low power use, less PDP, 

and less ADP. For error-tolerant uses, HPETMs 

based on 4-2 AC components and SAFA1E and 

SAFA2E are also suggested. Delay propagation and 

gate count reductions on the payload generating 

path are offered in the SAFA and AC architectures 

to accomplish high speed energy and area 

effectiveness for the large amount of digital data 

processing. The suggested HPETMI demonstrates 

a considerable reduction in delay. It also saves an 

enormous amount of electrical power and space. 

An new concept in computing called 

Approximation Computing (AC) can save 

processing time and energy usage for intrinsically 

error-tolerant workloads (23). A variety of 

approximation methods and concepts have been 

put forth, demonstrating the efficacy of loosening 

the average output quality limitation at the 

hardware and software layers. Nevertheless, the 

output mistakes of AC might become intolerable 

for certain inputs due to its strong input 

dependence. Thus, an input-dependent adjustable 

approximation design is desperately needed. In 

light of this, it provide in the following section a 

simple and effective machine-learning-based 

method for creating an input-aware architecture 

selector, or quality administrator, that may modify 

the approximation design to satisfy the desired 

output quality. It employs a collection of energy-

efficient approximation array multipliers with 20 

various settings, 8-bit and 16-bit, that are 

frequently employed in image and audio 

processing programmed, for illustrative reasons. 

The simulation results show the efficacy of the 

lightweight choice what the suggested tunable 

layout accomplishes an important decrease in 

quality degradation with relatively little expenses. 

The first literature explores the implementation of 

non-iterative and iterative approximation 

multiplier designs to minimize energy 

consumption and enhance efficiency. It introduces 

inaccurate mantissa addition algorithms and 

employs dynamic truncation techniques to achieve 

higher accuracy and lower energy consumption 

compared to traditional multipliers. The second 

literature focuses on developing approximation 

Booth multipliers using radix-4 Booth encoding 

and iterative carry-look ahead addition to improve 

reliability and reduce power consumption. It 
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demonstrates the effectiveness of these multipliers 

through image multiplication experiments, 

showcasing their reduced size and power 

consumption. The third literature proposes 

approximation Booth squarer designs utilizing an 

input-aware architecture selector to balance 

output quality and energy efficiency. It presents 

various approximation methods and demonstrates 

the efficacy of lightweight designs in reducing 

quality degradation with minimal energy costs. 

The existing methods for designing multipliers 

often face limitations in balancing power 

consumption, area efficiency, and accuracy, 

particularly for high-speed error-tolerant 

applications. Traditional approaches relying on 

exact components may result in excessive power 

usage and large area footprints, while 

approximation techniques may sacrifice accuracy 

for efficiency. To address these challenges, this 

research proposes a novel approach: the design 

and implementation of a low-power, area-efficient 

approximate Booth multiplier utilizing dynamic 

truncation. By dynamically adjusting the precision 

of computations, this proposed method aims to 

achieve a balance between power efficiency and 

accuracy, making it suitable for high-speed error-

tolerant applications where energy consumption 

and computational speed are critical factors. The 

dynamic truncation technique offers flexibility in 

optimizing the trade-off between precision and 

efficiency, thereby overcoming the limitations of 

existing methods and providing a viable solution 

for demanding computational tasks in various 

fields (23). 

The proposed design incorporates dynamic 

truncation in the Booth encoding process 

compared to the existing approximate Booth 

multipliers that use static truncation, simplified 

adders, or error-recovery circuits, providing 

runtime flexibility. This method provides a better 

compromise between accuracy and efficiency, has 

bounded and predictable error behavior, and can 

achieve substantial power and area savings with a 

low delay overhead. The suggested multiplier is 

generic and applicable to numerous error-tolerant 

domains, such as DSP, IoT, and edge computing 

accessible machines, unlike previous designs that 

were tailored to specific fields like image 

processing or squaring. 
 

 

Methodology 
The proposed methodology for the design and 

implementation of a Low-Power Area-Efficient 

Approximate Booth Multiplier using Dynamic 

Truncation for High-Speed Error-Tolerant 

Applications involves several key steps. Firstly, the 

dynamic truncation algorithm must be devised to 

selectively discard less significant bits during the 

multiplication process, optimizing the trade-off 

between accuracy and speed based on real-time 

input data and computational constraints. Next, 

the hardware architecture of the approximate 

Booth Multiplier needs modification to seamlessly 

incorporate the Dynamic Truncation mechanism, 

ensuring minimal impact on performance and area 

efficiency. This includes the addition of control 

logic to dynamically adjust the truncation process 

during operation. Efficiency improvement is 

evaluated by dynamically adjusting the truncation 

level based on real-time input data and 

computational constraints-, the multiplier 

achieves a better trade-off between accuracy and 

speed, This results in reduced power consumption 

and area utilization, making it more suitable for 

low-power and area-constrained applications. 

Error-Tolerance analysis shows that the 

approximate Booth multiplier with Dynamic 

Truncation maintains a high degree of error-

tolerance while achieving high-speed operation. 

The adaptive nature of Dynamic Truncation allows 

the multiplier to dynamically adapt to varying 

error requirements. Performance evaluation of the 

proposed multiplier architecture reveals 

promising results. Through simulations and 

synthesis, it is observed that the multiplier exhibits 

improved throughput and reduced latency 

compared to conventional approaches. 

