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Abstract 
 

Traditional bacterial identification methods—such as culture-based assays, biochemical tests, and manual 
microscopy—are often slow, labor-intensive, and lack precision, posing significant challenges in clinical, food safety, 
and environmental applications. Artificial intelligence (AI) offers transformative solutions by dramatically improving 
speed, accuracy, and automation. This systematic review comprehensively evaluates AI-driven techniques for bacterial 
identification, focusing on three core technological domains: advanced imaging (including microscopy and 
hyperspectral systems), spectroscopic methods (such as Raman and FTIR), and sensor array technologies integrated 
with machine learning (ML) and deep learning (DL). We analyzed 70 peer-reviewed studies published between 2018 
and 2025, sourced from PubMed, IEEE Xplore, and Scopus. Findings reveal that AI models consistently achieve high 
classification accuracies, ranging from 85.8% to 99%, enabling rapid detection of pathogens, profiling of antibiotic 
resistance, and point-of-care diagnostics. Deep learning, particularly convolutional neural networks (CNNs), excels in 
image analysis, while spectroscopy provides non-destructive molecular fingerprinting. Despite these advances, key 
challenges remain, including reliance on small or non-standardized datasets, high computational demands, and the 
prohibitive cost of specialized equipment. To realize AI’s full potential, future efforts must prioritize the development 
of lightweight, efficient models, the creation of large, diverse, and open-source datasets, and the design of low-cost, 
portable diagnostic platforms. This review not only highlights AI’s current capabilities but also identifies critical 
barriers and charts a clear path for future research to enable the scalable, real-world deployment of AI across global 
healthcare and industrial settings. 

Keywords: Advanced Imaging, Bacterial Identification, Deep Learning, Hyperspectral Imaging, Sensor Array, 
Spectroscopy. 
 

Introduction 

Bacterial identification underpins critical efforts in 

healthcare, food safety, and environmental 

sustainability. Accurate detection of pathogens 

enables timely treatment of infectious diseases, 

prevents foodborne outbreaks, and safeguards 

ecological systems. Rapid identification is vital in 

clinical settings, where delays can worsen patient 

outcomes. In the food industry, it ensures 

consumer safety and compliance with regulations. 

Environmental monitoring relies on it to track 

microbial contaminants. Traditional methods, such 

as culture-based assays, biochemical tests, and 

manual microscopy, have been the gold standard 

for decades. These techniques, while effective, are 

slow, often taking hours to days to yield results. 

They require skilled personnel, specialized 

equipment, and labor-intensive protocols. 

Inconsistent sample preparation, like variable 

staining, can compromise accuracy. The growing 

threat of antibiotic-resistant bacteria, such as 

methicillin-resistant Staphylococcus aureus 

(MRSA), demands faster diagnostics. Complex 

microbial communities in real-world samples, 

such as mixed infections, challenge traditional 

notions of specificity. These limitations underscore 

the need for innovative, rapid, and scalable 

solutions to transform bacterial identification. 

Recent advancements in artificial intelligence (AI) 

offer a paradigm shift in addressing these 

challenges. 
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Machine learning (ML) and deep learning (DL) 

algorithms excel at processing complex datasets. 

They extract intricate patterns from images, 

spectra, and sensor signals with unprecedented 

precision. Advanced imaging modalities capture 

detailed characteristics of microbes. High-

resolution microscopy reveals morphological 

features. Hyperspectral systems provide spatial 

and spectral data. Spectroscopy techniques, like 

Raman and Fourier Transform Infrared (FTIR), 

detect molecular signatures non-destructively. 

Fluorescence-based sensor arrays generate unique 

response patterns for rapid detection. When 

integrated with AI, these methods achieve 

accuracies that often exceed 95%, surpassing 

traditional approaches in both speed and 

reliability. They reduce reliance on manual 

expertise, enabling automation and accessibility. 

For example, AI-driven systems can identify 

Escherichia coli in hours, not days. They support 

point-of-care testing in remote settings. The ability 

to detect antibiotic resistance and analyze mixed 

samples enhances the utility of these tests. This 

convergence of AI and cutting-edge sensing 

technologies holds transformative potential for 

microbiology. 

The rapid evolution of these techniques 

necessitates a comprehensive evaluation of their 

capabilities and limitations. Studies from 2018 to 

2025 showcase remarkable progress. Innovations 

like convolutional neural networks (CNNs), 

YOLOv4, and portable fluorescence sensors 

achieve near-perfect results. They address diverse 

needs, from clinical pathogen detection to 

environmental monitoring. Applications include 

identifying foodborne pathogens, profiling 

antibiotic resistance, and analyzing microbial 

communities. However, challenges persist. Small 

datasets limit model generalizability. Costly 

equipment restricts access in low-resource 

settings. High computational demands hinder 

deployment. Data variability, such as noise or 

inconsistent imaging conditions, affects reliability. 

These barriers highlight the gap between research 

advancements and practical implementation. A 

systematic review is crucial for synthesizing 

current knowledge, identifying gaps, and charting 

future directions. This paper aims to guide 

researchers, clinicians, and policymakers in 

harnessing AI to revolutionize bacterial 

identification. 

The paper on bacterial identification is structured 

to provide a comprehensive understanding of the 

topic through six key sections. It begins with an 

Introduction that highlights the significance of 

bacterial identification in various fields such as 

healthcare, agriculture, and environmental 

monitoring. The Background section offers 

foundational knowledge on bacteria and the 

historical development of identification 

techniques. In "Methodologies for Bacteria 

Identification," the paper explores a range of 

traditional and modern approaches, including 

culture-based methods, and molecular techniques 

such as PCR and 16S rRNA sequencing. The 

Limitations and Challenges section addresses the 

drawbacks of current methods, such as limited 

sensitivity, high cost, and difficulties in identifying 

non-culturable bacteria. Future Directions and 

Approaches discuss emerging technologies and 

innovative strategies, such as metagenomics, AI-

assisted diagnostics, and portable sequencing 

devices, that hold promise for improving 

identification accuracy and efficiency. Finally, the 

Conclusion summarizes the key findings and 

emphasizes the ongoing need for research and 

technological advancement in bacterial 

identification. 

Bacterial identification is key in microbiology. It 

helps diagnose infections, check food safety, and 

monitor the environment. Traditional methods 

have long supported this work. Gram staining, 

developed in 1884, categorizes bacteria based on 

their cell wall composition. It labels them as Gram-

positive or Gram-negative, which helps guide 

treatment. Culturing involves growing bacteria on 

specialized media, such as agar plates, for visual 

study. Biochemical tests, such as catalase and 

oxidase assays, confirm species by examining their 

metabolic processes. PCR (Polymerase Chain 

Reaction) copies bacterial DNA to find genetic 

matches. MALDI-TOF MS examines protein 

patterns for rapid species identification. These 

tools are trusted and used often. They give solid 

results in lab settings. However, they require 

specialized tools and trained staff. Each method 

checks one or two traits, so many tests are usually 

needed. This makes the process more accurate but 

also more complex for labs in healthcare and 

industry. 

Though reliable, traditional methods have clear 

limits. Culturing takes time—usually 24 to 48 
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hours for colonies to grow. Some bacteria, such as 

Mycobacterium tuberculosis, can take weeks. Gram 

staining is fast but doesn’t show species-level 

details. It also depends on human judgment, which 

can lead to errors. Poor sample quality, like uneven 

staining, can lower accuracy. These problems 

highlight the need for faster, automated, and 

scalable tools—especially in areas with limited 

resources and urgent testing needs. 

Image processing (IP) and AI technologies have 

emerged as transformative tools to address these 

limitations. IP techniques enhance and analyze 

visual data from microbial samples. Digital 

microscopy captures high-resolution images of 

bacterial morphology. It replaces manual 

microscopes with automated systems. It enables 

single-cell resolution in complex samples. Sensor 

arrays, using fluorescence or electrochemical 

signals, generate unique response patterns. 

Emerging methods, such as structured 

illumination microscopy (SIM) and impedance-

based analysis, continue to push boundaries 

further. These technologies generate rich datasets, 

which are ideal for AI integration. IP preprocesses 

data, removing noise or normalizing images. It 

extracts features, like cell shape or spectral peaks, 

for AI analysis. Together, IP and AI enable rapid, 

accurate, and automated bacterial identification, 

reducing reliance on traditional methods. 

AI has grown rapidly and revolutionized the way 

we detect microbes. Machine learning (ML) tools, 

such as Support Vector Machines (SVM) and 

Random Forests, categorize bacteria based on key 

features. These work well with structured data, 

such as biochemical patterns. Principal 

Component Analysis (PCA) helps by shrinking the 

data size for faster handling. K-Nearest Neighbors 

(KNN) is a simple yet effective algorithm for 

classification. Deep learning (DL), a branch of ML, 

has brought major changes since the 2010s. 

Convolutional Neural Networks (CNNs) pull out 

deep image or spectral features on their own. 

Recurrent Neural Networks (RNNs), including 

Long Short-Term Memory (LSTM) networks, are 

well-suited for handling time-based data, such as 

signal flows. Transfer learning utilizes trained 

models, such as VGG16 or ResNet, to aid when data 

is limited. More advanced systems, such as YOLOv4 

and 3D U-Net, enable fast detection and image 

segmentation. Neural networks with Monte Carlo 

dropout help find new bacterial types. These AI 

tools, combined with image processing, often reach 

over 95% accuracy. They are used in healthcare, 

food safety, and environmental checks. Figure 1 

shows the timeline of bacterial ID steps. 
 

 
Figure 1: Time Line of the Bacterial Identification 

 

Search Strategy Method 
This systematic review aimed to investigate the 

application of artificial intelligence (AI) in bacterial 

identification. It focused on developments in 

imaging, sensors, and machine learning methods. 

The review adhered to PRISMA guidelines to 

ensure transparency and a high-quality 

methodology. We describe the search strategy, 

study selection process, and inclusion and 

exclusion criteria. A comprehensive literature 

search was conducted. It targeted studies 

published from January 2018 to July 2025. This 

time frame was chosen to reflect the latest 

progress in AI-driven bacterial detection. Several 

databases were used for the search. These 

included PubMed, IEEE Xplore, Scopus, Web of 

Science, and Google Scholar. These sources were 

chosen for their wide coverage of biomedical, 

engineering, and AI research. The search used both 

controlled vocabulary and free-text terms. For 

example, MeSH terms were applied in PubMed. 

The main keywords focused on AI, bacterial 
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identification, imaging, sensors, and machine 

learning. 

Bacterial Identification: “bacteria identification,” 

“pathogen detection,” “microbial classification,” 

“bacterial taxonomy.” 

AI and Machine Learning: “artificial intelligence,” 

“machine learning,” “deep learning,” 

“convolutional neural networks,” “support vector 

machines,” “random forest,” “transfer learning.” 

Imaging and Sensors: “microscopy,” 

“hyperspectral imaging,” “spectroscopy,” “Raman 

spectroscopy,” “Fourier Transform Infrared 

spectroscopy,” “sensor array,” “fluorescence 

sensors,” “image processing.” 

