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Abstract

Traditional bacterial identification methods—such as culture-based assays, biochemical tests, and manual
microscopy—are often slow, labor-intensive, and lack precision, posing significant challenges in clinical, food safety,
and environmental applications. Artificial intelligence (AI) offers transformative solutions by dramatically improving
speed, accuracy, and automation. This systematic review comprehensively evaluates Al-driven techniques for bacterial
identification, focusing on three core technological domains: advanced imaging (including microscopy and
hyperspectral systems), spectroscopic methods (such as Raman and FTIR), and sensor array technologies integrated
with machine learning (ML) and deep learning (DL). We analyzed 70 peer-reviewed studies published between 2018
and 2025, sourced from PubMed, IEEE Xplore, and Scopus. Findings reveal that Al models consistently achieve high
classification accuracies, ranging from 85.8% to 99%, enabling rapid detection of pathogens, profiling of antibiotic
resistance, and point-of-care diagnostics. Deep learning, particularly convolutional neural networks (CNNs), excels in
image analysis, while spectroscopy provides non-destructive molecular fingerprinting. Despite these advances, key
challenges remain, including reliance on small or non-standardized datasets, high computational demands, and the
prohibitive cost of specialized equipment. To realize Al's full potential, future efforts must prioritize the development
of lightweight, efficient models, the creation of large, diverse, and open-source datasets, and the design of low-cost,
portable diagnostic platforms. This review not only highlights Al's current capabilities but also identifies critical
barriers and charts a clear path for future research to enable the scalable, real-world deployment of Al across global
healthcare and industrial settings.

Keywords: Advanced Imaging, Bacterial Identification, Deep Learning, Hyperspectral Imaging, Sensor Array,
Spectroscopy.

Introduction
Bacterial identification underpins critical efforts in They require skilled personnel, specialized
healthcare, food safety, and environmental equipment, and labor-intensive protocols.

sustainability. Accurate detection of pathogens
enables timely treatment of infectious diseases,
prevents foodborne outbreaks, and safeguards
ecological systems. Rapid identification is vital in
clinical settings, where delays can worsen patient
outcomes. In the food industry, it ensures
consumer safety and compliance with regulations.
Environmental monitoring relies on it to track
microbial contaminants. Traditional methods, such
as culture-based assays, biochemical tests, and
manual microscopy, have been the gold standard
for decades. These techniques, while effective, are
slow, often taking hours to days to yield results.

Inconsistent sample preparation, like variable
staining, can compromise accuracy. The growing
threat of antibiotic-resistant bacteria, such as
Staphylococcus
(MRSA), demands faster diagnostics. Complex
microbial communities in real-world samples,

methicillin-resistant aureus

such as mixed infections, challenge traditional
notions of specificity. These limitations underscore
the need for innovative, rapid, and scalable
solutions to transform bacterial identification.
Recent advancements in artificial intelligence (Al)
offer a paradigm shift in addressing these
challenges.
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Machine learning (ML) and deep learning (DL)
algorithms excel at processing complex datasets.
They extract intricate patterns from images,
spectra, and sensor signals with unprecedented
precision. Advanced imaging modalities capture
detailed High-
resolution microscopy morphological
features. Hyperspectral systems provide spatial
and spectral data. Spectroscopy techniques, like
Raman and Fourier Transform Infrared (FTIR),
detect molecular signatures non-destructively.
Fluorescence-based sensor arrays generate unique
response patterns for rapid detection. When
integrated with Al, these methods achieve
accuracies that often exceed 95%, surpassing
traditional approaches in both speed and
reliability. They reduce reliance on manual
expertise, enabling automation and accessibility.
For example, Al-driven systems can identify
Escherichia coli in hours, not days. They support
point-of-care testing in remote settings. The ability
to detect antibiotic resistance and analyze mixed
samples enhances the utility of these tests. This
convergence of Al and cutting-edge sensing
technologies holds transformative potential for
microbiology.

The rapid of these techniques
necessitates a comprehensive evaluation of their
capabilities and limitations. Studies from 2018 to
2025 showcase remarkable progress. Innovations
like convolutional (CNNs),
YOLOv4, sensors
achieve near-perfect results. They address diverse
needs, pathogen detection to
environmental monitoring. Applications include
identifying foodborne pathogens, profiling
antibiotic resistance, and analyzing microbial

characteristics of microbes.

reveals

evolution

neural networks

and portable fluorescence

from clinical

communities. However, challenges persist. Small
generalizability. Costly
access in low-resource

datasets limit model
equipment
settings. High computational demands hinder
deployment. Data variability, such as noise or

inconsistent imaging conditions, affects reliability.

restricts

These barriers highlight the gap between research
advancements and practical implementation. A
systematic review is crucial for synthesizing
current knowledge, identifying gaps, and charting
future directions. This paper aims to guide
clinicians, in

researchers, and policymakers

harnessing Al to revolutionize bacterial

identification.
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The paper on bacterial identification is structured
to provide a comprehensive understanding of the
topic through six key sections. It begins with an
Introduction that highlights the significance of
bacterial identification in various fields such as
healthcare, agriculture, and environmental
monitoring. The Background
foundational knowledge on bacteria and the
historical development  of  identification
techniques. In "Methodologies
Identification,” the paper explores a range of
traditional and modern approaches, including
culture-based methods, and molecular techniques
such as PCR and 16S rRNA sequencing. The
Limitations and Challenges section addresses the
drawbacks of current methods, such as limited
sensitivity, high cost, and difficulties in identifying
non-culturable bacteria. Future Directions and
Approaches discuss emerging technologies and
innovative strategies, such as metagenomics, Al-
assisted diagnostics, and portable sequencing
devices, that hold promise for
identification accuracy and efficiency. Finally, the
Conclusion summarizes the key findings and
emphasizes the ongoing need for research and
technological advancement bacterial
identification.

Bacterial identification is key in microbiology. It
helps diagnose infections, check food safety, and
monitor the environment. Traditional methods

section offers

for Bacteria

improving

in

have long supported this work. Gram staining,
developed in 1884, categorizes bacteria based on
their cell wall composition. It labels them as Gram-
positive or Gram-negative, which helps guide
treatment. Culturing involves growing bacteria on
specialized media, such as agar plates, for visual
study. Biochemical tests, such as catalase and
oxidase assays, confirm species by examining their
metabolic processes. PCR (Polymerase Chain
Reaction) copies bacterial DNA to find genetic
matches. MALDI-TOF MS examines protein
patterns for rapid species identification. These
tools are trusted and used often. They give solid
results in lab settings. However, they require
specialized tools and trained staff. Each method
checks one or two traits, so many tests are usually
needed. This makes the process more accurate but
also more complex for labs in healthcare and
industry.

Though reliable, traditional methods have clear
limits. Culturing takes time—usually 24 to 48
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hours for colonies to grow. Some bacteria, such as
Mycobacterium tuberculosis, can take weeks. Gram
staining is fast but doesn’t show species-level
details. It also depends on human judgment, which
can lead to errors. Poor sample quality, like uneven
staining, can lower accuracy. These problems
highlight the need for faster, automated, and
scalable tools—especially in areas with limited
resources and urgent testing needs.

Image processing (IP) and Al technologies have
emerged as transformative tools to address these
limitations. IP techniques enhance and analyze
visual data from microbial samples. Digital
microscopy captures high-resolution images of
bacterial morphology. It replaces manual
microscopes with automated systems. It enables
single-cell resolution in complex samples. Sensor
arrays, using fluorescence or electrochemical
signals, generate unique response patterns.
Emerging methods, such as structured
illumination microscopy (SIM) and impedance-
based analysis, continue to push boundaries
further. These technologies generate rich datasets,
which are ideal for Al integration. IP preprocesses
data, removing noise or normalizing images. It
extracts features, like cell shape or spectral peaks,
for Al analysis. Together, IP and Al enable rapid,
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accurate, and automated bacterial identification,
reducing reliance on traditional methods.

Al has grown rapidly and revolutionized the way
we detect microbes. Machine learning (ML) tools,
such as Support Vector Machines (SVM) and
Random Forests, categorize bacteria based on key
features. These work well with structured data,
such as biochemical patterns. Principal
Component Analysis (PCA) helps by shrinking the
data size for faster handling. K-Nearest Neighbors
(KNN) is a simple yet effective algorithm for
classification. Deep learning (DL), a branch of ML,
has brought major changes since the 2010s.
Convolutional Neural Networks (CNNs) pull out
deep image or spectral features on their own.
Recurrent Neural Networks (RNNs), including
Long Short-Term Memory (LSTM) networks, are
well-suited for handling time-based data, such as
signal flows. Transfer learning utilizes trained
models, such as VGG16 or ResNet, to aid when data
is limited. More advanced systems, such as YOLOv4
and 3D U-Net, enable fast detection and image
segmentation. Neural networks with Monte Carlo
dropout help find new bacterial types. These Al
tools, combined with image processing, often reach
over 95% accuracy. They are used in healthcare,
food safety, and environmental checks. Figure 1
shows the timeline of bacterial ID steps.

1676
-First
Observed
Bacteria
& found the

1884
Gram

Figure 1: Time Line of the Bacterial Identification

Search Strategy Method

This systematic review aimed to investigate the
application of artificial intelligence (Al) in bacterial
identification. It focused on developments in
imaging, sensors, and machine learning methods.
The review adhered to PRISMA guidelines to
high-quality
methodology. We describe the search strategy,
study selection process,
exclusion criteria. A comprehensive literature
search was conducted. It targeted studies

ensure transparency and a

and inclusion and
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published from January 2018 to July 2025. This
time frame was chosen to reflect the latest
progress in Al-driven bacterial detection. Several
databases were used for the search. These
included PubMed, IEEE Xplore, Scopus, Web of
Science, and Google Scholar. These sources were
chosen for their wide coverage of biomedical,
engineering, and Al research. The search used both
controlled vocabulary and free-text terms. For
example, MeSH terms were applied in PubMed.
The main keywords focused on Al, bacterial
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identification, imaging, sensors, and machine
learning.

Bacterial Identification: “bacteria identification,”
“pathogen detection,
“bacterial taxonomy.”
Al and Machine Learning: “artificial intelligence,”
learning,” “deep learning,”
“convolutional neural networks,” “support vector
machines,” “random forest,
Imaging and Sensors:
“hyperspectral imaging,
spectroscopy,” “Fourier Transform
spectroscopy,” array,” “fluorescence
sensors,” “image processing.”

