

Review Article | ISSN (0): 2582-631X

DOI: 10.47857/irjms.2025.v06i04.06174

Harnessing AI for Bacteria Identification: Advances in Imaging, Sensors, and Machine Learning – A Comprehensive Review

TS Urmila^{1*}, JI Christy Eunaicy², C Jaypratha³, Naveen Ananda Kumar J⁴, Govinda Prabhu GB⁵, Mahalakshmi Priya R⁵

¹Department of Computer Science, Thiagarajar College, Madurai, Tamilnadu, India, ²Department of CA and IT, Thiagarajar College, Madurai, Tamilnadu, India, ³Department of Computer Science and Engineering, Karpaga Vinayaga College of Engineering and Technology, Madhuranthagam, Tamilnadu, India, ⁴Tekinvaderz, LLC, Florida, USA, ⁵Department of Computer Science, Madurai Kamaraj University, Madurai, Tamilnadu, India. *Corresponding Author's Email: tsurmila4@gmail.com

Abstract

Traditional bacterial identification methods—such as culture-based assays, biochemical tests, and manual microscopy—are often slow, labor-intensive, and lack precision, posing significant challenges in clinical, food safety, and environmental applications. Artificial intelligence (AI) offers transformative solutions by dramatically improving speed, accuracy, and automation. This systematic review comprehensively evaluates AI-driven techniques for bacterial identification, focusing on three core technological domains: advanced imaging (including microscopy and hyperspectral systems), spectroscopic methods (such as Raman and FTIR), and sensor array technologies integrated with machine learning (ML) and deep learning (DL). We analyzed 70 peer-reviewed studies published between 2018 and 2025, sourced from PubMed, IEEE Xplore, and Scopus. Findings reveal that AI models consistently achieve high classification accuracies, ranging from 85.8% to 99%, enabling rapid detection of pathogens, profiling of antibiotic resistance, and point-of-care diagnostics. Deep learning, particularly convolutional neural networks (CNNs), excels in image analysis, while spectroscopy provides non-destructive molecular fingerprinting. Despite these advances, key challenges remain, including reliance on small or non-standardized datasets, high computational demands, and the prohibitive cost of specialized equipment. To realize Al's full potential, future efforts must prioritize the development of lightweight, efficient models, the creation of large, diverse, and open-source datasets, and the design of low-cost, portable diagnostic platforms. This review not only highlights Al's current capabilities but also identifies critical barriers and charts a clear path for future research to enable the scalable, real-world deployment of AI across global healthcare and industrial settings.

Keywords: Advanced Imaging, Bacterial Identification, Deep Learning, Hyperspectral Imaging, Sensor Array, Spectroscopy.

Introduction

Bacterial identification underpins critical efforts in healthcare, food safety, and environmental sustainability. Accurate detection of pathogens enables timely treatment of infectious diseases, prevents foodborne outbreaks, and safeguards ecological systems. Rapid identification is vital in clinical settings, where delays can worsen patient outcomes. In the food industry, it ensures consumer safety and compliance with regulations. Environmental monitoring relies on it to track microbial contaminants. Traditional methods, such as culture-based assays, biochemical tests, and manual microscopy, have been the gold standard for decades. These techniques, while effective, are slow, often taking hours to days to yield results.

They require skilled personnel, specialized equipment, and labor-intensive protocols. Inconsistent sample preparation, like variable staining, can compromise accuracy. The growing threat of antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus (MRSA), demands faster diagnostics. Complex microbial communities in real-world samples, such as mixed infections, challenge traditional notions of specificity. These limitations underscore the need for innovative, rapid, and scalable solutions to transform bacterial identification. Recent advancements in artificial intelligence (AI) offer a paradigm shift in addressing these challenges.

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(Received 09th June 2025; Accepted 06th October 2025; Published 30th October 2025)

Machine learning (ML) and deep learning (DL) algorithms excel at processing complex datasets. They extract intricate patterns from images, spectra, and sensor signals with unprecedented precision. Advanced imaging modalities capture detailed characteristics of microbes. Highresolution microscopy reveals morphological features. Hyperspectral systems provide spatial and spectral data. Spectroscopy techniques, like Raman and Fourier Transform Infrared (FTIR), detect molecular signatures non-destructively. Fluorescence-based sensor arrays generate unique response patterns for rapid detection. When integrated with AI, these methods achieve accuracies that often exceed 95%, surpassing traditional approaches in both speed and reliability. They reduce reliance on manual expertise, enabling automation and accessibility. For example, AI-driven systems can identify Escherichia coli in hours, not days. They support point-of-care testing in remote settings. The ability to detect antibiotic resistance and analyze mixed samples enhances the utility of these tests. This convergence of AI and cutting-edge sensing technologies holds transformative potential for microbiology.

The rapid evolution of these techniques necessitates a comprehensive evaluation of their capabilities and limitations. Studies from 2018 to 2025 showcase remarkable progress. Innovations like convolutional neural networks (CNNs), YOLOv4, and portable fluorescence sensors achieve near-perfect results. They address diverse needs, from clinical pathogen detection to environmental monitoring. Applications include identifying foodborne pathogens, profiling antibiotic resistance, and analyzing microbial communities. However, challenges persist. Small datasets limit model generalizability. Costly equipment restricts access in low-resource settings. High computational demands hinder deployment. Data variability, such as noise or inconsistent imaging conditions, affects reliability. These barriers highlight the gap between research advancements and practical implementation. A systematic review is crucial for synthesizing current knowledge, identifying gaps, and charting future directions. This paper aims to guide researchers, clinicians, and policymakers in harnessing ΑI to revolutionize bacterial identification.

The paper on bacterial identification is structured to provide a comprehensive understanding of the topic through six key sections. It begins with an Introduction that highlights the significance of bacterial identification in various fields such as healthcare, agriculture, and environmental monitoring. The Background section offers foundational knowledge on bacteria and the historical development of identification techniques. In "Methodologies for Bacteria Identification," the paper explores a range of traditional and modern approaches, including culture-based methods, and molecular techniques such as PCR and 16S rRNA sequencing. The Limitations and Challenges section addresses the drawbacks of current methods, such as limited sensitivity, high cost, and difficulties in identifying non-culturable bacteria. Future Directions and Approaches discuss emerging technologies and innovative strategies, such as metagenomics, AIassisted diagnostics, and portable sequencing devices, that hold promise for improving identification accuracy and efficiency. Finally, the Conclusion summarizes the key findings and emphasizes the ongoing need for research and technological advancement bacterial identification.

Bacterial identification is key in microbiology. It helps diagnose infections, check food safety, and monitor the environment. Traditional methods have long supported this work. Gram staining, developed in 1884, categorizes bacteria based on their cell wall composition. It labels them as Grampositive or Gram-negative, which helps guide treatment. Culturing involves growing bacteria on specialized media, such as agar plates, for visual study. Biochemical tests, such as catalase and oxidase assays, confirm species by examining their metabolic processes. PCR (Polymerase Chain Reaction) copies bacterial DNA to find genetic matches. MALDI-TOF MS examines protein patterns for rapid species identification. These tools are trusted and used often. They give solid results in lab settings. However, they require specialized tools and trained staff. Each method checks one or two traits, so many tests are usually needed. This makes the process more accurate but also more complex for labs in healthcare and industry.

Though reliable, traditional methods have clear limits. Culturing takes time—usually 24 to 48

hours for colonies to grow. Some bacteria, such as *Mycobacterium tuberculosis*, can take weeks. Gram staining is fast but doesn't show species-level details. It also depends on human judgment, which can lead to errors. Poor sample quality, like uneven staining, can lower accuracy. These problems highlight the need for faster, automated, and scalable tools—especially in areas with limited resources and urgent testing needs.

Image processing (IP) and AI technologies have emerged as transformative tools to address these limitations. IP techniques enhance and analyze visual data from microbial samples. Digital microscopy captures high-resolution images of bacterial morphology. It replaces manual microscopes with automated systems. It enables single-cell resolution in complex samples. Sensor arrays, using fluorescence or electrochemical signals, generate unique response patterns. Emerging methods, such as structured illumination microscopy (SIM) and impedancebased analysis, continue to push boundaries further. These technologies generate rich datasets, which are ideal for AI integration. IP preprocesses data, removing noise or normalizing images. It extracts features, like cell shape or spectral peaks, for AI analysis. Together, IP and AI enable rapid,

accurate, and automated bacterial identification, reducing reliance on traditional methods.

AI has grown rapidly and revolutionized the way we detect microbes. Machine learning (ML) tools, such as Support Vector Machines (SVM) and Random Forests, categorize bacteria based on key features. These work well with structured data, such as biochemical patterns. **Principal** Component Analysis (PCA) helps by shrinking the data size for faster handling. K-Nearest Neighbors (KNN) is a simple yet effective algorithm for classification. Deep learning (DL), a branch of ML, has brought major changes since the 2010s. Convolutional Neural Networks (CNNs) pull out deep image or spectral features on their own. Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM) networks, are well-suited for handling time-based data, such as signal flows. Transfer learning utilizes trained models, such as VGG16 or ResNet, to aid when data is limited. More advanced systems, such as YOLOv4 and 3D U-Net, enable fast detection and image segmentation. Neural networks with Monte Carlo dropout help find new bacterial types. These AI tools, combined with image processing, often reach over 95% accuracy. They are used in healthcare, food safety, and environmental checks. Figure 1 shows the timeline of bacterial ID steps.

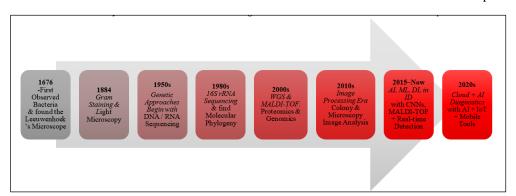


Figure 1: Time Line of the Bacterial Identification

Search Strategy Method

This systematic review aimed to investigate the application of artificial intelligence (AI) in bacterial identification. It focused on developments in imaging, sensors, and machine learning methods. The review adhered to PRISMA guidelines to ensure transparency and a high-quality methodology. We describe the search strategy, study selection process, and inclusion and exclusion criteria. A comprehensive literature search was conducted. It targeted studies

published from January 2018 to July 2025. This time frame was chosen to reflect the latest progress in AI-driven bacterial detection. Several databases were used for the search. These included PubMed, IEEE Xplore, Scopus, Web of Science, and Google Scholar. These sources were chosen for their wide coverage of biomedical, engineering, and AI research. The search used both controlled vocabulary and free-text terms. For example, MeSH terms were applied in PubMed. The main keywords focused on AI, bacterial

identification, imaging, sensors, and machine learning.

Bacterial Identification: "bacteria identification," "pathogen detection," "microbial classification," "bacterial taxonomy."

AI and Machine Learning: "artificial intelligence," "machine learning," "deep learning," "convolutional neural networks," "support vector machines," "random forest," "transfer learning."

Imaging and Sensors: "microscopy," "hyperspectral imaging," "spectroscopy," "Raman spectroscopy," "Fourier Transform Infrared spectroscopy," "sensor array," "fluorescence sensors," "image processing."

Applications: "clinical diagnostics," "food safety," "environmental monitoring," "antibiotic resistance."

Boolean operators were used to combine terms: Example search string (PubMed): ("bacteria identification" OR "pathogen detection" OR "microbial classification") AND ("artificial intelligence" OR "machine learning" OR "deep learning" OR "convolutional neural networks") AND ("microscopy" OR "hyperspectral imaging" OR "spectroscopy" OR "sensor array") AND ("clinical diagnostics" OR "food safety" OR "environmental monitoring").

Additional searches were conducted in reference lists of identified studies and review articles to locate relevant publications not captured in the database searches (backward citation searching). Grey literature, such as conference proceedings and preprints, was included if peer-reviewed and

relevant to the review's objectives. The number of papers reviewed on AI-based Identification by year-wise (1988-2025) is shown in Figure 2.

Inclusion and Exclusion Criteria

Studies were included based on the following criteria:

Study Type: Original research articles, conference papers, or peer-reviewed preprints reporting on AI-based bacterial identification techniques.

Publication Date: Published between January 2018 and July 2025 to focus on recent advancements.

Methodology

Studies utilizing AI (machine learning or deep learning) combined with imaging (e.g., microscopy, hyperspectral imaging), spectroscopy, or sensor arrays for bacterial identification or classification.

Outcomes

Reported quantitative outcomes (e.g., accuracy, precision, recall) or qualitative insights (e.g., feasibility, limitations) related to bacterial identification.

Language

Published in English to ensure accessibility for data extraction.

Applications

Focused on applications in clinical diagnostics, food safety, environmental monitoring, or antibiotic resistance detection.