Applications: “clinical diagnostics,” “food safety,” 

“environmental monitoring,” “antibiotic 

resistance.” 

Boolean operators were used to combine terms: 

Example search string (PubMed): ("bacteria 

identification" OR "pathogen detection" OR 

"microbial classification") AND ("artificial 

intelligence" OR "machine learning" OR "deep 

learning" OR "convolutional neural networks") 

AND ("microscopy" OR "hyperspectral imaging" 

OR "spectroscopy" OR "sensor array") AND 

("clinical diagnostics" OR "food safety" OR 

"environmental monitoring"). 

 Additional searches were conducted in reference 

lists of identified studies and review articles to 

locate relevant publications not captured in the 

database searches (backward citation searching). 

Grey literature, such as conference proceedings 

and preprints, was included if peer-reviewed and 

relevant to the review’s objectives. The number of 

papers reviewed on AI-based Identification by 

year-wise (1988-2025) is shown in Figure 2. 

Inclusion and Exclusion Criteria 
Studies were included based on the following 

criteria: 

Study Type: Original research articles, conference 

papers, or peer-reviewed preprints reporting on 

AI-based bacterial identification techniques. 

Publication Date: Published between January 

2018 and July 2025 to focus on recent 

advancements. 
 

Methodology 
Studies utilizing AI (machine learning or deep 

learning) combined with imaging (e.g., 

microscopy, hyperspectral imaging), spectroscopy, 

or sensor arrays for bacterial identification or 

classification. 

Outcomes 
Reported quantitative outcomes (e.g., accuracy, 

precision, recall) or qualitative insights (e.g., 

feasibility, limitations) related to bacterial 

identification. 

Language 
Published in English to ensure accessibility for 

data extraction. 

Applications 
Focused on applications in clinical diagnostics, 

food safety, environmental monitoring, or 

antibiotic resistance detection. 

 

 
Figure 2: Number of Papers Group by the Year 

 

 

 

 

 



Urmila et al.,                                                                                                                                                    Vol 6 ǀ Issue 4 

 

 
954 

 

Exclusion criteria were: 

● Studies not involving AI or machine learning 

techniques. 

● Studies focused on non-bacterial 

microorganisms (e.g., viruses, fungi) unless 

bacteria were also analyzed. 

● Non-peer-reviewed sources, such as 

editorials, opinion pieces, or non-peer-

reviewed preprints. 

● Studies lacking sufficient methodological 

details or results (e.g., no description of 

dataset or outcomes). 

● Studies published before 2018 or in 

languages other than English. 

Study Selection Process 
The study selection process followed a two-stage 

screening approach: 

Title and Abstract Screening: First Two Authors 

screened titles and abstracts of retrieved records 

to assess eligibility based on the inclusion and 

exclusion criteria. Discrepancies were resolved 

through discussion or consultation with a third 

Author. 

Full-Text Review: Full texts of potentially eligible 

studies were retrieved and evaluated for final 

inclusion. Reasons for exclusion (e.g., irrelevant 

methodology, lack of outcomes) were documented. 

 

 
Figure 3: Process of Systematic Literature Review 

 

The study selection process is shown in the 

PRISMA flow diagram (Figure 3). It outlines the 

number of records identified, screened, excluded, 

and finally included. A total of 70 studies met the 

inclusion criteria and were analyzed. These studies 

were grouped based on their methods. Categories 

included machine learning, deep learning, 

hyperspectral imaging, sensor arrays, and other 

advanced imaging tools. 

Data Collection and Extraction 
Data were extracted by the first two authors using 

a standardized data extraction form. For 

information obtained from previously published 

studies, the corresponding reference numbers are 

indicated. The following information was collected 

from each study: 

● Author(s) and publication year. 

● Proposed methodology (e.g., AI algorithms, 

imaging/sensing techniques). 

● Dataset details (e.g., size, bacterial species, 

sample type). 

● Achievements (e.g., accuracy, precision, 

recall, F1-score). 

● Limitations (e.g., dataset size, computational 

complexity, equipment cost). 

Discrepancies in data extraction were resolved 

through discussion or arbitration by other authors. 

Data generated or analyzed by the authors 

themselves are noted in the Author Contributions 

section. Data were compiled into tables (Tables 1–

6) to facilitate synthesis and comparison across 

methodologies. 

Risk of Bias Assessment 
The quality of included studies was assessed using 

the Quality Assessment of Diagnostic Accuracy 

Studies (QUADAS-2) tool, adapted for AI-based 

diagnostic studies. The assessment focused on four 

domains: 

Patient/Sample Selection: Risk of bias due to 

non-representative datasets or unclear sampling 

methods. 

Index Test: Clarity and reproducibility of AI and 

imaging/sensing methods. 

Reference Standard: Appropriateness of ground 

truth (e.g., confirmed bacterial species). 

Flow and Timing: Consistency in applying 

methods across samples. were summarized but 

not used to exclude studies, given the exploratory 

nature of this review. 
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Results and Discussion 

Synthesis Methods 
Because the studies varied in design, datasets, and 

outcomes, a meta-analysis was not suitable. 

Instead, a narrative synthesis was performed. The 

studies were organized based on the methods 

they used. 

● Machine learning and feature extraction 

(Table 1). 

● Deep learning and convolutional neural 

networks (Table 2). 

● Spectroscopy-based identification (Table 3). 

● Hyperspectral imaging and AI (Table 4). 

● Sensor array and machine learning (Table 5). 

● Other advanced imaging and AI techniques 

(Table 6). 

Concept and Studies for Bacteria 

Identification 
This section examines modern methods that utilize 

artificial intelligence to identify bacteria. It starts 

with machine learning and feature extraction. 

These tools help analyze complex data and identify 

patterns associated with specific bacteria. Deep 

learning, particularly convolutional neural 

networks (CNNs), is well-suited for image data. It 

enhances accuracy in sorting different types of 

bacteria. The Spectroscopy improves results by 

combining spatial and spectral features. Sensor 

array systems, when coupled with machine 

learning, offer a sensitive and efficient platform for 

detecting bacterial presence based on chemical or 

physical changes. Additionally, other cutting-edge 

imaging techniques supported by AI continue to 

emerge, pushing the boundaries of speed, 

accuracy, and reliability in bacterial identification. 

Machine Learning and Feature 

Extraction Techniques  
Accurate and rapid bacterial identification is 

crucial in modern microbiology. It plays a big role 

in health, food safety, and the environment. They 

need skilled staff and lab tools. These issues 

pushed the need for better solutions. New tools 

now use image processing (IP) and artificial 

intelligence (AI). IP helps pull out details from 

microscope images. This improves how we spot 

bacteria. This review examines how IP and AI 

contribute to the identification of bacteria. It 

focuses on classifying bacteria from microscope 

images using ML and feature extraction. We 

examine 14 main studies. They utilize tools such as 

feature extraction, support vector machines 

(SVM), k-means clustering, and probabilistic 

neural networks. These methods bring speed, 

automation, and high accuracy. Still, they face 

challenges such as poor image quality, limited 

datasets, and excessive computer usage. The next 

parts explain how these methods work. They also 

show their uses, results, and limits in the field of 

microbiology, which are discussed in the following 

Table 1. 

 

Table 1: Machine Learning and Feature Extraction Techniques 

Author Name 

and Year 

Proposed Work and Dataset Achievements Limitations 

Mohamed B. 

A.  et al. (1), 

2018 

Histogram equalization for 

preprocessing, Bag-of-Words for 

feature extraction, SVM for 

classification. Dataset: 200 images 

(DIBaS, 10 species). 

97% accuracy in 

bacterial 

classification. 

Effective 

preprocessing and 

feature extraction. 

Small dataset. 

Classifier speed not 

discussed. Unclear 

generalizability. 

Kris 

Kristensen et 

al. (2), 2023 

CPN and Random Forest for Gram 

stain classification. Dataset: 660 

images (33 species). 

RF: 99% accuracy; 

CPN: 80%. Excellent 

Gram-type 

classification. 

CPN underperformed. 

Limited to Gram stain 

task. Moderate dataset 

size. 

Preetha et al. 

(3), 2018 

Image processing pipeline using 

electron microscope images. 

Dataset: Not specified. 

Demonstrated digital 

image processing 

feasibility. Improved 

specificity. 

No accuracy metrics. 

Missing dataset 

details. Relies on 

quality imaging. 
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 Wahid M. F. et 

al. (4), 2019 

Hybrid CNN models (CNN-SVM, 

CNN-KNN, CNN-NB). Dataset: Not 

clearly specified. 

CNN-SVM: 98.7% 

accuracy. Strong 

hybrid performance. 

Missing dataset 

details. High 

computational cost. 

Unclear adaptability. 

Keren F.  et al. 

(5), 2023 

Compared SVM, DL, RF for bacterial 

classification. Dataset: General 

methodological focus. 

Real-time, high-

throughput taxonomy 

potential. 

No dataset or results. 

Broad approach lacks 

specificity. 

Kotwal et al. 

(6), 2022 

Literature review of ML in bacterial 

classification (1998–2020). 

Comprehensive 

analysis of trends, 

methods, limitations. 

No original 

experiments. 

Dependent on 

secondary data. 

Sajedi et al. 

(7), 2020 

Gabor transform + XGBoost on 

Myxobacterial suborders. Dataset: 

Microscopic images. 

91% accuracy. 

Improved over 

previous methods. 

Only three suborders. 

Moderate dataset 

Limited 

generalizability. 

Satyanarayana 

et al. (8), 2022 

TPLMM-k algorithm for image 

decomposition. Dataset: Medical 

microscopic images. 

Better segmentation 

vs. GMM using VOI, 

GCE, PRI. 

Computationally 

demanding. Specific to 

image types. Needs 

broader validation. 

Rani et al. (9), 

2022 

Systematic review of ML/DL in 

microorganism image recognition. 

Dataset: 100 publications. 

Detailed trends and 

technique evaluation. 

No experimental data. 

Relies on secondary 

literature. 

Amitha et al. 

(10), 2024 

YOLOv5 + image processing for 

waterborne bacteria detection. 

Dataset: Water sample images (not 

quantified). 

High precision. 

Reduced analysis 

time. 

Dataset size/diversity 

not provided. YOLOv5 

needs significant 

resources. 

Singh A. et al. 

(11), 2022 

Transfer learning (GoogLeNet, 

AlexNet) on 600+ images (33 

species). 

GoogLeNet: 98.67% 

accuracy. Broad 

species classification. 

Moderate dataset 

Dependent on pre-

trained models. Needs 

larger-scale 

validation. 

Rani et al. 

(12), 2023 

VGG16, ResNet50, Xception on 

2500 augmented images (5 

species). 

Xception: 98.02% 

accuracy. 

Outperformed others. 

Augmentation may 

skew results. Limited 

species. High DL costs. 

Kumar et al. 

(13), 2010 

PNN using geometrical, optical, 

textural features. Dataset: Images 

of five stained microorganisms. 

100% accuracy with 

nine features. 

Effective even on 

mixed samples. 

Only five organisms. 

Fluorescent staining is 

costly. Small dataset. 

Hardo et al. 

(14), 2022 

Developed SyMBac for synthetic 

micrographs. Dataset: Synthetic 

images. 

