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Abstract

Water scarcity and allocation disputes have emerged as major challenges in increasingly urbanizing smart cities, where
increasing population density, outdated infrastructure, high water losses, and unequal geographic distribution fre-
quently result in shortages despite adequate overall supply. Traditional techniques, such as linear programming and
agent-based modeling, have produced helpful insights, but they are still restricted in capturing varied stakeholder be-
haviors, assuring equilibrium stability in competitive contexts, and providing spatially adaptable solutions. To address
these shortcomings, this study applies the concept of the Nash Equilibrium (NE) model within Game theory (GT) to
model strategic interactions among households, industries, utilities, and regulators, each with distinct payoff functions.
Once equilibrium is achieved, no stakeholder can unilaterally improve its outcome, thereby guaranteeing fairness and
stability. Building on this theoretical foundation, the model integrates Optimized Multi-Objective Particle Swarm Opti-
mization (OMOPSO) to efficiently explore Pareto-optimal trade-offs between economic, social, and environmental ob-
jectives, while Geographic Information Systems (GIS) incorporate spatial constraints to deliver geographically realistic
allocation strategies. Experimental validation demonstrates that the proposed model consistently outperforms existing
approaches within the framework of Multi-Objective Evolutionary Algorithms (MOEAs) in terms of convergence stabil-
ity and computational efficiency. Beyond algorithmic performance, the findings highlight practical applications for tariff
design, consumer incentive programs, infrastructure investment, and water-use restrictions. This study increases state-
of-the-art urban water management by integrating GT, evolutionary optimization, and spatial analysis, while also

providing policymakers with a strong and fair decision-support framework for sustainable resource allocation.
Keywords: Game Theory, GIS, Nash Equilibrium, OMOPSO, Smart City, Water Management.

Introduction

Water is fundamental to achieving sustainability,
functioning as a vital resource across human, in-
dustrial, and ecological sectors. This significance is
underscored in the United Nations' 2030 Sustaina-
ble Development Goals (SDGs) (1), which highlight
the imperative to “ensure the availability and sus-
tainable management of water and sanitation for
all”. However, water scarcity is one of humanity’s
most urgent challenges nowadays, particularly in
major urban centers. In Hanoi, one of Vietnam's
most densely populated cities; the city’s urbaniza-
tion ratio reached 58.7% in 2020 and is projected
to rise to 68.2% by 2030 in Figure 1 (2). Hanoi's
daily tap water demand is estimated at 1,250,000
to 1,350,000 m?, with a supply capacity of approx-
imately 1,530,000 m? per day. While the city's wa-
ter treatment facilities can nearly fulfill overall de-
mand, uneven distribution leads to localized water
shortages in certain areas in Hanoi (3). In addition,

water loss is a critical factor contributing to water
shortages in Vietnam generally and in Hanoi spe-
cifically. The water loss rate, once significantly
high, has been gradually reduced to 21.5%, align-
ing with rates observed in other countries in the re-
gion; however, it remains above those seen in de-
veloped nations (4). Water loss is primarily driven
by the absence of adequate technological solutions
in numerous cases (5). Nowadays, several factors
contribute to challenges related to clean water. One
of the main causes is the conflict among stakehold-
ers in the distribution and utilization of water, as
illustrated in Figure 2 below, along with limitations
in water planning and management. Consequently,
both ordinary cities and those with high smart city
indices are affected. Notable examples include Lon-
don (ranked 8th), Beijing (ranked 13th), Hong
Kong (China) (ranked 20th), and Melbourne
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Figure 1: Hanoi’s Population Growth from 1954 to 2030 (2)
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Figure 2: Stakeholder Conflicts in Smart City Water Management

(ranked 33rd) (6). To address clean water chal-
lenges in smart cities, GIS is vital, offering compre-
hensive tools for geospatial data acquisition, anal-
ysis, and visualization, which are crucial for infra-
structure development stages (7-12). Further-
more, GT provides a framework for equitable water
distribution, enabling the evaluation of sharing
mechanisms to ensure fairness among stakehold-
ers (13). Specifically, the NE is a key concept in GT,
identifying optimal strategies where no player can
improve their outcome by changing their strategy
alone (14). The application of GT and NE aims to
achieve a scenario where all stakeholders have suf-
ficient water for economic and domestic purposes,
thus enhancing the overall quality of life. Integrat-
ing GIS with GT and NE helps identify strategies
that effectively balance water demands while en-
suring the economic viability of water providers.