Applications: “clinical diagnostics,” “food safety,”
“environmental monitoring,” “antibiotic
resistance.”

» o«

microbial classification,”

“machine

» « ” o«

transfer learning.”
“microscopy,”

» o« » o«

spectroscopy,” “Raman
Infrared

“sensor

Boolean operators were used to combine terms:

Example search string (PubMed): ("bacteria
identification” OR "pathogen detection” OR
"microbial classification") AND  ("artificial

intelligence" OR "machine learning”" OR "deep
learning" OR "convolutional neural networks")
AND ("microscopy” OR "hyperspectral imaging"
OR "spectroscopy" OR "sensor array") AND
("clinical diagnostics" OR "food safety" OR
"environmental monitoring").

Additional searches were conducted in reference
lists of identified studies and review articles to
locate relevant publications not captured in the
database searches (backward citation searching).
Grey literature, such as conference proceedings
and preprints, was included if peer-reviewed and
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relevant to the review’s objectives. The number of
papers reviewed on Al-based Identification by
year-wise (1988-2025) is shown in Figure 2.
Inclusion and Exclusion Criteria

Studies were included based on the following
criteria:

Study Type: Original research articles, conference
papers, or peer-reviewed preprints reporting on
Al-based bacterial identification techniques.
Publication Date: Published between January
2018 and July 2025 to focus on recent
advancements.

Methodology

Studies utilizing Al (machine learning or deep
learning) combined  with (e.g.
microscopy, hyperspectral imaging), spectroscopy,
or sensor arrays for bacterial identification or
classification.

Outcomes

Reported quantitative outcomes (e.g., accuracy,
precision, recall) or qualitative insights (e.g,
feasibility, limitations) related to bacterial
identification.

Language

Published in English to ensure accessibility for
data extraction.

imaging

Applications
Focused on applications in clinical diagnostics,
food safety, environmental monitoring, or

antibiotic resistance detection.

Number of
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Figure 2: Number of Papers Group by the Year
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Exclusion criteria were:

Studies not involving Al or machine learning
techniques.

Studies focused on non-bacterial

microorganisms (e.g., viruses, fungi) unless
bacteria were also analyzed.
Non-peer-reviewed sources, such as
editorials, opinion pieces, or non-peer-
reviewed preprints.

Studies lacking sufficient methodological
details or results (e.g., no description of
dataset or outcomes).

Studies published before 2018 or in
languages other than English.

Vol 6 | Issue 4

Study Selection Process

The study selection process followed a two-stage
screening approach:

Title and Abstract Screening: First Two Authors
screened titles and abstracts of retrieved records
to assess eligibility based on the inclusion and
exclusion criteria. Discrepancies were resolved
through discussion or consultation with a third
Author.

Full-Text Review: Full texts of potentially eligible
studies were retrieved and evaluated for final
inclusion. Reasons for exclusion (e.g. irrelevant
methodology, lack of outcomes) were documented.

n=310

. . n=334
Identification of

records from
databases

Total records

dentified

Records after
duplicates

removed

Identification of
records from
manual search

n=2 n=295
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Full-text
articles
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| I I I >
Records Full-text
excluded articles
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Figure 3: Process of Systematic Literature Review

The study selection process is shown in the
PRISMA flow diagram (Figure 3). It outlines the
number of records identified, screened, excluded,
and finally included. A total of 70 studies met the
inclusion criteria and were analyzed. These studies
were grouped based on their methods. Categories
included machine learning, deep learning,
hyperspectral imaging, sensor arrays, and other
advanced imaging tools.

Data Collection and Extraction

Data were extracted by the first two authors using
a standardized data extraction form. For
information obtained from previously published
studies, the corresponding reference numbers are
indicated. The following information was collected
from each study:

e  Author(s) and publication year.

e Proposed methodology (e.g., Al algorithms,
imaging/sensing techniques).

° Dataset details (e.g., size, bacterial species,
sample type).

e  Achievements (e.g, accuracy, precision,
recall, F1-score).

e Limitations (e.g., dataset size, computational

complexity, equipment cost).
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Discrepancies in data extraction were resolved
through discussion or arbitration by other authors.
Data generated or analyzed by the authors
themselves are noted in the Author Contributions
section. Data were compiled into tables (Tables 1-
6) to facilitate synthesis and comparison across
methodologies.

Risk of Bias Assessment

The quality of included studies was assessed using
the Quality Assessment of Diagnostic Accuracy
Studies (QUADAS-2) tool, adapted for Al-based
diagnostic studies. The assessment focused on four
domains:

Patient/Sample Selection: Risk of bias due to
non-representative datasets or unclear sampling
methods.

Index Test: Clarity and reproducibility of Al and
imaging/sensing methods.

Reference Standard: Appropriateness of ground
truth (e.g., confirmed bacterial species).

Flow and Timing: Consistency in applying
methods across samples. were summarized but
not used to exclude studies, given the exploratory
nature of this review.
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Results and Discussion
Synthesis Methods

Because the studies varied in design, datasets, and
outcomes, a meta-analysis was not suitable.
Instead, a narrative synthesis was performed. The
studies were organized based on the methods

they used.
e Machine learning and feature extraction
(Table 1).

e Deep learning and convolutional neural
networks (Table 2).

Spectroscopy-based identification (Table 3).
Hyperspectral imaging and Al (Table 4).
Sensor array and machine learning (Table 5).
Other advanced imaging and Al techniques

(Table 6).
Concept and Studies for Bacteria

Identification

This section examines modern methods that utilize
artificial intelligence to identify bacteria. It starts
with machine learning and feature extraction.
These tools help analyze complex data and identify
patterns associated with specific bacteria. Deep
learning,
networks (CNNs), is well-suited for image data. It
enhances accuracy in sorting different types of
bacteria. The Spectroscopy improves results by
combining spatial and spectral features. Sensor

particularly  convolutional neural

array systems, when coupled with machine
learning, offer a sensitive and efficient platform for
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detecting bacterial presence based on chemical or
physical changes. Additionally, other cutting-edge
imaging techniques supported by Al continue to
emerge, pushing the boundaries of speed,
accuracy, and reliability in bacterial identification.

Machine Learning and Feature

Extraction Techniques

Accurate and rapid bacterial identification is
crucial in modern microbiology. It plays a big role
in health, food safety, and the environment. They
need skilled staff and lab tools. These issues
pushed the need for better solutions. New tools
now use image processing (IP) and artificial
intelligence (AI). IP helps pull out details from
microscope images. This improves how we spot
bacteria. This review examines how IP and Al
contribute to the identification of bacteria. It
focuses on classifying bacteria from microscope
images using ML and feature extraction. We
examine 14 main studies. They utilize tools such as
feature extraction, support vector machines
(SVM), k-means clustering, and probabilistic
neural networks. These methods bring speed,
automation, and high accuracy. Still, they face
challenges such as poor image quality, limited
datasets, and excessive computer usage. The next
parts explain how these methods work. They also
show their uses, results, and limits in the field of
microbiology, which are discussed in the following
Table 1.

Table 1: Machine Learning and Feature Extraction Techniques

Author Name Proposed Work and Dataset Achievements Limitations
and Year
Mohamed B. Histogram equalization for 97% accuracy in Small dataset.
A. etal (1), preprocessing, Bag-of-Words for bacterial Classifier speed not
2018 feature extraction, SVM for classification. discussed. Unclear
classification. Dataset: 200 images Effective generalizability.
(DIBaS, 10 species). preprocessing and
feature extraction.
Kris CPN and Random Forest for Gram RF: 99% accuracy; CPN underperformed.

Kristensen et
al. (2),2023 images (33 species).
Preetha et al

(3),2018 electron microscope images.

Dataset: Not specified.

stain classification. Dataset: 660

Image processing pipeline using

CPN: 80%. Excellent
Gram-type
classification.

Limited to Gram stain
task. Moderate dataset
size.
Demonstrated digital
image processing
feasibility. Improved
specificity.

No accuracy metrics.
Missing dataset
details. Relies on
quality imaging.
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Wahid M. F. et
al. (4),2019

Keren F. etal
(5),2023
Kotwal et al.

(6), 2022

Sajedi et al.
(7),2020

Satyanarayana
etal (8),2022

Rani et al. (9),
2022
Amitha et al.

(10), 2024

Singh A. et al.
(11), 2022

Rani et al.
(12),2023

Kumar et al.
(13), 2010

Hardo et al.
(14), 2022

Hybrid CNN models (CNN-SVM,
CNN-KNN, CNN-NB). Dataset: Not
clearly specified.

Compared SVM, DL, RF for bacterial
classification. Dataset: General
methodological focus.
Literature review of ML in bacterial
classification (1998-2020).

Gabor transform + XGBoost on
Myxobacterial suborders. Dataset:
Microscopic images.

TPLMM-k algorithm for image
decomposition. Dataset: Medical
microscopic images.

Systematic review of ML/DL in
microorganism image recognition.
Dataset: 100 publications.
YOLOVS5 + image processing for
waterborne bacteria detection.
Dataset: Water sample images (not
quantified).

Transfer learning (GoogLeNet,
AlexNet) on 600+ images (33
species).

VGG16, ResNet50, Xception on
2500 augmented images (5
species).

PNN using geometrical, optical,
textural features. Dataset: Images
of five stained microorganisms.

Developed SyMBac for synthetic
micrographs. Dataset: Synthetic
images.

CNN-SVM: 98.7%
accuracy. Strong
hybrid performance.

Real-time, high-
throughput taxonomy
potential.
Comprehensive
analysis of trends,
methods, limitations.

91% accuracy.
Improved over
previous methods.

Better segmentation
vs. GMM using VO],
GCE, PRI

Detailed trends and
technique evaluation.

High precision.
Reduced analysis
time.

GoogLeNet: 98.67%
accuracy. Broad
species classification.

Xception: 98.02%
accuracy.
Outperformed others.
100% accuracy with
nine features.
Effective even on
mixed samples.
Outperformed
manual segmentation.
Robust to cell
variation.

Missing dataset
details. High
computational cost.
Unclear adaptability.
No dataset or results.
Broad approach lacks
specificity.