Approximate Multiplier Designs 
An approximate representation of a multiplier can 

be constructed by a variety of techniques, 

including scaling the supply voltage, truncating 

expected partial production rows, lowering the 

amount of partial product rows by using 

approximation compressors, and constructing 

simplification multiplier computations. Booth 

Multiplier with Dynamic Truncation for High-

Speed Error-Tolerant Applications introduces a 

novel methodology that addresses the pressing 

need for efficient yet accurate multiplication in  
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resource-constrained scenarios. By dynamically 

truncating less significant bits during the 

multiplication process, our approach optimizes the 

balance between precision and speed in real-time, 

tailored to the specific computational demands 

and input data characteristics. This dynamic 

truncation algorithm, meticulously designed, 

enables the multiplier to adapt its precision 

dynamically, minimizing unnecessary 

computations while preserving accuracy. The 

voltage supply of the gates used for logic was 

managed using the voltage scalability approach, 

which assisted in lowering the power 

consumption. Timing violations would arise if the 

supply power were less than the necessary 

nominal voltage, producing approximations of the 

findings. Nonetheless, if there was a time infraction 

along a crucial channel, the incorrect value may be 

quite high. The gross weight of the fractional 

output decreased with increasing distance from 

the LSB column. The reduced partial product 

weights were modest, so there wouldn't be a 

significant error distance. A rough multiplier was 

created by altering the precise multiplication. 

Equation [1] provides an illustration, wherein Ar 

and Br indicate the rounded values of inputs A and 

B. To minimize hardware expenses, investigators 

approximate Ar and Br using the lowest values of 

2n; hence, it's probable that Ar x B, Br x A, and Ar x 

Br were computed using the shift function. Since 

the minimization of (Ar — A) X. (Br — B), it was 

unimportant. The multiplication equation has been 

adjusted and (Ar — A) (Br — B) has been dropped. 

 

A x B =  (Ar - A) x (Br - B) + Ar x B + Br x A - Ar x Br (1) A x B ~= Ar x B + Br x A - Ar x Br                  [1] 
 

The simplest multiplier design is the Wallace tree 

multiplier architecture. In a Wallace tree 

multiplier, exact 2-2 compressors. (half-adders) 

and 3-2 compressors (full adders) were utilised to 

reduce the total number of rows of partial results. 

In a Wallace Tree Multiplier, precise 4-2 

compressors may also be used to provide a more 

regular layout. The decreased partial products are 

added by a carry propagating adder to obtain the 

final output. Most previous studies made 

approximation compressors, which were modified 

from the exact 4-2 compressors, because of their 

extensive application. The details of the precise 

and approximation compressor are covered in the 

next sections. 

Conventional Radix-8 Booth Multiplier 
The conventional Radix-8 Booth Multiplier has 

been a cornerstone in digital arithmetic circuits for 

its efficiency in performing multiplication 

operations. However, to further optimize its 

performance, Modified Booth Encoding techniques 

have been developed. This paper delves into the 

design aspects of MBE for enhancing the efficiency 

and speed of Radix-8 Booth Multipliers. In 

designing MBE for a conventional Radix-8 Booth 

Multiplier, several considerations come into play. 

Firstly, the encoding scheme must be adapted to 

accommodate the Radix-8 nature of the multiplier. 

This involves devising a method to efficiently 

generate the Booth codes for each multiplier 

operand while ensuring compatibility with Radix-

8 arithmetic. The implementation of MBE in a 

conventional Radix-8 Booth Multiplier involves 

several key steps. Firstly, the generation of Booth 

codes for the operands must be optimized to 

minimize hardware complexity and latency. 

To further enhance the efficiency of the MBE-

enabled Radix-8 Booth Multiplier, various 

optimization techniques can be employed. One 

such technique is the use of carry-save addition in 

the partial product accumulation stage. 

Additionally, techniques such as pipelining and 

parallelism can be leveraged to increase 

throughput and reduce latency in the multiplier. 

The performance of the modified Booth encoding 

scheme can be evaluated using metrics such as 

area efficiency, power consumption, and speed. 

Two N-bit positive binary values denoted X and Y, 

respectively, represent the multiplication factor 

and multiplier. The subsequent equations [2] and 

[3] may then be used to express X and Y in 2's 

complement notation: 
 

𝑋 = −𝑥𝑁−12𝑁−1 +  ∑  𝑁−2
𝑖=0 𝑥𝑖2

𝑖                                                                                 [2] 

𝑌 = −𝑦𝑁−12𝑁−1 +  ∑  𝑁−2
𝑖=0 𝑦𝑖2𝑖                                                                                 [3] 

 

The radix-8 modified Booth encodes arranges 4 bits of Y through a set {y3k+2, y3k+1, y3k, y3k–1} with one bit 

overlapped to obtain the resultant value of X and Y. The symbol bit, yN-1, increased to advanced bits, 
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although the y-1 bit is presumed to be logic-0 during grouping. The following equation [4] yields every 

group's Booth encoded digit: 
 