To manage complex water management, this study
employed MOEAs, population-based methods ef-
fective for conflicting goals (15). MOEAs iteratively
refine candidate solutions using evolutionary prin-
ciples, aiming for the Pareto-optimal front, which
represents the best trade-offs between objectives

(16). Compared to single-objective methods,
MOEAs excel in water management by simultane-
ously addressing economic, social, and environ-
mental goals (17). Their ability to explore vast so-
lution spaces makes them ideal for intricate urban
water distribution planning, particularly when
combined with GT and GIS (18).

In 2023, the application of GT was extended by in-
corporating a Unified Game-based model to effec-
tively address water conflicts among the six coun-
tries sharing the Mekong River Basin (19). The con-
cept of Nash Equilibrium, as a core element of
Game Theory, has also been applied to solve chal-
lenges in project payment scheduling and risk
management responses (20, 21). Optimal strate-
gies to reduce disparities in water allocation within
the Duck River Basin in Tennessee, USA, have been
determined using NE (22). Similarly, NE has played
a critical role in analyzing water resource alloca-
tion strategies for the Harirud River among Af-
ghanistan, Iran, and Turkmenistan (23).

Beyond GT and NE, multi-objective evolutionary al-
gorithms (MOEAs) have been widely applied to op-
timize water management problems. NSGA-II is
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recognized as an “industry-standard” and has been
successfully implemented in numerous water opti-
mization challenges (24, 25). NSGA-II was em-
ployed to address water-related issues in major cit-
ies, including New York and Hanoi (26). The PSO
algorithm has likewise been utilized to tackle wa-
ter-related challenges in Vietnam and China (27,
28). In addition to MOEAs, Geographic Information
Systems (GIS) have been applied in wastewater
systems, water distribution, energy infrastructure,
and transportation networks (29). GIS-based spa-
tial statistical methods were used to address trans-
portation issues in Iran (30), and GIS modeling was
applied to optimize land-use planning in the Erhai
Lake Basin (31-35). A specialized GIS system for
urban water management in Spain was introduced
in 2020 (36). This enhances network optimization,
improves leakage detection, and supports long-
term infrastructure planning, ultimately strength-
ening resilience against climate change (37, 38).
Despite significant advancements in applying inno-
vative technologies and mathematical methods to
water management, critical research gaps still
need to be addressed. Most existing studies focus
on water management at the river basin or national
level, while the rapidly urbanizing context of smart
cities remains underexplored. Furthermore, social
factors like stakeholder interaction and collabora-
tion are frequently overlooked or overly simplified
in current models.

Water management in smart cities presents com-
plex challenges due to conflicting interests among
stakeholders such as households, suppliers, and
policymakers. These conflicts often led to ineffi-
ciency, particularly when compounded by outdated
infrastructure and uneven distribution, resulting in
localized shortages and significant water losses.
Additionally, long-term sustainability was increas-
ingly threatened by rapid urbanization and climate
change, highlighting the need for adaptive, data-
driven management approaches. To address these
issues, this study proposed a novel framework that
integrated NE, MOEA and GIS. NE, grounded in GT,
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was applied to model stakeholder interactions and
to establish stable water allocation strategies in
which no participant could unilaterally improve
their outcome, thereby promoting fairness and co-
operation. To resolve trade-offs among economic
efficiency, environmental sustainability, and social
equity, the study incorporated the OMOPSO algo-
rithm, which identified Pareto-optimal solutions
across multiple conflicting objectives. GIS was fur-
ther embedded into the optimization process to in-
corporate spatial constraints and enable real-time,
location-aware adjustments in water distribution,
which improved infrastructure planning, leakage
detection, and climate resilience. Overall, the pro-
posed approach advanced the state of the art by de-
fining essential optimization parameters, including
infrastructure conditions, pressure levels, leakage
rates, and consumer prioritization, by developing a
domain-specific, game-theoretic framework for
fair and efficient urban water management under
real-world spatial constraints.