No original
experiments.
Dependent on
secondary data.
Only three suborders.
Moderate dataset
Limited
generalizability.
Computationally
demanding. Specific to
image types. Needs
broader validation.
No experimental data.
Relies on secondary
literature.
Dataset size/diversity
not provided. YOLOv5
needs significant
resources.
Moderate dataset
Dependent on pre-
trained models. Needs
larger-scale
validation.
Augmentation may
skew results. Limited
species. High DL costs.
Only five organisms.
Fluorescent staining is
costly. Small dataset.

Synthetic nature may
not reflect real-world
complexity. Needs
real-data validation.

The table is shown to reveal a robust landscape of
learning extraction
techniques for microscopic image-based bacterial

machine and feature
classification, with accuracies ranging from 91-
100% across diverse methodologies, datasets, and
applications (1). Exceptional accuracies of 97-
100% have been reported when datasets ranging
from 200 to 2500 images were employed, using
techniques SVM, learning

such as transfer

956

(GoogLeNet, Xception), and probabilistic neural
(PNN) (2). The of
combining feature extraction methods (e.g., Bag-
of-Words, Gabor transform, geometrical/textural
features) with ML classifiers for automated
bacterial identification has been highlighted (3).
Superiority of Random Forest (99%) over Causal
Probabilistic Network (80%) for Gram stain
classification was demonstrated in previous

networks effectiveness
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studies (4), underscoring the importance of model
selection. Comprehensive insights into
methodological trends and challenges,
emphasizing the need for standardized datasets
and preprocessing techniques, have been provided
in other studies (5, 6). Data scarcity was addressed
by innovations such as SyMBac, which generate
synthetic micrographs capable of achieving robust
segmentation but still require real-world
validation (7). Nonetheless, limitations persist
across studies, including small or unspecified
dataset sizes (8,9,10), lack of generalizability to
diverse bacterial species (11,12), and the high
computational demands of complex algorithms
(13). Practical implementation has further been
complicated by reliance on high-quality images
and staining techniques.
suggest that although ML and feature extraction
techniques offer significant promise for rapid and
accurate bacterial identification, challenges
related to dataset diversity, computational
efficiency, and real-world applicability must still
be addressed to fully realize their potential in
clinical and industrial microbiology (14).

Frequent Techniques Used

These observations

Machine learning and feature extraction
techniques are considered central to the
automation of bacterial identification from

microscopic images (1). Meaningful features such
as texture, shape, and color are extracted from
(2).

commonly used for

images for classification Histogram

equalization has been
preprocessing to enhance image contrast, as
demonstrated in previous studies (3). Feature
extraction has also been supported through the
Bag-of-Words model, which forms visual patterns
for SVM classification (4). Gram stains have been
sorted using Random Forest (RF) and Causal
Probabilistic Network (CPN), with RF showing
superior performance (5). Microbes have been
categorized by Probabilistic Neural Networks
(PNN) based on shape, light, and texture features
obtained from fluorescent images (6). Image
segmentation in medical tasks has been improved
through the TPLMM-k method combined with k-
means clustering (7). Detection of bacterial
suborders has been facilitated by applying Gabor
transform with XGBoost (8). Transfer learning
with models such as GoogLeNet, AlexNet, VGG16,
ResNet50, and Xception has been reported to boost
accuracy, even with small datasets (9,10). Dataset
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expansion and overfitting prevention have been
achieved through image augmentation techniques
such as rotation, cropping, and flipping (11).
Synthetic data generation tools, such as SyMBac,
have been employed to produce training images
for improved segmentation (12). Morphological
processing and segmentation have further aided in
identifying bacterial shapes (13). Collectively,
these approaches are shown to support rapid,
automated, and accurate bacterial identification
(14).

Applications

These techniques are found to have diverse
applications in microbiology and related fields. In
clinical diagnostics, rapid identification of bacterial
species is enabled,
classification, which distinguishes between Gram-
positive and Gram-negative bacteria. Tuberculosis
detection has benefited from automated image
analysis, reducing the need for manual microscopy
efforts. Applications safety
detecting microbial contamination in food samples
to ensure quality control. Environmental
monitoring has been supported by these methods
through the identification of bacteria in water
samples, thereby aiding public health and water
quality management. Biomedical research has
employed these techniques for the analysis of
bacterial morphology and taxonomy, supporting
microbial ecology studies. Classification of specific

such as in Gram stain

in food include

bacterial species, including Micrococcus luteus,
Bacillus anthracis, and Staphylococcus aureus, has
been achieved with high accuracy. Mixed bacterial
sample analysis, involving pathogens such as
Escherichia coli and Listeria innocua, has been
facilitated by feature extraction and probabilistic
neural networks. Automated epidemiology has
further benefited through species
identification, enabling quicker responses to
infectious diseases. These applications are shown
to highlight the versatility of machine learning and

real-time

feature extraction in addressing critical needs
across multiple domains.

Advantages

Machine learning and feature extraction
techniques are reported to offer significant
advantages for bacterial identification. High

classification accuracies ranging from 91% to
100% have been achieved in studies using SVM, RF,
PNN, and transfer learning. Automation has been
shown to reduce the need for manual microscopy,
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saving time and labor compared to traditional
tests. Enhanced specificity compared to
conventional approaches has been demonstrated,
thereby = minimizing errors in  species
identification. Transfer learning models such as
Xception and GoogLeNet have been employed to
achieve high performance even with moderate
dataset sizes. Synthetic data generation methods
such as SyMBac have been utilized to provide
unlimited training data with perfect ground truth,
thereby enhancing model robustness. Adaptability
of these techniques to various imaging platforms
has been reported, allowing for the handling of
diverse bacterial morphologies and sizes. Real-
time identification has been supported, facilitating
rapid responses in clinical and environmental
settings. Feature extraction approaches such as
Bag-of-Words and Gabor transform have been
identified as computationally efficient compared
to deep learning, making them suitable for
resource-limited settings. Collectively, these
advantages are shown to make the techniques
transformative for microbiology.

Challenges

Despite their strengths, these techniques face
several challenges. Dataset size and diversity are
recognized as significant limitations, with many
studies relying on small datasets (e.g.,, 200-2500
images) that may not capture bacterial variability.
Lack of detailed dataset descriptions in some
studies has hindered reproducibility. High-quality
images are considered critical; however,
variability in staining techniques, such as those
using Gram or fluorescent dyes, can impact model
performance. Computational complexity is a
concern for algorithms like TPLMM-k and transfer
learning models, requiring significant resources.
species
remains limited in studies focused on specific
suborders or species. Synthetic datasets, while

innovative, may not fully represent real-world

Generalizability to diverse bacterial

imaging artifacts, necessitating further validation.

Vol 6 | Issue 4

Preprocessing steps, such histogram
equalization and morphological operations,
require careful optimization to avoid introducing
noise. The need for standardized protocols and
publicly available datasets is evident. Access to
advanced imaging equipment
personnel poses practical challenges in resource-
constrained settings. Addressing these challenges

is considered crucial for broader adoption.
Deep Learning and Convolutional

Neural Networks

Identifying bacteria from microscope images is
vital in microbiology. It plays a role in clinical care,
food safety, environmental checks, and research.
This makes them less effective in busy labs. Deep
learning (DL), especially convolutional neural
networks (CNNs), has changed this process. CNNs
allow fast, automated, and highly accurate
bacterial detection. They extract detailed features
from images without requiring manual steps. In
many cases, they outperform older machine
learning methods. This section focuses on 17
studies that leverage deep learning and CNN-based
techniques for microscopic image-based bacterial
identification in many research works. These
studies employ advanced architectures, such as
VGG16, ResNet, Inception, YOLO, and EfficientNet,
often in combination with transfer learning, data
augmentation, and synthetic data generation, to

as

and trained

achieve robust performance. The applications
range such
Escherichia coli, to identifying tuberculosis bacilli
and classifying bacterial growth stages. While

these methods offer significant advantages in

from detecting pathogens, as

terms of accuracy and automation, they face

challenges  such dataset limitations,
computational complexity, and generalizability
issues. This section outlines the frequently used
techniques, applications, advantages, and

challenges, as summarized in Table 2, providing a

as

comprehensive analysis of how deep learning is
transforming bacterial identification.

Table 2: Deep Learning and Convolutional Neural Networks

Author Name Proposed Work and Achievements Limitations
and Year Dataset
Ramesh H. etal Used various CNNs (e.g., Up to 99% accuracy. Dataset size/diversity
(15), 2024 VGG16, ResNet50, Proposed smartphone not provided. High

EfficientNet) for bacteria
prediction. Dataset: Diverse
images (not quantified).

integration.

computational demand.
Real-world validation
missing.
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Mu Yang et al.
(16), 2020

Kotwal et al. (17),
2023

SarkerI. A. et al
(18), 2024

Wahid M. F. et al.
(19), 2019

AhmedT. etal
(20),2019

Sunanda et al.
(21), 2024

Visitsattaponge S.
etal (22),2024

Nasip et al. (23),
2018

Wabhid et al. (24),
2018

Rani Oomman
Panicker et al.
(25),2018

Andreini et al.
(26),2018

Yang et al. (27),
2023

Sengupta et al.
(28),2025

CNN + active learning +
logistic regression for AFB
detection. Dataset: 134 ZN-
stained slides.

Ensemble features (HOG,
LBP, CNNs) + multiple
classifiers. Dataset: Four
bacterial species.
ResNet50 with
augmentation for 33
species. Dataset:
Polyculture images.
Xception CNN with transfer
learning. Dataset: 1150
images (7 species).
Inception v3 + SVM via
transfer learning. Dataset:
800+ images (7 species).
CNNs (GoogLeNet, AlexNet,
etc.) on Agar dataset.
Dataset: 5 species.

BiT model with data
cleaning (graph Laplacian,
WIB-ReLU). Dataset: DIBaS
(660 images, 33 species).
VGGNet and AlexNet for
classification. Dataset:
DIBaS (660 images).
Inception CNN via transfer
learning. Dataset: 500+
images (5 species).

CNN with image
binarization for TB
detection. Dataset: 22
smear images.

Synthetic image generation
+ FCN for colony
segmentation. Dataset:
Synthetic + limited real
images.

Style transfer + Swin
Transformer + Cascade
Mask R-CNN. Dataset:
4,000 colony images
(AGAR).

U-Net + ResNet for biofilm
detection (P. aeruginosa).
Dataset: Bright-field
images.

F1 scores ~99%. High
sensitivity/specificity.