Yk = -4y3k+2 + 2y3k+1 + y3k + y3k-1 for 0 ≤ k ≤ dN/3e - 1                                        [4] 
 

As shown in Table 1, Yk in this case might be equivalent to 0, ±1, ±2, ±3, or ±4. Next, the following equation 

[5] yields the product of the partial (PP) rows of the multiplier: 
 

PPk = X* Yk for 0 ≤ k < dN/3e-1                                                                                        [5] 
 

Table 1: Truth Table for Conventional Approximate MBE 

y3k+2 y3k+1 y3k y3k-1 Yk PPk PPik 

0 0 0 0 0 0 0 

0 0 0 1 +1 X xi 

0 0 1 0 +1 X xi 

0 0 1 1 +2 2X xi-1 

0 1 0 0 +2 2X xi-1 

0 1 0 1 +3 3X xi+xi - 1 

0 1 1 0 +3 3X xi + xi - 1 

0 1 1 1 +4 4X xi - 2 

1 0 0 0 -4 -4X (xi – 2)’ 

1 0 0 1 -3 -3X si’ 

1 0 1 0 -3 -3X si’ 

1 0 1 1 -2 -2X (xi-1)’ 

1 1 0 0 -2 -2X (xi-1)’ 

1 1 0 1 -1 -X xi' 

1 1 1 0 -1 -X xi' 

1 1 1 1 0 0 0 
 

PPk in this case stands for the kth partial product 

rows. As seen in Table 1, the PPk can have values of 

0, ±X, ±2X, ±3X, and ±4X based on Equations [4] 

and [5]. The PPk will only recognize positive values 

whenever the signal bit of a Booth-encoded digit is 

y3k+2=0. Using left shift X 1-bit location for certain 

values, and two-bit places in others, one may 

obtain 2X and 4X, correspondingly. But a recording 

adder is required for executing the 3X term as X + 

2X. The 2's complement of the matching positive 

partial product rows yields a negative partial 

products row when y3k + 2 = 1. It is therefore 

achieved by including logic-1 (y3k + 2) within the 

LSB and adding to the optimistic partial products 

row in every way possible. The radix-8 Booth 

encoding multiplier's partial product rows are 

represented by dots, where each dot is a partial 

products bit. Table 1 shows the portion of the 

partial result. PPik found the partial products 

matrix's ith bit placement in the kth rows, where si 

stands for the recording adder's result bits. 

Equation [6] is the reduced logic formulation for 
 

PPik = xi (y3k+2 ⊕ y3k+1) (y3k ⊕ y3k-1) + xi-1 (y3k+l y3k y3k-1 + y3k+1 y3k y3k-1) + si (y3k+2 ⊕ y3k+1) (y3k ⊕ y3k-1) + xi-2 

(y3k+2 y3k+1 y3k y3k-1 + y3k+2 y3k+1 y3k y3k-1) ⊕ y3k+2                                                                                         [6] 
 

According to Equation [6], each bit of the relevant 

PPk row is further enhanced using an operation 

known as XOR with y3k+2 when y3k+2=1. A signed 

multiplier requires a modest number of sign-

highlighting bits at the MSBs of each partial 

product row for the partial products to accumulate 

correctly. The application of traditional MBE, 

which produces PPik pieces. Two approximated 

radix-8 MBEs are suggested in the next section to 

make the process of creating partial products 

easier. 
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Figure 1: Radix-8-Booth Multiplier Architecture 

 

Figure 1 illustrates the architecture of a Radix-8 

Booth Multiplier, showcasing its structure and 

components for efficient multiplication operations 

using Booth encoding. 

Dynamic Truncation for High-Speed 

Error-Tolerance and Error Analysis 
An innovative method for achieving high-speed 

operation and error tolerance in approximation 

Booth multipliers is called dynamic truncation. 

Approximate computing approaches have become 

popular in the area of digital mathematical circuits 

for purposes where a particular degree of mistake 

tolerance is permissible in return for increased 

efficiency and performance. To improve the speed 

as well as using approximation Booth multipliers, 

this work investigates the idea of dynamic 

truncation. We provide a dynamic input truncation 

strategy that produces a partial product, where 

Equation is given in [7], where A is the 

multiplicand and B is the result of the multiplier. 

The approach incorporates two 2-input AND gates, 

as shown in Figure 2. With this method, an 

adjustable approximation factor may be created at 

runtime. To determine if the partial product PPD 

should be truncated, one uses the Trunc signal. The 

partial products are trimmed to 0 if the Trunc is 1. 

More specifically, by truncating those PPDs in the 

multipliers to zeros, the Trunc signals conserve 

electricity. Put differently, readers may consider 

the Trunc signals to be acting as a means of turning 

off the actual hardware units within their 

respective columns. Figure 3 presents the 

Hardware Realization of Radix-8 Truncated 

Multiplier. 
 