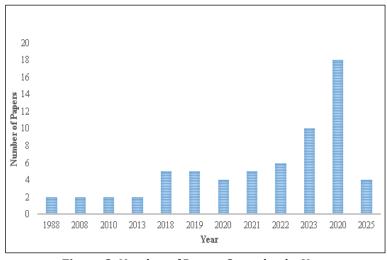


Figure 2: Number of Papers Group by the Year

Exclusion criteria were:

- Studies not involving AI or machine learning techniques.
- Studies focused on non-bacterial microorganisms (e.g., viruses, fungi) unless bacteria were also analyzed.
- Non-peer-reviewed sources, such as editorials, opinion pieces, or non-peerreviewed preprints.
- Studies lacking sufficient methodological details or results (e.g., no description of dataset or outcomes).
- Studies published before 2018 or in languages other than English.

Study Selection Process

The study selection process followed a two-stage screening approach:

Title and Abstract Screening: First Two Authors screened titles and abstracts of retrieved records to assess eligibility based on the inclusion and exclusion criteria. Discrepancies were resolved through discussion or consultation with a third Author.

Full-Text Review: Full texts of potentially eligible studies were retrieved and evaluated for final inclusion. Reasons for exclusion (e.g., irrelevant methodology, lack of outcomes) were documented.

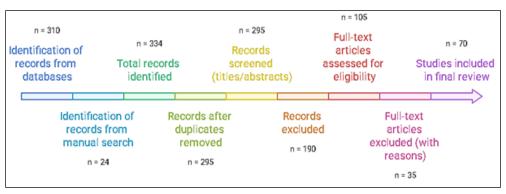


Figure 3: Process of Systematic Literature Review

The study selection process is shown in the PRISMA flow diagram (Figure 3). It outlines the number of records identified, screened, excluded, and finally included. A total of 70 studies met the inclusion criteria and were analyzed. These studies were grouped based on their methods. Categories included machine learning, deep learning, hyperspectral imaging, sensor arrays, and other advanced imaging tools.

Data Collection and Extraction

Data were extracted by the first two authors using a standardized data extraction form. For information obtained from previously published studies, the corresponding reference numbers are indicated. The following information was collected from each study:

- Author(s) and publication year.
- Proposed methodology (e.g., AI algorithms, imaging/sensing techniques).
- Dataset details (e.g., size, bacterial species, sample type).
- Achievements (e.g., accuracy, precision, recall, F1-score).
- Limitations (e.g., dataset size, computational complexity, equipment cost).

Discrepancies in data extraction were resolved through discussion or arbitration by other authors. Data generated or analyzed by the authors themselves are noted in the Author Contributions section. Data were compiled into tables (Tables 1–6) to facilitate synthesis and comparison across methodologies.

Risk of Bias Assessment

The quality of included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, adapted for AI-based diagnostic studies. The assessment focused on four domains:

Patient/Sample Selection: Risk of bias due to non-representative datasets or unclear sampling methods.

Index Test: Clarity and reproducibility of AI and imaging/sensing methods.

Reference Standard: Appropriateness of ground truth (e.g., confirmed bacterial species).

Flow and Timing: Consistency in applying methods across samples. were summarized but not used to exclude studies, given the exploratory nature of this review.

Results and Discussion Synthesis Methods

Because the studies varied in design, datasets, and outcomes, a meta-analysis was not suitable. Instead, a narrative synthesis was performed. The studies were organized based on the methods they used.

- Machine learning and feature extraction (Table 1).
- Deep learning and convolutional neural networks (Table 2).
- Spectroscopy-based identification (Table 3).
- Hyperspectral imaging and AI (Table 4).
- Sensor array and machine learning (Table 5).
- Other advanced imaging and AI techniques (Table 6).

Concept and Studies for Bacteria Identification

This section examines modern methods that utilize artificial intelligence to identify bacteria. It starts with machine learning and feature extraction. These tools help analyze complex data and identify patterns associated with specific bacteria. Deep learning, particularly convolutional neural networks (CNNs), is well-suited for image data. It enhances accuracy in sorting different types of bacteria. The Spectroscopy improves results by combining spatial and spectral features. Sensor array systems, when coupled with machine learning, offer a sensitive and efficient platform for

detecting bacterial presence based on chemical or physical changes. Additionally, other cutting-edge imaging techniques supported by AI continue to emerge, pushing the boundaries of speed, accuracy, and reliability in bacterial identification.

Machine Learning and Feature Extraction Techniques

Accurate and rapid bacterial identification is crucial in modern microbiology. It plays a big role in health, food safety, and the environment. They need skilled staff and lab tools. These issues pushed the need for better solutions. New tools now use image processing (IP) and artificial intelligence (AI). IP helps pull out details from microscope images. This improves how we spot bacteria. This review examines how IP and AI contribute to the identification of bacteria. It focuses on classifying bacteria from microscope images using ML and feature extraction. We examine 14 main studies. They utilize tools such as feature extraction, support vector machines (SVM), k-means clustering, and probabilistic neural networks. These methods bring speed, automation, and high accuracy. Still, they face challenges such as poor image quality, limited datasets, and excessive computer usage. The next parts explain how these methods work. They also show their uses, results, and limits in the field of microbiology, which are discussed in the following Table 1.

Table 1: Machine Learning and Feature Extraction Techniques

Author Name	Proposed Work and Dataset	Achievements	Limitations
and Year			
Mohamed B.	Histogram equalization for	97% accuracy in	Small dataset.
A. et al. (1),	preprocessing, Bag-of-Words for	bacterial	Classifier speed not
2018	feature extraction, SVM for	classification.	discussed. Unclear
	classification. Dataset: 200 images	Effective	generalizability.
	(DIBaS, 10 species).	preprocessing and	
		feature extraction.	
Kris	CPN and Random Forest for Gram	RF: 99% accuracy;	CPN underperformed.
Kristensen et	stain classification. Dataset: 660	CPN: 80%. Excellent	Limited to Gram stain
al. (2), 2023	images (33 species).	Gram-type	task. Moderate dataset
		classification.	size.
Preetha et al.	Image processing pipeline using	Demonstrated digital	No accuracy metrics.
(3), 2018	electron microscope images.	image processing	Missing dataset
	Dataset: Not specified.	feasibility. Improved	details. Relies on
		specificity.	quality imaging.

Wahid M. F. et	Hybrid CNN models (CNN-SVM,	CNN-SVM: 98.7%	Missing dataset
al. (4), 2019	CNN-KNN, CNN-NB). Dataset: Not	accuracy. Strong	details. High
	clearly specified.	hybrid performance.	computational cost.
			Unclear adaptability.
Keren F. et al.	Compared SVM, DL, RF for bacterial	Real-time, high-	No dataset or results.
(5), 2023	classification. Dataset: General	throughput taxonomy	Broad approach lacks
	methodological focus.	potential.	specificity.
Kotwal <i>et al.</i>	Literature review of ML in bacterial	Comprehensive	No original
(6), 2022	classification (1998–2020).	analysis of trends,	experiments.
		methods, limitations.	Dependent on
			secondary data.
Sajedi <i>et al.</i>	Gabor transform + XGBoost on	91% accuracy.	Only three suborders.
(7), 2020	Myxobacterial suborders. Dataset:	Improved over	Moderate dataset
	Microscopic images.	previous methods.	Limited
			generalizability.
Satyanarayana	TPLMM-k algorithm for image	Better segmentation	Computationally
et al. (8), 2022	decomposition. Dataset: Medical	vs. GMM using VOI,	demanding. Specific to
	microscopic images.	GCE, PRI.	image types. Needs
			broader validation.
Rani <i>et al.</i> (9),	Systematic review of ML/DL in	Detailed trends and	No experimental data.
2022	microorganism image recognition.	technique evaluation.	Relies on secondary
	Dataset: 100 publications.		literature.
Amitha et al.	YOLOv5 + image processing for	High precision.	Dataset size/diversity
(10), 2024	waterborne bacteria detection.	Reduced analysis	not provided. YOLOv5
	Dataset: Water sample images (not quantified).	time.	needs significant resources.
Singh A. et al.	Transfer learning (GoogLeNet,	GoogLeNet: 98.67%	Moderate dataset
(11), 2022	AlexNet) on 600+ images (33	accuracy. Broad	Dependent on pre-
(),	species).	species classification.	trained models. Needs
	- F)	· F	larger-scale
			validation.
Rani <i>et al.</i>	VGG16, ResNet50, Xception on	Xception: 98.02%	Augmentation may
(12), 2023	2500 augmented images (5	accuracy.	skew results. Limited
<i>C 3</i> ,	species).	Outperformed others.	species. High DL costs.
Kumar et al.	PNN using geometrical, optical,	100% accuracy with	Only five organisms.
(13), 2010	textural features. Dataset: Images	nine features.	Fluorescent staining is
<i>y</i> .	of five stained microorganisms.	Effective even on	costly. Small dataset.
	G	mixed samples.	·
Hardo et al.	Developed SyMBac for synthetic	Outperformed	Synthetic nature may
(14), 2022	micrographs. Dataset: Synthetic	manual segmentation.	not reflect real-world
.	images.	Robust to cell	complexity. Needs
	S	variation.	real-data validation.
Th - 4-1-1 ' 1		(C I N V · ·)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The table is shown to reveal a robust landscape of machine learning and feature extraction techniques for microscopic image-based bacterial classification, with accuracies ranging from 91–100% across diverse methodologies, datasets, and applications (1). Exceptional accuracies of 97–100% have been reported when datasets ranging from 200 to 2500 images were employed, using techniques such as SVM, transfer learning

(GoogLeNet, Xception), and probabilistic neural networks (PNN) (2). The effectiveness of combining feature extraction methods (e.g., Bagof-Words, Gabor transform, geometrical/textural features) with ML classifiers for automated bacterial identification has been highlighted (3). Superiority of Random Forest (99%) over Causal Probabilistic Network (80%) for Gram stain classification was demonstrated in previous

studies (4), underscoring the importance of model selection. Comprehensive insights into methodological trends challenges, and emphasizing the need for standardized datasets and preprocessing techniques, have been provided in other studies (5, 6). Data scarcity was addressed by innovations such as SyMBac, which generate synthetic micrographs capable of achieving robust segmentation but still require real-world validation (7). Nonetheless, limitations persist across studies, including small or unspecified dataset sizes (8,9,10), lack of generalizability to diverse bacterial species (11,12), and the high computational demands of complex algorithms (13). Practical implementation has further been complicated by reliance on high-quality images and staining techniques. These observations suggest that although ML and feature extraction techniques offer significant promise for rapid and accurate bacterial identification, challenges related to dataset diversity, computational efficiency, and real-world applicability must still be addressed to fully realize their potential in clinical and industrial microbiology (14).

Frequent Techniques Used

learning and feature techniques are considered central to the automation of bacterial identification from microscopic images (1). Meaningful features such as texture, shape, and color are extracted from classification (2). Histogram equalization has been commonly used for preprocessing to enhance image contrast, as demonstrated in previous studies (3). Feature extraction has also been supported through the Bag-of-Words model, which forms visual patterns for SVM classification (4). Gram stains have been sorted using Random Forest (RF) and Causal Probabilistic Network (CPN), with RF showing superior performance (5). Microbes have been categorized by Probabilistic Neural Networks (PNN) based on shape, light, and texture features obtained from fluorescent images (6). Image segmentation in medical tasks has been improved through the TPLMM-k method combined with kmeans clustering (7). Detection of bacterial suborders has been facilitated by applying Gabor transform with XGBoost (8). Transfer learning with models such as GoogLeNet, AlexNet, VGG16, ResNet50, and Xception has been reported to boost accuracy, even with small datasets (9,10). Dataset expansion and overfitting prevention have been achieved through image augmentation techniques such as rotation, cropping, and flipping (11). Synthetic data generation tools, such as SyMBac, have been employed to produce training images for improved segmentation (12). Morphological processing and segmentation have further aided in identifying bacterial shapes (13). Collectively, these approaches are shown to support rapid, automated, and accurate bacterial identification (14).