Methodology

Potable water management in smart cities is a dif-
ficult subject that is heavily impacted by competing
interests and limited resources. Effective Smart
City Water Resources Management (SCWRA) ne-
cessitates a framework for analyzing strategic in-
teractions and negotiating dynamics among water
stakeholders. Thus, we represent our problem as
follows: Assume we have N participants (N €
N*,n > 2) represented as Node (each node i €
N*) on GIS, where each Node corresponds to a con-
sumer (household, business, etc.) relying on clean
water. Each Node is defined by coordinates (x}; y*)
on the GIS map, representing its precise location
and influencing factors such as demand, water sup-
ply access, and distribution constraints.

Each Node has a specific water demand, geo-
graphic coordinates, and priority level. The dataset
in the Table 1 shows the water demand (m3/day),
coordinates(x; y), and priority level for each Node:

Table 1: Simulation Data for Water Management in Thanh Xuan District, Hanoi, Vietnam

Node X y Water Demand (m?/day) Priority Level
1 10 20 500 1
2 15 25 2000 0.8
3 30 35 5000 0.5

In this example, the goal is to allocate water effi-
ciently to each Node, ensuring that each receives an

amount proportional to its demand while adhering
to supply and distribution constraints. The simula-
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tion output in Figure 3 illustrates the management
and highlights water shortages. Colors indicate the
priority for redistribution: red denotes severe
shortage requiring immediate action, orange indi-
cates high priority, yellow indicates moderate pri-

Vol 6 | Issue 4

ority, and green indicates low priority; gray areas
reflect adequate supply with no intervention
needed. Greater color intensity corresponds to
greater local severity within each class.
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Figure 3: Water Management

In the SCWRA problem, each Node is characterized
by attributes such as water management before
leakage WA?, flow rate FR!, water pressure WP?,
and the optimal water pressure w popt' ,required
for efficient distribution. These characteristics are
common in existing models of resource manage-
ment as they are essential for determining the ef-
fectiveness of water distribution systems (40). The
water demand for each Node is determined by Dt
and its leakage rate LC', is also a significant factor
in the model (41). In addition to these established
factors, each Node’s strategy includes its allocated

Table 2: Summarize the Characteristics of Players

for Agriculture on GIS System (39)

water (x; y'), priority level PL!, and leakage con-
trol strategy LC!, ensuring equitable distribution.
The main characteristics of players and their corre-
sponding strategies used in the model are summa-
rized in Table 2.

The SCWRA problem requires optimizing multiple
objectives, including ensuring sufficient Water
Management WA’ based on Water Demand D!,
minimizing water losses through Leakage Control
LC' and Pipe Flow Rate FR' adjustments, and
maintaining Water Pressure WP' stability.

and Strategies

Characteristics of Players

Characteristics of Strategies

Water Management WA!, Flow Rate FR’, Water
Pressure WP!, Optimal Water Pressure

WPOPt' Water Demand D!

Coordinates (x‘; y%), Priority Level PL!, Leakage Con-
trol rate LC*

GIS data collection of N

waler allocation aregs Notis

Initialize characlenstics of

Load number of players (15 spatial analysis for houschold

and their characleristics location & network coverage

Update GIS

Cutput optimal solutions
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Figure 4: Flowchart

for Solving the SCWRA Issue
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Additionally, it involves prioritizing nodes accord-
ing to their Priority Level PL! and leakage control,
aims to optimize water distribution, minimize leak-
age, and ensure fairness. These objectives are in-
terdependent and must be balanced for efficient,
fair, and stable water distribution, as shown in the
Figure 4. The Unified Game-based model was ap-
plied in project management, conflict resolution,
and multi-round auction optimization (42), provid-
ing a robust framework for modeling strategic in-
teractions among stakeholders. Specifically, it was
successfully used to model multi-agent conflicts in
project management scenarios and to optimize
bidding strategies in complex auction environ-
ments. This model effectively captures equilibrium
conditions in cooperative scenarios with non-zero-
sum and imperfect information, making it particu-
larly suitable for addressing SCWRA problems. By
leveraging Nash equilibrium concepts, we can es-
tablish an interaction framework where water sup-
pliers and consumers strategically balance individ-
ual objectives and mutual constraints to achieve
stable, optimal resource allocation.