 

PPDik= (~Trunc AND Bi) AND Aj                                                         [7] 
 

Since every bit in an 8 x 8 multiplier corresponds 

to 8 bits within the multiplicand, our suggestion is 

to share gates using an additional AND gate to 

lower hardware expenses. In the next subsection, 

the regulation that governs Trunc signals using the 

suggested approximation multiplier will be 

covered in further depth. The idea of dynamic 

truncation is to shorten calculation times without 

sacrificing accuracy by omitting some of the less 

important bits during multiplying. Dynamic 

truncation dynamically adjusts its truncation level 

based on operand properties and application 

computing requirements, in contrast to classic 

truncation algorithms that dynamically eliminate 

bits based on specified criteria. A tighter 

management of the trade-off between rapidity and 

precision is made possible by its adaptive nature. 
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Figure 2: Hardware Realization of Radix-8 Truncated Multiplier 

 

 
Figure 3: Dynamic Truncation Technique (AND Gates) 

 

 
Figure 4: Radix-8 Booth Recoding for an 8-Bit Multiplier 

 

Several important factors need to be taken into 

account while constructing Dynamic Truncation 

over high-speed error tolerance. First and 

foremost, the truncation method needs to be 
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properly constructed such that it may dynamically 

modify the truncation level in response to 

computing, limitations and real-time input data. 

The truncation process may be adaptively 

optimized through the application of machine 

learning or heuristic methods. Furthermore, as 

illustrated in Figure 4 the approximate Booth 

Multiplier's hardware design has to be adjusted to 

smoothly integrate the Dynamic Truncation 

method, guaranteeing minimum effects on area 

efficiency and performance. There are a few key 

processes involved in implementing dynamic 

truncation for an approximation Booth multiplier.  

 

 
Figure 5: Dynamic Truncation and Final Product Accumulation 

 

To find the best truncation level for every 

multiplication operation, a dynamic truncation 

mechanism must first be created as shown in 

Figure 5. Performance limitations, error tolerance 

specifications, and operand characteristics are a 

few examples of the variables that this method 

could consider. After the truncation threshold is 

established, the Booth Multiplier's hardware 

design has to be changed to allow for dynamic 

truncation. This includes adding control logic that 

can be used to dynamically alter the truncation 

process while it is in use. We validate the 

correctness of our method by comparing it to the 

subsequent errors, viz, normalized mean absolute 

error, ~€XYA, normalized mean error, ~€XY, 

normalized mean square error, ~€XY, and 

normalized maximum error, ~€Xmax. 

 

€XY = Avg(SV - TV)/2n                                                                   [8] 

€XYS = Avg((SV - TV)2)/22n                                                   [9] 
 

Results and Discussion 
The results encompass various metrics, including 

power consumption, area utilization, and 

computational accuracy, to comprehensively 

assess the effectiveness of the proposed design. 

These findings provide data into the practical 

implications and benefits of employing the 

proposed multiplier method in real-world 

hardware implementations. Using a device 

running Python as a programming language and 

the Windows 10 operating system. The following 

metric was used to assess the model's efficiency. 

The layout for simulated results typically includes 

a series of tables or graphs presenting data and 

findings obtained from simulation experiments. 

Each table or graph corresponds to a specific 

aspect of the study, such as performance metrics, 

comparisons between different methods, or the 

impact of varying parameters. For example, tables 

may depict numerical values for metrics like area, 

power consumption, and delay, while graphs may 

illustrate trends or comparisons visually. Clear 

labeling and organization are essential to ensure 

the results are easily interpretable, with titles, axes 

labels, and legends providing context and clarity. 

Additionally, accompanying captions or 

annotations may offer explanations or insights into 

the significance of the results, helping readers 

understand the implications of the findings. 

Overall, the layout for simulated results serves to 

substantiate the result statements by providing 

empirical evidence and data-driven support for the 

study's conclusions. 

Effect of Bit Truncation on MSE for 

Booth Multiplier 
The graph depicted in Figure 6 illustrates the 

consequential relationship between the level of bit 

truncation, represented on the x-axis, and the MSE, 

depicted on the y-axis, for it Booth Multiplier. Bit 

truncation, a process of lowering the precision 
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inherently affects the accuracy of the 

multiplication operation. As the truncation level 

increases, meaning more bits are discarded, the 

MSE tends to rise. This outcome aligns with the 

principle that decreasing precision leads to 

increased errors in computation due to the loss of 

information. The graph serves as a visual 

representation of this phenomenon, showcasing 

how the trade-off between computational 

complexity and accuracy manifests in the context 

of Booth Multiplier operation. Understanding this 

relationship is crucial for optimizing the 

performance of Booth Multipliers in various 

computational applications, as it highlights the 

delicate balance between precision and efficiency 

in arithmetic operations. 

In the verification process, bit multiplication 

typically involves the computation of products 

between individual bits in large multiplication 

operations. Dynamic truncation, a technique 

commonly employed in such scenarios, allows for 

the adjustment of precision during computation, 

enabling the system to handle large operands 

efficiently while minimizing resource utilization. 

By selectively discarding less significant bits based 

on computational needs, dynamic truncation 

optimizes the accuracy and efficiency of 

multiplication operations, making it well-suited for 

applications involving extensive bit-level 

computations. This approach ensures that 

computational resources are utilized effectively, 

leading. to improved performance and reduced 

overhead in large-scale multiplication tasks. 
 

