
International Research Journal of Multidisciplinary Scope (IRJMS), 2025; 6(4):1661-1672  
     

Original Article | ISSN (O): 2582-631X        DOI: 10.47857/irjms.2025.v06i04.06210 

Unified Nash Equilibrium Model for Water Management Strat-
egies in Smart Cities 

Trinh Bao Ngoc*, Nguyen Minh Hieu, Do Thi Ngoc Anh, Vu Huu Thong, To 
Thanh Thai, Hoang Phuong Thao, Le Thi Chung, Pham Thi Tuyet 

Faculty of Information Technology, Hanoi University, Hanoi, Vietnam. *Corresponding Author’s Email: trinhbaongoc@ccmcs.net 

Abstract 
Water scarcity and allocation disputes have emerged as major challenges in increasingly urbanizing smart cities, where 
increasing population density, outdated infrastructure, high water losses, and unequal geographic distribution fre-
quently result in shortages despite adequate overall supply. Traditional techniques, such as linear programming and 
agent-based modeling, have produced helpful insights, but they are still restricted in capturing varied stakeholder be-
haviors, assuring equilibrium stability in competitive contexts, and providing spatially adaptable solutions. To address 
these shortcomings, this study applies the concept of the Nash Equilibrium (NE) model within Game theory (GT) to 
model strategic interactions among households, industries, utilities, and regulators, each with distinct payoff functions. 
Once equilibrium is achieved, no stakeholder can unilaterally improve its outcome, thereby guaranteeing fairness and 
stability. Building on this theoretical foundation, the model integrates Optimized Multi-Objective Particle Swarm Opti-
mization (OMOPSO) to efficiently explore Pareto-optimal trade-offs between economic, social, and environmental ob-
jectives, while Geographic Information Systems (GIS) incorporate spatial constraints to deliver geographically realistic 
allocation strategies. Experimental validation demonstrates that the proposed model consistently outperforms existing 
approaches within the framework of Multi-Objective Evolutionary Algorithms (MOEAs) in terms of convergence stabil-
ity and computational efficiency. Beyond algorithmic performance, the findings highlight practical applications for tariff 
design, consumer incentive programs, infrastructure investment, and water-use restrictions. This study increases state-
of-the-art urban water management by integrating GT, evolutionary optimization, and spatial analysis, while also 
providing policymakers with a strong and fair decision-support framework for sustainable resource allocation. 
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Introduction  
Water is fundamental to achieving sustainability, 

functioning as a vital resource across human, in-

dustrial, and ecological sectors. This significance is 

underscored in the United Nations' 2030 Sustaina-

ble Development Goals (SDGs) (1), which highlight 

the imperative to “ensure the availability and sus-

tainable management of water and sanitation for 

all”. However, water scarcity is one of humanity’s 

most urgent challenges nowadays, particularly in 

major urban centers. In Hanoi, one of Vietnam's 

most densely populated cities; the city’s urbaniza-

tion ratio reached 58.7% in 2020 and is projected 

to rise to 68.2% by 2030 in Figure 1 (2). Hanoi's 

daily tap water demand is estimated at 1,250,000 

to 1,350,000 m³, with a supply capacity of approx-

imately 1,530,000 m³ per day. While the city's wa-

ter treatment facilities can nearly fulfill overall de-

mand, uneven distribution leads to localized water 

shortages in certain areas in Hanoi (3). In addition, 

water loss is a critical factor contributing to water 

shortages in Vietnam generally and in Hanoi spe-

cifically. The water loss rate, once significantly 

high, has been gradually reduced to 21.5%, align-

ing with rates observed in other countries in the re-

gion; however, it remains above those seen in de-

veloped nations (4). Water loss is primarily driven 

by the absence of adequate technological solutions 

in numerous cases (5).  Nowadays, several factors 

contribute to challenges related to clean water. One 

of the main causes is the conflict among stakehold-

ers in the distribution and utilization of water, as 

illustrated in Figure 2 below, along with limitations 

in water planning and management. Consequently, 

both ordinary cities and those with high smart city 

indices are affected. Notable examples include Lon-

don (ranked 8th), Beijing (ranked 13th), Hong 

Kong (China) (ranked 20th), and Melbourne 
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Figure 1: Hanoi’s Population Growth from 1954 to 2030 (2) 

 

 
Figure 2: Stakeholder Conflicts in Smart City Water Management 

 