To find a balanced solution to the problem, we pro-
posed a novel model called the Unified Nash equi-
librium model, which aims to achieve a win-win
outcome in water resource allocation. For the
SCWRA problem, we refer to this model as G:

G = ({P%,P°},{5,5%, (U, U, RE) [1]
Where Pi={pi,...,p}} and (1 < i < M): the array
of Note i, M € N* is the number of Nodes
e PO: Special player (customer satisfaction), repre-
sents the overall consumer experience, capturing
the impact of water management, pricing, and ser-
vice quality. It ensures fairness, service efficiency,
and responsiveness, balancing individual needs
with system optimization. {S}, ..., Sk}
ost = {sh... sk} (1<i<KeN=x) and
§9={s?,...,52} (1 < i < K) are set of strategies of
the player P! and P°, respectively, K € N* is the
number of strategies
euiand u®:Sand S° - R are payoff functions for
players P! and P°.
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e R¢:avector space representing the conflict struc-
ture in the SCWRA game. Where a nonempty vec-
tor, v € R captures conflicts involving N players
(N € N %) in the normal form of the game. Specially,
v can be expressed as a vector of strate-
gies (Spq, ) Sxy), Withs,q, Sy € ST, where (1<
px<N)andl<g<M,1<y<M,.

The main parameters of the model include: the
characteristics of the players Node i and the char-
acteristics of the strategies S! are defined as fol-
lows and have been outlined earlier in the problem
definition. Each player is represented by the fol-
lowing parameters: Pi= {WA!, FRL, WP!, WPoPt'}
and S'={D!, (x},y"), PL}, LC'}.

In the proposed model, convergence to a unique
Nash equilibrium is guaranteed when the following
conditions are satisfied:

(i) each player P! (including the special player P°)
has a non-empty, compact, and convex strategy set
St c RX; (ii) the payoff functions U%: S x S7t - R
are continuous in all strategies and quasi-concave
in the player’s own strategy; and (iii) the conflict
structure vector space R¢ ensures that no strictly
dominated strategies exist, thereby eliminating cy-
cles of best responses. Under these conditions, ex-
istence and uniqueness follow from standard fixed-
point theorems (Debreu-Fan-Glicksberg).

In practice, uniqueness is confirmed by imple-
menting an iterative best-response algorithm,
where each player updates its strategy s’ € S¢ to
maximize U’ given the strategies of others. Conver-
gence is declared once max; |l si,; — st 1< €, with
€ denoting a small tolerance threshold. Numerical
experiments on the SCWRA dataset consistently
showed convergence within finite iterations, and
sensitivity analysis confirmed that the equilibrium
solution was robust to variations in initial strategy
profiles. The presence of the special player P°, rep-
resenting consumer satisfaction, further stabilizes
the system by penalizing deviations that reduce
global efficiency, which strengthens uniqueness
compared to classical Nash formulations.

Based on the characteristics of the proposed model, the payoff functions are designed as follows:
Payoff for Each Node i: The actual amount of water provided to each Node

24
FR?

ul = WA — (= .PLi.J(xi—xf)Z+(yi—yi)2)—(Lci.WAi)—<

Payoff for Special player:

i i
|[wpt-wpOPt |
wpoptt

WA ) [2]
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M

w =y wa-y

where: %: Time to supply per day (m?/day)

M
o (Dt — wah - E
i=1
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(3]

(x' —x7)? + (y* — y/)?: the distance from Node i to source (km)