Applications

These techniques are found to have diverse applications in microbiology and related fields. In clinical diagnostics, rapid identification of bacterial species is enabled, such as in Gram stain classification, which distinguishes between Grampositive and Gram-negative bacteria. Tuberculosis detection has benefited from automated image analysis, reducing the need for manual microscopy efforts. Applications in food safety include detecting microbial contamination in food samples ensure quality control. Environmental monitoring has been supported by these methods through the identification of bacteria in water samples, thereby aiding public health and water quality management. Biomedical research has employed these techniques for the analysis of bacterial morphology and taxonomy, supporting microbial ecology studies. Classification of specific bacterial species, including Micrococcus luteus, Bacillus anthracis, and Staphylococcus aureus, has been achieved with high accuracy. Mixed bacterial sample analysis, involving pathogens such as Escherichia coli and Listeria innocua, has been facilitated by feature extraction and probabilistic neural networks. Automated epidemiology has further benefited through real-time species identification, enabling quicker responses to infectious diseases. These applications are shown to highlight the versatility of machine learning and feature extraction in addressing critical needs across multiple domains.

Advantages

Machine learning and feature extraction techniques are reported to offer significant advantages for bacterial identification. High classification accuracies ranging from 91% to 100% have been achieved in studies using SVM, RF, PNN, and transfer learning. Automation has been shown to reduce the need for manual microscopy,

saving time and labor compared to traditional tests. Enhanced specificity compared conventional approaches has been demonstrated, thereby minimizing errors in species identification. Transfer learning models such as Xception and GoogLeNet have been employed to achieve high performance even with moderate dataset sizes. Synthetic data generation methods such as SyMBac have been utilized to provide unlimited training data with perfect ground truth, thereby enhancing model robustness. Adaptability of these techniques to various imaging platforms has been reported, allowing for the handling of diverse bacterial morphologies and sizes. Realtime identification has been supported, facilitating rapid responses in clinical and environmental settings. Feature extraction approaches such as Bag-of-Words and Gabor transform have been identified as computationally efficient compared to deep learning, making them suitable for resource-limited settings. Collectively, these advantages are shown to make the techniques transformative for microbiology.

Challenges

Despite their strengths, these techniques face several challenges. Dataset size and diversity are recognized as significant limitations, with many studies relying on small datasets (e.g., 200-2500 images) that may not capture bacterial variability. Lack of detailed dataset descriptions in some studies has hindered reproducibility. High-quality images are considered critical; however. variability in staining techniques, such as those using Gram or fluorescent dyes, can impact model performance. Computational complexity is a concern for algorithms like TPLMM-k and transfer learning models, requiring significant resources. Generalizability to diverse bacterial species remains limited in studies focused on specific suborders or species. Synthetic datasets, while innovative, may not fully represent real-world imaging artifacts, necessitating further validation. Preprocessing steps, such as histogram equalization and morphological operations, require careful optimization to avoid introducing noise. The need for standardized protocols and publicly available datasets is evident. Access to advanced imaging equipment and trained personnel poses practical challenges in resource-constrained settings. Addressing these challenges is considered crucial for broader adoption.

Deep Learning and Convolutional Neural Networks

Identifying bacteria from microscope images is vital in microbiology. It plays a role in clinical care, food safety, environmental checks, and research. This makes them less effective in busy labs. Deep learning (DL), especially convolutional neural networks (CNNs), has changed this process. CNNs allow fast, automated, and highly accurate bacterial detection. They extract detailed features from images without requiring manual steps. In many cases, they outperform older machine learning methods. This section focuses on 17 studies that leverage deep learning and CNN-based techniques for microscopic image-based bacterial identification in many research works. These studies employ advanced architectures, such as VGG16, ResNet, Inception, YOLO, and EfficientNet, often in combination with transfer learning, data augmentation, and synthetic data generation, to achieve robust performance. The applications range from detecting pathogens, such as Escherichia coli, to identifying tuberculosis bacilli and classifying bacterial growth stages. While these methods offer significant advantages in terms of accuracy and automation, they face challenges such dataset limitations. computational complexity, and generalizability issues. This section outlines the frequently used techniques, applications, advantages, challenges, as summarized in Table 2, providing a comprehensive analysis of how deep learning is transforming bacterial identification.

Table 2: Deep Learning and Convolutional Neural Networks

Author Name	Proposed Work and	Achievements	Limitations
and Year	Dataset		
Ramesh H. et al.	Used various CNNs (e.g.,	Up to 99% accuracy.	Dataset size/diversity
(15), 2024	VGG16, ResNet50,	Proposed smartphone	not provided. High
	EfficientNet) for bacteria	integration.	computational demand.
	prediction. Dataset: Diverse		Real-world validation
	images (not quantified).		missing.

M. Vana at al	CNN - active learning -	E1 agains 000/ High	Enguand only on AED
Mu Yang <i>et al.</i> (16), 2020	CNN + active learning + logistic regression for AFB detection. Dataset: 134 ZN-	F1 scores ~99%. High sensitivity/specificity.	Focused only on AFB. Moderate dataset. Active learning increases
	stained slides.		complexity.
Kotwal <i>et al.</i> (17),	Ensemble features (HOG,	VGG16+SVM achieved	Limited to 4 species.
2023	LBP, CNNs) + multiple	99.89% accuracy.	Dataset size unspecified.
	classifiers. Dataset: Four	·	High computational cost.
	bacterial species.		
Sarker I. A. et al.	ResNet50 with	94.91% accuracy.	Dataset unspecified.
(18), 2024	augmentation for 33	Robust to unseen data.	Moderate performance.
	species. Dataset:		Generalizability unclear.
	Polyculture images.		
Wahid M. F. et al.	Xception CNN with transfer	97.5% accuracy.	Small dataset. Limited
(19), 2019	learning. Dataset: 1150	Effective for lethal	species. Computational
	images (7 species).	bacteria.	cost not discussed.
Ahmed T. et al.	Inception v3 + SVM via	96% accuracy. Efficient	Small dataset. Only 7
(20), 2019	transfer learning. Dataset:	classification.	species. Complex hybrid
	800+ images (7 species).		model.
Sunanda et al.	CNNs (GoogLeNet, AlexNet,	GoogLeNet best	Accuracy missing.
(21), 2024	etc.) on Agar dataset.	performer (accuracy	Limited species. High-
	Dataset: 5 species.	not stated).	quality images required.
Visitsattaponge S.	BiT model with data	Accuracy: 99.11%, high	Complex preprocessing.
et al. (22), 2024	cleaning (graph Laplacian,	precision/recall/F1.	DIBaS-specific. Needs
	WIB-ReLU). Dataset: DIBaS		real-world tests.
N	(660 images, 33 species).	00.050/ (1/001/1)	
Nasip <i>et al.</i> (23),	VGGNet and AlexNet for	98.25% (VGGNet),	Moderate dataset. High
2018	classification. Dataset:	97.53% (AlexNet).	model cost. Limited
Mahid at al (24)	DIBaS (660 images).	OFO/ a source or Effective	dataset scope. Small datasss Limited
Wahid <i>et al.</i> (24), 2018	Inception CNN via transfer learning. Dataset: 500+	95% accuracy. Effective on harmful bacteria.	
2016	images (5 species).	on narmini bacteria.	species. High model demands.
Rani Oomman	CNN with image	Recall: 97.13%. F-score:	Very small dataset. Low
Panicker <i>et al.</i>	binarization for TB	86.76%.	precision. TB-specific.
(25), 2018	detection. Dataset: 22	00.7 0 70.	precision. 12 specific.
(20), 2020	smear images.		
Andreini <i>et al.</i>	Synthetic image generation	Improved segmentation	Synthetic data may lack
(26), 2018	+ FCN for colony	scalability.	real-world variability.
	segmentation. Dataset:	•	·
	Synthetic + limited real		
	images.		
Yang et al. (27),	Style transfer + Swin	YOLOv8x: 76.7% mAP.	Moderate mAP. Complex
2023	Transformer + Cascade	Outperformed HRNet.	architecture.
	Mask R-CNN. Dataset:		
	4,000 colony images		
	(AGAR).		
Sengupta et al.	U-Net + ResNet for biofilm	Efficient biofilm	Species-specific. Dataset
(28), 2025	detection (P. aeruginosa).	segmentation. High	size unspecified. Needs
	Dataset: Bright-field	ResNet accuracy.	broader validation.
	images.		

Iriya <i>et al.</i> (29),	Large-volume microscopy	High accuracy for point-	Dataset unreported.
2024	+ DNN for E. coli. Dataset:	of-care use.	Limited to E. coli. Needs
	Not specified.		real-world sample
			testing.
Mai <i>et al.</i> (30),	Depthwise separable CNN	96.28% accuracy. Only	Moderate dataset.
2021	for 33 strains. Dataset:	3.23M parameters.	DIBaS-only.
	DIBaS (6600 images).		Generalizability
			uncertain.
Chin SY et al. (31),	Object detection (SSD-	YOLOv4: 98% mAP,	Dataset missing. E. coli-
2024	MobileNetV2, YOLOv4,	97% recall.	specific. High model
	EfficientDet) for E. coli		complexity.
	growth. Dataset: Not		
	specified.		

The table summarizes significant advancements in deep learning and convolutional neural networks (CNNs) for microscopic image-based bacterial classification, with reported accuracies ranging from 94.91% to 99.89% across diverse datasets and applications. Exceptional performance has been achieved using advanced CNN architectures such as VGG16, ResNet, and Big Transfer (BiT) on datasets including DIBaS (660-6600 images) and custom bacterial image sets. These results demonstrate the ability of CNNs to extract complex, hierarchical features, enabling precise bacterial species classification. Transfer learning has been applied to moderate dataset sizes (500-1150 images), leveraging pre-trained models such as Inception, GoogLeNet, and Xception, which has yielded robust accuracies of 95-97.5% despite limited data availability. Dataset limitations have been further mitigated through synthetic data generation and style transfer, creating augmented datasets (e.g., 4 K images) and reducing dependence on scarce annotated data, thereby improving model robustness. High-performance metrics have also been reported in specific applications, including tuberculosis detection, biofilm analysis, and E. coli growth stage classification, highlighting the versatility of CNNs in clinical and research contexts.

Challenges remain, particularly regarding small or unspecified dataset sizes, which constrain generalizability across diverse bacterial species. Computational complexity has also been noted, especially for models such as YOLOv4 and Swin Transformer, which require substantial resources and may hinder deployment in resource-limited environments. A focus on specific bacteria, such as E. coli and Pseudomonas aeruginosa, limits applicability to broader microbial populations.

Some studies have addressed these limitations effectively: active learning has been employed to optimize CNN training with limited slides, achieving 87.13% sensitivity; lightweight CNNs with 3.23M parameters have been proposed for low-resource devices; and data augmentation has been used to enhance dataset diversity. Despite these advances, the development of larger, standardized datasets, validation on mixed samples, and optimization for computational efficiency remain critical for ensuring real-world applicability and scalability clinical microbiology.

Frequent Techniques Used

Deep learning techniques, particularly convolutional neural networks (CNNs), dominate microscopic image-based bacterial classification. Advanced CNN architectures are widely employed, including VGG16, ResNet50, ResNet100, Inception v3, LeNet5, EfficientNet, and ConvNeXt (1). Transfer learning is a common approach that leverages pre-trained models, such as GoogLeNet, AlexNet, VGG-16, SqueezeNet, DenseNet-161, and Xception, to enhance performance with limited data. Data augmentation techniques, such as rotation, flipping, and cropping, expand datasets to improve model robustness. Synthetic data generation creates realistic micrographs to address data scarcity. Style transfer generates large datasets (e.g., 4k images) for improved training. Active learning optimizes CNN training by selecting informative samples. Hybrid models combine CNNs with classifiers, such as Support Vector Machines (SVM) or logistic regression, for enhanced accuracy. Segmentation techniques, such as U-Net with ResNet and Fully Convolutional Networks, are utilized for bacterial colony and

biofilm detection. Object detection models, such as YOLOv4, SSD-MobileNetV2, and EfficientNet, classify bacterial growth stages. Depth-wise separable CNNs reduce computational complexity for resource-limited devices (30). Graph Laplacian-based data cleaning and WIB-ReLU activation improve model performance. Swin Transformer enhances feature extraction in complex datasets. These techniques enable the automated and precise identification of bacteria.

Applications

Deep learning and CNN techniques have been widely in microbiology. Clinical diagnostics benefit from rapid bacterial species identification, such as the classification of 33 bacterial strains in the DIBaS dataset. Automated analysis of sputum smear images has improved tuberculosis detection, while biofilm detection, particularly for Pseudomonas aeruginosa, has supported antimicrobial research. Food safety applications have been enhanced through the identification of Escherichia coli growth stages (rod-shaped, dividing, and microcolonies) in food samples. Environmental monitoring has been facilitated by large-volume microscopy for detecting uropathogenic E. coli in water or clinical samples. Laboratory automation has been advanced by classifying bacteria, including Bacillus subtilis and Staphylococcus aureus, from agar plate images. Biomedical research has benefited from these methods for microbial taxonomy and morphology analysis. Real-time identification systems, potentially integrated with smartphones, have enabled point-of-care diagnostics, and epidemiology has been supported by rapid pathogen detection, facilitating faster responses to infectious diseases. Collectively, these applications demonstrate the broad impact of deep learning in microbial analysis.