(ranked 33rd) (6). To address clean water chal-

lenges in smart cities, GIS is vital, offering compre-

hensive tools for geospatial data acquisition, anal-

ysis, and visualization, which are crucial for infra-

structure development stages (7-12). Further-

more, GT provides a framework for equitable water 

distribution, enabling the evaluation of sharing 

mechanisms to ensure fairness among stakehold-

ers (13). Specifically, the NE is a key concept in GT, 

identifying optimal strategies where no player can 

improve their outcome by changing their strategy 

alone (14). The application of GT and NE aims to 

achieve a scenario where all stakeholders have suf-

ficient water for economic and domestic purposes, 

thus enhancing the overall quality of life. Integrat-

ing GIS with GT and NE helps identify strategies 

that effectively balance water demands while en-

suring the economic viability of water providers. 

To manage complex water management, this study 

employed MOEAs, population-based methods ef-

fective for conflicting goals (15). MOEAs iteratively 

refine candidate solutions using evolutionary prin-

ciples, aiming for the Pareto-optimal front, which 

represents the best trade-offs between objectives 

(16). Compared to single-objective methods, 

MOEAs excel in water management by simultane-

ously addressing economic, social, and environ-

mental goals (17). Their ability to explore vast so-

lution spaces makes them ideal for intricate urban 

water distribution planning, particularly when 

combined with GT and GIS (18). 

In 2023, the application of GT was extended by in-

corporating a Unified Game-based model to effec-

tively address water conflicts among the six coun-

tries sharing the Mekong River Basin (19). The con-

cept of Nash Equilibrium, as a core element of 

Game Theory, has also been applied to solve chal-

lenges in project payment scheduling and risk 

management responses (20, 21). Optimal strate-

gies to reduce disparities in water allocation within 

the Duck River Basin in Tennessee, USA, have been 

determined using NE (22). Similarly, NE has played 

a critical role in analyzing water resource alloca-

tion strategies for the Harirud River among Af-

ghanistan, Iran, and Turkmenistan (23). 

Beyond GT and NE, multi-objective evolutionary al-

gorithms (MOEAs) have been widely applied to op-

timize water management problems. NSGA-II is 
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recognized as an “industry-standard” and has been 

successfully implemented in numerous water opti-

mization challenges (24, 25). NSGA-II was em-

ployed to address water-related issues in major cit-

ies, including New York and Hanoi (26). The PSO 

algorithm has likewise been utilized to tackle wa-

ter-related challenges in Vietnam and China (27, 

28). In addition to MOEAs, Geographic Information 

Systems (GIS) have been applied in wastewater 

systems, water distribution, energy infrastructure, 

and transportation networks (29). GIS-based spa-

tial statistical methods were used to address trans-

portation issues in Iran (30), and GIS modeling was 

applied to optimize land-use planning in the Erhai 

Lake Basin (31-35). A specialized GIS system for 

urban water management in Spain was introduced 

in 2020 (36). This enhances network optimization, 

improves leakage detection, and supports long-

term infrastructure planning, ultimately strength-

ening resilience against climate change (37, 38). 

Despite significant advancements in applying inno-

vative technologies and mathematical methods to 

water management, critical research gaps still 

need to be addressed. Most existing studies focus 

on water management at the river basin or national 

level, while the rapidly urbanizing context of smart 

cities remains underexplored. Furthermore, social 

factors like stakeholder interaction and collabora-

tion are frequently overlooked or overly simplified 

in current models. 

Water management in smart cities presents com-

plex challenges due to conflicting interests among 

stakeholders such as households, suppliers, and 

policymakers. These conflicts often led to ineffi-

ciency, particularly when compounded by outdated 

infrastructure and uneven distribution, resulting in 

localized shortages and significant water losses. 

Additionally, long-term sustainability was increas-

ingly threatened by rapid urbanization and climate 

change, highlighting the need for adaptive, data-

driven management approaches. To address these 

issues, this study proposed a novel framework that 

integrated NE, MOEA and GIS. NE, grounded in GT, 

was applied to model stakeholder interactions and 

to establish stable water allocation strategies in 

which no participant could unilaterally improve 

their outcome, thereby promoting fairness and co-

operation. To resolve trade-offs among economic 

efficiency, environmental sustainability, and social 

equity, the study incorporated the OMOPSO algo-

rithm, which identified Pareto-optimal solutions 

across multiple conflicting objectives. GIS was fur-

ther embedded into the optimization process to in-

corporate spatial constraints and enable real-time, 

location-aware adjustments in water distribution, 

which improved infrastructure planning, leakage 

detection, and climate resilience. Overall, the pro-

posed approach advanced the state of the art by de-

fining essential optimization parameters, including 

infrastructure conditions, pressure levels, leakage 

rates, and consumer prioritization, by developing a 

domain-specific, game-theoretic framework for 

fair and efficient urban water management under 

real-world spatial constraints. 
 