Outperformed 

manual segmentation. 

Robust to cell 

variation. 

Synthetic nature may 

not reflect real-world 

complexity. Needs 

real-data validation. 
 

The table is shown to reveal a robust landscape of 

machine learning and feature extraction 

techniques for microscopic image-based bacterial 

classification, with accuracies ranging from 91–

100% across diverse methodologies, datasets, and 

applications (1). Exceptional accuracies of 97–

100% have been reported when datasets ranging 

from 200 to 2500 images were employed, using 

techniques such as SVM, transfer learning 

(GoogLeNet, Xception), and probabilistic neural 

networks (PNN) (2). The effectiveness of 

combining feature extraction methods (e.g., Bag-

of-Words, Gabor transform, geometrical/textural 

features) with ML classifiers for automated 

bacterial identification has been highlighted (3). 

Superiority of Random Forest (99%) over Causal 

Probabilistic Network (80%) for Gram stain 

classification was demonstrated in previous 
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studies (4), underscoring the importance of model 

selection. Comprehensive insights into 

methodological trends and challenges, 

emphasizing the need for standardized datasets 

and preprocessing techniques, have been provided 

in other studies (5, 6). Data scarcity was addressed 

by innovations such as SyMBac, which generate 

synthetic micrographs capable of achieving robust 

segmentation but still require real-world 

validation (7). Nonetheless, limitations persist 

across studies, including small or unspecified 

dataset sizes (8,9,10), lack of generalizability to 

diverse bacterial species (11,12), and the high 

computational demands of complex algorithms 

(13). Practical implementation has further been 

complicated by reliance on high-quality images 

and staining techniques. These observations 

suggest that although ML and feature extraction 

techniques offer significant promise for rapid and 

accurate bacterial identification, challenges 

related to dataset diversity, computational 

efficiency, and real-world applicability must still 

be addressed to fully realize their potential in 

clinical and industrial microbiology (14). 

Frequent Techniques Used   
Machine learning and feature extraction 

techniques are considered central to the 

automation of bacterial identification from 

microscopic images (1). Meaningful features such 

as texture, shape, and color are extracted from 

images for classification (2). Histogram 

equalization has been commonly used for 

preprocessing to enhance image contrast, as 

demonstrated in previous studies (3). Feature 

extraction has also been supported through the 

Bag-of-Words model, which forms visual patterns 

for SVM classification (4). Gram stains have been 

sorted using Random Forest (RF) and Causal 

Probabilistic Network (CPN), with RF showing 

superior performance (5). Microbes have been 

categorized by Probabilistic Neural Networks 

(PNN) based on shape, light, and texture features 

obtained from fluorescent images (6). Image 

segmentation in medical tasks has been improved 

through the TPLMM-k method combined with k-

means clustering (7). Detection of bacterial 

suborders has been facilitated by applying Gabor 

transform with XGBoost (8). Transfer learning 

with models such as GoogLeNet, AlexNet, VGG16, 

ResNet50, and Xception has been reported to boost 

accuracy, even with small datasets (9,10). Dataset 

expansion and overfitting prevention have been 

achieved through image augmentation techniques 

such as rotation, cropping, and flipping (11). 

Synthetic data generation tools, such as SyMBac, 

have been employed to produce training images 

for improved segmentation (12). Morphological 

processing and segmentation have further aided in 

identifying bacterial shapes (13). Collectively, 

these approaches are shown to support rapid, 

automated, and accurate bacterial identification 

(14). 

Applications   
These techniques are found to have diverse 

applications in microbiology and related fields. In 

clinical diagnostics, rapid identification of bacterial 

species is enabled, such as in Gram stain 

classification, which distinguishes between Gram-

positive and Gram-negative bacteria. Tuberculosis 

detection has benefited from automated image 

analysis, reducing the need for manual microscopy 

efforts. Applications in food safety include 

detecting microbial contamination in food samples 

to ensure quality control. Environmental 

monitoring has been supported by these methods 

through the identification of bacteria in water 

samples, thereby aiding public health and water 

quality management. Biomedical research has 

employed these techniques for the analysis of 

bacterial morphology and taxonomy, supporting 

microbial ecology studies. Classification of specific 

bacterial species, including Micrococcus luteus, 

Bacillus anthracis, and Staphylococcus aureus, has 

been achieved with high accuracy. Mixed bacterial 

sample analysis, involving pathogens such as 

Escherichia coli and Listeria innocua, has been 

facilitated by feature extraction and probabilistic 

neural networks. Automated epidemiology has 

further benefited through real-time species 

identification, enabling quicker responses to 

infectious diseases. These applications are shown 

to highlight the versatility of machine learning and 

feature extraction in addressing critical needs 

across multiple domains. 

Advantages   
Machine learning and feature extraction 

techniques are reported to offer significant 

advantages for bacterial identification. High 

classification accuracies ranging from 91% to 

100% have been achieved in studies using SVM, RF, 

PNN, and transfer learning. Automation has been 

shown to reduce the need for manual microscopy, 
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saving time and labor compared to traditional 

tests. Enhanced specificity compared to 

conventional approaches has been demonstrated, 

thereby minimizing errors in species 

identification. Transfer learning models such as 

Xception and GoogLeNet have been employed to 

achieve high performance even with moderate 

dataset sizes. Synthetic data generation methods 

such as SyMBac have been utilized to provide 

unlimited training data with perfect ground truth, 

thereby enhancing model robustness. Adaptability 

of these techniques to various imaging platforms 

has been reported, allowing for the handling of 

diverse bacterial morphologies and sizes. Real-

time identification has been supported, facilitating 

rapid responses in clinical and environmental 

settings. Feature extraction approaches such as 

Bag-of-Words and Gabor transform have been 

identified as computationally efficient compared 

to deep learning, making them suitable for 

resource-limited settings. Collectively, these 

advantages are shown to make the techniques 

transformative for microbiology. 

Challenges  
Despite their strengths, these techniques face 

several challenges. Dataset size and diversity are 

recognized as significant limitations, with many 

studies relying on small datasets (e.g., 200–2500 

images) that may not capture bacterial variability. 

Lack of detailed dataset descriptions in some 

studies has hindered reproducibility. High-quality 

images are considered critical; however, 

variability in staining techniques, such as those 

using Gram or fluorescent dyes, can impact model 

performance. Computational complexity is a 

concern for algorithms like TPLMM-k and transfer 

learning models, requiring significant resources. 

Generalizability to diverse bacterial species 

remains limited in studies focused on specific 

suborders or species. Synthetic datasets, while 

innovative, may not fully represent real-world 

imaging artifacts, necessitating further validation. 

Preprocessing steps, such as histogram 

equalization and morphological operations, 

require careful optimization to avoid introducing 

noise. The need for standardized protocols and 

publicly available datasets is evident. Access to 

advanced imaging equipment and trained 

personnel poses practical challenges in resource-

constrained settings. Addressing these challenges 

is considered crucial for broader adoption. 

Deep Learning and Convolutional 

Neural Networks  
Identifying bacteria from microscope images is 

vital in microbiology. It plays a role in clinical care, 

food safety, environmental checks, and research. 

This makes them less effective in busy labs. Deep 

learning (DL), especially convolutional neural 

networks (CNNs), has changed this process. CNNs 

allow fast, automated, and highly accurate 

bacterial detection. They extract detailed features 

from images without requiring manual steps. In 

many cases, they outperform older machine 

learning methods. This section focuses on 17 

studies that leverage deep learning and CNN-based 

techniques for microscopic image-based bacterial 

identification in many research works. These 

studies employ advanced architectures, such as 

VGG16, ResNet, Inception, YOLO, and EfficientNet, 

often in combination with transfer learning, data 

augmentation, and synthetic data generation, to 

achieve robust performance. The applications 

range from detecting pathogens, such as 

Escherichia coli, to identifying tuberculosis bacilli 

and classifying bacterial growth stages. While 

these methods offer significant advantages in 

terms of accuracy and automation, they face 

challenges such as dataset limitations, 

computational complexity, and generalizability 

issues. This section outlines the frequently used 

techniques, applications, advantages, and 

challenges, as summarized in Table 2, providing a 

comprehensive analysis of how deep learning is 

transforming bacterial identification. 
 

Table 2: Deep Learning and Convolutional Neural Networks 

Author Name 

and Year 

Proposed Work and 

Dataset 

Achievements Limitations 

Ramesh H.  et al. 

(15), 2024 

Used various CNNs (e.g., 

VGG16, ResNet50, 

EfficientNet) for bacteria 

prediction. Dataset: Diverse 

images (not quantified). 

Up to 99% accuracy. 

Proposed smartphone 

integration. 

Dataset size/diversity 

not provided. High 

computational demand. 

Real-world validation 

missing. 
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Mu Yang et al. 

(16), 2020 

CNN + active learning + 

logistic regression for AFB 

detection. Dataset: 134 ZN-

stained slides. 

F1 scores ~99%. High 

sensitivity/specificity. 

Focused only on AFB. 

Moderate dataset. Active 

learning increases 

complexity. 

Kotwal et al. (17), 

2023 

Ensemble features (HOG, 

LBP, CNNs) + multiple 

classifiers. Dataset: Four 

bacterial species. 

VGG16+SVM achieved 

99.89% accuracy. 

Limited to 4 species. 

Dataset size unspecified. 

High computational cost. 

Sarker I. A. et al. 

(18), 2024 

ResNet50 with 

augmentation for 33 

species. Dataset: 

Polyculture images. 

94.91% accuracy. 

Robust to unseen data. 

Dataset unspecified. 

Moderate performance. 

Generalizability unclear. 

Wahid M. F. et al. 

(19), 2019 

Xception CNN with transfer 

learning. Dataset: 1150 

images (7 species). 

97.5% accuracy. 

Effective for lethal 

bacteria. 

Small dataset. Limited 

species. Computational 

cost not discussed. 

Ahmed T.  et al. 

(20), 2019 

Inception v3 + SVM via 

transfer learning. Dataset: 

800+ images (7 species). 

96% accuracy. Efficient 

classification. 

Small dataset. Only 7 

species. Complex hybrid 

model. 

Sunanda et al. 

(21), 2024 

CNNs (GoogLeNet, AlexNet, 

etc.) on Agar dataset. 

Dataset: 5 species. 

GoogLeNet best 

performer (accuracy 

not stated). 

Accuracy missing. 

Limited species. High-

quality images required. 

Visitsattaponge S. 

et al. (22), 2024 

BiT model with data 

cleaning (graph Laplacian, 

WIB-ReLU). Dataset: DIBaS 

(660 images, 33 species). 

Accuracy: 99.11%, high 

precision/recall/F1. 

Complex preprocessing. 

DIBaS-specific. Needs 

real-world tests. 

Nasip et al. (23), 

2018 

VGGNet and AlexNet for 

classification. Dataset: 

DIBaS (660 images). 

98.25% (VGGNet), 

97.53% (AlexNet). 

Moderate dataset. High 

model cost. Limited 

dataset scope. 

Wahid et al. (24), 

2018 

Inception CNN via transfer 

learning. Dataset: 500+ 

images (5 species). 