LC' .WA': Leakage Loss (m*/day)
(wpi-wpopt'|
wpoptt

Our model effectively addressed the SCWRA prob-
lem by integrating players' strategies, requiring
that no player can unilaterally deviate to improve
their payoff: u'(s;,s*;) > u'(s;,s*;)Vs; € S, Vi €
{1, ..., M}. It balances system-wide objectives with
individual player preferences, ensuring fair re-
source distribution. The model's computational ef-
ficilency comes from its clear mathematical rela-
tionships, which simplify calculation and optimiza-
tion. The model's output may be used by local gov-
ernments and water organizations to guide several
decision-making levels. In particular, the model's
equilibrium techniques show the best allocation
patterns that strike a compromise between infra-
structure limitations, stakeholder demands, and
environmental goals. Policymakers should use
these results as a guide for creating fair and effec-
tive water distribution plans that minimize conflict
among stakeholders, maximize resource utiliza-
tion, and enhance compliance. Through GIS inte-
gration, the model also offers spatially resolved in-
sights, allowing for targeted actions based on re-
gional differences in demand and supply.
Water management in smart cities is an NP-hard
problem, indicating that its solution space grows
exponentially, rendering optimal solutions compu-
tationally infeasible for large-scale systems (43).
Specifically, for n nodes (n € N x,n > 2) , the
number of potential coalitions among nodes
reaches 2™, rendering precise computation infea-
sible due to the vast solution space. This complex-
ity is heightened by conflicting goals, including op-

.WA!: Leakage loss based on pressure loss (m?/day)

timizing water management WA!, minimizing
losses LC'.WA!, maintaining optimal pressure
WP, and ensuring fairness u®, with spatial dis-
tances (x'—x/)? + (y' —y/)?
data.

OMOPSO models Node as a swarm of particles for
SCWRA G = ({P},P%}, {55, {U, U, RC)
where each particle encodes Strategies s’ using

requiring GIS

parameters PR'.LC' and WA, aiming to achieve
solutions aligned with NE principles. It tackles NP-
hard complexity (2™ solution spaces) by iteratively
updating particles via parallel processing, guided
by Pres: and gpes: , With velocity constraints bal-
ancing exploration and exploitation. Mutation en-
sures diversity, while GIS data (x%, y*) adjusts FR,
yielding Pareto-optimal solutions for costs, water
losses, and pressure stability.

To implement OMOPSO for SCWRA, each particle
represents a chromosome encoding a water distri-
bution plan, with components defining parame-
ters, such as flow quantities FR’, leakage mitiga-
tion factors LCY, and pressure settings WP* across
all Node in Thanh Xuan District. The particle inte-
grates Node attributes like demand D, priority PL
, and geographic positions (x¢,y!). Specifically, a
particle is defined as X =
[FRY,LC,', WP,', ...,FRy',LC,,', WPy,'] where M
is the number of Nodes, and subscripts denote
Nodes indices within the array for each Node i. An
illustrative particle as Figure 5 is proposed as X =
[100, 0.1, 4, 200, 0.15, 4.5, 300, 0.2, 5].

Represent the choice of players for stratergies

100 || 01 200

0.15

45 300 || 02

Figure 5: A sample Chromosome
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Where each triplet corresponds to
[FR!,LC,,, WP,'] for Node 1, Node 2, and Node 3,
respectively. The fitness function minimizes differ-
ences between Node by striking a balance between
efficiency and justice while assessing the quality of
a water management plan. When lu! — u/l ap-
proaches 0, indicating near-equal benefits among
Nodes, Fitness decreases, signifying an optimal so-
lution; conversely, as u’ — u/ increases, the value
rises, reflecting greater inequality and less effec-
tive management.

Vol 6 | Issue 4

The fitness function is defined as follows:

Mo
Z_ Jut=ul|
el S
2XM? x“ﬁo
Where:
e u' the payoff function for a normal player
Node i
e 1/ is the payoff function for a normal player
Node j
o 1 is the payoff function for a special player

F [4]

e M (M = 1) isthe number of water manage-
ment Notes in the system.