VGG16+SVM achieved
99.89% accuracy.

94.91% accuracy.
Robust to unseen data.

97.5% accuracy.
Effective for lethal
bacteria.

96% accuracy. Efficient
classification.

GoogLeNet best
performer (accuracy
not stated).

Accuracy: 99.11%, high
precision/recall/F1.

98.25% (VGGNet),
97.53% (AlexNet).

95% accuracy. Effective
on harmful bacteria.

Recall: 97.13%. F-score:
86.76%.

Improved segmentation
scalability.

YOLOv8x: 76.7% mAP.
Outperformed HRNet.

Efficient biofilm
segmentation. High
ResNet accuracy.

Focused only on AFB.
Moderate dataset. Active
learning increases
complexity.

Limited to 4 species.
Dataset size unspecified.
High computational cost.

Dataset unspecified.
Moderate performance.
Generalizability unclear.

Small dataset. Limited
species. Computational
cost not discussed.
Small dataset. Only 7
species. Complex hybrid
model.

Accuracy missing.
Limited species. High-
quality images required.
Complex preprocessing.
DIBaS-specific. Needs
real-world tests.

Moderate dataset. High
model cost. Limited
dataset scope.

Small datasss Limited
species. High model
demands.

Very small dataset. Low
precision. TB-specific.

Synthetic data may lack
real-world variability.

Moderate mAP. Complex
architecture.

Species-specific. Dataset
size unspecified. Needs
broader validation.
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Iriya et al. (29),
2024

Large-volume microscopy
+ DNN for E. coli. Dataset:
Not specified.

Mai et al. (30),
2021

Depthwise separable CNN
for 33 strains. Dataset:
DIBaS (6600 images).

Chin SY et al (31),
2024

Object detection (SSD-
MobileNetV2, YOLOv4,
EfficientDet) for E. coli
growth. Dataset: Not
specified.

High accuracy for point-
of-care use.

Dataset unreported.
Limited to E. coli. Needs
real-world sample

testing.
96.28% accuracy. Only =~ Moderate dataset.
3.23M parameters. DIBaS-only.
Generalizability
uncertain.

YOLOv4: 98% mAP,
97% recall.

Dataset missing. E. coli-
specific. High model
complexity.

The table summarizes significant advancements in
deep learning and convolutional neural networks
(CNNs) for microscopic image-based bacterial
classification, with reported accuracies ranging
from 94.91% to 99.89% across diverse datasets
and applications. Exceptional performance has
been achieved using advanced CNN architectures
such as VGG16, ResNet, and Big Transfer (BiT) on
datasets including DIBaS (660-6600 images) and
custom bacterial image sets. These results
demonstrate the ability of CNNs to extract
complex, hierarchical features, enabling precise
bacterial species classification. Transfer learning
has been applied to moderate dataset sizes (500-
1150 images), leveraging pre-trained models such
as Inception, GoogLeNet, and Xception, which has
yielded robust accuracies of 95-97.5% despite
limited data availability. Dataset limitations have
been further mitigated through synthetic data
generation and style transfer, creating augmented
datasets (e.g, 4 K images) and reducing
dependence on scarce annotated data, thereby
improving model robustness. High-performance
metrics have also been reported in specific
applications, including tuberculosis detection,
biofilm analysis, and E. coli growth stage
classification, highlighting the versatility of CNNs
in clinical and research contexts.

Challenges remain, particularly regarding small or
unspecified dataset which
generalizability across diverse bacterial species.
Computational complexity has also been noted,
especially for models such as YOLOv4 and Swin
Transformer, which require substantial resources

sizes, constrain

and may hinder deployment in resource-limited
environments. A focus on specific bacteria, such as
E. coli and Pseudomonas aeruginosa,
applicability to broader microbial populations.

limits
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Some studies have addressed these limitations
effectively: active learning has been employed to
optimize CNN training with limited slides,
achieving 87.13% sensitivity; lightweight CNNs
with 3.23M parameters have been proposed for
low-resource devices; and data augmentation has
been used to enhance dataset diversity. Despite
these advances, the development of larger,
standardized datasets, validation on mixed
samples, and optimization for computational
efficiency remain critical for ensuring real-world

applicability = and  scalability in  clinical
microbiology.

Frequent Techniques Used

Deep learning techniques, particularly

convolutional neural networks (CNNs), dominate
microscopic image-based bacterial classification.
Advanced CNN architectures are widely employed,
including VGG16, ResNet50, ResNet100, Inception
v3, LeNet5, EfficientNet, and ConvNeXt (1).
Transfer learning is a common approach that
leverages pre-trained models, such as GoogLeNet,
AlexNet, VGG-16, SqueezeNet, DenseNet-161, and
Xception, to enhance performance with limited
data. Data augmentation techniques, such as
rotation, flipping, and cropping, expand datasets to
data

to

improve model robustness. Synthetic

generation creates realistic micrographs
address data scarcity. Style transfer generates
large datasets (e.g., 4k images) for improved
training. Active learning optimizes CNN training by
selecting informative samples. Hybrid models
combine CNNs with classifiers, such as Support
Vector Machines (SVM) or logistic regression, for
enhanced accuracy. Segmentation techniques,
such as U-Net with ResNet and Fully Convolutional

Networks, are utilized for bacterial colony and



Urmila etal,

biofilm detection. Object detection models, such as
YOLOv4, SSD-MobileNetV2, and EfficientNet,
classify bacterial growth stages. Depth-wise
separable CNNs reduce computational complexity
for resource-limited devices (30). Graph
Laplacian-based data cleaning and WIB-ReLU
activation improve model performance. Swin
Transformer enhances feature extraction in
complex datasets. These techniques enable the
automated and precise identification of bacteria.

Applications

Deep learning and CNN techniques have been
applied widely in microbiology. Clinical
diagnostics benefit from rapid bacterial species
identification, such as the classification of 33
bacterial strains in the DIBaS dataset. Automated
analysis of sputum smear images has improved
tuberculosis detection, while biofilm detection,
particularly for Pseudomonas aeruginosa, has
supported antimicrobial research. Food safety
applications have been enhanced through the
identification of Escherichia coli growth stages
(rod-shaped, dividing, and microcolonies) in food
samples. Environmental monitoring has been
facilitated by large-volume microscopy for
detecting uropathogenic E. coli in water or clinical
samples. Laboratory
advanced by classifying bacteria, including Bacillus
subtilis and Staphylococcus aureus, from agar
plate images. Biomedical research has benefited

automation has been

from these methods for microbial taxonomy and

morphology analysis. Real-time identification
systems, potentially integrated with smartphones,
have enabled point-of-care diagnostics, and
epidemiology has been supported by rapid
pathogen detection, facilitating faster responses to
infectious diseases. Collectively, these applications
demonstrate the broad impact of deep learning in

microbial analysis.

Advantages

Significant advantages for bacterial identification
are offered by deep learning and CNNs. High
accuracies, ranging from 94.91% to 99.89%, have
been achieved using architectures such as VGG16,
ResNet, and BiT. The need for manual microscopy
has been eliminated through automation, thereby
reducing time and labor. High performance has
been enabled on moderate datasets by transfer
learning, making applications feasible even with
limited data. Scalable solutions to data scarcity
have been provided by synthetic data generation
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and style transfer, enhancing model robustness.
Complex features are effectively extracted by
CNNs, resulting in superior performance
compared to traditional machine learning methods
in tasks such as biofilm detection and growth stage
classification. Computational requirements for
resource-limited settings have been reduced
through the use of lightweight models, such as
depth-wise separable CNNs. High precision, recall,
and F1-scores (up to 99.31%, 99.09%, and 99.06%,
respectively) have been ensured, providing
reliable classification. Real-time detection
capabilities are supported, enabling point-of-care
applications. Applicability has been enhanced
through versatility across imaging platforms and
bacterial types. These factors demonstrate that
deep learning
microbiology.

Challenges

Significant challenges are faced by deep learning
(CNN)
identification. Model

is a transformative tool in

and convolutional neural network
techniques for bacterial
generalizability is restricted by limited dataset
sizes. In some studies, datasets as small as 22
sputum smear images have been used, limiting
robustness. In other cases, detailed dataset
descriptions are provided, hindering
reproducibility. Moderate dataset sizes, ranging
from 500 to 1150 images, may fail to capture the

full diversity of bacterial species. A major barrier is

not

posed by computational complexity. Substantial
computational resources are required by advanced
models such as YOLOv4, Swin Transformer, and
VGGNet, making them impractical for resource-
constrained environments. Computational
demands are further increased by complex
preprocessing steps, including active learning and
graph Laplacian-based data cleaning. Broader
applicability is limited by specificity to certain
bacteria; some studies focus solely on
Pseudomonas aeruginosa, while others target only
E. coli, reducing versatility. Synthetic datasets may
not fully represent real-world imaging artifacts,
necessitating additional validation. Variability in
image quality, caused by inconsistent staining or

imaging  conditions, also affects model
performance.

Spectroscopy-Based Identification
Using Al

identification of bacteria,
(AD),

Spectroscopy-based

combined with artificial intelligence
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represents a  cutting-edge approach in
microbiology, offering rapid and non-destructive
methods for bacterial classification and detection
of antibiotic resistance. This section examines 14
studies that utilize spectroscopy-based techniques
in conjunction with Al for bacterial identification.
These studies algorithms,
including principal component analysis (PCA),

utilize advanced

Vol 6 | Issue 4

spectral transformers, to analyze spectral data.
Applications range from pathogen detection to
antimicrobial  susceptibility  testing,  with
significant advantages in speed and precision.
However, challenges such as spectral variability,
dataset limitations, and equipment costs persist.
Table 3 provides a comprehensive overview of this
innovative field, detailing the frequent techniques,

convolutional

neural

networks (CNNs),

and

Table 3: Spectroscopy-Based Identification Using Al

applications, advantages, and limitations.

Achievements

Limitations

Author Proposed Work and Dataset
Details
Wan-dan Z. PCA + Stacking with grid
etal (32), search and K-fold validation.
2019 Dataset: Not specified.
JiS.-Y.etal Wavelet features + visual
(33),2019 analytics for IR spectroscopy.

Biasio et al.

Dataset: 72 IR spectra (E. coli,
P. aeruginosa).
Raman micro-spectroscopy +

(34),2013 PCA with narrow band filters.
Dataset: 3 species (not
quantified).