95% accuracy. Effective 

on harmful bacteria. 

Small datasss Limited 

species. High model 

demands. 

Rani Oomman 

Panicker et al. 

(25), 2018 

CNN with image 

binarization for TB 

detection. Dataset: 22 

smear images. 

Recall: 97.13%. F-score: 

86.76%. 

Very small dataset. Low 

precision. TB-specific. 

Andreini et al. 

(26), 2018 

Synthetic image generation 

+ FCN for colony 

segmentation. Dataset: 

Synthetic + limited real 

images. 

Improved segmentation 

scalability. 

Synthetic data may lack 

real-world variability. 

Yang et al. (27), 

2023 

Style transfer + Swin 

Transformer + Cascade 

Mask R-CNN. Dataset: 

4,000 colony images 

(AGAR). 

YOLOv8x: 76.7% mAP. 

Outperformed HRNet. 

Moderate mAP. Complex 

architecture. 

Sengupta et al. 

(28), 2025 

U-Net + ResNet for biofilm 

detection (P. aeruginosa). 

Dataset: Bright-field 

images. 

Efficient biofilm 

segmentation. High 

ResNet accuracy. 

Species-specific. Dataset 

size unspecified. Needs 

broader validation. 
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Iriya et al. (29), 

2024 

Large-volume microscopy 

+ DNN for E. coli. Dataset: 

Not specified. 

High accuracy for point-

of-care use. 

Dataset unreported. 

Limited to E. coli. Needs 

real-world sample 

testing. 

Mai et al. (30), 

2021 

Depthwise separable CNN 

for 33 strains. Dataset: 

DIBaS (6600 images). 

96.28% accuracy. Only 

3.23M parameters. 

Moderate dataset. 

DIBaS-only. 

Generalizability 

uncertain. 

Chin SY et al. (31), 

2024 

Object detection (SSD-

MobileNetV2, YOLOv4, 

EfficientDet) for E. coli 

growth. Dataset: Not 

specified. 

YOLOv4: 98% mAP, 

97% recall. 

Dataset missing. E. coli-

specific. High model 

complexity. 

 

The table summarizes significant advancements in 

deep learning and convolutional neural networks 

(CNNs) for microscopic image-based bacterial 

classification, with reported accuracies ranging 

from 94.91% to 99.89% across diverse datasets 

and applications. Exceptional performance has 

been achieved using advanced CNN architectures 

such as VGG16, ResNet, and Big Transfer (BiT) on 

datasets including DIBaS (660–6600 images) and 

custom bacterial image sets. These results 

demonstrate the ability of CNNs to extract 

complex, hierarchical features, enabling precise 

bacterial species classification. Transfer learning 

has been applied to moderate dataset sizes (500–

1150 images), leveraging pre-trained models such 

as Inception, GoogLeNet, and Xception, which has 

yielded robust accuracies of 95–97.5% despite 

limited data availability. Dataset limitations have 

been further mitigated through synthetic data 

generation and style transfer, creating augmented 

datasets (e.g., 4 K images) and reducing 

dependence on scarce annotated data, thereby 

improving model robustness. High-performance 

metrics have also been reported in specific 

applications, including tuberculosis detection, 

biofilm analysis, and E. coli growth stage 

classification, highlighting the versatility of CNNs 

in clinical and research contexts. 

Challenges remain, particularly regarding small or 

unspecified dataset sizes, which constrain 

generalizability across diverse bacterial species. 

Computational complexity has also been noted, 

especially for models such as YOLOv4 and Swin 

Transformer, which require substantial resources 

and may hinder deployment in resource-limited 

environments. A focus on specific bacteria, such as 

E. coli and Pseudomonas aeruginosa, limits 

applicability to broader microbial populations. 

Some studies have addressed these limitations 

effectively: active learning has been employed to 

optimize CNN training with limited slides, 

achieving 87.13% sensitivity; lightweight CNNs 

with 3.23M parameters have been proposed for 

low-resource devices; and data augmentation has 

been used to enhance dataset diversity. Despite 

these advances, the development of larger, 

standardized datasets, validation on mixed 

samples, and optimization for computational 

efficiency remain critical for ensuring real-world 

applicability and scalability in clinical 

microbiology. 

Frequent Techniques Used 
Deep learning techniques, particularly 

convolutional neural networks (CNNs), dominate 

microscopic image-based bacterial classification. 

Advanced CNN architectures are widely employed, 

including VGG16, ResNet50, ResNet100, Inception 

v3, LeNet5, EfficientNet, and ConvNeXt (1). 

Transfer learning is a common approach that 

leverages pre-trained models, such as GoogLeNet, 

AlexNet, VGG-16, SqueezeNet, DenseNet-161, and 

Xception, to enhance performance with limited 

data. Data augmentation techniques, such as 

rotation, flipping, and cropping, expand datasets to 

improve model robustness. Synthetic data 

generation creates realistic micrographs to 

address data scarcity. Style transfer generates 

large datasets (e.g., 4k images) for improved 

training. Active learning optimizes CNN training by 

selecting informative samples. Hybrid models 

combine CNNs with classifiers, such as Support 

Vector Machines (SVM) or logistic regression, for 

enhanced accuracy. Segmentation techniques, 

such as U-Net with ResNet and Fully Convolutional 

Networks, are utilized for bacterial colony and 
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biofilm detection. Object detection models, such as 

YOLOv4, SSD-MobileNetV2, and EfficientNet, 

classify bacterial growth stages. Depth-wise 

separable CNNs reduce computational complexity 

for resource-limited devices (30). Graph 

Laplacian-based data cleaning and WIB-ReLU 

activation improve model performance. Swin 

Transformer enhances feature extraction in 

complex datasets. These techniques enable the 

automated and precise identification of bacteria. 

Applications 
Deep learning and CNN techniques have been 

applied widely in microbiology. Clinical 

diagnostics benefit from rapid bacterial species 

identification, such as the classification of 33 

bacterial strains in the DIBaS dataset. Automated 

analysis of sputum smear images has improved 

tuberculosis detection, while biofilm detection, 

particularly for Pseudomonas aeruginosa, has 

supported antimicrobial research. Food safety 

applications have been enhanced through the 

identification of Escherichia coli growth stages 

(rod-shaped, dividing, and microcolonies) in food 

samples. Environmental monitoring has been 

facilitated by large-volume microscopy for 

detecting uropathogenic E. coli in water or clinical 

samples. Laboratory automation has been 

advanced by classifying bacteria, including Bacillus 

subtilis and Staphylococcus aureus, from agar 

plate images. Biomedical research has benefited 

from these methods for microbial taxonomy and 

morphology analysis. Real-time identification 

systems, potentially integrated with smartphones, 

have enabled point-of-care diagnostics, and 

epidemiology has been supported by rapid 

pathogen detection, facilitating faster responses to 

infectious diseases. Collectively, these applications 

demonstrate the broad impact of deep learning in 

microbial analysis. 

Advantages 
Significant advantages for bacterial identification 

are offered by deep learning and CNNs. High 

accuracies, ranging from 94.91% to 99.89%, have 

been achieved using architectures such as VGG16, 

ResNet, and BiT. The need for manual microscopy 

has been eliminated through automation, thereby 

reducing time and labor. High performance has 

been enabled on moderate datasets by transfer 

learning, making applications feasible even with 

limited data. Scalable solutions to data scarcity 

have been provided by synthetic data generation 

and style transfer, enhancing model robustness. 

Complex features are effectively extracted by 

CNNs, resulting in superior performance 

compared to traditional machine learning methods 

in tasks such as biofilm detection and growth stage 

classification. Computational requirements for 

resource-limited settings have been reduced 

through the use of lightweight models, such as 

depth-wise separable CNNs. High precision, recall, 

and F1-scores (up to 99.31%, 99.09%, and 99.06%, 

respectively) have been ensured, providing 

reliable classification. Real-time detection 

capabilities are supported, enabling point-of-care 

applications. Applicability has been enhanced 

through versatility across imaging platforms and 

bacterial types. These factors demonstrate that 

deep learning is a transformative tool in 

microbiology. 

Challenges 
Significant challenges are faced by deep learning 

and convolutional neural network (CNN) 

techniques for bacterial identification. Model 

generalizability is restricted by limited dataset 

sizes. In some studies, datasets as small as 22 

sputum smear images have been used, limiting 

robustness. In other cases, detailed dataset 

descriptions are not provided, hindering 

reproducibility. Moderate dataset sizes, ranging 

from 500 to 1150 images, may fail to capture the 

full diversity of bacterial species. A major barrier is 

posed by computational complexity. Substantial 

computational resources are required by advanced 

models such as YOLOv4, Swin Transformer, and 

VGGNet, making them impractical for resource-

constrained environments. Computational 

demands are further increased by complex 

preprocessing steps, including active learning and 

graph Laplacian-based data cleaning. Broader 

applicability is limited by specificity to certain 

bacteria; some studies focus solely on 

Pseudomonas aeruginosa, while others target only 

E. coli, reducing versatility. Synthetic datasets may 

not fully represent real-world imaging artifacts, 

necessitating additional validation. Variability in 

image quality, caused by inconsistent staining or 

imaging conditions, also affects model 

performance. 

Spectroscopy-Based Identification 

Using AI 
Spectroscopy-based identification of bacteria, 

combined with artificial intelligence (AI), 
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represents a cutting-edge approach in 

microbiology, offering rapid and non-destructive 

methods for bacterial classification and detection 

of antibiotic resistance. This section examines 14 

studies that utilize spectroscopy-based techniques 

in conjunction with AI for bacterial identification. 

These studies utilize advanced algorithms, 

including principal component analysis (PCA), 

convolutional neural networks (CNNs), and 

spectral transformers, to analyze spectral data. 

Applications range from pathogen detection to 

antimicrobial susceptibility testing, with 

significant advantages in speed and precision. 

However, challenges such as spectral variability, 

dataset limitations, and equipment costs persist. 

Table 3 provides a comprehensive overview of this 

innovative field, detailing the frequent techniques, 

applications, advantages, and limitations. 
 

Table 3: Spectroscopy-Based Identification Using AI 

Author 

Details 

Proposed Work and Dataset Achievements Limitations 

Wan-dan Z.  

et al. (32), 

2019 

PCA + Stacking with grid 

search and K-fold validation. 

Dataset: Not specified. 

95.73% accuracy. Robust 

due to cross-validation. 

Dataset details missing. 

Limited to foodborne 

pathogens. 

Generalizability unclear. 

Ji S.-Y. et al. 

(33), 2019 

Wavelet features + visual 

analytics for IR spectroscopy. 

Dataset: 72 IR spectra (E. coli, 

P. aeruginosa). 

92.5% accuracy. High 

sensitivity/specificity 

(>92%). 

Small dataset. Limited to 

two species. Requires 

FO-FTIR. 

Biasio et al. 

(34), 2013 

Raman micro-spectroscopy + 

PCA with narrow band filters. 

Dataset: 3 species (not 

quantified). 

High accuracy using 3 PCs. 

Comparable to PCA 

classifier. 

Dataset size not given. 

Only 3 species. Needs 

precise spectral input. 