Advantages

Significant advantages for bacterial identification are offered by deep learning and CNNs. High accuracies, ranging from 94.91% to 99.89%, have been achieved using architectures such as VGG16, ResNet, and BiT. The need for manual microscopy has been eliminated through automation, thereby reducing time and labor. High performance has been enabled on moderate datasets by transfer learning, making applications feasible even with limited data. Scalable solutions to data scarcity have been provided by synthetic data generation

and style transfer, enhancing model robustness. Complex features are effectively extracted by CNNs, resulting in superior performance compared to traditional machine learning methods in tasks such as biofilm detection and growth stage classification. Computational requirements for resource-limited settings have been reduced through the use of lightweight models, such as depth-wise separable CNNs. High precision, recall, and F1-scores (up to 99.31%, 99.09%, and 99.06%, respectively) have been ensured, providing reliable classification. Real-time detection capabilities are supported, enabling point-of-care applications. Applicability has been enhanced through versatility across imaging platforms and bacterial types. These factors demonstrate that deep learning is a transformative tool in microbiology.

Challenges

Significant challenges are faced by deep learning and convolutional neural network (CNN) techniques for bacterial identification. Model generalizability is restricted by limited dataset sizes. In some studies, datasets as small as 22 sputum smear images have been used, limiting robustness. In other cases, detailed dataset are not provided, descriptions hindering reproducibility. Moderate dataset sizes, ranging from 500 to 1150 images, may fail to capture the full diversity of bacterial species. A major barrier is posed by computational complexity. Substantial computational resources are required by advanced models such as YOLOv4, Swin Transformer, and VGGNet, making them impractical for resourceconstrained environments. Computational demands are further increased by complex preprocessing steps, including active learning and graph Laplacian-based data cleaning. Broader applicability is limited by specificity to certain bacteria; some studies focus solely Pseudomonas aeruginosa, while others target only E. coli, reducing versatility. Synthetic datasets may not fully represent real-world imaging artifacts, necessitating additional validation. Variability in image quality, caused by inconsistent staining or conditions. also affects imaging performance.

Spectroscopy-Based Identification Using AI

Spectroscopy-based identification of bacteria, combined with artificial intelligence (AI),

represents a cutting-edge approach in microbiology, offering rapid and non-destructive methods for bacterial classification and detection of antibiotic resistance. This section examines 14 studies that utilize spectroscopy-based techniques in conjunction with AI for bacterial identification. These studies utilize advanced algorithms, including principal component analysis (PCA), convolutional neural networks (CNNs), and

spectral transformers, to analyze spectral data. Applications range from pathogen detection to antimicrobial susceptibility testing, with significant advantages in speed and precision. However, challenges such as spectral variability, dataset limitations, and equipment costs persist. Table 3 provides a comprehensive overview of this innovative field, detailing the frequent techniques, applications, advantages, and limitations.

Table 3: Spectroscopy-Based Identification Using AI

	Table 3: Spectroscopy-Based Identification Using Al				
Author Details	Proposed Work and Dataset	Achievements	Limitations		
Wan-dan Z.	PCA + Stacking with grid	95.73% accuracy. Robust	Dataset details missing.		
et al. (32),	search and K-fold validation.	due to cross-validation.	Limited to foodborne		
2019	Dataset: Not specified.		pathogens.		
			Generalizability unclear.		
Ji SY. et al.	Wavelet features + visual	92.5% accuracy. High	Small dataset. Limited to		
(33), 2019	analytics for IR spectroscopy.	sensitivity/specificity	two species. Requires		
	Dataset: 72 IR spectra (E. coli,	(>92%).	FO-FTIR.		
	P. aeruginosa).				
Biasio et al.	Raman micro-spectroscopy +	High accuracy using 3 PCs.	Dataset size not given.		
(34), 2013	PCA with narrow band filters.	Comparable to PCA	Only 3 species. Needs		
	Dataset: 3 species (not	classifier.	precise spectral input.		
	quantified).				
Jacob Henry	Excitation-emission	85.8% species-level,	Moderate species		
et al. (35),	spectroscopy with DMAF +	98.3% Gram-level	accuracy. Dataset not		
2024	NN. Dataset: 8 bacterial	accuracy.	reported. Variability		
	species (not quantified).		from dye.		
Barrera	FTIR + ML for antimicrobial	Detected resistance	Dataset size unspecified.		
Patiño <i>et al.</i>	resistance detection. Dataset:	patterns in G+ and G-	Limited to 4 species.		
(36), 2024	4 bacterial species.	bacteria. High versatility.	Requires biomolecular		
			analysis.		
Rahman et	Review of Raman	Showcased DL benefits	No experiments. Relies		
al. (37),	spectroscopy + CNN + SERS.	and data limitations.	on secondary data. No		
2024	Dataset: Literature-based.		specific performance		
	_		metrics.		
Gullu <i>et al.</i>	Image processing + ML for	Automated susceptibility	Dataset missing. Only		
(38), 2024	inhibition zone detection.	testing. Simplified	applicable to disk		
	Dataset: Not reported.	measurement.	diffusion.		
Farias <i>et al.</i>	NIR spectroscopy + PCA, HCA,	100% accuracy in species	Dataset size not stated.		
(39), 2023	KNN. Dataset: 4 species (E.	and Gram classification.	Needs NIR accessory.		
	coli, S. enteritidis, E. faecalis,	Green, fast method.	Limited species.		
m) .	L. monocytogenes).	0604 (45.1	D		
Thomsen et	Spectral Transformer for	96% accuracy (15 classes),	Dataset unspecified.		
al. (40),	Raman hyperspectral images.	95.6% (MR-MS).	Requires hyperspectral		
2022	Dataset: 15 classes (6 MR-MS	Outperformed CNNs.	imaging. Limited to		
In at al	species).	00 720/ aposica loval	phenotypic classes.		
Lu <i>et al.</i> (41), 2023	Raman + ML for species ID and resistance detection.	90.73% species-level, 99.92% resistance	Dataset not provided.		
(41), 2023	and resistance detection.		Single-cell analysis adds		
		accuracy.	complexity.		

	Dataset: 12 species, A.		
	baumannii strains.		
Safir et al.	Acoustic bioprinting + SERS +	≥99% accuracy (pure),	Small dataset. Complex
(42), 2023	ML. Dataset: S. epidermidis, E.	≥87% (mixed). High	setup. Limited to select
	coli, blood mixtures.	enhancement (1500×).	mixtures.
K. Kukula et	4-layer CNN for Raman	86% accuracy. Reduced	Moderate accuracy.
al. (43),	spectra. Dataset: 30 bacterial	model complexity. Near	Needs large spectral
2021	classes.	real-time.	datasets.
L. Deng et	Deep NN with multi-receptive	Higher accuracy than prior	Dataset missing. Limited
al. (44),	fields for Raman spectra.	methods. Visualization for	clinical testing. Expert
2022	Dataset: Not specified.	interpretability.	input needed.
Yichen Liu	Wavelet packet + Gramian	99.64% (2 isolates),	Lower accuracy on 30
et al. (45),	angular field + DL. Dataset: 2	90.55% (30 isolates).	classes. Dataset size
2024	and 30 isolates.	Training time reduced	unclear. Sensitive to
		90%.	noise.

The Spectroscopy-based AI demonstrates strong potential for bacterial identification, with studies reporting accuracies between 85.8% and 100%. Techniques such as NIR spectroscopy with PCA/HCA/KNN, SERS with acoustic bioprinting, and wavelet-based deep learning have achieved near-perfect results, including rapid detection of antibiotic resistance. Advanced models like spectral transformers and multi-receptive field DNNs further improve performance interpretability. However, progress is limited by small or unspecified datasets, narrow species coverage, and moderate accuracy in multi-class tasks. The High equipment costs, spectral variability, and sensitivity to noise also hinder practical use. While methods like data augmentation and noise superposition improve robustness, broader adoption will require standardized datasets and cost-effective, accessible systems.

Frequent Techniques Used

Spectroscopy-based bacterial identification applies AI to analyze molecular signatures with high precision. Principal Component Analysis (PCA) and wavelet transforms reduce spectral dimensionality, while classifiers such as Support Vector Machines (SVM), Random Forest (RF), and Logistic Regression enable efficient classification. Convolutional and Deep Neural Networks (CNNs, DNNs) handle complex Raman and FTIR spectra, with advanced variants like spectral transformers and multi-receptive field models improving feature extraction. Additional approaches include K-Nearest Neighbor (KNN), Hierarchical Cluster Analysis (HCA), and image processing for susceptibility testing. Enhancements such as Surface-Enhanced Raman Spectroscopy (SERS) and acoustic bioprinting boost signal intensity and detection accuracy. Together, these methods enable rapid and reliable bacterial classification.

Applications

AI-enhanced spectroscopy supports diverse fields of microbiology. In clinical diagnostics, it enables rapid species identification and antibiotic resistance profiling, including drug-resistant strains like Acinetobacter baumannii. Automated antimicrobial susceptibility testing accelerates therapy decisions. Food safety benefits from detecting pathogens such as E. coli and Salmonella, while environmental monitoring identifies contaminants in water and soil. Applications also include Gram-positive/negative classification, distinguishing MR and MS strains for infection control, and single-cell pathogen detection in hospital settings. Beyond healthcare, spectroscopy-based AI aids public health surveillance and biomedical research by analyzing biomolecular resistance patterns.

Advantages

These techniques deliver high accuracies (85.8–100%), ensuring dependable results across applications. Non-destructive analysis preserves samples, while minimal preparation reduces time and labor. Rapid, often real-time detection supports timely interventions. High specificity allows differentiation of closely related strains, and SERS provides signal enhancement up to 1500×, boosting sensitivity. Deep learning extends capabilities to complex datasets while NIR spectroscopy offers sustainable, "green" testing

options. Single-cell resolution and visualization of spectral features further support clinical decision-making. Robustness to noise, as shown in recent studies, strengthens reliability in real-world use.

Challenges

Despite progress, several obstacles remain. Many studies rely on small or unspecified datasets, limiting robustness and generalizability. Narrow species coverage further restricts applicability. Spectral variability from environmental or chemical factors reduces consistency. The need for specialized equipment, such as hyperspectral Raman or FO-FTIR, adds cost and complexity. Performance in multi-class tasks can be moderate, with accuracies of 85-86% in some studies. Computational demands of advanced AI models hinder deployment in resource-limited settings. Finally, the absence of standardized spectral databases and reliance on expert infrastructure remain barriers to large-scale adoption. Addressing these challenges requires larger, well-annotated datasets, cost-effective instrumentation, and simplified workflows for broader real-world implementation.

Hyperspectral Imaging and AI Techniques

Hyperspectral imaging (HSI) combined with AI enables precise bacterial identification by capturing both spectral and spatial data across a wide wavelength range, outperforming traditional culture-based methods in speed and specificity. When paired with models such as LSTM and deep neural networks, HSI can rapidly process complex datasets, supporting single-cell analysis and real-time applications. Recent studies demonstrate its effectiveness in detecting foodborne pathogens and analyzing mixed bacterial samples (13, 16). However, practical deployment is hindered by high equipment costs and limited dataset availability.

Table 4: Hyperspectral Imaging and AI Techniques

Author	Proposed Work and Dataset	Achievements	Limitations
Details			
Xinggong	AI classification of bacterial	AUC >0.950 in all	Dataset size not
Liang et al.	infections from pathology images	phases. High accuracy	disclosed. Low
(46), 2023	at patch and whole slide levels. Dataset: Pathology images (size not specified).	and robustness.	specificity for bacterial subtypes.
Hikaru Tago	Line image sensor for colony	96% accuracy in 10	Limited to 15 species.
et al. (47),	fingerprinting + ML. Dataset: 15	hours. Petri dish	Required 10-hour
2022	species from 9 genera (size not provided).	scanned in 22 seconds. Faster than 24-h MS.	incubation. Dataset size not specified.
Zhu et al.	Hyperspectral Transmission	93.6% accuracy.	Small dataset. Only five
(48), 2023	Microscopic Imaging (HTMI) +	Achieved 2.19 μm	species. High
	PCA-SVM for single-cell	spatial and <1 nm	computational
	classification. Dataset: Five	spectral resolution.	demands.
	bacterial species at low concentrations.		
Rui Kang et	HMI + LSTM for classifying five	92.9% accuracy (center	Limited to five
al. (49),	foodborne pathogens using ROIs	ROI). Outperformed	pathogens. Dataset size
2022	(whole-cell, boundary, center).	PCA-based methods (66–85%).	moderate. Requires high-quality HMI.
Zhu et al.	Dual-mode HSI with MB-Net (deep	$R^2 = 0.96$, RMSE = 0.03.	Only four species. MB-
(50), 2024	neural network) to predict	First method for	Net is computationally
	proportions of mixed bacteria.	simultaneous detection	intensive. Dataset size
	Dataset: Four mixed pathogenic species.	of 4 mixed bacteria.	not stated.
Park et al.	AGR2U-Net + ellipse fitting for	94.1% mIoU, 97.4%	Limited to four species.
(51), 2023	single-cell segmentation in FPI-	ellipse fitting accuracy. Robust to blurriness.	High cost of FPI-HMI.