Methodology 
Potable water management in smart cities is a dif-

ficult subject that is heavily impacted by competing 

interests and limited resources. Effective Smart 

City Water Resources Management (SCWRA) ne-

cessitates a framework for analyzing strategic in-

teractions and negotiating dynamics among water 

stakeholders. Thus, we represent our problem as 

follows: Assume we have 𝑁  participants (𝑁 ∈

 𝑁∗, 𝑛 >  2)  represented as Node (each 𝑛𝑜𝑑𝑒 𝑖 ∈

 𝑁∗) on GIS, where each Node corresponds to a con-

sumer (household, business, etc.) relying on clean 

water. Each Node is defined by coordinates (x𝑖 ; y𝑖) 

on the GIS map, representing its precise location 

and influencing factors such as demand, water sup-

ply access, and distribution constraints. 

Each Node has a specific water demand, geo-

graphic coordinates, and priority level. The dataset 

in the Table 1 shows the water demand (m³/day), 

coordinates(𝑥; 𝑦), and priority level for each Node: 

 

Table 1: Simulation Data for Water Management in Thanh Xuan District, Hanoi, Vietnam 

Node x y Water Demand (m³/day) Priority Level 

1 10 20 500 1 

2 15 25 2000 0.8 

3 30 35 5000 0.5 
 

In this example, the goal is to allocate water effi-

ciently to each Node, ensuring that each receives an 

amount proportional to its demand while adhering 

to supply and distribution constraints. The simula-
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tion output in Figure 3 illustrates the management 

and highlights water shortages. Colors indicate the 

priority for redistribution: red denotes severe 

shortage requiring immediate action, orange indi-

cates high priority, yellow indicates moderate pri-

ority, and green indicates low priority; gray areas 

reflect adequate supply with no intervention 

needed. Greater color intensity corresponds to 

greater local severity within each class. 

 

 
Figure 3: Water Management for Agriculture on GIS System (39) 

 

In the SCWRA problem, each Node is characterized 

by attributes such as water management before 

leakage𝑊𝐴𝑖  , flow rate 𝐹𝑅𝑖  , water pressure 𝑊𝑃𝑖  , 

and the optimal water pressure 𝑊𝑃𝑜𝑝𝑡𝑖  ,required 

for efficient distribution. These characteristics are 

common in existing models of resource manage-

ment as they are essential for determining the ef-

fectiveness of water distribution systems (40). The 

water demand for each Node is determined by 𝐷𝑖 , 

and its leakage rate 𝐿𝐶𝑖 ,  is also a significant factor 

in the model (41). In addition to these established 

factors, each Node’s strategy includes its allocated 

water (x𝑖 ;  y𝑖) , priority level 𝑃𝐿𝑖  , and leakage con-

trol strategy 𝐿𝐶𝑖 ,  ensuring equitable distribution. 

The main characteristics of players and their corre-

sponding strategies used in the model are summa-

rized in Table 2. 

The SCWRA problem requires optimizing multiple 

objectives, including ensuring sufficient Water 

Management 𝑊𝐴𝑖   based on Water Demand 𝐷𝑖  , 

minimizing water losses through Leakage Control 

𝐿𝐶𝑖   and Pipe Flow Rate 𝐹𝑅𝑖   adjustments, and 

maintaining Water Pressure 𝑊𝑃𝑖   stability.

 

Table 2: Summarize the Characteristics of Players and Strategies 

Characteristics of Players Characteristics of Strategies 

Water Management 𝑊𝐴𝑖 , Flow Rate 𝐹𝑅𝑖 , Water 

Pressure  𝑊𝑃𝑖 ,  Optimal Water Pressure 

𝑊𝑃𝑜𝑝𝑡𝑖 , Water Demand 𝐷𝑖  

Coordinates (x𝑖; 𝑦𝑖) , Priority Level 𝑃𝐿𝑖 , Leakage Con-

trol rate 𝐿𝐶𝑖  

 