Jacob Henry 

et al. (35), 

2024 

Excitation-emission 

spectroscopy with DMAF + 

NN. Dataset: 8 bacterial 

species (not quantified). 

85.8% species-level, 

98.3% Gram-level 

accuracy. 

Moderate species 

accuracy. Dataset not 

reported. Variability 

from dye. 

Barrera 

Patiño et al. 

(36), 2024 

FTIR + ML for antimicrobial 

resistance detection. Dataset: 

4 bacterial species. 

Detected resistance 

patterns in G+ and G− 

bacteria. High versatility. 

Dataset size unspecified. 

Limited to 4 species. 

Requires biomolecular 

analysis. 

Rahman et 

al. (37), 

2024 

Review of Raman 

spectroscopy + CNN + SERS. 

Dataset: Literature-based. 

Showcased DL benefits 

and data limitations. 

No experiments. Relies 

on secondary data. No 

specific performance 

metrics. 

Gullu et al. 

(38), 2024 

Image processing + ML for 

inhibition zone detection. 

Dataset: Not reported. 

Automated susceptibility 

testing. Simplified 

measurement. 

Dataset missing. Only 

applicable to disk 

diffusion. 

Farias et al. 

(39), 2023 

NIR spectroscopy + PCA, HCA, 

KNN. Dataset: 4 species (E. 

coli, S. enteritidis, E. faecalis, 

L. monocytogenes). 

100% accuracy in species 

and Gram classification. 

Green, fast method. 

Dataset size not stated. 

Needs NIR accessory. 

Limited species. 

Thomsen et 

al. (40), 

2022 

Spectral Transformer for 

Raman hyperspectral images. 

Dataset: 15 classes (6 MR-MS 

species). 

96% accuracy (15 classes), 

95.6% (MR-MS). 

Outperformed CNNs. 

Dataset unspecified. 

Requires hyperspectral 

imaging. Limited to 

phenotypic classes. 

Lu et al. 

(41), 2023 

Raman + ML for species ID 

and resistance detection. 

90.73% species-level, 

99.92% resistance 

accuracy. 

Dataset not provided. 

Single-cell analysis adds 

complexity. 
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Dataset: 12 species, A. 

baumannii strains. 

Safir et al. 

(42), 2023 

Acoustic bioprinting + SERS + 

ML. Dataset: S. epidermidis, E. 

coli, blood mixtures. 

≥99% accuracy (pure), 

≥87% (mixed). High 

enhancement (1500×). 

Small dataset. Complex 

setup. Limited to select 

mixtures. 

K. Kukula et 

al. (43), 

2021 

4-layer CNN for Raman 

spectra. Dataset: 30 bacterial 

classes. 

86% accuracy. Reduced 

model complexity. Near 

real-time. 

Moderate accuracy. 

Needs large spectral 

datasets. 

L. Deng et 

al. (44), 

2022 

Deep NN with multi-receptive 

fields for Raman spectra. 

Dataset: Not specified. 

Higher accuracy than prior 

methods. Visualization for 

interpretability. 

Dataset missing. Limited 

clinical testing. Expert 

input needed. 

Yichen Liu 

et al. (45), 

2024 

Wavelet packet + Gramian 

angular field + DL. Dataset: 2 

and 30 isolates. 

99.64% (2 isolates), 

90.55% (30 isolates). 

Training time reduced 

90%. 

Lower accuracy on 30 

classes. Dataset size 

unclear. Sensitive to 

noise. 
 

The Spectroscopy-based AI demonstrates strong 

potential for bacterial identification, with studies 

reporting accuracies between 85.8% and 100%. 

Techniques such as NIR spectroscopy with 

PCA/HCA/KNN, SERS with acoustic bioprinting, 

and wavelet-based deep learning have achieved 

near-perfect results, including rapid detection of 

antibiotic resistance. Advanced models like 

spectral transformers and multi-receptive field 

DNNs further improve performance and 

interpretability. However, progress is limited by 

small or unspecified datasets, narrow species 

coverage, and moderate accuracy in multi-class 

tasks. The High equipment costs, spectral 

variability, and sensitivity to noise also hinder 

practical use. While methods like data 

augmentation and noise superposition improve 

robustness, broader adoption will require 

standardized datasets and cost-effective, 

accessible systems. 

Frequent Techniques Used 
Spectroscopy-based bacterial identification 

applies AI to analyze molecular signatures with 

high precision. Principal Component Analysis 

(PCA) and wavelet transforms reduce spectral 

dimensionality, while classifiers such as Support 

Vector Machines (SVM), Random Forest (RF), and 

Logistic Regression enable efficient classification. 

Convolutional and Deep Neural Networks (CNNs, 

DNNs) handle complex Raman and FTIR spectra, 

with advanced variants like spectral transformers 

and multi-receptive field models improving 

feature extraction. Additional approaches include 

K-Nearest Neighbor (KNN), Hierarchical Cluster 

Analysis (HCA), and image processing for 

susceptibility testing. Enhancements such as 

Surface-Enhanced Raman Spectroscopy (SERS) 

and acoustic bioprinting boost signal intensity and 

detection accuracy. Together, these methods 

enable rapid and reliable bacterial classification. 

Applications 
AI-enhanced spectroscopy supports diverse fields 

of microbiology. In clinical diagnostics, it enables 

rapid species identification and antibiotic 

resistance profiling, including drug-resistant 

strains like Acinetobacter baumannii. Automated 

antimicrobial susceptibility testing accelerates 

therapy decisions. Food safety benefits from 

detecting pathogens such as E. coli and Salmonella, 

while environmental monitoring identifies 

contaminants in water and soil. Applications also 

include Gram-positive/negative classification, 

distinguishing MR and MS strains for infection 

control, and single-cell pathogen detection in 

hospital settings. Beyond healthcare, 

spectroscopy-based AI aids public health 

surveillance and biomedical research by analyzing 

biomolecular resistance patterns. 

Advantages 
These techniques deliver high accuracies (85.8–

100%), ensuring dependable results across 

applications. Non-destructive analysis preserves 

samples, while minimal preparation reduces time 

and labor. Rapid, often real-time detection 

supports timely interventions. High specificity 

allows differentiation of closely related strains, 

and SERS provides signal enhancement up to 

1500×, boosting sensitivity. Deep learning extends 

capabilities to complex datasets while NIR 

spectroscopy offers sustainable, “green” testing 
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options. Single-cell resolution and visualization of 

spectral features further support clinical decision-

making. Robustness to noise, as shown in recent 

studies, strengthens reliability in real-world use. 

Challenges 
Despite progress, several obstacles remain. Many 

studies rely on small or unspecified datasets, 

limiting robustness and generalizability. Narrow 

species coverage further restricts applicability. 

Spectral variability from environmental or 

chemical factors reduces consistency. The need for 

specialized equipment, such as hyperspectral 

Raman or FO-FTIR, adds cost and complexity. 

Performance in multi-class tasks can be moderate, 

with accuracies of 85–86% in some studies. 

Computational demands of advanced AI models 

hinder deployment in resource-limited settings. 

Finally, the absence of standardized spectral 

databases and reliance on expert infrastructure 

remain barriers to large-scale adoption. 

Addressing these challenges requires larger, well-

annotated datasets, cost-effective instrumentation, 

and simplified workflows for broader real-world 

implementation. 

Hyperspectral Imaging and AI 

Techniques 
Hyperspectral imaging (HSI) combined with AI 

enables precise bacterial identification by 

capturing both spectral and spatial data across a 

wide wavelength range, outperforming traditional 

culture-based methods in speed and specificity. 

When paired with models such as LSTM and deep 

neural networks, HSI can rapidly process complex 

datasets, supporting single-cell analysis and real-

time applications. Recent studies demonstrate its 

effectiveness in detecting foodborne pathogens 

and analyzing mixed bacterial samples (13, 16). 

However, practical deployment is hindered by high 

equipment costs and limited dataset availability. 

 

Table 4: Hyperspectral Imaging and AI Techniques 

Author 

Details 

Proposed Work and Dataset Achievements Limitations 

Xinggong 

Liang et al. 

(46), 2023 

AI classification of bacterial 

infections from pathology images 

at patch and whole slide levels. 

Dataset: Pathology images (size 

not specified). 

AUC >0.950 in all 

phases. High accuracy 

and robustness. 

Dataset size not 

disclosed. Low 

specificity for bacterial 

subtypes. 

Hikaru Tago 

et al. (47), 

2022 

Line image sensor for colony 

fingerprinting + ML. Dataset: 15 

species from 9 genera (size not 

provided). 

96% accuracy in 10 

hours. Petri dish 

scanned in 22 seconds. 

Faster than 24-h MS. 

Limited to 15 species. 

Required 10-hour 

incubation. Dataset size 

not specified. 

Zhu et al. 

(48), 2023 

Hyperspectral Transmission 

Microscopic Imaging (HTMI) + 

PCA-SVM for single-cell 

classification. Dataset: Five 

bacterial species at low 

concentrations. 

93.6% accuracy. 

Achieved 2.19 µm 

spatial and <1 nm 

spectral resolution. 

Small dataset. Only five 

species. High 

computational 

demands. 

Rui Kang et 

al. (49), 

2022 

HMI + LSTM for classifying five 

foodborne pathogens using ROIs 

(whole-cell, boundary, center). 

92.9% accuracy (center 

ROI). Outperformed 

PCA-based methods 

(66–85%). 

Limited to five 

pathogens. Dataset size 

moderate. Requires 

high-quality HMI. 

Zhu et al. 

(50), 2024 

Dual-mode HSI with MB-Net (deep 

neural network) to predict 

proportions of mixed bacteria. 

Dataset: Four mixed pathogenic 

species. 

R² = 0.96, RMSE = 0.03. 

First method for 

simultaneous detection 

of 4 mixed bacteria. 

Only four species. MB-

Net is computationally 

intensive. Dataset size 

not stated. 

Park et al. 

(51), 2023 

AGR2U-Net + ellipse fitting for 

single-cell segmentation in FPI-

94.1% mIoU, 97.4% 

ellipse fitting accuracy. 

Robust to blurriness. 

Limited to four species. 

High cost of FPI-HMI. 
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HMI. Dataset: E. coli, Listeria, 

Salmonella, Staphylococcus. 

Dataset moderately 

sized. 

High potential for bacterial identification has been 

demonstrated by HSI combined with AI, achieving 

accuracies of 92.9–96% across diverse 

applications. An AUC above 0.95 has been reported 

for the classification of bacterial infections from 

pathology images. An accuracy of 96% has been 

achieved in the identification of 15 bacterial 

species within 10 hours, outperforming the 24-

hour requirement of mass spectrometry. An 

accuracy of 93.6% has been obtained for single-

bacterium classification using hyperspectral 

transmission microscopic imaging (HTMI). Five 

foodborne pathogens have been classified with 

92.9% accuracy using LSTM networks, surpassing 

the performance of traditional PCA-based 

methods. Four mixed bacteria have been 

simultaneously detected with an R² of 0.96 using a 

custom DNN-based MB-Net. Mean intersection 

over union (IoU) of 94.1% and ellipse fitting 

accuracy of 97.4% have been achieved in single-

cell segmentation, demonstrating robustness to 

image blurriness. 