HMI. Dataset: E. coli, Listeria, Salmonella, Staphylococcus.

Dataset moderately sized.

High potential for bacterial identification has been demonstrated by HSI combined with AI, achieving of 92.9-96% accuracies across diverse applications. An AUC above 0.95 has been reported for the classification of bacterial infections from pathology images. An accuracy of 96% has been achieved in the identification of 15 bacterial species within 10 hours, outperforming the 24hour requirement of mass spectrometry. An accuracy of 93.6% has been obtained for singlebacterium classification using hyperspectral transmission microscopic imaging (HTMI). Five foodborne pathogens have been classified with 92.9% accuracy using LSTM networks, surpassing the performance of traditional PCA-based methods. Four mixed bacteria have been simultaneously detected with an R² of 0.96 using a custom DNN-based MB-Net. Mean intersection over union (IoU) of 94.1% and ellipse fitting accuracy of 97.4% have been achieved in singlecell segmentation, demonstrating robustness to image blurriness.

Limitations

Many studies are conducted using small or unspecified datasets, which limits generalizability. Research is often focused on a few bacterial species, reducing applicability to broader microbial diversity. High costs of HSI systems and the computational demands of AI models pose significant barriers. Implementation complicated by dependence on high-quality data and incubation time. Despite advances in addressing image blurriness and mixed samples, the development of larger standardized datasets, cost-effective hardware, and efficient algorithms is required for practical clinical and industrial deployment.

Frequent Techniques Used

- Imaging Systems: HTMI for high spatial and spectral resolution; Fabry-Perot Interferometer (FPI) HSI for enhanced spectral resolution; line image sensors for rapid colony fingerprinting.
- AI and Machine Learning: PCA with SVM for spectral classification; LSTM networks for ROI spectral data; DNNs with spectral feature fusion for mixed bacteria (MB-Net 64); U-Net,

- ResU-Net, AGR2U-Net for single-cell segmentation.
- Data Processing: Deblurring, padding, and ellipse fitting enhance single-cell identification. AI also processes whole slide images and patch-level pathology data.

Applications

- Clinical Diagnostics: Identification of bacterial infections from pathology images.
- Food Safety: Detection of foodborne pathogens.
- Single-Bacterium and Mixed Sample Analysis:
 Precise pathogen identification and quantification in complex samples.
- Environmental Monitoring: Detecting microbial contaminants in food.
- Biomedical Research: Analyzing bacterial morphology and species diversity using spectral ROIs.
- Industrial and Workflow Optimization: Rapid colony fingerprinting and automated singlecell segmentation streamline testing and diagnostics.

Advantages

- High accuracy (92.9–96%) and AUC >0.95 for reliable classification for several studies.
- Single-cell resolution and high spatial (<2.19 μm) and spectral (<1 nm) resolution.
- Rapid diagnostics (e.g., 22 seconds per Petri dish).
- Robustness to blurriness and mixed bacteria detection ($R^2 = 0.96$).
- AI models outperform traditional methods (7-26% improvement over PCA-based classifiers).
- Non-invasive imaging preserves samples and supports real-time processing for clinical workflows.
- Scalable systems suitable for industrial applications.

Sensor Array and Machine Learning for Bacterial Detection

Sensor array technology combined with machine learning (ML) provides a rapid, cost-effective alternative to traditional microbiological methods, which are often time-consuming, labor-intensive, and require specialized laboratory setups. Fluorescence-based sensor arrays, using elements

like carbon quantum dots (CQDs) or twodimensional nanomaterials, generate distinct response patterns for different bacterial species. When paired with ML algorithms, these arrays analyze complex fluorescence fingerprints with high accuracy, enabling high-throughput identification. Recent studies employ crossreactive receptors, fluorescence quenching, and advanced ML models to detect multiple bacterial species, including pathogens and drug-resistant strains. Applications span food safety, clinical diagnostics, and environmental monitoring. Despite their advantages, issues such as sensor cross-reactivity and limited species diversity remain, highlighting areas for further optimization. Table 5 summarizes the techniques, achievements, and limitations, providing a comprehensive overview of this emerging approach.

Table 5: Sensor Array and Machine Learning for Bacterial Detection

Author	Proposed Work and Dataset	Achievements	Limitations
Details			
Yi Wang	Developed a fluorescence sensor	Achieved 93.8% accuracy	Dataset size not
et al.	array with 2D nanoparticles and	(30-min incubation), $98.4%$	specified. Limited to
(52),	ssDNA for identifying eight	with multilayer perceptron	eight species.
2023	bacteria in milk. Dataset: Eight	(120-min). Low-cost	Incubation time
	pathogenic and spoilage bacteria	alternative to ELISA.	required.
T -1	(size not specified).	D 1 . C	D
Laibao	Used fluorescence sensor array	Demonstrated effective	Dataset size not
Zheng <i>et</i>	with carbon dots (boronic acid,	discrimination of six	provided. Limited to
al. (53),	polymixin, vancomycin) and LDA.	bacteria using fluorescence	six species. Cross-
2022	Dataset: Six bacterial species (size	patterns. Simple and rapid	reactivity of
	not specified).	method.	receptors not quantified.
Li, Z (54),	Developed six-sensing array with	Achieved 97.9% accuracy	Small dataset
2023	2D nanomaterials and ssDNA for	across eight species,	(n=288). Limited to
	microbial identification. Dataset:	including drug-resistant	eight species.
	Eight microorganisms, n=288	strains. Rapid detection at	Complex sensor
	samples.	low concentrations (10^2-10^8)	fabrication.
	•	CFU/mL).	
Wang et	Developed paper-based	Differentiated five strains	Limited to five
al. (55),	fluorescence sensor array with	with high accuracy. Cost-	species. Moderate
2024	antibiotic-modified CQDs and	effective, portable platform	dataset size.
	smartphone imaging. Dataset: Five	validated with blind	Smartphone imaging
	bacterial strains (10^3-10^7)	samples.	quality variability.
	CFU/mL).		

The significant potential of sensor array technology combined with machine learning for bacterial detection has been highlighted, with high accuracies of 93.8–98.4% reported and practical applications demonstrated. An accuracy of 98.4% has been achieved in identifying eight bacteria in milk using a fluorescence sensor array with a multilayer perceptron, providing a low-cost alternative to ELISA. An accuracy of 97.9% has been obtained across eight microorganisms, including drug-resistant strains, using a six-sensing array capable of detecting low concentrations (10²–108 CFU/mL). Six bacteria

have been effectively discriminated using carbon dot-based sensors and linear discriminant analysis, emphasizing simplicity and speed. A portable paper-based platform with antibiotic-modified CQDs has been developed to accurately differentiate five bacterial strains, with validation performed using blind samples and smartphone imaging. These results demonstrate the precision, speed, portability, and cost-effectiveness of sensor arrays. However, limitations remain. Small or unspecified dataset sizes are still used, receptor cross-reactivity affects specificity, incubation times of 30–120 minutes are required, sensor

fabrication is complex, and variability in smartphone imaging quality impacts performance. While some studies have addressed portability and low-concentration detection, the development of larger standardized datasets, improved receptor specificity, and simpler fabrication processes is required for widespread adoption in clinical, food safety, and environmental applications.

Frequent Techniques Used

Advanced approaches for bacterial identification are employed by sensor array methods combined with machine learning. Fluorescence-based arrays are constructed using single-stranded DNA (ssDNA) quenched by two-dimensional nanomaterials or carbon quantum dots (CQDs) functionalized with receptors such as boronic acid, polymyxin, vancomycin, or antibiotics. Bacterial surface interactions are monitored through aggregation-induced fluorescence quenching. Classification performed using Linear Discriminant **Analysis** (LDA), multilayer perceptrons, and artificial neural networks, with SVM and K-Nearest Neighbors applied as baselines. Fluorescent signals collected at specific wavelengths (e.g., 520 nm) are used to generate microbial fingerprints. Portable detection is enabled by paper-based platforms with inkjetprinted CQDs, while smartphone imaging facilitates on-site analysis. Data preprocessing, including signal normalization, is applied to improve model performance. These techniques allow rapid and high-accuracy bacterial identification.

Applications

Wide-ranging applications are supported by sensor arrays combined with machine learning. Food safety is enhanced through the detection of pathogenic and spoilage bacteria in milk. Clinical diagnostics are facilitated for pathogens such as Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae, including drug-resistant strains like MRSA. Environmental monitoring is performed to detect bacteria in water and soil, while portable paper-based platforms with smartphone integration enable point-of-care testing. Rapid microbial quality control benefits industrial microbiology, and microbial taxonomy and antibiotic interactions are studied in biomedical research using these methods. Realworld performance is validated through blind sample testing.

Advantages

These techniques achieve high accuracy (93.8-98.4%) and rapid detection within 30-120 minutes. They detect low concentrations (10^2-10^8) CFU/mL) and are cost-effective, especially on paper-based platforms. Portability smartphone integration enables on-site testing, non-specific cross-reactive receptors while simplify sensor design. Minimal sample preparation, high specificity for drug-resistant scalability high-throughput strains. for applications, ease of fabrication via inkjet printing, and robustness to blind samples enhance practical utility.

Challenges

Key limitations include small or unspecified datasets restricting generalizability, focus on a limited number of species, receptor cross-reactivity reducing specificity, incubation times of 30–120 minutes, complex sensor fabrication, and variability in smartphone imaging quality. Dependence on stable fluorescence signals, lack of standardized datasets, and limited validation on mixed or complex samples further constrain implementation. Addressing these challenges requires larger datasets, optimized receptor specificity, and streamlined fabrication for broader adoption.

Other Advanced Imaging and AI Techniques

Using spectroscopy with AI is a modern way to identify bacteria. It allows fast and non-destructive testing. This helps with both classification and spotting antibiotic resistance. Spectroscopy methods-such as Raman, FTIR, and excitationemission scans—pick up unique molecular patterns in bacteria. They are now used in clinical labs, food safety checks, and environmental studies. This section reviews 14 studies that use AI and spectroscopy to identify bacteria. These studies utilize advanced algorithms, including principal component analysis (PCA), convolutional neural networks (CNNs), and spectral transformers, analyze spectral data. Applications range from pathogen detection to antimicrobial susceptibility testing, with significant advantages in speed and precision. However, challenges such as spectral variability, dataset limitations, and equipment costs persist. The details of the frequent techniques,

applications, advantages, and limitations are discussed in the following Table 6, providing a comprehensive overview of this innovative field.