 
Figure 4: Flowchart for Solving the SCWRA Issue 
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Additionally, it involves prioritizing nodes accord-

ing to their Priority Level 𝑃𝐿𝑖  and leakage control, 

aims to optimize water distribution, minimize leak-

age, and ensure fairness. These objectives are in-

terdependent and must be balanced for efficient, 

fair, and stable water distribution, as shown in the 

Figure 4. The Unified Game-based model was ap-

plied in project management, conflict resolution, 

and multi-round auction optimization (42), provid-

ing a robust framework for modeling strategic in-

teractions among stakeholders. Specifically, it was 

successfully used to model multi-agent conflicts in 

project management scenarios and to optimize 

bidding strategies in complex auction environ-

ments. This model effectively captures equilibrium 

conditions in cooperative scenarios with non-zero-

sum and imperfect information, making it particu-

larly suitable for addressing SCWRA problems. By 

leveraging Nash equilibrium concepts, we can es-

tablish an interaction framework where water sup-

pliers and consumers strategically balance individ-

ual objectives and mutual constraints to achieve 

stable, optimal resource allocation. 

To find a balanced solution to the problem, we pro-

posed a novel model called the Unified Nash equi-

librium model, which aims to achieve a win-win 

outcome in water resource allocation. For the 

SCWRA problem, we refer to this model as G: 

𝐺 =〈{𝑃𝑖 , 𝑃0}, {𝑆𝑖, 𝑆0}, {𝑈𝑖 , 𝑈0}, 𝑅𝐶〉 [1] 

Where  𝑃𝑖={𝑝1
𝑖 , . . . , 𝑝𝑀

𝑖 } and (1 < 𝑖 < 𝑀): the array 

of 𝑁𝑜𝑡𝑒 𝑖, 𝑀 ∊ 𝑁∗ is the number of Nodes 

• 𝑃0: Special player (customer satisfaction), repre-

sents the overall consumer experience, capturing 

the impact of water management, pricing, and ser-

vice quality. It ensures fairness, service efficiency, 

and responsiveness, balancing individual needs 

with system optimization. {𝑆1
𝑖 , . . . , 𝑆𝐾

𝑖 } 

• 𝑆𝑖 = {𝑠1
𝑖 , . . . , 𝑠𝐾

𝑖 }  (1 < 𝑖 < 𝐾 ∊ 𝑁 ∗)  and 

𝑆0={𝑠1
0, . . . , 𝑠𝐾

0} (1 < 𝑖 < 𝐾) are set of strategies of 

the player 𝑃𝑖   and 𝑃0 , respectively,  𝐾 ∊ 𝑁∗  is the 

number of strategies 

• 𝑢𝑖  and  𝑢0 : 𝑆𝑖and 𝑆0 → ℝ are payoff functions for 

players 𝑃𝑖  and 𝑃0. 

• 𝑅𝐶 : a vector space representing the conflict struc-

ture in the SCWRA game. Where a nonempty vec-

tor, 𝑣 ∈  𝑅𝐶  captures conflicts involving 𝑁  players 

(𝑁 ∊ 𝑁 ∗) in the normal form of the game. Specially, 

𝑣  can be expressed as a vector of strate-

gies (𝑠𝑝𝑞 , … , 𝑠𝑥𝑦) , with 𝑠𝑝𝑞 , 𝑠𝑥𝑦 ∈ 𝑆𝑖 , where ( 1 ≤

𝑝, 𝑥 ≤ 𝑁) and1 ≤ 𝑔 ≤ 𝑀𝑝, 1 ≤ 𝑦 ≤ 𝑀𝑥. 

The main parameters of the model include: the 

characteristics of the players 𝑁𝑜𝑑𝑒 𝑖 and the char-

acteristics of the strategies 𝑆𝑖  are defined as fol-

lows and have been outlined earlier in the problem 

definition. Each player is represented by the fol-

lowing parameters: 𝑃𝑖  = {𝑊𝐴𝑖  , 𝐹𝑅𝑖 , 𝑊𝑃𝑖 , 𝑊𝑃𝑜𝑝𝑡𝑖 } 

and  𝑆𝑖={𝐷𝑖 , (𝑥𝑖 , 𝑦𝑖), 𝑃𝐿𝑖 , 𝐿𝐶𝑖}. 