Limitations 
Many studies are conducted using small or 

unspecified datasets, which limits generalizability. 

Research is often focused on a few bacterial 

species, reducing applicability to broader 

microbial diversity. High costs of HSI systems and 

the computational demands of AI models pose 

significant barriers. Implementation is 

complicated by dependence on high-quality data 

and incubation time. Despite advances in 

addressing image blurriness and mixed samples, 

the development of larger standardized datasets, 

cost-effective hardware, and efficient algorithms is 

required for practical clinical and industrial 

deployment. 

Frequent Techniques Used 
● Imaging Systems: HTMI for high spatial and 

spectral resolution; Fabry-Perot 

Interferometer (FPI) HSI for enhanced 

spectral resolution; line image sensors for 

rapid colony fingerprinting. 

● AI and Machine Learning: PCA with SVM for 

spectral classification; LSTM networks for 

ROI spectral data; DNNs with spectral feature 

fusion for mixed bacteria (MB-Net 64); U-Net, 

ResU-Net, AGR2U-Net for single-cell 

segmentation. 

● Data Processing: Deblurring, padding, and 

ellipse fitting enhance single-cell 

identification. AI also processes whole slide 

images and patch-level pathology data.  

Applications 
● Clinical Diagnostics: Identification of bacterial 

infections from pathology images. 

● Food Safety: Detection of foodborne 

pathogens. 

● Single-Bacterium and Mixed Sample Analysis: 

Precise pathogen identification and 

quantification in complex samples. 

● Environmental Monitoring: Detecting 

microbial contaminants in food. 

● Biomedical Research: Analyzing bacterial 

morphology and species diversity using 

spectral ROIs. 

● Industrial and Workflow Optimization: Rapid 

colony fingerprinting and automated single-

cell segmentation streamline testing and 

diagnostics. 

Advantages  
● High accuracy (92.9–96%) and AUC >0.95 for 

reliable classification for several studies. 

● Single-cell resolution and high spatial (<2.19 

µm) and spectral (<1 nm) resolution. 

● Rapid diagnostics (e.g., 22 seconds per Petri 

dish). 

● Robustness to blurriness and mixed bacteria 

detection (R² = 0.96). 

● AI models outperform traditional methods 

(7–26% improvement over PCA-based 

classifiers). 

● Non-invasive imaging preserves samples and 

supports real-time processing for clinical 

workflows. 

● Scalable systems suitable for industrial 

applications. 

Sensor Array and Machine Learning 

for Bacterial Detection 
Sensor array technology combined with machine 

learning (ML) provides a rapid, cost-effective 

alternative to traditional microbiological methods, 

which are often time-consuming, labor-intensive, 

and require specialized laboratory setups. 

Fluorescence-based sensor arrays, using elements 
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like carbon quantum dots (CQDs) or two-

dimensional nanomaterials, generate distinct 

response patterns for different bacterial species. 

When paired with ML algorithms, these arrays 

analyze complex fluorescence fingerprints with 

high accuracy, enabling high-throughput 

identification. Recent studies employ cross-

reactive receptors, fluorescence quenching, and 

advanced ML models to detect multiple bacterial 

species, including pathogens and drug-resistant 

strains. Applications span food safety, clinical 

diagnostics, and environmental monitoring. 

Despite their advantages, issues such as sensor 

cross-reactivity and limited species diversity 

remain, highlighting areas for further 

optimization. Table 5 summarizes the techniques, 

achievements, and limitations, providing a 

comprehensive overview of this emerging 

approach. 

 

Table 5: Sensor Array and Machine Learning for Bacterial Detection 

Author 

Details 

Proposed Work and Dataset Achievements Limitations 

Yi Wang 

et al. 

(52), 

2023 

Developed a fluorescence sensor 

array with 2D nanoparticles and 

ssDNA for identifying eight 

bacteria in milk. Dataset: Eight 

pathogenic and spoilage bacteria 

(size not specified). 

Achieved 93.8% accuracy 

(30-min incubation), 98.4% 

with multilayer perceptron 

(120-min). Low-cost 

alternative to ELISA. 

Dataset size not 

specified. Limited to 

eight species. 

Incubation time 

required. 

Laibao 

Zheng et 

al. (53), 

2022 

Used fluorescence sensor array 

with carbon dots (boronic acid, 

polymixin, vancomycin) and LDA. 

Dataset: Six bacterial species (size 

not specified). 

Demonstrated effective 

discrimination of six 

bacteria using fluorescence 

patterns. Simple and rapid 

method. 

Dataset size not 

provided. Limited to 

six species. Cross-

reactivity of 

receptors not 

quantified. 

Li, Z (54), 

2023 

Developed six-sensing array with 

2D nanomaterials and ssDNA for 

microbial identification. Dataset: 

Eight microorganisms, n=288 

samples. 

Achieved 97.9% accuracy 

across eight species, 

including drug-resistant 

strains. Rapid detection at 

low concentrations (10²–10⁸ 

CFU/mL). 

Small dataset 

(n=288). Limited to 

eight species. 

Complex sensor 

fabrication. 

Wang et 

al. (55), 

2024 

Developed paper-based 

fluorescence sensor array with 

antibiotic-modified CQDs and 

smartphone imaging. Dataset: Five 

bacterial strains (10³–10⁷ 

CFU/mL). 

Differentiated five strains 

with high accuracy. Cost-

effective, portable platform 

validated with blind 

samples. 

Limited to five 

species. Moderate 

dataset size. 

Smartphone imaging 

quality variability. 

 

The significant potential of sensor array 

technology combined with machine learning for 

bacterial detection has been highlighted, with high 

accuracies of 93.8–98.4% reported and practical 

applications demonstrated. An accuracy of 98.4% 

has been achieved in identifying eight bacteria in 

milk using a fluorescence sensor array with a 

multilayer perceptron, providing a low-cost 

alternative to ELISA. An accuracy of 97.9% has 

been obtained across eight microorganisms, 

including drug-resistant strains, using a six-

sensing array capable of detecting low 

concentrations (10²–10⁸ CFU/mL). Six bacteria 

have been effectively discriminated using carbon 

dot-based sensors and linear discriminant 

analysis, emphasizing simplicity and speed. A 

portable paper-based platform with antibiotic-

modified CQDs has been developed to accurately 

differentiate five bacterial strains, with validation 

performed using blind samples and smartphone 

imaging. These results demonstrate the precision, 

speed, portability, and cost-effectiveness of sensor 

arrays. However, limitations remain. Small or 

unspecified dataset sizes are still used, receptor 

cross-reactivity affects specificity, incubation 

times of 30–120 minutes are required, sensor 
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fabrication is complex, and variability in 

smartphone imaging quality impacts performance. 

While some studies have addressed portability and 

low-concentration detection, the development of 

larger standardized datasets, improved receptor 

specificity, and simpler fabrication processes is 

required for widespread adoption in clinical, food 

safety, and environmental applications. 

Frequent Techniques Used 
Advanced approaches for bacterial identification 

are employed by sensor array methods combined 

with machine learning. Fluorescence-based arrays 

are constructed using single-stranded DNA 

(ssDNA) quenched by two-dimensional 

nanomaterials or carbon quantum dots (CQDs) 

functionalized with receptors such as boronic acid, 

polymyxin, vancomycin, or antibiotics. Bacterial 

surface interactions are monitored through 

aggregation-induced fluorescence quenching. 

Classification is performed using Linear 

Discriminant Analysis (LDA), multilayer 

perceptrons, and artificial neural networks, with 

SVM and K-Nearest Neighbors applied as 

baselines. Fluorescent signals collected at specific 

wavelengths (e.g., 520 nm) are used to generate 

microbial fingerprints. Portable detection is 

enabled by paper-based platforms with inkjet-

printed CQDs, while smartphone imaging 

facilitates on-site analysis. Data preprocessing, 

including signal normalization, is applied to 

improve model performance. These techniques 

allow rapid and high-accuracy bacterial 

identification. 

Applications 
Wide-ranging applications are supported by 

sensor arrays combined with machine learning. 

Food safety is enhanced through the detection of 

pathogenic and spoilage bacteria in milk. Clinical 

diagnostics are facilitated for pathogens such as 

Escherichia coli, Staphylococcus aureus, and 

Klebsiella pneumoniae, including drug-resistant 

strains like MRSA. Environmental monitoring is 

performed to detect bacteria in water and soil, 

while portable paper-based platforms with 

smartphone integration enable point-of-care 

testing. Rapid microbial quality control benefits 

industrial microbiology, and microbial taxonomy 

and antibiotic interactions are studied in 

biomedical research using these methods. Real-

world performance is validated through blind 

sample testing. 

Advantages 
These techniques achieve high accuracy (93.8–

98.4%) and rapid detection within 30–120 

minutes. They detect low concentrations (10²–10⁸ 

CFU/mL) and are cost-effective, especially on 

paper-based platforms. Portability with 

smartphone integration enables on-site testing, 

while non-specific cross-reactive receptors 

simplify sensor design. Minimal sample 

preparation, high specificity for drug-resistant 

strains, scalability for high-throughput 

applications, ease of fabrication via inkjet printing, 

and robustness to blind samples enhance practical 

utility. 

Challenges 
Key limitations include small or unspecified 

datasets restricting generalizability, focus on a 

limited number of species, receptor cross-

reactivity reducing specificity, incubation times of 

30–120 minutes, complex sensor fabrication, and 

variability in smartphone imaging quality. 

Dependence on stable fluorescence signals, lack of 

standardized datasets, and limited validation on 

mixed or complex samples further constrain 

implementation. Addressing these challenges 

requires larger datasets, optimized receptor 

specificity, and streamlined fabrication for broader 

adoption. 

Other Advanced Imaging and AI 

Techniques 
Using spectroscopy with AI is a modern way to 

identify bacteria. It allows fast and non-destructive 

testing. This helps with both classification and 

spotting antibiotic resistance. Spectroscopy 

methods—such as Raman, FTIR, and excitation-

emission scans—pick up unique molecular 

patterns in bacteria. They are now used in clinical 

labs, food safety checks, and environmental 

studies. This section reviews 14 studies that use AI 

and spectroscopy to identify bacteria.  These 

studies utilize advanced algorithms, including 

principal component analysis (PCA), convolutional 

neural networks (CNNs), and spectral 

transformers, to analyze spectral data. 

Applications range from pathogen detection to 

antimicrobial susceptibility testing, with 

significant advantages in speed and precision. 

However, challenges such as spectral variability, 

dataset limitations, and equipment costs persist. 

The details of the frequent techniques, 
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applications, advantages, and limitations are 

discussed in the following Table 6, providing a 

comprehensive overview of this innovative field. 
 

Table 6: Other Advanced Imaging and AI Techniques 

Author 

Details 

Proposed Work and Dataset Achievements Limitations 

Ma L. et al. 

(56), 2023 

Used YOLOv4 with phase-

contrast microscopy for E. coli 

detection. Dataset: E. coli and 

seven foodborne bacteria, 

romaine lettuce samples. 