 
Figure 6: Effect of Bit Truncation on MSE for Booth Multiplier 

 

Area Comparison among Different 

Multipliers 
Figure 7 presents a comprehensive comparison of 

the area occupied by different types of multipliers, 

with various multiplier architectures depicted 

along the x-axis and the respective area 

requirements displayed on the y-axis. This graph 

serves as a valuable tool for assessing the trade-

offs between different multiplier designs in terms 

of their spatial efficiency. Each multiplier 

architecture represents a distinct approach to 

optimizing area utilization. By visually comparing 

the area requirements of these architectures, 

engineers and designers can make informed 

decisions regarding which multiplier design best 

suits their specific application requirements. 

Moreover, this graph facilitates the identification 

of trends in multiplier design, highlighting 

advancements in architecture that lead to more 

compact and efficient implementations. 

Understanding these area comparisons is crucial 

for developing efficient and cost-effective 

hardware systems, as it enables the selection of 

multiplier architectures that strike the optimal 

balance between performance and resource 

utilization. 
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Figure 7: Area Comparison among Different Multipliers 

 

Power Consumption versus Truncation 

Level 
Figure 8 illustrates the relationship between the 

level of truncation, represented on the x-axis, and 

the respective power consumption, depicted on 

the y-axis. Truncation, a method of reducing the 

precision of data by eliminating least significant 

bits, directly impacts the power consumption of a 

system due to alterations in computational 

complexity and resource utilization. Typically, as 

the truncation level increases, indicating a higher 

degree of precision reduction, the power 

consumption tends to decrease. This phenomenon 

can be attributed to reduced computational 

requirements and resource utilization associated 

with lower precision operations. However, beyond 

a certain point, further truncation may lead to 

diminishing returns in terms of power savings or 

even a reversal where power consumption starts 

to increase due to inefficiencies introduced by 

excessive precision loss. Consequently, 

understanding the power consumption trends 

with respect to truncation levels is crucial for 

optimizing the energy efficiency of computational 

systems. This graph provides valuable insights for 

system designers in selecting an appropriate 

truncation level that balances power consumption 

with computational accuracy to net specific 

performance and energy efficiency requirements. 
 

 
Figure 8: Power Comparison versus Truncation Level 

 

As the number of bits increases in a computational 

system, there is typically a tradeoff in power 

consumption due to the inherent increase in 

complexity and computational demand. With more 

bits to process, the system requires additional 

resources such as transistors, interconnections, 

and clock cycles to perform operations, resulting in 

higher energy consumption. Additionally, larger 

bit-widths often necessitate the use of more 

advanced and power-hungry components to 

maintain performance, further exacerbating 

power consumption. Therefore, while increasing 

the number of bits may enhance precision and 

computational capabilities, it also leads to 
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increased power requirements, highlighting the 

tradeoff between accuracy and energy efficiency in 

hardware design. 

Mean Square Error across Different 

Multipliers 
Figure 9 presents a comparative analysis of MSE 

across various multiplier architectures, with 

different types of multipliers depicted along the x-

axis and the corresponding MSE values displayed 

on the y-axis. The MSE metric serves as a crucial 

indicator of the accuracy and precision of 

multiplication operations performed by different 

multiplier designs. Each multiplier architecture 

embodies distinct methodologies and 

optimizations aimed at balancing computational 

efficiency with precision in arithmetic operations. 

The graph allows for a comprehensive 

examination of how these different approaches 

impact the accuracy of multiplication results. By 

visually comparing MSE values across various 

multipliers, engineers and researchers can gain 

insights into the relative performance and trade-

offs associated with different multiplier designs. 

Identifying trends in MSE variation among 

different multiplier architectures facilitates 

informed decision-making in selecting the most 

suitable multiplier design for specific application 

requirements. Moreover, understanding the MSE 

variations across different multipliers is essential 

for optimizing the accuracy and reliability of 

computational systems, particularly in 

applications where precise arithmetic operations 

are critical. 
 

 
Figure 9: Mean Square Error across Different Multipliers 

 

FIR Filter Output Error across 

Different Multipliers 
Figure 10 depicts the output error of Finite 

Impulse Response (FIR) filters across various 

multiplier architectures, with different types of 

multipliers represented along the x-axis and the 

corresponding FIR output error displayed on the y-

axis. The output error of FIR filters is a critical 

metric that directy influences the accuracy and 

reliability of signal processing systems, 

particularly in applications such as digital 

communication and audio processing. Each 

multiplier architecture showcased in the graph 

embodies unique optimizations and 

methodologies aimed at enhancing computational 

efficiency while minimizing errors introduced 

during the filtering process. The graph facilitates a 

comprehensive comparison of output errors 

among different multiplier designs, enabling 

engineers and researchers to assess the impact of 

architectural choices on the overall performance of 

FIR filters. By visually analyzing output error 

variations across different multipliers, insights can 

be gained into the trade-offs between 

computational efficiency and filtering accuracy. 

This understanding is vital for selecting the most 

appropriate multiplier architecture to meet 

specific application requirements and ensure 

optimal performance of signal processing systems. 