Jacob Henry Excitation-emission
etal (35), spectroscopy with DMAF +
2024 NN. Dataset: 8 bacterial

species (not quantified).
Barrera FTIR + ML for antimicrobial

Patifio et al.

resistance detection. Dataset:

(36), 2024 4 bacterial species.
Rahman et Review of Raman
al. (37), spectroscopy + CNN + SERS.
2024 Dataset: Literature-based.
Gullu et al. Image processing + ML for
(38),2024 inhibition zone detection.

Farias et al.

Dataset: Not reported.
NIR spectroscopy + PCA, HCA,

(39),2023 KNN. Dataset: 4 species (E.

coli, S. enteritidis, E. faecalis,
L. monocytogenes).

Thomsen et Spectral Transformer for
al. (40), Raman hyperspectral images.
2022 Dataset: 15 classes (6 MR-MS

species).
Luetal Raman + ML for species ID
(41), 2023 and resistance detection.

95.73% accuracy. Robust
due to cross-validation.

92.5% accuracy. High
sensitivity/specificity
(>92%).

High accuracy using 3 PCs.
Comparable to PCA
classifier.

85.8% species-level,
98.3% Gram-level
accuracy.

Detected resistance
patterns in G+ and G-
bacteria. High versatility.

Showcased DL benefits
and data limitations.

Automated susceptibility
testing. Simplified
measurement.
100% accuracy in species
and Gram classification.
Green, fast method.

96% accuracy (15 classes),
95.6% (MR-MS).
Outperformed CNNs.

90.73% species-level,
99.92% resistance
accuracy.

Dataset details missing.
Limited to foodborne
pathogens.
Generalizability unclear.
Small dataset. Limited to
two species. Requires
FO-FTIR.

Dataset size not given.
Only 3 species. Needs
precise spectral input.

Moderate species
accuracy. Dataset not
reported. Variability

from dye.
Dataset size unspecified.
Limited to 4 species.
Requires biomolecular
analysis.
No experiments. Relies
on secondary data. No
specific performance
metrics.
Dataset missing. Only
applicable to disk
diffusion.
Dataset size not stated.
Needs NIR accessory.
Limited species.

Dataset unspecified.
Requires hyperspectral
imaging. Limited to
phenotypic classes.
Dataset not provided.
Single-cell analysis adds
complexity.
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Dataset: 12 species, A.
baumannii strains.

Safir et al. Acoustic bioprinting + SERS +
(42),2023  ML. Dataset: S. epidermidis, E.
coli, blood mixtures.
K. Kukula et 4-layer CNN for Raman
al. (43), spectra. Dataset: 30 bacterial
2021 classes.
L. Denget Deep NN with multi-receptive
al. (44), fields for Raman spectra.
2022 Dataset: Not specified.
Yichen Liu Wavelet packet + Gramian
etal. (45), angular field + DL. Dataset: 2
2024 and 30 isolates.

299% accuracy (pure),
287% (mixed). High
enhancement (1500x).
86% accuracy. Reduced
model complexity. Near
real-time.

Small dataset. Complex
setup. Limited to select
mixtures.
Moderate accuracy.
Needs large spectral
datasets.

Higher accuracy than prior
methods. Visualization for

Dataset missing. Limited
clinical testing. Expert

interpretability. input needed.
99.64% (2 isolates), Lower accuracy on 30
90.55% (30 isolates). classes. Dataset size

Training time reduced

unclear. Sensitive to

90%. noise.

The Spectroscopy-based Al demonstrates strong
potential for bacterial identification, with studies
reporting accuracies between 85.8% and 100%.
Techniques such as NIR spectroscopy with
PCA/HCA/KNN, SERS with acoustic bioprinting,
and wavelet-based deep learning have achieved
near-perfect results, including rapid detection of
antibiotic like
spectral transformers and multi-receptive field
DNNs further improve performance and
interpretability. However, progress is limited by
small or unspecified datasets, narrow species

resistance. Advanced models

coverage, and moderate accuracy in multi-class
tasks. The High equipment costs, spectral
variability, and sensitivity to noise also hinder
practical use. While like data
augmentation and noise superposition improve
robustness, broader adoption will require
standardized datasets and cost-effective,
accessible systems.

Frequent Techniques Used

Spectroscopy-based
applies Al to analyze molecular signatures with

methods

bacterial  identification
high precision. Principal Component Analysis
(PCA) and wavelet transforms reduce spectral
dimensionality, while classifiers such as Support
Vector Machines (SVM), Random Forest (RF), and
Logistic Regression enable efficient classification.
Convolutional and Deep Neural Networks (CNNs,
DNNs) handle complex Raman and FTIR spectra,
with advanced variants like spectral transformers
and multi-receptive field models
feature extraction. Additional approaches include
K-Nearest Neighbor (KNN), Hierarchical Cluster
Analysis (HCA), image processing for

improving

and
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susceptibility testing. Enhancements such as
Surface-Enhanced Raman Spectroscopy (SERS)
and acoustic bioprinting boost signal intensity and
detection accuracy. Together, these methods
enable rapid and reliable bacterial classification.
Applications

Al-enhanced spectroscopy supports diverse fields
of microbiology. In clinical diagnostics, it enables
rapid species identification and antibiotic
resistance profiling, including drug-resistant
strains like Acinetobacter baumannii. Automated
antimicrobial susceptibility testing accelerates
therapy decisions. Food safety benefits from
detecting pathogens such as E. coli and Salmonella,
while environmental monitoring identifies
contaminants in water and soil. Applications also
include Gram-positive/negative classification,
distinguishing MR and MS strains for infection
control, and single-cell pathogen detection in
hospital settings. Beyond healthcare,
spectroscopy-based Al public  health
surveillance and biomedical research by analyzing
biomolecular resistance patterns.

Advantages

These techniques deliver high accuracies (85.8-
100%), ensuring dependable
applications. Non-destructive analysis preserves

aids

results across
samples, while minimal preparation reduces time
Rapid, often real-time detection
supports timely interventions. High specificity
allows differentiation of closely related strains,
and SERS provides signal enhancement up to
1500x%, boosting sensitivity. Deep learning extends
capabilities to complex datasets while NIR

and labor.

spectroscopy offers sustainable, “green” testing
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options. Single-cell resolution and visualization of
spectral features further support clinical decision-
making. Robustness to noise, as shown in recent
studies, strengthens reliability in real-world use.
Challenges

Despite progress, several obstacles remain. Many
studies rely on small or unspecified datasets,
limiting robustness and generalizability. Narrow
species coverage further restricts applicability.
Spectral variability from
chemical factors reduces consistency. The need for
specialized equipment, such as hyperspectral
Raman or FO-FTIR, adds cost and complexity.
Performance in multi-class tasks can be moderate,
with accuracies of 85-86% in some studies.
Computational demands of advanced Al models
hinder deployment in resource-limited settings.
Finally, the absence of standardized spectral
databases and reliance on expert infrastructure
barriers to large-scale adoption.

environmental or

remain

Table 4: Hyperspectral Imaging and Al Techniques

Vol 6 | Issue 4

Addressing these challenges requires larger, well-
annotated datasets, cost-effective instrumentation,
and simplified workflows for broader real-world
implementation.

Hyperspectral Imaging and Al

Techniques

Hyperspectral imaging (HSI) combined with Al
precise bacterial identification by
capturing both spectral and spatial data across a
wide wavelength range, outperforming traditional
culture-based methods in speed and specificity.
When paired with models such as LSTM and deep
neural networks, HSI can rapidly process complex

enables

datasets, supporting single-cell analysis and real-
time applications. Recent studies demonstrate its
effectiveness in detecting foodborne pathogens
and analyzing mixed bacterial samples (13, 16).
However, practical deploymentis hindered by high
equipment costs and limited dataset availability.

Author Proposed Work and Dataset Achievements Limitations
Details
Xinggong Al classification of bacterial AUC >0.950 in all Dataset size not
Liang et al. infections from pathology images phases. High accuracy disclosed. Low
(46),2023 at patch and whole slide levels. and robustness. specificity for bacterial
Dataset: Pathology images (size subtypes.
not specified).
Hikaru Tago Line image sensor for colony 96% accuracy in 10 Limited to 15 species.
etal (47), fingerprinting + ML. Dataset: 15 hours. Petri dish Required 10-hour
2022 species from 9 genera (size not scanned in 22 seconds.  incubation. Dataset size
provided). Faster than 24-h MS. not specified.
Zhuetal Hyperspectral Transmission 93.6% accuracy. Small dataset. Only five
(48),2023 Microscopic Imaging (HTMI) + Achieved 2.19 pm species. High
PCA-SVM for single-cell spatial and <1 nm computational
classification. Dataset: Five spectral resolution. demands.
bacterial species at low
concentrations.
Rui Kang et HMI + LSTM for classifying five 92.9% accuracy (center Limited to five
al. (49), foodborne pathogens using ROIs ROI). Outperformed pathogens. Dataset size
2022 (whole-cell, boundary, center). PCA-based methods moderate. Requires
(66-85%). high-quality HMI.
Zhuetal Dual-mode HSI with MB-Net (deep R*=0.96, RMSE = 0.03.  Only four species. MB-
(50),2024 neural network) to predict First method for Net is computationally
proportions of mixed bacteria. simultaneous detection  intensive. Dataset size
Dataset: Four mixed pathogenic of 4 mixed bacteria. not stated.
species.
Park et al. AGR2U-Net + ellipse fitting for 94.1% mloU, 97.4% Limited to four species.
(51),2023 single-cell segmentation in FPI- ellipse fitting accuracy. High cost of FPI-HMI.

Robust to blurriness.
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HMI. Dataset: E. coli, Listeria,
Salmonella, Staphylococcus.

Dataset moderately
sized.

High potential for bacterial identification has been
demonstrated by HSI combined with Al, achieving
accuracies of 92.9-96% across diverse
applications. An AUC above 0.95 has been reported
for the classification of bacterial infections from
pathology images. An accuracy of 96% has been
achieved in the identification of 15 bacterial
species within 10 hours, outperforming the 24-
hour requirement of mass spectrometry. An
accuracy of 93.6% has been obtained for single-
bacterium classification using hyperspectral
transmission microscopic imaging (HTMI). Five
foodborne pathogens have been classified with
92.9% accuracy using LSTM networks, surpassing
the performance of traditional PCA-based
methods. Four mixed bacteria have
simultaneously detected with an R? of 0.96 using a
custom DNN-based MB-Net. Mean intersection
over union (IoU) of 94.1% and ellipse fitting
accuracy of 97.4% have been achieved in single-
cell segmentation, demonstrating robustness to
image blurriness.