Iiaze prace Fvalial Finess for Updateveocly nd
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Figure 6: Flowchart of the OMOPSO Algorithm for the Problem

The OMOPSO algorithm initializes a swarm of par-
ticles, each encoding a water distribution plan for
Thanh Xuan District Nodes, using GIS data (x!,y")
It iteratively refines these plans by updating posi-
tions, applying mutation, and evaluating fitness to
ensure fairness and efficiency. The process repeats
until a Pareto-optimal set is delivered, balancing
management, leakage, and pressure stability.
Based on the workflow delineated in Figure 6, the

pseudo code for OMOPSO (Figure 7) formalizes its
methodology for addressing the SCWRA problem.
It initializes a swarm of particle encoding strate-
gies st, evaluates fitness using GIS coordinates
(x!,y"), and iterates over T cycles with mutation to
refine positions and archive non-dominated solu-
tions in A. The algorithm terminates upon reaching
the iteration threshold, yielding a Pareto-optimal
set of water management strategies.

Algorithm 1 OMOPSO Algorithm for SCWRA

w fort=1toT do

4 for each particle X € § do
(.Uh-.\r
WAL

end for

non-dominated solutions from S.
. end for
: return A,

Require: Notes data (D', PLY, (2, 4")), Constraints (W A", LC*, WP, Swarm
size NV, Max iterations T, Vi, Mutation rate.
Ensure: Pareto archive A of optimal water allocation plans,
[nitialize swarm S with N particles X = [FR}, LC]. WP
M nodes and velocities V' within constraints; set Pareto archive A = (.
2 Evaluate fitness F(X) for each particle X € 5 using GIS data ((«°, ")) to
compute u'; set prog = X and gy, a5 the best particle in S.

Update velocity V = w - V + ¢y - rand() - (ppese
— X), then position X = X + V7 integrate GIS data (x', ') to adjust

Apply mutation to X with probability muletion_rate, evaluate fit-
ness F(X), and update ppese = X if FIX) = F(ppes:)-

Update gy as the best particle in 8 update Pareto archive A with

W Pl'u] for

— X) + ¢a - rand() -

Figure 7: Pseudo Code of OMOPSO Algorithm in SCWRA
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In experiment, all computational tests were exe-
cuted on a high-performance system configured
with a 12th Gen Intel(R) Core(TM) i5-12450H pro-
cessor, an NVIDIA GeForce GTX 1650 GPU, and 15.7

Table 3: Experiment Parameters for OMOPSO

Vol 6 | Issue 4

DDR4 RAM. These hardware specifications were
chosen to optimize the algorithm's performance.
Table 3 below details the experimental parameters
used in this study.

Swarm IltVlaXItl-num ( :Ar;e-rtll:: Cognitive Co- Social Coef- Mutation Spied- C:)n-
erations ei straints
Size(N) m (‘f) efficient (c!) ficient (c?)  Probability (Vmax)
50 100 0.5 2.0 2.0 0.1 0.6

Results and Discussion

This study introduces a dataset with weighted val-
ues for factors affecting water management across
four Nodes, each assessed with two strategies. Key
indicators for each Node include allocated water,
distance from the water source, priority level, leak-
age coefficient (scaled by a factor of 10 for optimi-
zation consistency), water demand, water pres-
sure, and optimal pressure, as summarized in the
table below for the first four Nodes. Utilizing the
dataset partially outlined in Table 4, the experi-
mental outcomes are summarized in Table 5, Table
6, and Figure 8. Table 5 displays the optimal water

Table 4: A part of the Dataset for Nodes

management solution for each Node, including its
respective payoff value, highlighting the balance
between gains and losses across the Node through
the application of the OMOPSO algorithm.
Leveraging the optimal strategies and correspond-
ing payoff values presented in Table 5, Table 6 eval-
uates the performance of various optimization al-
gorithms (VEGA, NSGAII, NSGAIII, SMPSO, PESAZ2,
and OMOPSO) when applied to the dataset. The fig-
ure quantitatively assesses the convergence effi-
ciency of each algorithm toward the optimal solu-
tions derived from Table 5, illustrating their fitness
values across multiple iterative cycles.