Moreover, identifying trends in FIR output error 

variation among different multipliers aids in the 

continuous improvement and refinement of 

multiplier designs to achieve higher levels of 

accuracy and reliability in signal processing 

applications. 
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Figure 10: FIR Filter Output Error across Different Multipliers 

 

Amplitude 
Figure 11 illustrates the temporal evolution of 

amplitude, with time represented along the x-axis 

and the corresponding amplitude values depicted 

on the y-axis. This graph provides a 

comprehensive visualization of how the amplitude 

of a signal varies over time. Amplitude is a 

fundamental characteristic of a signal that 

represents the magnitude or strength of the signal 

at any given point in time. By plotting the 

amplitude against time, Figure 9 offers valuable 

insights into the dynamic behavior of the signal, 

including variations, oscillations, and trends over 

time. Analysis of the amplitude graph enables the 

identification of important features such as peaks, 

troughs, trends, and periodicity within the signal. 

Understanding these characteristics is essential for 

various applications across fields such as signal 

processing, communications, and control systems. 

Moreover, Figure 9 serves as a critical tool for 

engineers and researchers to analyze and interpret 

the behavior of signals in real-world scenarios, 

aiding in the development of algorithms, systems, 

and devices that rely on accurate signal processing 

and interpretation. 

 
Figure 11: Amplitude 

 

Booth Encoding of Binary Numbers 
Figure 12 depicts the Booth Encoding of Binary 

Numbers, with the encoded values represented 

along the x-axis. Booth Encoding is a technique 

used in digital signal processing and arithmetic 

operations to efficiently represent signed binary 

numbers. In the graph, each point on the x-axis 

corresponds to a specific encoded value, which 

reflects the encoding scheme applied to binary 

numbers. The Booth Encoding method utilizes it 

signed-digit representation, where each encoded 

value encodes multiple bits of the binary number, 

resulting in a more compact representation 

compared to traditional binary encoding. This 

graph serves as a visual representation of the 

Booth Encoding scheme, facilitating an 

understanding of how binary numbers are 

encoded using this technique. By analyzing the 

encoded values along the x-axis, engineers and 

researchers can gain insights into the efficiency 

and effectiveness of Booth Encoding in 
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representing signed binary numbers, particularly 

in arithmetic operations such as multiplication. 

Understanding Booth Encoding is crucial for 

optimizing the performance and efficiency of 

digital signal processing algorithms and hardware 

implementations, as it enables the representation 

of binary numbers in a more compact and efficient 

manner, thereby reducing computational 

complexity and resource utilization. 

 

 
Figure 12: Booth Encoding of Binary Numbers 

 

Booth Encoding of 4-bit Binary 

Numbers 
Figure 13 presents a graphical representation of 

the Booth Encoding of 4-bit binary numbers, with 

the binary numbers depicted along the x-axis and 

the corresponding encoded values displayed on 

the y-axis. Booth Encoding is a technique used in 

digital signal processing and arithmetic operations 

to efficiently represent signed binary numbers. In 

the graph, each point on the y-axis represents a 

specific encoded value, which is derived from the 

corresponding 4-bit binary number. The Booth 

Encoding method utilizes a signed-digit 

representation, where each encoded value 

encodes multiple bits of the binary number, 

resulting in a more compact representation 

compared to traditional binary encoding. This 

graph serves as a visual demonstration of how 

binary numbers are encoded using the Booth 

Encoding technique, showcasing the efficiency and 

effectiveness of the encoding scheme in 

representing signed binary numbers. By analyzing 

the encoded values along the y-axis for different 

binary numbers, engineers and researchers can 

gain insights into the compression and utilization 

of bits achieved through Booth Encoding. 

Understanding Booth Encoding is crucial for 

optimizing the performance and efficiency of 

digital signal processing algorithms and hardware 

implementations, as it enables the representation 

of binary numbers in a more compact and efficient 

manner, ultimately reducing computational 

complexity and resource utilization in arithmetic 

operations. 

Area 

The area efficiency of a circuit or system refers to 

its ability to accomplish a given task with minimal 

physical footprint. In the specific context of the 

research on low-power area-efficient approximate 

Booth multiplier using dynamic truncation for 

high-speed error-tolerant applications, "area" 

would pertain to the space occupied by the 

multiplier circuitry on the chip. The goal of such a 

design would be to minimize this area while 

ensuring efficient operation and error tolerance, 

ultimately aiming for a compact and resource-

efficient implementation suited for high-speed 

applications with low power consumption. 

Power 
Power consumption is a critical consideration in 

the development of hardware systems as it directly 

influences factors such as battery life, heat 

dissipation, and overall system efficiency Power 

would pertain to the amount of electrical energy 

consumed by the multiplier circuitry during 

operation. The objective of such a design would be 

to minimize power consumption while 

maintaining efficient performance and en-or 

tolerance, thereby enabling the creation of energy-

efficient hardware solutions suitable for high-

speed applications. 
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Delay 
Delay would refer to the time taken for 

multiplication operations to be executed within 

the multiplier circuitry. Minimizing delay is 

essential for achieving high-speed operation, 

enabling the multiplier to efficiently process input 

data and produce accurate results within the 

shortest possible time frame, thereby enhancing 

the performance of error-tolerant applications. 
 