Limitations

Many studies are conducted using small or
unspecified datasets, which limits generalizability.
Research is often focused on a few bacterial

been

species, reducing applicability to broader
microbial diversity. High costs of HSI systems and
the computational demands of Al models pose
significant barriers. Implementation is
complicated by dependence on high-quality data
and incubation time. Despite advances in
addressing image blurriness and mixed samples,
the development of larger standardized datasets,
cost-effective hardware, and efficient algorithms is
required for practical clinical and industrial

deployment.

Frequent Techniques Used
e Imaging Systems: HTMI for high spatial and
spectral resolution; Fabry-Perot
Interferometer (FPI) HSI for enhanced
spectral resolution; line image sensors for
rapid colony fingerprinting.

Al and Machine Learning: PCA with SVM for
spectral classification; LSTM networks for
ROI spectral data; DNNs with spectral feature

fusion for mixed bacteria (MB-Net 64); U-Net,
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ResU-Net, ¥ AGR2U-Net
segmentation.

Data Processing: Deblurring, padding, and
ellipse fitting enhance single-cell
identification. Al also processes whole slide
images and patch-level pathology data.
Applications

for  single-cell

Clinical Diagnostics: Identification of bacterial
infections from pathology images.
Food Safety: Detection of
pathogens.

Single-Bacterium and Mixed Sample Analysis:
Precise = pathogen  identification and
quantification in complex samples.
Environmental Monitoring:
microbial contaminants in food.
Biomedical Research: Analyzing bacterial
morphology and species diversity using
spectral ROIs.

Industrial and Workflow Optimization: Rapid
colony fingerprinting and automated single-
cell segmentation streamline testing and
diagnostics.

Advantages

High accuracy (92.9-96%) and AUC >0.95 for
reliable classification for several studies.

foodborne

Detecting

Single-cell resolution and high spatial (<2.19
um) and spectral (<1 nm) resolution.

Rapid diagnostics (e.g., 22 seconds per Petri
dish).

Robustness to blurriness and mixed bacteria
detection (R? = 0.96).

Al models outperform traditional methods
(7-26% improvement PCA-based
classifiers).

Non-invasive imaging preserves samples and
supports real-time processing for clinical

over

workflows.
Scalable systems
applications.
Sensor Array and Machine Learning

for Bacterial Detection

Sensor array technology combined with machine
learning (ML) provides a rapid, cost-effective
alternative to traditional microbiological methods,

suitable for industrial

which are often time-consuming, labor-intensive,
require specialized laboratory setups.
Fluorescence-based sensor arrays, using elements

and
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like carbon quantum dots (CQDs) or two-
dimensional nanomaterials, generate distinct
response patterns for different bacterial species.
When paired with ML algorithms, these arrays
analyze complex fluorescence fingerprints with

Vol 6 | Issue 4

strains. Applications span food safety, clinical
diagnostics, and environmental monitoring.
Despite their advantages, issues such as sensor
cross-reactivity and limited species diversity

remain, highlighting areas for further

high  accuracy, enabling high-throughput optimization. Table 5 summarizes the techniques,
identification. Recent studies employ cross- achievements, and limitations, providing a
reactive receptors, fluorescence quenching, and comprehensive overview of this emerging
advanced ML models to detect multiple bacterial approach.
species, including pathogens and drug-resistant
Table 5: Sensor Array and Machine Learning for Bacterial Detection
Author Proposed Work and Dataset Achievements Limitations
Details
Yi Wang  Developed a fluorescence sensor Achieved 93.8% accuracy Dataset size not
etal array with 2D nanoparticles and (30-min incubation), 98.4%  specified. Limited to
(52), ssDNA for identifying eight with multilayer perceptron eight species.
2023 bacteria in milk. Dataset: Eight (120-min). Low-cost Incubation time
pathogenic and spoilage bacteria alternative to ELISA. required.
(size not specified).
Laibao Used fluorescence sensor array Demonstrated effective Dataset size not
Zhenget  with carbon dots (boronic acid, discrimination of six provided. Limited to
al. (53), polymixin, vancomycin) and LDA. bacteria using fluorescence six species. Cross-
2022 Dataset: Six bacterial species (size patterns. Simple and rapid reactivity of
not specified). method. receptors not
quantified.
Li,Z (54), Developed six-sensing array with Achieved 97.9% accuracy Small dataset
2023 2D nanomaterials and ssDNA for across eight species, (n=288). Limited to
microbial identification. Dataset: including drug-resistant eight species.
Eight microorganisms, n=288 strains. Rapid detection at Complex sensor
samples. low concentrations (102-10% fabrication.
CFU/mL).
Wanget  Developed paper-based Differentiated five strains Limited to five
al. (55), fluorescence sensor array with with high accuracy. Cost- species. Moderate
2024 antibiotic-modified CQDs and effective, portable platform dataset size.
smartphone imaging. Dataset: Five  validated with blind Smartphone imaging
bacterial strains (103-107 samples. quality variability.
CFU/mL).
The significant potential of sensor array have been effectively discriminated using carbon

technology combined with machine learning for
bacterial detection has been highlighted, with high
accuracies of 93.8-98.4% reported and practical
applications demonstrated. An accuracy of 98.4%
has been achieved in identifying eight bacteria in
milk using a fluorescence sensor array with a
multilayer perceptron, providing a low-cost
alternative to ELISA. An accuracy of 97.9% has
been obtained across eight microorganisms,
including drug-resistant strains, using a six-
sensing array capable of detecting low
concentrations (10%-10® CFU/mL). Six bacteria
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dot-based
analysis, emphasizing simplicity and speed. A

sensors and linear discriminant
portable paper-based platform with antibiotic-
modified CQDs has been developed to accurately
differentiate five bacterial strains, with validation
performed using blind samples and smartphone
imaging. These results demonstrate the precision,
speed, portability, and cost-effectiveness of sensor
arrays. However, limitations remain. Small or
unspecified dataset sizes are still used, receptor
cross-reactivity affects specificity,

times of 30-120 minutes are required, sensor

incubation
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fabrication is complex, and variability in
smartphone imaging quality impacts performance.
While some studies have addressed portability and
low-concentration detection, the development of
larger standardized datasets, improved receptor
specificity, and simpler fabrication processes is
required for widespread adoption in clinical, food

safety, and environmental applications.
Frequent Techniques Used

Advanced approaches for bacterial identification
are employed by sensor array methods combined
with machine learning. Fluorescence-based arrays
are constructed using single-stranded DNA
(ssDNA) quenched by  two-dimensional
nanomaterials or carbon quantum dots (CQDs)
functionalized with receptors such as boronic acid,
polymyxin, vancomycin, or antibiotics. Bacterial
surface interactions are monitored through
aggregation-induced fluorescence quenching.
Classification is performed using Linear
Discriminant  Analysis (LDA), multilayer
perceptrons, and artificial neural networks, with
SVM and K-Nearest Neighbors applied as
baselines. Fluorescent signals collected at specific
wavelengths (e.g., 520 nm) are used to generate
microbial fingerprints. Portable detection is
enabled by paper-based platforms with inkjet-
printed CQDs, smartphone imaging
facilitates on-site analysis. Data preprocessing,

while

including signal normalization, is applied to
improve model performance. These techniques
rapid
identification.
Applications
Wide-ranging applications are supported by

allow and high-accuracy bacterial

sensor arrays combined with machine learning.
Food safety is enhanced through the detection of
pathogenic and spoilage bacteria in milk. Clinical
diagnostics are facilitated for pathogens such as
Escherichia coli, Staphylococcus aureus, and
Klebsiella pneumoniae, including drug-resistant
strains like MRSA. Environmental monitoring is
performed to detect bacteria in water and soil,
while portable paper-based platforms with
smartphone integration enable point-of-care
testing. Rapid microbial quality control benefits
industrial microbiology, and microbial taxonomy
studied

biomedical research using these methods. Real-

and antibiotic interactions are in

world performance is validated through blind
sample testing.
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Advantages

These techniques achieve high accuracy (93.8-
98.4%) and rapid detection within 30-120
minutes. They detect low concentrations (10%-103
CFU/mL) and are cost-effective, especially on
paper-based platforms. Portability =~ with
smartphone integration enables on-site testing,
while non-specific cross-reactive receptors
simplify sensor design. sample
preparation, high specificity for drug-resistant
strains, scalability for high-throughput
applications, ease of fabrication via inkjet printing,
and robustness to blind samples enhance practical
utility.

Challenges

Key limitations include small or unspecified
datasets restricting generalizability, focus on a
limited number of species, receptor cross-
reactivity reducing specificity, incubation times of
30-120 minutes, complex sensor fabrication, and
variability in smartphone imaging quality.
Dependence on stable fluorescence signals, lack of
standardized datasets, and limited validation on
mixed or complex samples further constrain
implementation. Addressing these challenges
requires larger datasets, optimized receptor
specificity, and streamlined fabrication for broader
adoption.

Other Advanced Imaging and Al
Techniques

Using spectroscopy with Al is a modern way to
identify bacteria. It allows fast and non-destructive

Minimal

testing. This helps with both classification and
spotting Spectroscopy
methods—such as Raman, FTIR, and excitation-
scans—pick up unique
patterns in bacteria. They are now used in clinical

antibiotic resistance.

emission molecular
labs, food safety checks, and environmental
studies. This section reviews 14 studies that use Al
and spectroscopy to identify bacteria. These
studies utilize advanced algorithms, including
principal component analysis (PCA), convolutional

neural networks (CNNs), and spectral
transformers, to analyze spectral data.
Applications range from pathogen detection to
antimicrobial ~ susceptibility = testing,  with

significant advantages in speed and precision.
However, challenges such as spectral variability,
dataset limitations, and equipment costs persist.
The details of the

frequent techniques,
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applications, advantages, and limitations are
discussed in the following Table 6, providing a
comprehensive overview of this innovative field.