ID Strategy WA! Distance PL LCt DL} WP! wpevy'
1 1 1000 0.36 0.07 0.08 4814.1 2.39 8.87
2 2000 0.74 0.05 0.06 21885 1.09 6.38
9 1 1000 0.21 0.07 0.02 4084.9 5.82 6.16
2 2000 0.62 0.03 0.02 7245.5 5.97 9.24
3 1 3000 0.86 0.07 0.02 9411.5 2.36 9.87
2 4000 0.29 0.08 0.05 3466.8 3.81 6.87
4 1 1000 0.33 0.04 0.01 2140.7 2.42 8.17
2 2000 0.22 0.02 0.08 6344.9 413 9.69
Table 5: Result of the Experiment
Player Chosen Strategy Name Payoff Value
Node 1 Strategy 38 6230.93
Node 2 Strategy 25 9510.88
Node 3 Strategy 5 6988.82
Node 4 Strategy 53 3717.33
Node 5 Strategy 8 9162.32
Table 6: Comparison of Fitness Value of Different Algorithms
Inter VEGA NSGAII NSGAIII SMPSO PESA2 OMOPSO
1 221.48 0.93 1.69 10-3 29.29 13.99
2 359.74 0.11 0.70 0.04 7.70 0.02
3 535.91 7.51 2.60 910-4 0.26 0.25
4 92.39 1.70 0.04 0.03 149.27 1.65
5 268.16 0.09 23.99 0.65 0.07 0.01
6 8.66 16.37 2.98 0.02 5.61 0.03
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7 783.54 0.32 0.61
8 505.06 2.26 1.62
9 2727.70 2.51

10 543.47 5.10 0.43

22.74

Vol 6 | Issue 4

2.04 61.80 10-3
3.47 1.69 15.49
0.07 38.23 0.40
0.97 3212 0.03

Table 6 examines the fitness values of six optimiza-
tion algorithms (VEGA, NSGAII, NSGAIII, SMPSO,
PESA2, and OMOPSO) across multiple iterations.
The table reports the fitness value for each algo-
rithm, which indicates the quality of the solution
(scaled by a factor of 100,000 for presentation); for

instance, OMOPSO at the first iteration records a
fitness value of 13.99. These metrics facilitate a
quantitative assessment of each algorithm’s con-
vergence performance in deriving optimal solu-
tions.

Runningtime (second)

Iteration

u OMOPSO
mVEGA

m NSGAIIl

m NSGAIIl
u SMPSO

m PESA2

Figure 8: Comparison of Runtime (In Seconds) of Different Algorithms

Figure 8 depicts a runtime comparison of multiple
optimization algorithms (VEGA, NSGAII, NSGAIII,
SMPSO, PESA2, and OMOPSO) via a line chart, de-
tailing the computational duration of each algo-
rithm across successive iterations. Collectively, Ta-
ble 7 and Figure 8 offer a rigorous assessment of
the algorithms’ computational efficiency and
speed, enabling the determination of the optimal
algorithm for solving the given problem.

Table 6 and Figure 8 compare the fitness values
and runtimes of the VEGA, NSGAII, NSGAIII,
SMPSO, PESA2, and OMOPSO algorithms across ten
trials for the multi-objective optimization problem
of SCWRA. In Table 7, OMOPSO demonstrates supe-
rior performance with fitness values ranging from
0.001 to 15.49, achieving the lowest at the 7th iter-
ation, far surpassing VEGA with an unstable range
from 8.66 to 2727.70, peaking at the 9th iteration.
NSGAIIl maintains stability from 0.04 to 23.99,
highest at the 5th iteration, yet lags behind
OMOPSO, while NSGAII from 0.09 to 16.37, SMPSO

from 0.0009 to 3.47, spiking at the 8th iteration,
and PESA2 from 0.07 to 149.27 exhibit incon-
sistent performance.