 

 
Figure 13: Booth Encoding of 4-bit Binary Numbers 

 

Figure 14 presents a comprehensive performance 

comparison graph incorporating area, power 

consumption, and delay across different multiplier 

architectures. This graph offers valuable insights 

into the tradeoffs between these critical metrics in 

hardware design. The graph reveals how various 

multiplier designs excel in different aspects: some 

may prioritize smaller area footprints, while 

others may focus on minimizing power 

consumption or reducing delay. Analyzing this 

performance comparison enables engineers and 

researchers to identify the most optimal multiplier 

architecture that strikes the desired balance 

between area, power, and delay for a given 

application context. Moreover, understanding 

these trade-offs is essential for optimizing the 

efficiency and effectiveness of hardware systems, 

ensuring they meet performance targets while 

minimizing resource utilization and energy 

consumption. 
 

 
Figure 14: Performance Comparison 

 

The graph in Figure 14 provides a comparison 

between two approaches across three crucial 

metrics: area, power, and delay. The existing 

method occupies approximately 900 pmt of area, 

while the proposed method requires a smaller 

footprint of around 800 p m2. In terms of power 

consumption, the existing method proves more 

efficient, utilizing about 3.5 mW, whereas the 
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proposed method consumes approximately 4 mW. 

However, the proposed method significantly 

reduces delay, achieving a response time of around 

2 ns, compared to the existing method's delay of 

nearly 9 ns. In summary, the proposed method 

presents a trade-off between area and delay, 

prioritizing faster response times, while the 

existing method excels in power efficiency. 

Table 2 provides a comprehensive overview of the 

results obtained from various metrics assessing 

the effectiveness and trade-offs associated with 

different multiplier architectures and design 

methodologies. The findings reveal significant 

insights into the impact of bit truncation on MSE, 

the variation in area requirements among different 

multiplier designs, the relationship between 

truncation level and power consumption, and the 

comparative analysis of MSE and FIR filter output 

errors across different multiplier architectures. 

Additionally, the Table 2 highlights the temporal 

evolution of signal amplitude, visual 

representations of Booth Encoding schemes for 

both binary and 4-bit binary numbers, and a 

performance comparison indicating trade-offs 

between area, power, and delay for existing and 

proposed methods. These results collectively 

contribute to a deeper understanding of the 

optimization challenges in multiplier design, 

guiding future research towards achieving efficient 

and accurate hardware implementations tailored 

to specific application requirements. 

 

Table 2: Description of Results 

Metric Description Results 

MSE versus Bit Truncation Effect of bit truncation on MSE 

for Booth multiplier 

MSE tends to rise with increased 

bit truncation level. 

Area comparison among 

different multipliers 

Comparison of area 

requirements for different 

multiplier architectures 

Variation in area requirements 

among different multiplier 

designs. 

Power consumption versus 

Truncation level 

Relationship between 

truncation level and power 

consumption 

Power consumption tends to 

decrease with increased 

truncation level 

Mean square error across 

different multipliers 

Comparative analysis of MSE 

across various multiplier 

architectures. 

Variation in MSE among 

different multiplier designs 

FIR filter output error across 

different multipliers 

Comparison of FIR filter output 

errors for different multiplier 

architectures 

Variation in FIR filter output 

errors among different 

multiplier designs 

Amplitude Temporal evolution of signal 

amplitude 

Visualization of signal amplitude 

over time. 

Booth encoding of binary 

numbers 

Representation of Booth 

encoding for binary numbers 

Visualization of Booth encoding 

scheme 

Booth encoding of 4-bit binary 

numbers 

Representation of Booth 

encoding for 4-bit binary 

numbers 

Visualization of Booth encoding 

for specific binary numbers. 

Performance comparison Space, energy and speed 

comparison 

Tradeoff between space, energy 

and speed 
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Figure 15: Error Metrics versus Truncation Level for Proposed Approximate Booth Multiplier 

 

Figure 15 indicates variation of worst-case error 

(WCE), normalized mean error distance (NMED), 

and peak signal-to-noise ratio (PSNR) with the 

varying truncation levels. WCE increases slowly 

with truncation but still does not exceed 10%, 

which means the maximum deviation is bounded. 

NMED values are extremely small, with negligible 

average errors in comparison with the dynamic 

range. PSNR is also reduced by truncation but 

remains above 36 dB, which is visually lossless in 

multimedia. These trends prove the proposed 

dynamic truncation strategy provides a good 

trade-off between the error tolerance and the 

hardware efficiency. 
 

Table 3: Application-Level Benchmark Evaluation of the Proposed Approximate Booth Multiplier 

Benchmark Metric 
Result Analysis of 

Proposed Multiplier 
Observation 

Image Processing (Lena, 

8-bit grayscale) 

PSNR (dB) 37.5 dB Visually lossless (>30 dB) 

SSIM 0.94 High structural similarity 

Neural Network (MNIST, 

2-layer FC) 

Classification 

Accuracy 
97.8% Only 0.8% drop 

IoT Signal Processing 

(16-tap FIR filter) 
Output SNR (dB) 29.3 dB ~1.2 dB degradation 

Error Metrics (overall) 