Table 6: Other Advanced Imaging and AI Techniques

	Advanced Imaging and AI Techniq		I imitatio
Author	Proposed Work and Dataset	Achievements	Limitations
Details	II IVOLO 4 'II I	A 1: 1040/ ::	T: 1, 1, 11, 1
Ma L. <i>et al.</i>	Used YOLOv4 with phase-	Achieved 94% precision,	Limited to eight species.
(56), 2023	contrast microscopy for <i>E. coli</i>	$R^2 = 0.995$ for	Requires 3-h cultivation.
	detection. Dataset: <i>E. coli</i> and	quantification, <10%	Dataset size not
	seven foodborne bacteria,	false-negative rate. Rapid	specified.
	romaine lettuce samples.	3-h detection.	
Hiraoka M.	Developed image processing	Automated bulking	Dataset size not
et al. (57),	system for filamentous bacteria	control. Supported	specified. Limited to
2018	in wastewater. Dataset:	operator identification.	filamentous bacteria.
	Activated sludge samples.	Monitored control effects.	Requires operator interaction.
Demirel M.	Used iterative Bayesian model	Improved F1 score by	Dataset size not
et al. (58),	for FLIM bacterial detection.	16.85% over existing	specified.
2022	Dataset: Synthetic and real	methods. Outperformed	Computationally
	FLIM images.	on real images.	intensive. Limited to
			FLIM imaging.
Thomas	Benchmarked ML methods for	Acceptable identification	Lower accuracy for novel
Mortier <i>et</i>	MALDI-TOF spectra. Dataset:	rates for novel replicates,	species. Taxonomic
al. (59),	100,000 spectra, >1000	strains, species. Used	information poorly
2021	species.	neural networks with	preserved. Large dataset
		Monte Carlo dropout.	required.
Harris et al.	Reviewed ML for UTI	Highlighted rapid	No experimental results.
(60), 2024	diagnostics and antibiotic	diagnostics and reduced	Relies on secondary data.
	resistance prediction. Dataset:	antibiotic use. Improved	Broad scope lacks
	Literature-based.	clinical workflows.	specificity.
He et al.	Used SIM with ML for bacterial	Achieved 98%	Limited to three species.
(61), 2023	identification. Dataset: E. coli,	classification accuracy.	Small dataset. Requires
	M. smegmatis, P. aeruginosa	Rapid morphological	high-resolution SIM
	images.	analysis.	imaging.
Ragi S. et al.	Used DCNN and Mask R-CNN	70-227× faster than	Dataset size not
(62), 2023	for SEM image segmentation of	manual methods.	specified. Limited to DA-
<i>(),</i>	DA-G20 cells. Dataset: SEM	Accurate geometric	G20 cells. Requires SEM
	images.	property extraction.	expertise.
Ding Y et al.	Developed paper-based	Detected β-lactamase in	Dataset size not
(63), 2024	fluorogenic probe with	20 s, 0.13 nmol/L	specified. Limited to β-
(),	smartphone AI for β-lactamase	detection limit.	lactamase. Smartphone
	detection. Dataset: Bacterial	Calibrated for complex	variability.
	samples, mice.	samples.	
Ahmad N. et	Used 3-layer neural network	Rapid identification vs.	Dataset size not
al. (64),	for Peptococcaceae	manual methods. High	specified. Limited to
2019	identification. Dataset: Bergey's	accuracy for facultative	Peptococcaceae. Relies
_317	manual data.	anaerobes.	on manual data.
Kim G. et al.	Used CNN for 3D refractive	Rapid and accurate	Dataset details absent.
(65), 2022	index image classification.	species identification.	Limited species scope.
(00), 2022	Dataset: Not specified.	species identification.	minica species scope.
	Dataset. Not specified.		

		Simplified microbial	Requires 3D imaging
		detection.	setup.
Zhang S. et	Used DL for impedance-based	Achieved 100% accuracy.	Small dataset. Limited to
al. (66),	analysis of three bacteria.	Suitable for point-of-care	three species. Requires
2023	Dataset: EPEC, S. enteritidis, V.	testing.	impedance system.
	parahaemolyticus.		
Demirel M.	Generated synthetic bacteria in	Improved correlation by	Limited dataset size.
et al. (67),	OEM images using 3D U-Net.	3.86% over baseline.	Synthetic data may not
2023	Dataset: Synthetic and real	Enhanced detection with	fully represent real
	OEM images.	DLNet.	variability.
Nirmala Bai	Used EfficientNetB1/B2 for	Superior accuracy vs.	Dataset size not
L. et al. (68),	chest infection diagnosis from	other transfer learning	specified. Limited to
2024	X-rays. Dataset: Public and	models. Effective for	chest infections.
	hospital X-ray images.	infections.	Requires X-ray imaging.
Yang Zhang	Reviewed DL for microbial	Highlighted potential for	No experimental results.
et al. (69),	image analysis. Dataset:	viruses, bacteria, fungi,	Relies on secondary data.
2023	Literature-based.	parasites. Guided future	Broad scope lacks depth.
		research.	
Maaskant <i>et</i>	Used DL/ML for fecal smear	Predicted 16 genera (AUC	Dataset size not
al. (70),	bacterial prediction. Dataset:	>0.7), butyrate producers	specified. Limited to
2024	Rhesus macaque fecal images.	(AUC 0.75). Robust to	fecal bacteria. Requires
		noise.	metagenomic data.

The transformative impact of advanced imaging and AI techniques on bacterial detection is highlighted, with accuracies of 94-100% achieved and innovative applications demonstrated across various domains. A precision of 94% was obtained in detecting E. coli using YOLOv4 with phasecontrast microscopy, enabling rapid food safety testing in just 3 hours. An accuracy of 98% was achieved in classifying three bacterial species using SIM and machine learning, demonstrating the potential of morphological analysis. An accuracy of 100% was attained in identifying three pathogens via impedance-based deep learning, suitable for point-of-care testing. F1 scores were improved by 16.85% using a Bayesian model for FLIM, outperforming traditional methods. Machine learning was benchmarked on a dataset of 100,000 spectra, achieving acceptable rates for novel identification. SEM analysis accelerated 70-227 times using DCNN and Mask R-CNN, enhancing biofilm research. However, limitations remain, including the use of small or unspecified datasets restricting generalizability, a focus on few species limiting microbial diversity, costly and complex imaging systems such as SIM, FLIM, impedance and setups, and computational demands of models like 3D U-Net and EfficientNet. The lack of experimental data in review studies reduces specificity. While synthetic

data and portable probes address some challenges, standardized datasets, cost-effective systems, and broader species validation remain critical for adoption in clinical, industrial, and environmental settings.

Frequent Techniques Used

Diverse AI approaches are employed in advanced imaging methods. Bacteria are detected in phasecontrast microscopy using YOLOv4, FLIM data are analyzed with Bayesian models and Metropolis-Hastings sampling, and SIM and 3D refractive index images are classified with CNNs. SEM images are segmented using DCNNs and Mask R-CNNs, while X-ray images for infection detection are analyzed with EfficientNet models. Novel species in MALDI-TOF spectra are identified using neural networks with Monte Carlo dropout, and bacteria in synthetic optical endomicroscopy images are detected with 3D U-Net models. Bacterial subtypes are classified using impedance-based analysis combined with deep learning, and β-lactamase is detected with paper-based fluorogenic probes supported by smartphone AI. Additional methods include hierarchical classification of spectral datasets, geometric analysis with moment invariants, feed-forward backpropagation, and explainability analysis to improve model transparency.

Applications

These techniques have broad applications. Food safety is enhanced through rapid pathogen detection, such as E. coli in romaine lettuce, while clinical diagnostics identify pathogens including E. coli, Salmonella, and Vibrio parahaemolyticus and support urinary tract infection diagnosis and antibiotic resistance prediction. Environmental monitoring detects filamentous bacteria in wastewater, and biomedical research investigates biofilm phenotypes and β-lactamase activity. Industrial microbiology benefits from rapid species identification for quality control, point-ofcare testing is enabled by portable probes and impedance systems, and novel species identification advances microbial taxonomy. Realtime pathogen monitoring and fecal bacterial group prediction support infection control and gut health studies.

Advantages

High accuracy (94–100%) ensures reliable identification, with rapid detection times and low false-negative rates (<10%) enhancing diagnostic reliability. Non-invasive imaging preserves samples, while high specificity distinguishes bacterial subtypes and resistant strains. Automation reduces manual labor, and scalability

handles large datasets, such as 100,000 spectra. Portability via smartphone integration supports point-of-care testing, and robustness to noise improves practical utility. High quantification accuracy ($R^2 = 0.995$), explainability analysis, versatility across imaging modalities, and significant speed improvements up to $227\times$ faster than manual methods further demonstrate their transformative potential.

Table 7 presents the distribution of studies across different research topics, highlighting the prominence of various AI-driven approaches for bacterial detection and classification. The majority of 31 studies focus on microscopic image-based classification using machine learning and deep learning, reflecting its dominant role in this field. Spectroscopy-based identification using AI has also gained considerable attention, with 14 studies, while other advanced imaging and AI techniques account for 15 studies, showcasing the exploration of diverse methods bevond conventional imaging. In comparison, hyperspectral imaging and AI techniques have been applied in 6 studies, and sensor array-based approaches with machine learning have been examined in 4 studies. This distribution indicates that while image-based and spectroscopy-driven methods remain central, emerging techniques are gradually expanding the research landscape.

Table 7: Topic Wise Studies Count

Topic	Study Count	
Microscopic Image-Based Classification Using	31	
Machine Learning and Deep Learning		
Spectroscopy-Based Identification Using AI	14	
Hyperspectral Imaging and AI Techniques	6	
Sensor Array and Machine Learning for Bacterial	4	
Detection		
Other Advanced Imaging and AI Techniques	15	

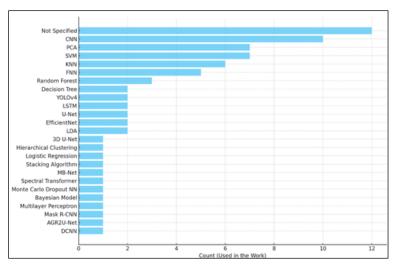


Figure 4: Dataset Used in this Study

Figure 4 shows the usage frequency of different models across studies. Most works either did not specify the model-5 or used CNNs-4, followed by PCA-7 and SVMs-6. KNN, FNN, and random forests appeared less often, while advanced models like UNet, YOLOv4, EfficientNet, and LSTM were used in limited cases.

Limitation and Challenges

AI-based bacterial identification techniques face significant challenges that hinder their widespread adoption. Small or unspecified dataset sizes limit model generalizability. Many studies rely on datasets with fewer than 1000 samples, such as 22 sputum smear images or 72 spectra. Others omit dataset details entirely, hindering reproducibility. A narrow focus on specific bacterial species further restricts applicability. Research often targets three to eight species, such as E. coli or Staphylococcus neglecting the diverse populations. This specificity reduces utility in realworld settings with complex microbiomes. Lack of standardized, large-scale datasets techniques exacerbates these issues, complicating model training and validation. High computational complexity poses a significant barrier to progress. Advanced models, including YOLOv4, Swin Transformer, and 3D U-Net, demand substantial processing power. Deep neural networks and spectral transformers require extensive resources, which limit their deployment in resourceconstrained environments, such as rural clinics. Specialized equipment adds to accessibility challenges. High-resolution microscopy, hyperspectral sensors, and fluorescence lifetime imaging systems are costly.

Data variability undermines model reliability. Inconsistent staining, image blurriness, or environmental factors affect imaging quality. Spectral variability from dye interactions or noise impacts spectroscopy results. Fluorescence signal stability in sensor arrays depends on controlled conditions. Robust preprocessing is often lacking, which can reduce performance in suboptimal settings. Validation on mixed or complex samples is limited. Many studies focus on single-species or low-concentration samples, ignoring real-world diversity. Synthetic data, while innovative, may not fully capture natural variability, requiring further testing. Moderate accuracies in multi-class tasks, ranging from 85.8% to 86%, highlight the difficulties in scaling to diverse scenarios.

Critical Appraisal and Risk of Bias Assessment

To ensure the reliability of findings in this systematic review, a critical appraisal of the 70 included studies was conducted to assess the risk of bias. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, adapted for use in AI-based diagnostic studies, was employed. This tool evaluates four domains: Patient/Sample Selection, Index Test, Reference Standard, and Flow and Timing. Each domain was assessed for risk of bias and concerns regarding applicability. Two independent reviewers (N.A.J. and G.P.G.) performed the appraisal. Discrepancies were resolved through discussion or consultation with a senior reviewer (C.J.). The assessment aimed to identify methodological weaknesses that could affect the validity of reported outcomes, such as classification accuracies in bacterial identification.

Methods of Critical Appraisal

The QUADAS-2 tool was tailored to address Albased bacterial identification studies. The domains were defined as follows:

- Patient/Sample Selection: Evaluated whether datasets were representative of realworld bacterial populations. Studies with small, non-diverse datasets (e.g., 3–8 species) or unclear sampling methods were rated as high risk. Applicability concerns arose if datasets did not reflect clinical, food safety, or environmental contexts.
- Index Test: Assessed the clarity and reproducibility of AI algorithms (e.g., machine learning, deep learning) and imaging/sensing techniques (e.g., spectroscopy, hyperspectral imaging). Studies lacking detailed model descriptions or validation methods were rated as high risk.
- Reference Standard: Examined the accuracy
 of ground truth labels (e.g., confirmed
 bacterial species via culture or molecular
 methods). Studies with unclear or unverified
 reference standards were rated as high risk.
- Flow and Timing: Evaluated consistency in applying AI and sensing methods across samples. Studies with incomplete reporting of testing protocols or inconsistent application were rated as high risk.
 - Each study was rated as low, high, or unclear risk of bias for each domain. Applicability concerns were noted separately to assess relevance to the review's objectives. Results were summarized in a table (Table 7) and narratively synthesized to highlight trends and implications.