Table 6: Other Advanced Imaging and Al Techniques

Vol 6 | Issue 4

Author Proposed Work and Dataset Achievements Limitations
Details
Ma L. et al. Used YOLOv4 with phase- Achieved 94% precision,  Limited to eight species.
(56),2023 contrast microscopy for E. coli R? =0.995 for Requires 3-h cultivation.
detection. Dataset: E. coli and quantification, <10% Dataset size not
seven foodborne bacteria, false-negative rate. Rapid specified.
romaine lettuce samples. 3-h detection.
Hiraoka M. Developed image processing Automated bulking Dataset size not
etal (57), system for filamentous bacteria control. Supported specified. Limited to
2018 in wastewater. Dataset: operator identification. filamentous bacteria.
Activated sludge samples. Monitored control effects. Requires operator
interaction.
Demirel M. Used iterative Bayesian model Improved F1 score by Dataset size not
etal (58), for FLIM bacterial detection. 16.85% over existing specified.
2022 Dataset: Synthetic and real methods. Outperformed Computationally
FLIM images. on real images. intensive. Limited to
FLIM imaging.
Thomas Benchmarked ML methods for ~ Acceptable identification = Lower accuracy for novel
Mortier et MALDI-TOF spectra. Dataset: rates for novel replicates, species. Taxonomic
al. (59), 100,000 spectra, >1000 strains, species. Used information poorly
2021 species. neural networks with preserved. Large dataset
Monte Carlo dropout. required.
Harris et al. Reviewed ML for UTI Highlighted rapid No experimental results.

(60), 2024

He etal
(61),2023

RagiS. et al
(62),2023

Ding Y et al
(63),2024

Ahmad N. et

al. (64),
2019

Kim G. et al.
(65), 2022

diagnostics and antibiotic
resistance prediction. Dataset:
Literature-based.

Used SIM with ML for bacterial
identification. Dataset: E. coli,
M. smegmatis, P. aeruginosa
images.

Used DCNN and Mask R-CNN
for SEM image segmentation of
DA-G20 cells. Dataset: SEM
images.

Developed paper-based
fluorogenic probe with
smartphone Al for -lactamase
detection. Dataset: Bacterial
samples, mice.

Used 3-layer neural network
for Peptococcaceae
identification. Dataset: Bergey’s
manual data.

Used CNN for 3D refractive
index image classification.
Dataset: Not specified.

diagnostics and reduced
antibiotic use. Improved
clinical workflows.
Achieved 98%
classification accuracy.
Rapid morphological
analysis.
70-227x faster than
manual methods.
Accurate geometric
property extraction.
Detected (3-lactamase in
205s,0.13 nmol/L
detection limit.
Calibrated for complex
samples.
Rapid identification vs.
manual methods. High
accuracy for facultative
anaerobes.
Rapid and accurate
species identification.

Relies on secondary data.
Broad scope lacks
specificity.
Limited to three species.
Small dataset. Requires
high-resolution SIM
imaging.
Dataset size not
specified. Limited to DA-
G20 cells. Requires SEM
expertise.
Dataset size not
specified. Limited to (-
lactamase. Smartphone
variability.

Dataset size not
specified. Limited to
Peptococcaceae. Relies
on manual data.
Dataset details absent.
Limited species scope.
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ZhangS. et Used DL for impedance-based
al. (66), analysis of three bacteria.
2023 Dataset: EPEC, S. enteritidis, V.
parahaemolyticus.
Demirel M.  Generated synthetic bacteria in
etal (67), OEM images using 3D U-Net.
2023 Dataset: Synthetic and real

OEM images.

Nirmala Bai Used EfficientNetB1/B2 for

L.etal (68), chestinfection diagnosis from
2024 X-rays. Dataset: Public and
hospital X-ray images.
Yang Zhang Reviewed DL for microbial
etal (69), image analysis. Dataset:
2023 Literature-based.
Maaskant et Used DL/ML for fecal smear
al. (70), bacterial prediction. Dataset:
2024 Rhesus macaque fecal images.

Simplified microbial
detection.
Achieved 100% accuracy.
Suitable for point-of-care
testing.

Improved correlation by
3.86% over baseline.
Enhanced detection with
DLNet.

Superior accuracy vs.
other transfer learning
models. Effective for
infections.
Highlighted potential for
viruses, bacteria, fungi,
parasites. Guided future
research.
Predicted 16 genera (AUC
>(.7), butyrate producers
(AUC 0.75). Robust to
noise.

Requires 3D imaging
setup.
Small dataset. Limited to
three species. Requires
impedance system.

Limited dataset size.
Synthetic data may not
fully represent real
variability.
Dataset size not
specified. Limited to
chest infections.
Requires X-ray imaging.
No experimental results.
Relies on secondary data.
Broad scope lacks depth.

Dataset size not
specified. Limited to
fecal bacteria. Requires
metagenomic data.

The transformative impact of advanced imaging
and Al techniques on bacterial detection is
highlighted, with accuracies of 94-100% achieved
and innovative applications demonstrated across
various domains. A precision of 94% was obtained
in detecting E. coli using YOLOv4 with phase-
contrast microscopy, enabling rapid food safety
testing in just 3 hours. An accuracy of 98% was
achieved in classifying three bacterial species
using SIM and machine learning, demonstrating
the potential of morphological analysis. An
accuracy of 100% was attained in identifying three
pathogens via impedance-based deep learning,
suitable for point-of-care testing. F1 scores were
improved by 16.85% using a Bayesian model for
FLIM, outperforming traditional methods. Machine
learning was benchmarked on a dataset of 100,000
spectra, achieving acceptable rates for novel
species identification. SEM analysis was
accelerated 70-227 times using DCNN and Mask R-
CNN,
limitations remain, including the use of small or
unspecified datasets restricting generalizability, a
focus on few species limiting microbial diversity,
costly and complex imaging systems such as SIM,
FLIM, setups, the
computational demands of models like 3D U-Net
and EfficientNet. The lack of experimental data in
review studies reduces specificity. While synthetic

enhancing biofilm research. However,

and impedance and

data and portable probes address some challenges,
standardized datasets, cost-effective systems, and
broader species validation remain critical for
adoption in clinical, industrial, and environmental

settings.

Frequent Techniques Used
Diverse Al approaches are employed in advanced

imaging methods. Bacteria are detected in phase-
contrast microscopy using YOLOv4, FLIM data are
analyzed with Bayesian models and Metropolis-
Hastings sampling, and SIM and 3D refractive
index images are classified with CNNs. SEM images
are segmented using DCNNs and Mask R-CNNs,
while X-ray images for infection detection are
analyzed with EfficientNet models. Novel species
in MALDI-TOF spectra are identified using neural
networks with Monte Carlo dropout, and bacteria
in synthetic optical endomicroscopy images are
detected with 3D U-Net models. Bacterial subtypes
are classified using impedance-based analysis
combined with deep learning, and -lactamase is
detected with paper-based fluorogenic probes
supported by smartphone Al. Additional methods

include
datasets,

hierarchical
geometric

classification of spectral

analysis with moment

invariants, feed-forward backpropagation, and

explainability
transparency.
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Applications handles large datasets, such as 100,000 spectra.
These techniques have broad applications. Food Portability via smartphone integration supports
safety is enhanced through rapid pathogen point-of-care testing, and robustness to noise
detection, such as E. coli in romaine lettuce, while improves practical utility. High quantification
clinical diagnostics identify pathogens including E. accuracy (R® = 0.995), explainability analysis,
coli, Salmonella, and Vibrio parahaemolyticus and versatility —across imaging modalities, and
support urinary tract infection diagnosis and significant speed improvements up to 227x faster
antibiotic resistance prediction. Environmental than manual methods further demonstrate their
monitoring detects filamentous bacteria in transformative potential.

wastewater, and biomedical research investigates Table 7 presents the distribution of studies across
biofilm phenotypes and B-lactamase activity. different research topics, highlighting the
Industrial microbiology benefits from rapid prominence of various Al-driven approaches for
species identification for quality control, point-of- bacterial detection and classification. The majority
care testing is enabled by portable probes and of 31 studies focus on microscopic image-based
impedance  systems, and novel species classification using machine learning and deep
identification advances microbial taxonomy. Real- learning, reflecting its dominant role in this field.
time pathogen monitoring and fecal bacterial Spectroscopy-based identification using Al has
group prediction support infection control and gut also gained considerable attention, with 14
health studies. studies, while other advanced imaging and Al

techniques account for 15 studies, showcasing the
exploration of diverse methods beyond
conventional imaging. In comparison,
hyperspectral imaging and Al techniques have

Advantages

High accuracy (94-100%) ensures reliable
identification, with rapid detection times and low
false-negative rates (<10%) enhancing diagnostic
reliability. Non-invasive imaging preserves
samples, while high specificity distinguishes
bacterial subtypes and resistant strains.

been applied in 6 studies, and sensor array-based
approaches with machine learning have been
examined in 4 studies. This distribution indicates
that while image-based and spectroscopy-driven
methods remain central, emerging techniques are

Automation reduces manual labor, and scalability gradually expanding the research landscape.

Table 7: Topic Wise Studies Count

Topic Study Count
Microscopic Image-Based Classification Using 31
Machine Learning and Deep Learning
Spectroscopy-Based Identification Using Al 14
Hyperspectral Imaging and Al Techniques 6
Sensor Array and Machine Learning for Bacterial 4
Detection
Other Advanced Imaging and Al Techniques 15
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Figure 4: Dataset Used in this Study

Figure 4 shows the usage frequency of different
models across studies. Most works either did not
specify the model-5 or used CNNs-4, followed by
PCA-7 and SVMs-6. KNN, FNN, and random forests
appeared less often, while advanced models like U-
Net, YOLOv4, EfficientNet, and LSTM were used in
limited cases.