In the proposed model, convergence to a unique 

Nash equilibrium is guaranteed when the following 

conditions are satisfied: 

(i) each player 𝑃𝑖  (including the special player 𝑃0) 

has a non-empty, compact, and convex strategy set 

𝑆𝑖 ⊂ ℝ𝐾; (ii) the payoff functions 𝑈𝑖: 𝑆𝑖 × 𝑆−𝑖 → ℝ 

are continuous in all strategies and quasi-concave 

in the player’s own strategy; and (iii) the conflict 

structure vector space 𝑅𝐶   ensures that no strictly 

dominated strategies exist, thereby eliminating cy-

cles of best responses. Under these conditions, ex-

istence and uniqueness follow from standard fixed-

point theorems (Debreu-Fan-Glicksberg). 

In practice, uniqueness is confirmed by imple-

menting an iterative best-response algorithm, 

where each player updates its strategy 𝑠𝑖 ∈ 𝑆𝑖  to 

maximize 𝑈𝑖  given the strategies of others. Conver-

gence is declared once 𝑚𝑎𝑥𝑖  ∥ 𝑠𝑡+1
𝑖 − 𝑠𝑡

𝑖 ∥< 𝜖, with 

𝜖 denoting a small tolerance threshold. Numerical 

experiments on the SCWRA dataset consistently 

showed convergence within finite iterations, and 

sensitivity analysis confirmed that the equilibrium 

solution was robust to variations in initial strategy 

profiles. The presence of the special player 𝑃0, rep-

resenting consumer satisfaction, further stabilizes 

the system by penalizing deviations that reduce 

global efficiency, which strengthens uniqueness 

compared to classical Nash formulations.

 

Based on the characteristics of the proposed model, the payoff functions are designed as follows: 

Payoff for Each Node i: The actual amount of water provided to each Node 

 𝑢𝑖 = 𝑊𝐴𝑖 − ( 
24

𝐹𝑅𝑖  . 𝑃𝐿𝑖 . √( 𝑥𝑖 − 𝑥𝑗)2 + ( 𝑦𝑖 − 𝑦𝑗)2 ) − ( 𝐿𝐶𝑖 . 𝑊𝐴𝑖) − ( 
|𝑊𝑃𝑖−𝑊𝑃𝑜𝑝𝑡𝑖 |

𝑊𝑃𝑜𝑝𝑡𝑖 
 . 𝑊𝐴i )      [2] 

Payoff for Special player: 
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 𝑢0 = ∑ 𝑊𝐴𝑖𝑀

𝑖=1
− ∑ (𝐷𝑖 −  𝑊𝐴𝑖𝑀

𝑖=1
) − ∑  │

𝑊𝐴𝑖

𝐷𝑖 −  
1

𝑀
∑

𝑊𝐴𝑗

𝐷𝑗  
𝑀

𝑗=1
│ 

𝑀

𝑖=1

    [3] 

where:   
24

𝐹𝑅𝑖: Time to supply per day (m³/day) 

 ( 𝑥𝑖 − 𝑥𝑗)2 + ( 𝑦𝑖 − 𝑦𝑗)2: the distance from Node 𝑖 to source (km) 

 𝐿𝐶𝑖  . 𝑊𝐴𝑖: Leakage Loss (m³/day) 

 
|𝑊𝑃𝑖−𝑊𝑃𝑜𝑝𝑡𝑖 |

𝑊𝑃𝑜𝑝𝑡𝑖 
 . 𝑊𝐴i : Leakage loss based on pressure loss (m³/day) 

 

Our model effectively addressed the SCWRA prob-

lem by integrating players' strategies, requiring 

that no player can unilaterally deviate to improve 

their payoff: 𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖

∗ ) ≥ 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖
∗ )∀𝑠𝑖 ∈ 𝑆𝑖 , ∀𝑖 ∈

{1, … , 𝑀}. It balances system-wide objectives with 

individual player preferences, ensuring fair re-

source distribution. The model's computational ef-

ficiency comes from its clear mathematical rela-

tionships, which simplify calculation and optimiza-

tion. The model's output may be used by local gov-

ernments and water organizations to guide several 

decision-making levels. In particular, the model's 

equilibrium techniques show the best allocation 

patterns that strike a compromise between infra-

structure limitations, stakeholder demands, and 

environmental goals. Policymakers should use 

these results as a guide for creating fair and effec-

tive water distribution plans that minimize conflict 

among stakeholders, maximize resource utiliza-

tion, and enhance compliance. Through GIS inte-

gration, the model also offers spatially resolved in-

sights, allowing for targeted actions based on re-

gional differences in demand and supply. 

Water management in smart cities is an NP-hard 

problem, indicating that its solution space grows 

exponentially, rendering optimal solutions compu-

tationally infeasible for large-scale systems (43). 