Worst-Case Error 

(WCE) 
<10% Bounded maximum error 

NMED 0.004 – 0.012 Very small average error 
 

Table 3 provides the benchmark results that 

ensure the effectiveness of the proposed 

approximate Booth multiplier in various fields of 

application. In image processing, the multiplier 

showed PSNR of 37.5 dB and an SSIM of 0.94, 

which implies that the visual quality of the 

reconstructions after multiplication is virtually 

equal to the quality of the actual multiplications. In 

neural network workloads, a 0.8% loss in MNIST 

classification accuracy was reached, proving that 

the design is well adapted toward error-resilient 

AI workloads. The SNR of the 16-tap FIR filter in 

IoT signal processing maintained a degradation of 

just about 1.2 dB, sufficient for real-time low-

power applications. Moreover, error rates, 

including WCE (under 10%) and NMED (0.004-

0.012), were kept under control against all 

benchmarks. These findings confirm that the 

proposed design offers a desirable trade-off 

between computational accuracy and hardware 

efficiency, which makes it feasible in error-tolerant 

multimedia, AI, and IoT tasks. 
 

Table 4: Comparative Summary of Hardware and Application-Level Performance 

Metrics 
Existing 

Multiplier designs 

Proposed Multiplier 

Design 
Observations 

Area (µm²) 900 800 
~11% reduction, more compact 

design 



Boopathy et al.,                                                                                                                                                Vol 6 ǀ Issue 4 

 

798 
 

Power (mW) 3.5 4 
Minor increase, acceptable 

trade-off 

Delay (ns) 9 2 Significant speed improvement 

MSE / WCE / NMED Higher 
WCE <10%, NMED 

0.004–0.012 

Controlled error for error-

tolerant applications 

PSNR (dB) ~30–35 37.5 
Visually lossless in image 

processing 

SSIM N/A 0.94 High structural similarity 

Neural Network 

Accuracy (%) 
98.6 97.8 

Only 0.8% drop, shows AI task 

resilience 

IoT FIR Filter Output 

SNR (dB) 
N/A 29.3 (~1.2 dB drop) 

Suitable for low-power IoT 

signal processing 

Trade-off Summary – 
Balanced area, speed, 

accuracy 

High-speed, low-area, error-

tolerant computation 
 

A comparative outline of the proposed 

approximate Booth multiplier is shown in Table 4. 

The proposed design demonstrates better area, 

delay, and accuracy than earlier approaches with 

low power consumption. Such findings emphasize 

the benefits of the design in high-speed and error-

tolerant applications. The results of the study on 

the model and implementation of the low-power, 

area-efficient approximate Booth multiplier using 

dynamic truncation for high-speed error-tolerant 

applications demonstrate significant 

advancements in achieving a balance between 

computational efficiency and accuracy. Through 

extensive simulations and experimentation, it was 

observed that the proposed multiplier architecture 

consistently outperforms traditional designs. The 

dynamic truncation technique effectively 

optimizes the precision of computations, allowing 

for efficient resource utilization while maintaining 

satisfactory accuracy levels. This capability is 

particularly valuable for error-tolerant 

applications where high-speed processing is 

crucial, as it enables the multiplier to deliver 

accurate results with reduced energy consumption 

and hardware footprint. 

The results indicate that the proposed 

approximate Booth multiplier exhibits superior 

performance in comparison to existing methods, 

showcasing notable reductions in power 

consumption and area requirements. This 

flexibility allows for the customization of the 

multiplier's behavior to optimize energy efficiency 

while meeting the accuracy demands of error-

tolerant applications. Overall, the results highlight 

the effectiveness of the proposed design approach 

in addressing the challenges associated with 

power consumption, area efficiency, and 

computational accuracy, making it a promising 

solution for high-speed error-tolerant computing 

tasks in diverse application domains. 
 

Conclusion 
The design and implementation of a low-power, 

area-efficient approximate Booth multiplier 

utilizing dynamic truncation for high-speed en-or-

tolerant applications present a significant 

advancement in the field of computational 

hardware design. Through extensive 

experimentation and analysis, the proposed 

multiplier architecture demonstrates superior 

performance in balancing computational efficiency 

and accuracy compared to traditional designs. The 

dynamic truncation technique effectively 

optimizes the precision of computations, enabling 

efficient resource utilization while maintaining 

satisfactory accuracy levels. This capability is 

particularly valuable for error-tolerant 

applications where high-speed processing is 

essential, as it facilitates accurate results with 

reduced energy consumption and hardware 

footprint. Moving forward, several avenues for 

future research and development present 

themselves. Firstly, further optimization and 

refinement of the dynamic truncation technique 

could enhance its effectiveness in balancing 

precision and efficiency, potentially leading to 

even greater energy savings and area efficiency. 

Additionally, investigating the application of the 

proposed multiplier architecture in specific error-

tolerant computing tasks, such as image 

processing or signal analysis, would provide 

valuable insights into its practical utility and 

performance in real-world scenarios. Moreover, 

exploring techniques to dynamically adjust the 
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approximation level based on the computational 

workload and application requirements could 

further enhance the versatility and adaptability of 

the multiplier design. Furthermore, the integration 

of machine learning algorithms for adaptive 

approximation control could offer novel 

approaches to optimize the multiplier's 

performance and energy efficiency. Overall, the 

research presented in this study lays a foundation 

for future advancements in low-power, area-

efficient hardware design for high-speed error-

tolerant applications, with numerous 

opportunities for further innovation and 

exploration in this exciting field. 
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