Achieved 94% precision, 

R² = 0.995 for 

quantification, <10% 

false-negative rate. Rapid 

3-h detection. 

Limited to eight species. 

Requires 3-h cultivation. 

Dataset size not 

specified. 

Hiraoka M. 

et al. (57), 

2018 

Developed image processing 

system for filamentous bacteria 

in wastewater. Dataset: 

Activated sludge samples. 

Automated bulking 

control. Supported 

operator identification. 

Monitored control effects. 

Dataset size not 

specified. Limited to 

filamentous bacteria. 

Requires operator 

interaction. 

Demirel M. 

et al. (58), 

2022 

Used iterative Bayesian model 

for FLIM bacterial detection. 

Dataset: Synthetic and real 

FLIM images. 

Improved F1 score by 

16.85% over existing 

methods. Outperformed 

on real images. 

Dataset size not 

specified. 

Computationally 

intensive. Limited to 

FLIM imaging. 

Thomas 

Mortier et 

al. (59), 

2021 

Benchmarked ML methods for 

MALDI-TOF spectra. Dataset: 

100,000 spectra, >1000 

species. 

Acceptable identification 

rates for novel replicates, 

strains, species. Used 

neural networks with 

Monte Carlo dropout. 

Lower accuracy for novel 

species. Taxonomic 

information poorly 

preserved. Large dataset 

required. 

Harris et al. 

(60), 2024 

Reviewed ML for UTI 

diagnostics and antibiotic 

resistance prediction. Dataset: 

Literature-based. 

Highlighted rapid 

diagnostics and reduced 

antibiotic use. Improved 

clinical workflows. 

No experimental results. 

Relies on secondary data. 

Broad scope lacks 

specificity. 

He et al. 

(61), 2023 

Used SIM with ML for bacterial 

identification. Dataset: E. coli, 

M. smegmatis, P. aeruginosa 

images. 

Achieved 98% 

classification accuracy. 

Rapid morphological 

analysis. 

Limited to three species. 

Small dataset. Requires 

high-resolution SIM 

imaging. 

Ragi S. et al. 

(62), 2023 

Used DCNN and Mask R-CNN 

for SEM image segmentation of 

DA-G20 cells. Dataset: SEM 

images. 

70–227× faster than 

manual methods. 

Accurate geometric 

property extraction. 

Dataset size not 

specified. Limited to DA-

G20 cells. Requires SEM 

expertise. 

Ding Y et al. 

(63), 2024 

Developed paper-based 

fluorogenic probe with 

smartphone AI for β-lactamase 

detection. Dataset: Bacterial 

samples, mice. 

Detected β-lactamase in 

20 s, 0.13 nmol/L 

detection limit. 

Calibrated for complex 

samples. 

Dataset size not 

specified. Limited to β-

lactamase. Smartphone 

variability. 

Ahmad N. et 

al. (64), 

2019 

Used 3-layer neural network 

for Peptococcaceae 

identification. Dataset: Bergey’s 

manual data. 

Rapid identification vs. 

manual methods. High 

accuracy for facultative 

anaerobes. 

Dataset size not 

specified. Limited to 

Peptococcaceae. Relies 

on manual data. 

Kim G. et al. 

(65), 2022 

Used CNN for 3D refractive 

index image classification. 

Dataset: Not specified. 

Rapid and accurate 

species identification. 

Dataset details absent. 

Limited species scope. 
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Simplified microbial 

detection. 

Requires 3D imaging 

setup. 

Zhang S. et 

al. (66), 

2023 

Used DL for impedance-based 

analysis of three bacteria. 

Dataset: EPEC, S. enteritidis, V. 

parahaemolyticus. 

Achieved 100% accuracy. 

Suitable for point-of-care 

testing. 

Small dataset. Limited to 

three species. Requires 

impedance system. 

Demirel M. 

et al. (67), 

2023 

Generated synthetic bacteria in 

OEM images using 3D U-Net. 

Dataset: Synthetic and real 

OEM images. 

Improved correlation by 

3.86% over baseline. 

Enhanced detection with 

DLNet. 

Limited dataset size. 

Synthetic data may not 

fully represent real 

variability. 

Nirmala Bai 

L. et al. (68), 

2024 

Used EfficientNetB1/B2 for 

chest infection diagnosis from 

X-rays. Dataset: Public and 

hospital X-ray images. 

Superior accuracy vs. 

other transfer learning 

models. Effective for 

infections. 

Dataset size not 

specified. Limited to 

chest infections. 

Requires X-ray imaging. 

Yang Zhang 

et al. (69), 

2023 

Reviewed DL for microbial 

image analysis. Dataset: 

Literature-based. 

Highlighted potential for 

viruses, bacteria, fungi, 

parasites. Guided future 

research. 

No experimental results. 

Relies on secondary data. 

Broad scope lacks depth. 

Maaskant et 

al. (70), 

2024 

Used DL/ML for fecal smear 

bacterial prediction. Dataset: 

Rhesus macaque fecal images. 

Predicted 16 genera (AUC 

>0.7), butyrate producers 

(AUC 0.75). Robust to 

noise. 

Dataset size not 

specified. Limited to 

fecal bacteria. Requires 

metagenomic data. 
 

The transformative impact of advanced imaging 

and AI techniques on bacterial detection is 

highlighted, with accuracies of 94–100% achieved 

and innovative applications demonstrated across 

various domains. A precision of 94% was obtained 

in detecting E. coli using YOLOv4 with phase-

contrast microscopy, enabling rapid food safety 

testing in just 3 hours. An accuracy of 98% was 

achieved in classifying three bacterial species 

using SIM and machine learning, demonstrating 

the potential of morphological analysis. An 

accuracy of 100% was attained in identifying three 

pathogens via impedance-based deep learning, 

suitable for point-of-care testing. F1 scores were 

improved by 16.85% using a Bayesian model for 

FLIM, outperforming traditional methods. Machine 

learning was benchmarked on a dataset of 100,000 

spectra, achieving acceptable rates for novel 

species identification. SEM analysis was 

accelerated 70–227 times using DCNN and Mask R-

CNN, enhancing biofilm research. However, 

limitations remain, including the use of small or 

unspecified datasets restricting generalizability, a 

focus on few species limiting microbial diversity, 

costly and complex imaging systems such as SIM, 

FLIM, and impedance setups, and the 

computational demands of models like 3D U-Net 

and EfficientNet. The lack of experimental data in 

review studies reduces specificity. While synthetic 

data and portable probes address some challenges, 

standardized datasets, cost-effective systems, and 

broader species validation remain critical for 

adoption in clinical, industrial, and environmental 

settings. 

Frequent Techniques Used 
Diverse AI approaches are employed in advanced 

imaging methods. Bacteria are detected in phase-

contrast microscopy using YOLOv4, FLIM data are 

analyzed with Bayesian models and Metropolis-

Hastings sampling, and SIM and 3D refractive 

index images are classified with CNNs. SEM images 

are segmented using DCNNs and Mask R-CNNs, 

while X-ray images for infection detection are 

analyzed with EfficientNet models. Novel species 

in MALDI-TOF spectra are identified using neural 

networks with Monte Carlo dropout, and bacteria 

in synthetic optical endomicroscopy images are 

detected with 3D U-Net models. Bacterial subtypes 

are classified using impedance-based analysis 

combined with deep learning, and β-lactamase is 

detected with paper-based fluorogenic probes 

supported by smartphone AI. Additional methods 

include hierarchical classification of spectral 

datasets, geometric analysis with moment 

invariants, feed-forward backpropagation, and 

explainability analysis to improve model 

transparency. 
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Applications 
These techniques have broad applications. Food 

safety is enhanced through rapid pathogen 

detection, such as E. coli in romaine lettuce, while 

clinical diagnostics identify pathogens including E. 

coli, Salmonella, and Vibrio parahaemolyticus and 

support urinary tract infection diagnosis and 

antibiotic resistance prediction. Environmental 

monitoring detects filamentous bacteria in 

wastewater, and biomedical research investigates 

biofilm phenotypes and β-lactamase activity. 

Industrial microbiology benefits from rapid 

species identification for quality control, point-of-

care testing is enabled by portable probes and 

impedance systems, and novel species 

identification advances microbial taxonomy. Real-

time pathogen monitoring and fecal bacterial 

group prediction support infection control and gut 

health studies. 

 

Advantages 
High accuracy (94–100%) ensures reliable 

identification, with rapid detection times and low 

false-negative rates (<10%) enhancing diagnostic 

reliability. Non-invasive imaging preserves 

samples, while high specificity distinguishes 

bacterial subtypes and resistant strains. 

Automation reduces manual labor, and scalability 

handles large datasets, such as 100,000 spectra. 

Portability via smartphone integration supports 

point-of-care testing, and robustness to noise 

improves practical utility. High quantification 

accuracy (R² = 0.995), explainability analysis, 

versatility across imaging modalities, and 

significant speed improvements up to 227× faster 

than manual methods further demonstrate their 

transformative potential. 

Table 7 presents the distribution of studies across 

different research topics, highlighting the 

prominence of various AI-driven approaches for 

bacterial detection and classification. The majority 

of 31 studies focus on microscopic image-based 

classification using machine learning and deep 

learning, reflecting its dominant role in this field. 

Spectroscopy-based identification using AI has 

also gained considerable attention, with 14 

studies, while other advanced imaging and AI 

techniques account for 15 studies, showcasing the 

exploration of diverse methods beyond 

conventional imaging. In comparison, 

hyperspectral imaging and AI techniques have 

been applied in 6 studies, and sensor array-based 

approaches with machine learning have been 

examined in 4 studies. This distribution indicates 

that while image-based and spectroscopy-driven 

methods remain central, emerging techniques are 

gradually expanding the research landscape. 
 

Table 7: Topic Wise Studies Count 

Topic Study Count 

Microscopic Image-Based Classification Using 

Machine Learning and Deep Learning 

31 

Spectroscopy-Based Identification Using AI 14 

Hyperspectral Imaging and AI Techniques 6 

Sensor Array and Machine Learning for Bacterial 

Detection 

4 

Other Advanced Imaging and AI Techniques 15 
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Figure 4: Dataset Used in this Study 

 

Figure 4 shows the usage frequency of different 

models across studies. Most works either did not 

specify the model-5 or used CNNs-4, followed by 

PCA-7 and SVMs-6. KNN, FNN, and random forests 

appeared less often, while advanced models like U-

Net, YOLOv4, EfficientNet, and LSTM were used in 

limited cases.  

Limitation and Challenges 
AI-based bacterial identification techniques face 

significant challenges that hinder their widespread 

adoption. Small or unspecified dataset sizes limit 

model generalizability. Many studies rely on 

datasets with fewer than 1000 samples, such as 22 

sputum smear images or 72 spectra. Others omit 

dataset details entirely, hindering reproducibility. 

A narrow focus on specific bacterial species further 

restricts applicability. Research often targets three 

to eight species, such as E. coli or Staphylococcus 

aureus, neglecting the diverse microbial 

populations. This specificity reduces utility in real-

world settings with complex microbiomes. Lack of 

standardized, large-scale datasets across 

techniques exacerbates these issues, complicating 

model training and validation. High computational 

complexity poses a significant barrier to progress. 