Figure 8 highlights OMOPSO's computational effi-
ciency with a stable runtime of 5.001 to 5.096 sec-
onds, ranking among the fastest. NSGAIII peaks at
5.229 seconds in the 3rd iteration, showing higher
cost, while VEGA varies from 5.094 to 5.263 sec-
onds with moderate efficiency, and NSGAII (5.024-
5.163 seconds) and SMPSO (5.012-5.084 seconds)
remain consistent. OMOPSO's low, stable runtime
and competitive fitness affirm its reliability for
SCWRA optimization.

Figure 9 illustrates the spatial distribution of water
management results in Thanh Xuan District on a
GIS map, utilizing optimal solutions derived from
OMOPSO. It marks the locations of 10 Nodes, color-
coded to represent the allocated water. This visual-
ization demonstrates the framework’s ability to
achieve equitable and efficient water distribution
across the district.
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Figure 9: Spatial Distribution of Water Allocation in Thanh Xuan District, Ha Noi, Vietnam

The experimental results provided a quantitative
validation of OMOPSOQ’s superior efficacy in ad-
dressing the multi-objective water management
problem (SCWRA). OMOPSO consistently achieved
the lowest fitness values (0.001-15.49), outper-
forming VEGA's unstable range (8.66-2727.70),
while NSGAIII (0.04-23.99), NSGAII (0.09-16.37),
PESA2 (0.07-149.27), and SMPSO (peak 3.47) fell
short of its precision and consistency, emphasizing
OMOPSO'’s superior convergence in complex multi-
objective scenarios. Additionally, OMOPSO'’s stable
runtime (5.001-5.096 seconds) surpassed NSGAIII
(peak 5.229 seconds), VEGA (5.094-5.263 sec-
onds), NSGAII (5.024-5.163 seconds), and SMPSO
(5.012-5.084 seconds), confirming its efficiency
and rapid convergence, which is vital for timely wa-
ter management decisions.

Beyond direct optimization performance, our
study advanced existing research on MOEAs and
OMOPSO applications by integrating these meth-
odologies with theoretical constructs such as GT
and Nash Equilibrium. Additionally, the compara-
tive fitness analysis suggested the potential inte-
gration of GIS to enhance smart city applications by
embedding socio-dynamic factors into optimiza-
tion models. Such an interdisciplinary approach
strengthens the theoretical foundation for the pro-
posed methodology, offering new perspectives on
sustainable urban water management.

Conclusion

This study proposed an integrated approach com-
bining GIS with a NE-based model to address the
SCWRA problem. The NE model provides a robust
mathematical structure for modeling strategic in-
teractions among suppliers, consumers, and sys-
tem performance entities. By explicitly formulating
players' strategies and payoffs and solving for Nash
Equilibrium, the model captures stable states
where no participant can improve their outcome

by unilaterally changing their strategy. The conflict
structure is represented through a vector space R,
ensuring detailed modeling of strategic tensions
across the system. This combination of GIS and NE
modeling offers a powerful decision-support
framework, balancing individual interests and sys-
tem-wide objectives in complex water resource al-
location scenarios.

Despite these contributions, the study was subject
to several constraints. The NE formulation
assumed rational behavior complete
information, which may not fully reflect real-world
stakeholder decision-making. Furthermore, the
analysis was conducted under static equilibrium
conditions,

and

without explicitly incorporating
dynamic changes in demand, rainfall variability, or
long-term climate uncertainty. The model also did
not consider potential cooperative agreements or
coalition-building mechanisms, which may
influence allocation outcomes in practice.

Future research should extend the framework by

integrating  dynamic or repeated game
formulations to  capture time-dependent
adjustments in stakeholder strategies.

Incorporating stochastic variables related to
hydrological uncertainty and climate change
scenarios would further improve robustness. In
addition, combining the NE model with
cooperative game theory or agent-based modeling
could offer deeper insights into coalition formation
and adaptive management. Finally, applying the
framework to real-world case studies with
empirical data would help validate its practical
applicability and inform policy design.
Abbreviations
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NE - Nash Equilibrium,
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cle Swarm Optimization.
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