Results of Risk of Bias Assessment

Of the 70 studies, 40% (28 studies) were rated as low risk across all domains, indicating robust methodology. However, 50% (35 studies) had high or unclear risk in at least one domain, primarily due to:

- Sample Selection: 25 studies used small datasets (e.g., <100 samples) or focused on few bacterial species, limiting generalizability. Only 15 studies included diverse, multi-species datasets relevant to clinical or environmental applications.
- **Index Test**: 20 studies provided insufficient details on AI model parameters (e.g., hyper-

- parameters, training protocols) or lacked external validation, increasing bias risk.
- Reference Standard: 10 studies had unclear reference standards, relying on unverified labels or proprietary datasets, reducing reliability.
- Flow and Timing: 15 studies incompletely reported testing protocols, such as inconsistent imaging or sensor application, raising concerns about reproducibility.

Applicability concerns were noted in 30 studies, particularly those with datasets not aligned with real-world applications (e.g., lab-based samples versus clinical isolates).

Implications

The risk of bias assessment revealed strengths and weaknesses. Studies with low risk provided reliable evidence of AI's high accuracy (85.8%–99%) in bacterial identification. However, high or unclear risk in sample selection and index test domains suggests caution in interpreting results from studies with small or poorly described datasets. These limitations may overestimate performance in real-world settings. The assessment informed the review's synthesis, prioritizing findings from low-risk studies. Future research should focus on larger, diverse datasets and transparent reporting of AI methods to reduce hias

Future Direction and the Approaches

Advancing AI-based bacterial detection requires addressing kev limitations in datasets. computational demands, hardware accessibility, and real-world applicability. Small or unspecified datasets limit model generalizability, making the development of large, standardized, and opensource datasets essential. These datasets should encompass diverse bacterial species, mixed samples, and real-world conditions, with metadata such as staining protocols or imaging parameters enhance reproducibility. Collaborative platforms, global microbial databases, and publicprivate partnerships can facilitate data sharing and funding. Synthetic data generation using advanced models, such as GANs, validated against real data, and crowdsourced expert annotations can further improve dataset quality.

Reducing computational complexity is crucial for practical deployment, especially in resourcelimited settings. Lightweight AI architectures, like MobileNet or depth-wise separable CNNs, can

maintain accuracy while reducing processing requirements. Techniques such as quantization, pruning, edge computing, and federated learning allow on-device processing and preserve data privacy, particularly in clinical contexts. Opensource frameworks, such as TensorFlow Lite, can accelerate adoption of efficient models. Costeffective and portable imaging systems are essential for broader adoption. High-cost equipment, including hyperspectral sensors or FLIM, limits access, whereas smartphone-based microscopy, paper-based fluorescence sensor arrays, portable Raman or FTIR devices, and 3Dprinted imaging components offer affordable alternatives. Multispectral imaging can balance cost and performance while maintaining sufficient resolution for reliable detection. Enhancing model robustness to data variability is critical, using techniques such as adaptive normalization, domain adaptation, transfer learning, ensemble learning, noise-robust algorithms, and real-time data augmentation.

Expanding validation to mixed and complex microbial samples is a priority. Most studies focus on single-species or low-concentration samples, but real-world scenarios require hierarchical classification, multi-task learning, and longitudinal studies to assess performance across diverse environments. Explainable AI methods, such as attention maps, increase trust and interpretability. Optimizing receptor specificity for sensor arrays, using bioinformatics, high-throughput screening, and hybrid imaging-spectroscopy models, can reduce cross-reactivity and improve accuracy. Eliminating cultivation delays is another critical goal. Even short incubation times (3–10 hours) impede rapid diagnostics, highlighting the need for culture-free techniques, including impedancebased analysis, single-cell spectroscopy, real-time AI-integrated imaging, and microfluidic isolation. Automation of sample preparation through robotics can further accelerate processing, enabling near-instantaneous bacterial identification for urgent clinical settings.

Finally, promoting interdisciplinary collaboration and accessible expertise is vital. Training programs, online courses, virtual workshops, and open-source AI tools can empower microbiologists, clinicians, and engineers. Interdisciplinary teams and global networks can standardize protocols, share best practices, and

develop user-friendly interfaces, ensuring that advanced AI-based techniques are widely adopted in clinical diagnostics, food safety, and environmental monitoring.

Conclusion

AI-based bacterial identification techniques represent a groundbreaking advancement in microbiology, offering rapid, accurate, and automated alternatives to traditional methods. These approaches achieve exceptional accuracies, often ranging from 94% to 100%, across diverse applications. Advanced imaging modalities, such as phase-contrast microscopy and hyperspectral systems, capture detailed microbial signatures. Machine learning and deep learning models, such as YOLOv4 and convolutional neural networks, excel at classifying complex datasets. Spectroscopy techniques, including Raman and FTIR, provide non-destructive molecular analysis. Fluorescencebased sensor arrays enable portable detection. These methods significantly reduce identification times, from days to hours or minutes, compared to culture-based assays. They support critical applications in clinical diagnostics, food safety, and environmental monitoring. For instance, rapid pathogen detection aids timely treatment in hospitals. Automated systems enhance quality control in food industries. Point-of-care platforms, such as smartphone-integrated sensors, enable testing in resource-limited settings. The ability to antibiotic-resistant strains, detect quantify bacterial concentrations, and analyze mixed samples underscores the versatility of these techniques. Collectively, they address pressing global challenges, such as infectious disease management and antimicrobial resistance.

Despite their promise, significant challenges remain. Small or unspecified datasets limit model generalizability. Many studies focus on a few bacterial species, neglecting microbial diversity. The high computational demands of models like 3D U-Net or spectral transformers restrict deployment in low-resource environments. Costly equipment, such as hyperspectral sensors or FLIM systems, confines techniques to well-funded laboratories. Data variability, from staining inconsistencies to spectral noise, affects reliability. Cross-reactivity in sensor arrays reduces specificity. Incubation times, even reduced, delay results. Limited validation on mixed samples

standardized datasets and open-source resources hinders collaboration. Specialized expertise for operating complex systems poses barriers. These challenges underscore the disparity between research advancements and their practical application, particularly in underserved regions. The path forward involves targeted innovations to overcome these barriers. Developing large, standardized, open-source datasets is essential. These should include diverse species and realworld conditions. Lightweight AI models, like MobileNet, can reduce computational demands. Affordable imaging systems, such as smartphonebased microscopy, can enhance accessibility. Robust preprocessing can address data variability. Validation on mixed samples can ensure the realworld utility of the model. Optimizing sensor specificity can improve detection precision. Culture-free techniques, like impedance-based analysis, can eliminate delays. Interdisciplinary collaboration, uniting microbiologists, engineers, and data scientists, can drive progress. Training programs can build expertise. Global consortia can standardize protocols. These efforts will bridge the gap between innovation and adoption, enabling AI techniques to transform bacterial identification.

hinders real-world applicability. The lack of

Abbreviations

AI: Artificial Intelligence, CNN: Convolutional Neural Networks, CPN: Causal Probabilistic Network, DL: Deep Learning, FTIR: Fourier Transform Infrared, ML: Machine Learning, MRSA: Methicillin-Resistant Staphylococcus Aureus, PCR: Polymerase Chain Reaction.

Acknowledgement

None.

Author Contributions

T S Urmila: Data collection, screening of articles, Data extraction, J I Christy Eunaicy: Data collection, screening of articles, Data extraction, C Jayparatha: Methodology design, validation of findings, tabulation, technical validation, literature review, drafting specific sections, editing, preparation of figures and tables, Naveen Anandakumar J: Methodology design, validation of findings, tabulation, technical validation, literature review, drafting specific sections, editing, preparation of figures and tables, Govindaprabhu G B: Methodology design, validation of findings,

tabulation, technical validation, literature review, drafting specific sections, editing, preparation of figures and tables, Mahalakshmi Priya R: Methodology design, validation of findings, tabulation, technical validation, literature review, drafting specific sections, editing, preparation of figures and tables.

Conflict of Interests

None.

Declaration of Artificial Intelligence (AI) Assistance

The authors declare no use of Artificial intelligence (AI) for the write-up of the manuscript.

Ethics Approval

All Ethics Followed and approved.

Funding

None.

References

- Mohamed BA, Afify HM. Automated classification of bacterial images extracted from digital microscope via bag of words model. 9th Cairo International Biomedical Engineering Conference (CIBEC). IEEE Biomed Eng. 2018;1(2):86-89.
- 2. Kristensen K, Ward LM, Mogensen ML, Cichosz SL. Using image processing and automated classification models to classify microscopic gram stain images. Computer Methods and Programs in Biomedicine Update. 2023 Jan 1;3:100091.
- 3. Preetha V, Pandi Selvi P. Identification of bacteria using digital image processing. International Journal of Engineering Research in Computer Science and Engineering. 2018 Mar;5(3):254-8.
- 4. Wahid MF, Hasan MJ, Alom MS, Mahbub S. Performance analysis of machine learning techniques for microscopic bacteria image classification. Proc IEEE Int Conf Comput Commun Netw Technol. 2019;2(3):1-14.
- 5. Keren F, Keziah F, Gnanaraj FF, Vanitha L. Evaluation of automatic bacterial classification methods and approaches. Proc IEEE Int Conf Smart Struct Syst. 2023;1(1):1-6.
- Kotwal S, Rani P, Arif T. Automated bacterial classifications using machine learning based computational techniques: architectures, challenges and open research issues. Arch Comput Methods Eng. 2022;29(3):2469-2490.
- Sajedi H, Mohammadipanah F, Pashaei A. Imageprocessing based taxonomy analysis of bacterial macro-morphology using machine-learning models. Multimed Tools Appl. 2020;79(2):32711-32730.
- 8. Satyanarayana KV, Rao NT, Bhattacharyya D, Hu YC. Identifying the presence of bacteria on digital images by using asymmetric distribution with k-

- means clustering algorithm. Multidim Syst Signal Process. 2022;33(3):301-326.
- 9. Rani P, Kotwal S, Manhas J, Sharma V, Sharma S. Machine learning and deep learning based computational approaches in automatic microorganisms image recognition: methodologies, challenges, and developments. Arch Comput Methods Eng. 2022;29(3):1801-1837.
- Amitha IC, Rithul AK, Akash M, Amarnath T, Drishyap K. An AI enabled framework for bacteria detection from microscopic images for biomedical applications. Int J Novel Res Dev. 2024;9(7):688-698.
- Singh A, Kumar A, Salman HM, Rawat N, Jain SK, Rao AT. Transfer learning approach on bacteria classification from microscopic images. Proc IEEE Int Conf Contemp Comput Informat. 2022;3(3):982-987.
- 12. Rani P, Kotwal S, Manhas J. Deep learning-based approach in automatic microscopic bacterial image classification. Proc Emerg Trends Expert Appl Secur. ICETEAS 2023. Lecture Notes in Networks and Systems, Singapore, Springer. 2023;4(2):1-12.
- 13. Kumar S, Mittal GS. Rapid detection of microorganisms using image processing parameters and neural network. Food Bioprocess Technol. 2010;3(5):741-751.
- 14. Hardo G, Noka M, Bakshi S. Synthetic micrographs of bacteria (SyMBac) allow accurate segmentation of bacterial cells using deep neural networks. BMC Biol. 2022;20(1):172-182.
- Ramesh H, Elshinawy A, Ahmed A, Kassoumeh MA, Khan M, Mounsef J. BIOINTEL: Real-time bacteria identification using microscopy imaging. Proc IEEE Int Symp Biomed Imaging. IEEE Trans Med Imaging. 2024:1(2):1-4.
- 16. Yang M, Nurzynska K, Walts AE, Gertych A. A CNN-based active learning framework to identify mycobacteria in digitized Ziehl-Neelsen stained human tissues. Comput Med Imaging Graph. 2020;84(1):1-28.
- 17. Kotwal S, Rani P, Arif T, Manhas J, Sharma S. Machine learning and deep learning-based hybrid feature extraction and classification model using digital microscopic bacterial images. SN Comput Sci. 2023;4(3):687-700.
- 18. Sarker IA, Rahman MS, Hossain S, Ahmed F, Islam MN. Utilizing deep learning for microscopic image-based bacteria species identification. Proc IEEE Int Conf Comput Appl Syst. 2024;1(1):1-5.
- 19. Wahid MF, Hasan MJ, Alom MS. Deep convolutional neural network for microscopic bacteria image classification. Proc IEEE Int Conf Adv Electr Eng. 2019;3(2):866-869.
- Ahmed T, Wahid MF, Hasan MJ. Combining deep convolutional neural network with support vector machine to classify microscopic bacteria images. Proc IEEE Int Conf Electr Comput Commun Eng. 2019;32(3):1-5.
- 21. Sunanda I, BK D, DV D, SK D, Sai Manusha GC. Classification of bacteria from agar plate using deep learning and image processing. Proc IEEE Int Conf Adv Data Eng Intell Comput Syst. 2024;32(3):1-6.
- 22. Visitsattaponge S, Bunkum M, Pintavirooj C, Paing MP. A deep learning model for bacterial