Advanced models, including YOLOv4, Swin 

Transformer, and 3D U-Net, demand substantial 

processing power. Deep neural networks and 

spectral transformers require extensive resources, 

which limit their deployment in resource-

constrained environments, such as rural clinics. 

Specialized equipment adds to accessibility 

challenges. High-resolution microscopy, 

hyperspectral sensors, and fluorescence lifetime 

imaging systems are costly.  

Data variability undermines model reliability. 

Inconsistent staining, image blurriness, or 

environmental factors affect imaging quality. 

Spectral variability from dye interactions or noise 

impacts spectroscopy results. Fluorescence signal 

stability in sensor arrays depends on controlled 

conditions. Robust preprocessing is often lacking, 

which can reduce performance in suboptimal 

settings. Validation on mixed or complex samples 

is limited. Many studies focus on single-species or 

low-concentration samples, ignoring real-world 

diversity. Synthetic data, while innovative, may not 

fully capture natural variability, requiring further 

testing. Moderate accuracies in multi-class tasks, 

ranging from 85.8% to 86%, highlight the 

difficulties in scaling to diverse scenarios. 

Critical Appraisal and Risk of Bias 

Assessment 
To ensure the reliability of findings in this 

systematic review, a critical appraisal of the 70 

included studies was conducted to assess the risk 

of bias. The Quality Assessment of Diagnostic 

Accuracy Studies (QUADAS-2) tool, adapted for use 

in AI-based diagnostic studies, was employed. This 

tool evaluates four domains: Patient/Sample 

Selection, Index Test, Reference Standard, and 

Flow and Timing. Each domain was assessed for 

risk of bias and concerns regarding applicability. 

Two independent reviewers (N.A.J. and G.P.G.) 

performed the appraisal. Discrepancies were 

resolved through discussion or consultation with a 

senior reviewer (C.J.). The assessment aimed to 

identify methodological weaknesses that could 

affect the validity of reported outcomes, such as 

classification accuracies in bacterial identification. 
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Methods of Critical Appraisal 
The QUADAS-2 tool was tailored to address AI-

based bacterial identification studies. The domains 

were defined as follows: 

● Patient/Sample Selection: Evaluated 

whether datasets were representative of real-

world bacterial populations. Studies with 

small, non-diverse datasets (e.g., 3–8 species) 

or unclear sampling methods were rated as 

high risk. Applicability concerns arose if 

datasets did not reflect clinical, food safety, or 

environmental contexts. 

● Index Test: Assessed the clarity and 

reproducibility of AI algorithms (e.g., machine 

learning, deep learning) and imaging/sensing 

techniques (e.g., spectroscopy, hyperspectral 

imaging). Studies lacking detailed model 

descriptions or validation methods were 

rated as high risk. 

● Reference Standard: Examined the accuracy 

of ground truth labels (e.g., confirmed 

bacterial species via culture or molecular 

methods). Studies with unclear or unverified 

reference standards were rated as high risk. 

● Flow and Timing: Evaluated consistency in 

applying AI and sensing methods across 

samples. Studies with incomplete reporting of 

testing protocols or inconsistent application 

were rated as high risk. 

Each study was rated as low, high, or unclear 

risk of bias for each domain. Applicability 

concerns were noted separately to assess 

relevance to the review’s objectives. Results 

were summarized in a table (Table 7) and 

narratively synthesized to highlight trends 

and implications. 

Results of Risk of Bias Assessment 
Of the 70 studies, 40% (28 studies) were rated as 

low risk across all domains, indicating robust 

methodology. However, 50% (35 studies) had high 

or unclear risk in at least one domain, primarily 

due to: 

● Sample Selection: 25 studies used small 

datasets (e.g., <100 samples) or focused on 

few bacterial species, limiting 

generalizability. Only 15 studies included 

diverse, multi-species datasets relevant to 

clinical or environmental applications. 

● Index Test: 20 studies provided insufficient 

details on AI model parameters (e.g., hyper-

parameters, training protocols) or lacked 

external validation, increasing bias risk. 

● Reference Standard: 10 studies had unclear 

reference standards, relying on unverified 

labels or proprietary datasets, reducing 

reliability. 

● Flow and Timing: 15 studies incompletely 

reported testing protocols, such as 

inconsistent imaging or sensor application, 

raising concerns about reproducibility. 

Applicability concerns were noted in 30 studies, 

particularly those with datasets not aligned with 

real-world applications (e.g., lab-based samples 

versus clinical isolates).  

Implications 
The risk of bias assessment revealed strengths and 

weaknesses. Studies with low risk provided 

reliable evidence of AI’s high accuracy (85.8%–

99%) in bacterial identification. However, high or 

unclear risk in sample selection and index test 

domains suggests caution in interpreting results 

from studies with small or poorly described 

datasets. These limitations may overestimate 

performance in real-world settings. The 

assessment informed the review’s synthesis, 

prioritizing findings from low-risk studies. Future 

research should focus on larger, diverse datasets 

and transparent reporting of AI methods to reduce 

bias. 

Future Direction and the Approaches 
Advancing AI-based bacterial detection requires 

addressing key limitations in datasets, 

computational demands, hardware accessibility, 

and real-world applicability. Small or unspecified 

datasets limit model generalizability, making the 

development of large, standardized, and open-

source datasets essential. These datasets should 

encompass diverse bacterial species, mixed 

samples, and real-world conditions, with metadata 

such as staining protocols or imaging parameters 

to enhance reproducibility. Collaborative 

platforms, global microbial databases, and public-

private partnerships can facilitate data sharing and 

funding. Synthetic data generation using advanced 

models, such as GANs, validated against real data, 

and crowdsourced expert annotations can further 

improve dataset quality. 

Reducing computational complexity is crucial for 

practical deployment, especially in resource-

limited settings. Lightweight AI architectures, like 

MobileNet or depth-wise separable CNNs, can 
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maintain accuracy while reducing processing 

requirements. Techniques such as quantization, 

pruning, edge computing, and federated learning 

allow on-device processing and preserve data 

privacy, particularly in clinical contexts. Open-

source frameworks, such as TensorFlow Lite, can 

accelerate adoption of efficient models. Cost-

effective and portable imaging systems are 

essential for broader adoption. High-cost 

equipment, including hyperspectral sensors or 

FLIM, limits access, whereas smartphone-based 

microscopy, paper-based fluorescence sensor 

arrays, portable Raman or FTIR devices, and 3D-

printed imaging components offer affordable 

alternatives. Multispectral imaging can balance 

cost and performance while maintaining sufficient 

resolution for reliable detection. Enhancing model 

robustness to data variability is critical, using 

techniques such as adaptive normalization, 

domain adaptation, transfer learning, ensemble 

learning, noise-robust algorithms, and real-time 

data augmentation.  

Expanding validation to mixed and complex 

microbial samples is a priority. Most studies focus 

on single-species or low-concentration samples, 

but real-world scenarios require hierarchical 

classification, multi-task learning, and longitudinal 

studies to assess performance across diverse 

environments. Explainable AI methods, such as 

attention maps, increase trust and interpretability. 

Optimizing receptor specificity for sensor arrays, 

using bioinformatics, high-throughput screening, 

and hybrid imaging-spectroscopy models, can 

reduce cross-reactivity and improve accuracy. 

Eliminating cultivation delays is another critical 

goal. Even short incubation times (3–10 hours) 

impede rapid diagnostics, highlighting the need for 

culture-free techniques, including impedance-

based analysis, single-cell spectroscopy, real-time 

AI-integrated imaging, and microfluidic isolation. 

Automation of sample preparation through 

robotics can further accelerate processing, 

enabling near-instantaneous bacterial 

identification for urgent clinical settings. 

Finally, promoting interdisciplinary collaboration 

and accessible expertise is vital. Training 

programs, online courses, virtual workshops, and 

open-source AI tools can empower 

microbiologists, clinicians, and engineers. 

Interdisciplinary teams and global networks can 

standardize protocols, share best practices, and 

develop user-friendly interfaces, ensuring that 

advanced AI-based techniques are widely adopted 

in clinical diagnostics, food safety, and 

environmental monitoring. 
 

Conclusion 
AI-based bacterial identification techniques 

represent a groundbreaking advancement in 

microbiology, offering rapid, accurate, and 

automated alternatives to traditional methods. 

These approaches achieve exceptional accuracies, 

often ranging from 94% to 100%, across diverse 

applications. Advanced imaging modalities, such as 

phase-contrast microscopy and hyperspectral 

systems, capture detailed microbial signatures. 

Machine learning and deep learning models, such 

as YOLOv4 and convolutional neural networks, 

excel at classifying complex datasets. Spectroscopy 

techniques, including Raman and FTIR, provide 

non-destructive molecular analysis. Fluorescence-

based sensor arrays enable portable detection. 

These methods significantly reduce identification 

times, from days to hours or minutes, compared to 

culture-based assays. They support critical 

applications in clinical diagnostics, food safety, and 

environmental monitoring. For instance, rapid 

pathogen detection aids timely treatment in 

hospitals. Automated systems enhance quality 

control in food industries. Point-of-care platforms, 

such as smartphone-integrated sensors, enable 

testing in resource-limited settings. The ability to 

detect antibiotic-resistant strains, quantify 

bacterial concentrations, and analyze mixed 

samples underscores the versatility of these 

techniques. Collectively, they address pressing 

global challenges, such as infectious disease 

management and antimicrobial resistance. 

Despite their promise, significant challenges 

remain. Small or unspecified datasets limit model 

generalizability. Many studies focus on a few 

bacterial species, neglecting microbial diversity. 

The high computational demands of models like 

3D U-Net or spectral transformers restrict 

deployment in low-resource environments. Costly 

equipment, such as hyperspectral sensors or FLIM 

systems, confines techniques to well-funded 

laboratories. Data variability, from staining 

inconsistencies to spectral noise, affects reliability. 

Cross-reactivity in sensor arrays reduces 

specificity. Incubation times, even reduced, delay 

results. Limited validation on mixed samples 
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hinders real-world applicability. The lack of 

standardized datasets and open-source resources 

hinders collaboration. Specialized expertise for 

operating complex systems poses barriers. These 

challenges underscore the disparity between 

research advancements and their practical 

application, particularly in underserved regions. 

The path forward involves targeted innovations to 

overcome these barriers. Developing large, 

standardized, open-source datasets is essential. 

These should include diverse species and real-

world conditions. Lightweight AI models, like 

MobileNet, can reduce computational demands. 

Affordable imaging systems, such as smartphone-

based microscopy, can enhance accessibility. 

Robust preprocessing can address data variability. 

Validation on mixed samples can ensure the real-

world utility of the model. Optimizing sensor 

specificity can improve detection precision. 

Culture-free techniques, like impedance-based 

analysis, can eliminate delays. Interdisciplinary 

collaboration, uniting microbiologists, engineers, 

and data scientists, can drive progress. Training 

programs can build expertise. Global consortia can 

standardize protocols. These efforts will bridge the 

gap between innovation and adoption, enabling AI 

techniques to transform bacterial identification. 
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