Limitation and Challenges

Al-based bacterial identification techniques face
significant challenges that hinder their widespread
adoption. Small or unspecified dataset sizes limit
model generalizability. Many studies rely on
datasets with fewer than 1000 samples, such as 22
sputum smear images or 72 spectra. Others omit
dataset details entirely, hindering reproducibility.
A narrow focus on specific bacterial species further
restricts applicability. Research often targets three
to eight species, such as E. coli or Staphylococcus
neglecting the diverse microbial
populations. This specificity reduces utility in real-
world settings with complex microbiomes. Lack of
standardized, datasets across
techniques exacerbates these issues, complicating

aureus,

large-scale

model training and validation. High computational
complexity poses a significant barrier to progress.
Advanced models, including YOLOv4, Swin
Transformer, and 3D U-Net, demand substantial
processing power. Deep neural networks and
spectral transformers require extensive resources,
which deployment in
constrained environments, such as rural clinics.
to accessibility

limit their resource-

Specialized equipment adds

challenges. High-resolution microscopy,
hyperspectral sensors, and fluorescence lifetime

imaging systems are costly.
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Data variability undermines model reliability.
Inconsistent staining, image blurriness, or
environmental factors affect imaging quality.
Spectral variability from dye interactions or noise
impacts spectroscopy results. Fluorescence signal
stability in sensor arrays depends on controlled
conditions. Robust preprocessing is often lacking,
which can reduce performance in suboptimal
settings. Validation on mixed or complex samples
is limited. Many studies focus on single-species or
low-concentration samples, ignoring real-world
diversity. Synthetic data, while innovative, may not
fully capture natural variability, requiring further
testing. Moderate accuracies in multi-class tasks,
ranging from 85.8% to 86%, highlight the
difficulties in scaling to diverse scenarios.

Critical Appraisal and Risk of Bias

Assessment

To ensure the reliability of findings in this
systematic review, a critical appraisal of the 70
included studies was conducted to assess the risk
of bias. The Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) tool, adapted for use
in Al-based diagnostic studies, was employed. This
Patient/Sample
Selection, Index Test, Reference Standard, and

tool evaluates four domains:

Flow and Timing. Each domain was assessed for
risk of bias and concerns regarding applicability.
Two independent reviewers (N.A.J. and G.P.G.)
performed the appraisal. Discrepancies were
resolved through discussion or consultation with a
senior reviewer (C.J.). The assessment aimed to
identify methodological weaknesses that could
affect the validity of reported outcomes, such as
classification accuracies in bacterial identification.
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Methods of Critical Appraisal
The QUADAS-2 tool was tailored to address Al-
based bacterial identification studies. The domains
were defined as follows:

e Patient/Sample Selection:
whether datasets were representative of real-
world bacterial populations. Studies with
small, non-diverse datasets (e.g., 3-8 species)
or unclear sampling methods were rated as
high risk. Applicability concerns arose if
datasets did not reflect clinical, food safety, or
environmental contexts.

Assessed the clarity and
reproducibility of Al algorithms (e.g., machine
learning, deep learning) and imaging/sensing
techniques (e.g., spectroscopy, hyperspectral
imaging). Studies lacking detailed model
descriptions or validation methods were
rated as high risk.

Reference Standard: Examined the accuracy
of ground truth labels (e.g,
bacterial species via culture or molecular
methods). Studies with unclear or unverified
reference standards were rated as high risk.
Flow and Timing: Evaluated consistency in
applying Al and sensing methods across
samples. Studies with incomplete reporting of
testing protocols or inconsistent application

Evaluated

Index Test:

confirmed

were rated as high risk.

Each study was rated as low, high, or unclear
risk of bias for each domain. Applicability
concerns were noted separately to assess
relevance to the review’s objectives. Results
were summarized in a table (Table 7) and
narratively synthesized to highlight trends
and implications.

Results of Risk of Bias Assessment
Of the 70 studies, 40% (28 studies) were rated as
low risk across all domains, indicating robust
methodology. However, 50% (35 studies) had high
or unclear risk in at least one domain, primarily
due to:

e Sample Selection: 25 studies used small
datasets (e.g, <100 samples) or focused on
few bacterial species,

generalizability. Only 15 studies included
diverse, multi-species datasets relevant to
clinical or environmental applications.

Index Test: 20 studies provided insufficient

details on Al model parameters (e.g., hyper-

limiting
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parameters, training protocols) or lacked
external validation, increasing bias risk.
Reference Standard: 10 studies had unclear
reference standards, relying on unverified
labels or proprietary datasets, reducing
reliability.

Flow and Timing: 15 studies incompletely
reported testing protocols,
inconsistent imaging or sensor application,

such as
raising concerns about reproducibility.

Applicability concerns were noted in 30 studies,
particularly those with datasets not aligned with
real-world applications (e.g., lab-based samples
versus clinical isolates).

Implications

The risk of bias assessment revealed strengths and
weaknesses. Studies with low risk provided
reliable evidence of Al's high accuracy (85.8%-
99%) in bacterial identification. However, high or
unclear risk in sample selection and index test
domains suggests caution in interpreting results
from studies with small or poorly described
datasets. These limitations may overestimate
performance real-world  settings. The
assessment informed the review’s synthesis,
prioritizing findings from low-risk studies. Future

in

research should focus on larger, diverse datasets
and transparent reporting of Al methods to reduce
bias.

Future Direction and the Approaches
Advancing Al-based bacterial detection requires
addressing  key datasets,
computational demands, hardware accessibility,

limitations  in
and real-world applicability. Small or unspecified
datasets limit model generalizability, making the
development of large, standardized, and open-
source datasets essential. These datasets should
encompass diverse bacterial species, mixed
samples, and real-world conditions, with metadata
such as staining protocols or imaging parameters
to enhance reproducibility. Collaborative
platforms, global microbial databases, and public-
private partnerships can facilitate data sharing and
funding. Synthetic data generation using advanced
models, such as GANs, validated against real data,
and crowdsourced expert annotations can further
improve dataset quality.

Reducing computational complexity is crucial for
practical deployment, especially in resource-
limited settings. Lightweight Al architectures, like

MobileNet or depth-wise separable CNNs, can
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maintain accuracy while reducing processing
requirements. Techniques such as quantization,
pruning, edge computing, and federated learning
allow on-device processing and preserve data
privacy, particularly in clinical contexts. Open-
source frameworks, such as TensorFlow Lite, can
accelerate adoption of efficient models. Cost-
effective and portable imaging systems are
essential for broader adoption. High-cost
equipment, including hyperspectral sensors or
FLIM, limits access, whereas smartphone-based
microscopy, paper-based fluorescence sensor
arrays, portable Raman or FTIR devices, and 3D-
printed imaging components offer affordable
alternatives. Multispectral imaging can balance
cost and performance while maintaining sufficient
resolution for reliable detection. Enhancing model
robustness to data variability is critical, using
techniques such as adaptive normalization,
domain adaptation, transfer learning, ensemble
learning, noise-robust algorithms, and real-time
data augmentation.

Expanding validation to mixed and complex
microbial samples is a priority. Most studies focus
on single-species or low-concentration samples,
but real-world scenarios require hierarchical
classification, multi-task learning, and longitudinal
studies to assess performance across diverse
environments. Explainable Al methods, such as
attention maps, increase trust and interpretability.
Optimizing receptor specificity for sensor arrays,
using bioinformatics, high-throughput screening,
and hybrid imaging-spectroscopy models, can
reduce cross-reactivity and improve accuracy.
Eliminating cultivation delays is another critical
goal. Even short incubation times (3-10 hours)
impede rapid diagnostics, highlighting the need for
culture-free techniques, including impedance-
based analysis, single-cell spectroscopy, real-time
Al-integrated imaging, and microfluidic isolation.
Automation of sample preparation through
robotics can further accelerate processing,

enabling near-instantaneous bacterial
identification for urgent clinical settings.

Finally, promoting interdisciplinary collaboration

and accessible expertise is vital. Training
programs, online courses, virtual workshops, and
open-source Al tools can empower
microbiologists, clinicians, and engineers.

Interdisciplinary teams and global networks can
standardize protocols, share best practices, and
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develop user-friendly interfaces, ensuring that
advanced Al-based techniques are widely adopted

in clinical diagnostics, food safety, and
environmental monitoring.

Conclusion

Al-based bacterial identification techniques

represent a groundbreaking advancement in
microbiology, offering accurate,
automated alternatives to traditional methods.

rapid, and
These approaches achieve exceptional accuracies,
often ranging from 94% to 100%, across diverse
applications. Advanced imaging modalities, such as
phase-contrast microscopy and hyperspectral
systems, capture detailed microbial signatures.
Machine learning and deep learning models, such
as YOLOv4 and convolutional neural networks,
excel at classifying complex datasets. Spectroscopy
techniques, including Raman and FTIR, provide
non-destructive molecular analysis. Fluorescence-
based sensor arrays enable portable detection.
These methods significantly reduce identification
times, from days to hours or minutes, compared to
culture-based assays. They support critical
applications in clinical diagnostics, food safety, and
environmental monitoring. For instance, rapid
pathogen detection aids timely treatment in
hospitals. Automated systems enhance quality
control in food industries. Point-of-care platforms,
such as smartphone-integrated sensors, enable
testing in resource-limited settings. The ability to
detect antibiotic-resistant strains, quantify
bacterial concentrations, and analyze mixed
samples underscores the versatility of these
techniques. Collectively, they address pressing
global challenges, such as infectious disease
management and antimicrobial resistance.

Despite their promise, significant challenges
remain. Small or unspecified datasets limit model
generalizability. Many studies focus on a few
bacterial species, neglecting microbial diversity.
The high computational demands of models like
3D U-Net or spectral transformers restrict
deployment in low-resource environments. Costly
equipment, such as hyperspectral sensors or FLIM
confines techniques to well-funded
from staining

systems,
laboratories. Data variability,
inconsistencies to spectral noise, affects reliability.
Cross-reactivity arrays reduces

specificity. Incubation times, even reduced, delay

in sensor

results. Limited validation on mixed samples
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hinders real-world applicability. The lack of
standardized datasets and open-source resources
hinders collaboration. Specialized expertise for
operating complex systems poses barriers. These
challenges underscore the disparity between
research practical
application, particularly in underserved regions.

The path forward involves targeted innovations to
these barriers. Developing large,
standardized, open-source datasets is essential.
These should include diverse species and real-
world conditions. Lightweight Al models, like
MobileNet, can reduce computational demands.
Affordable imaging systems, such as smartphone-
based microscopy, can enhance accessibility.
Robust preprocessing can address data variability.
Validation on mixed samples can ensure the real-
world utility of the model. Optimizing sensor
specificity can improve detection precision.
Culture-free techniques, like impedance-based
analysis, can eliminate delays. Interdisciplinary
collaboration, uniting microbiologists, engineers,
and data scientists, can drive progress. Training
programs can build expertise. Global consortia can
standardize protocols. These efforts will bridge the
gap between innovation and adoption, enabling Al
techniques to transform bacterial identification.

advancements and their

overcome
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