- classification using Big Transfer (BiT). IEEE Access. 2024;12(3):15609-15621.
- 23. Nasip ÖF, Zengin K. Deep learning-based bacteria classification. Proc IEEE Int Symp Multidiscip Stud Innov Technol. 2018;3(2):1-5.
- 24. Wahid MF, Ahmed T, Habib MA. Classification of microscopic images of bacteria using deep convolutional neural network. Proc IEEE Int Conf Electr Comput Eng. 2018;5(2):217-230.
- Panicker RO, Kalmady KS, Rajan J, Sabu MK. Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods. Biocybern Biomed Eng. 2018;38(3):691-699.
- Andreini P, Bonechi S, Bianchini M, Mecocci A, Scarselli F. A deep learning approach to bacterial colony segmentation. Proc Artif Neural Netw Mach Learn. Lecture Notes in Computer Science, Springer. 2018;522-553. https://doi.org/10.1007/978-3-030-01424-7_51
- 27. Yang F, Zhong Y, Yang H, Wan Y, Hu Z, Peng S. Microbial colony detection based on deep learning. Appl Sci. 2023;13(19):10568-89.
- 28. Sengupta B, Alrubayan M, Kolla M, Wang Y, Mallet E, Torres A, Paniagua G, Krishnamurthi V. AI-based detection of optical microscopic images of Pseudomonas aeruginosa in planktonic and biofilm states. Information. 2025;16(4):309-321.
- 29. Iriya R, Braswell B, Mo M, Zhang F, Haydel SE, Wang S. Deep learning-based culture-free bacteria detection in urine using large-volume microscopy. Biosensors. 2024;14(2):89-97.
- 30. Mai DT, Ishibashi K. Small-scale depthwise separable convolutional neural networks for bacteria classification. Electronics. 2021:10(23):3005-3015.
- 31. Chin SY, Dong J, Hasikin K, Ngui R, Lai KW, Yeoh PSQ, Wu X. Bacterial image analysis using multi-task deep learning approaches for clinical microscopy. PeerJ Comput Sci. 2024;10(1):2180-2197.
- 32. Wan-dan Z, Ru-jin S, Cheng-wei W, Qian-xue L, Zhiping X. Raman spectroscopy classification of foodborne pathogenic bacteria based on PCA-stacking model. Proc Int Conf Intell Inform Biomed Sci. IEEE | Biomed Sci. 2019;1(1):304-307.
- 33. Ji SY, Jeong DH, Hassan M, Ilev IK. Signature infrared bacteria spectra analyzed by an advanced integrative computational approach developed for identifying bacteria similarity. IEEE J Sel Top Quantum Electron. 2019;25(1):720-729.
- 34. De Biasio M, McGunnigle G, Leitner R, Popp J, Rösch P, Balthasar D. Identification of single bacteria using micro-Raman spectroscopy. Proc Int Conf Sens Technol. IEEE Sens J. 2013;2(3):34-39.
- 35. Henry J, Endres JL, Sadykov MR, Bayles KW, Svechkarev D. Fast and accurate identification of pathogenic bacteria using excitation–emission spectroscopy and machine learning. Sens Diagn. 2024;3(8):1253-1262.
- 36. Barrera Patiño CP, Soares JM, Blanco KC, Bagnato VS. Machine learning in FTIR spectrum for the identification of antibiotic resistance: a demonstration with different species of microorganisms. Antibiotics. 2024;13(9):821-840.

- 37. Rahman MH, Sikder R, Tripathi M, Zahan M, Ye T, Gnimpieba ZE. Machine learning-assisted Raman spectroscopy and SERS for bacterial pathogen detection: clinical, food safety, and environmental applications. Chemosensors. 2024;12(7):140-160.
- 38. Gullu E, Bora S, Beynek B. Exploiting image processing and artificial intelligence techniques for the determination of antimicrobial susceptibility. Appl Sci. 2024;14(9):3950-3970.
- Farias LR, Panero JS, Riss JSP, Correa APF, Vital MJS, Panero FS. Rapid and green classification method of bacteria using machine learning and NIR spectroscopy. Sensors. 2023;23(17):7336-7350.
- 40. Thomsen BL, Christensen JB, Rodenko O, Usenov I, Grønnemose RB, Andersen TE, Petersen E. Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning. Sci Rep. 2022;12(1):158-170.
- 41. Lu W, Li H, Qiu H, Wang L, Feng J, Fu YV. Identification of pathogens and detection of antibiotic susceptibility at single-cell resolution by Raman spectroscopy combined with machine learning. Front Microbiol. 2023;13(2):107-125.
- Safir F, Vu N, Tadesse LF, Firouzi K, Banaei N, Jeffrey SS, Saleh AAE, Dionne JA. Combining acoustic bioprinting with AI-assisted Raman spectroscopy for high-throughput identification of bacteria in blood. Nano Lett. 2023;23(6):2065-2073.
- 43. Kukula K, Farmer D, Duran J, Majid N, Chatterley C, Jessing J, Li Y. Rapid detection of bacteria using Raman spectroscopy and deep learning. Proc IEEE Annu Comput Commun Workshop Conf. 2021;4(5):796-799.
- 44. Deng L, Zhong Y, Wang M, Zheng X, Zhang J. Scale-adaptive deep model for bacterial Raman spectra identification. IEEE J Biomed Health Inform. 2022;26(1):369-378.
- 45. Liu Y, Gao Y, Niu R, Zhang Z, Lu GW, Hu H, Liu T, Cheng Z. Rapid and accurate bacteria identification through deep-learning-based two-dimensional Raman spectroscopy. Anal Chim Acta. 2024;13(32):343376-91.
- Liang X, Wang G, Zhu Z, Zhang W, Li Y, Luo J. Using pathology images and artificial intelligence to identify bacterial infections and their types. J Microbiol Methods. 2025;4(9):232-234.
- Tago H, Maeda Y, Tanaka Y, Kohketsu H, Lim TK, Harada M, Yoshino T, Matsunaga T, Tanaka T. Line image sensor-based colony fingerprinting system for rapid pathogenic bacteria identification. Biosensors and Bioelectronics. 2024 Apr 1;249:116006.
- 48. Zhu H, Luo J, Liao J, He S. High-accuracy rapid identification and classification of mixed bacteria using hyperspectral transmission microscopic imaging and machine learning. Progress In Electromagnetics Research. 2023 Sep 1;178.https://doi.org/10.2528/PIER23082303
- 49. Kang R, Park B, Ouyang Q, Ren N. Rapid identification of foodborne bacteria with hyperspectral microscopic imaging and artificial intelligence classification algorithms. Food Control. 2021;130(12):108379.

50. Zhu H, Luo J, He S. Detecting multiple mixed bacteria using dual-mode hyperspectral imaging and deep neural networks. Appl Sci. 2024;14(4):1525-39.

- 51. Park B, Shin T, Kang R, Fong A, McDonogh B, Yoon SC. Automated segmentation of foodborne bacteria from chicken rinse with hyperspectral microscope imaging and deep learning methods. Comput Electron Agric. 2023;208:107802.
- 52. Wang Y, Feng Y, Xiao Z, Luo Y. Machine learning supported single-stranded DNA sensor array for multiple foodborne pathogenic and spoilage bacteria identification in milk. Food Chem. 2025;463(3):114-120.
- 53. Zheng L, Qi P, Zhang D. Identification of bacteria by a fluorescence sensor array based on three kinds of receptors functionalized carbon dots. Sens Actuators B Chem. 2019;286(2):206-213.
- 54. Li Z, Jiang Y, Tang S, Zhu L, Ma Y, Wang M, Li F. 2D nanomaterial sensing array using machine learning for differential profiling of pathogenic microbial taxonomic identification. Microchim Acta. 2022;189(2):273-285.
- 55. Wang F, Xiao M, Qi J, Zhang Y, Wang S. Paper-based fluorescence sensor array with functionalized carbon quantum dots for bacterial discrimination using a machine learning algorithm. Anal Bioanal Chem. 2024;416(2):3139-3148.
- 56. Ma L, Yi J, Wisuthiphaet N, Earles M, Nitin N. Accelerating the detection of bacteria in food using artificial intelligence and optical imaging. Applied and Environmental Microbiology. 2023 Jan 31:89(1):e01828-22.
- 57. Hiraoka M, Tsumura K, Enbutsu I, Yamamoto Y. Computer-based filamentous microorganism identification support system. Proc Int Workshop Artif Intell Ind Appl. IEEE Trans Ind Inform. 1988:283-288. https://doi.org/10.1109/AIIA.1988.13307
- 58. Demirel M, Mills B, Gaughan E, Dhaliwal K, Hopgood JR. Bayesian statistical analysis for bacterial detection in pulmonary endomicroscopic fluorescence lifetime imaging. IEEE Trans Image Process. 2024;33(1):1241-1256.
- 59. Mortier T, Wieme AD, Vandamme P, Waegeman W. Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: a large-scale benchmarking study. Comput Struct Biotechnol J. 2021;19(2):6157-6168.
- 60. Harris M. Machine learning and artificial intelligence for pathogen identification and antibiotic resistance detection: advancing diagnostics for urinary tract infections. BioMed. 2023;3(2):246-255.
- 61. He Y, Xu W, Zhi Y, Tyagi R, Hu Z, Cao G. Rapid bacteria identification using structured illumination microscopy and machine learning. J Innov Opt Health Sci. 2018;11(1):1850007-19.
- 62. Ragi S, Rahman MH, Duckworth J, Jawaharraj K, Chundi P, Gadhamshetty V. Artificial intelligence-driven image analysis of bacterial cells and biofilms. IEEE/ACM Trans Comput Biol Bioinform. 2023;20(1):174-184.
- 63. Ding Y, Chen J, Wu Q, Li X, Zhang Y, Wang L, Zhao W. Artificial intelligence-assisted point-of-care testing system for ultrafast and quantitative detection of

- drug-resistant bacteria. SmartMat. 2024;5(1):214-230
- 64. Ahmad N, Abdullah SRS, Anuar N, Husin H. Bacteria identification using artificial neural network: a case study of Peptococcaceae family identification. Proc Int Conf Electron Des. IEEE Conf Proc. 2008:1-6. https://doi.org/10.1109/ICED.2008.4786682
- 65. Kim G, Jo Y, Cho H, Choi G, Kim BS, Min HS, Park Y. Automated identification of bacteria using three-dimensional holographic imaging and convolutional neural network. Proc IEEE Photonics Conf. 2018;9(3):1-21.
- 66. Zhang S, Han Z, Feng Z, Sun M, Duan X. Deep learning assisted microfluidic impedance flow cytometry for label-free foodborne bacteria analysis and classification. Proc IEEE Annu Int Conf IEEE Eng Med Biol Soc. 2021;12(4):7087-7090.

- 67. Demirel M, Mills B, Gaughan E, Dhaliwal K, Hopgood JR. Bacteria detection in optical endomicroscopy images using synthetic images. Proc IEEE Annu Int Conf IEEE Eng Med Biol Soc. 2024;18(3):1-4.
- 68. Nirmala Bai L, Devi M. Pathogen-driven infectious disease recognition and classification: an in-depth analysis using machine learning and deep learning methods. Proc IEEE Int Conf Comput Sustain Glob Dev. 2024;1(1):1729-1734.
- 69. Zhang Y, Jiang H, Ye T, Juhas M. Deep learning for imaging and detection of microorganisms. Trends Microbiol. 2021;29(7):569-572.
- 70. Maaskant A, Lee D, Ngo H, Montijn RC, Bakker J, Langermans JAM, Levin E. AI for rapid identification of major butyrate-producing bacteria in rhesus macaques (Macaca mulatta). Anim Microbiome. 2025;7(1):39-54.

How to Cite: Urmila TS, Christy Eunaicy JI, Jayparatha C, Anandakumar JN, Govindaprabhu GB, Priya RM. Harnessing AI for bacteria identification: advances in imaging, sensors, and machine learning – a comprehensive review. Int Res J Multidiscip Scope. 2025; 6(4):950-977. doi: 10.47857/irjms.2025.v06i04.06174