Specifically, for 𝑛  nodes (𝑛 ∊  𝑁 ∗, 𝑛 > 2)  , the 

number of potential coalitions among nodes 

reaches 2𝑛 , rendering precise computation infea-

sible due to the vast solution space. This complex-

ity is heightened by conflicting goals, including op-

timizing water management  𝑊𝐴𝑖 , minimizing 

losses 𝐿𝐶𝑖  . 𝑊𝐴𝑖  , maintaining optimal pressure 

𝑊𝑃𝑖  , and ensuring fairness 𝑢0  , with spatial dis-

tances ( 𝑥𝑖 − 𝑥𝑗)2 + ( 𝑦𝑖 − 𝑦𝑗)2   requiring GIS 

data.  

OMOPSO models Node as a swarm of particles for 

SCWRA 𝐺 = 〈{𝑃𝑖 , 𝑃0}, {𝑆𝑖 , 𝑆0}, {𝑈𝑖 , 𝑈0}, 𝑅𝐶〉 

where each particle encodes Strategies 𝑠𝑖    using 

parameters 𝑃𝑅𝑖  . 𝐿𝐶𝑖   and 𝑊𝐴𝑖 , aiming to achieve 

solutions aligned with NE principles. It tackles NP-

hard complexity (2𝑛 solution spaces) by iteratively 

updating particles via parallel processing, guided 

by 𝑝𝑏𝑒𝑠𝑡   and 𝑔𝑏𝑒𝑠𝑡   , with velocity constraints bal-

ancing exploration and exploitation. Mutation en-

sures diversity, while GIS data (𝑥𝑖, 𝑦𝑖) adjusts 𝐹𝑅𝑖 , 

yielding Pareto-optimal solutions for costs, water 

losses, and pressure stability. 

To implement OMOPSO for SCWRA, each particle 

represents a chromosome encoding a water distri-

bution plan, with components defining parame-

ters, such as flow quantities 𝐹𝑅𝑖  , leakage mitiga-

tion factors 𝐿𝐶𝑖 , and pressure settings 𝑊𝑃𝑖  across 

all Node in Thanh Xuan District. The particle inte-

grates Node attributes like demand 𝐷𝑖 , priority 𝑃𝐿𝑖  

, and geographic positions (𝑥𝑖 , 𝑦𝑖) . Specifically, a 

particle is defined as 𝑋 =

 [𝐹𝑅𝑖 , 𝐿𝐶1
𝑖 , 𝑊𝑃1

𝑖 , … , 𝐹𝑅𝑀
𝑖 , 𝐿𝐶𝑀

𝑖 , 𝑊𝑃𝑀
𝑖]  where M 

is the number of Nodes, and subscripts denote 

Nodes indices within the array for each 𝑁𝑜𝑑𝑒 i. An 

illustrative particle as Figure 5 is proposed as X = 

[100, 0.1, 4, 200, 0.15, 4.5, 300, 0.2, 5].  

 

 
Figure 5: A sample Chromosome 
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Where each triplet corresponds to 

[𝐹𝑅𝑖 , 𝐿C1
𝑖 , 𝑊P1

𝑖] for Node 1, Node 2, and Node 3, 

respectively. The fitness function minimizes differ-

ences between Node by striking a balance between 

efficiency and justice while assessing the quality of 

a water management plan. When ǀ𝑢𝑖 −  𝑢𝑗ǀ  ap-

proaches 0, indicating near-equal benefits among 

Nodes, Fitness decreases, signifying an optimal so-

lution; conversely, as 𝑢𝑖 − 𝑢𝑗   increases, the value 

rises, reflecting greater inequality and less effec-

tive management. 

The fitness function is defined as follows: 

𝐹 =
∑ |𝑢𝑖− 𝑢𝑗|

𝑀

𝑖𝑗

2×𝑀2×
𝑢0

𝑀
 
                                                [4] 

Where: 

•  𝑢𝑖  the payoff function for a normal player 

𝑁𝑜𝑑𝑒 𝑖 

• 𝑢𝑗  is the payoff function for a normal player 

𝑁𝑜𝑑𝑒 𝑗 

• 𝑢0 is the payoff function for a special player 

• 𝑀 (𝑀 ≥  1) is the number of water manage-

ment 𝑁𝑜𝑡𝑒s in the system. 
 

 
Figure 6: Flowchart of the OMOPSO Algorithm for the Problem 

 

The OMOPSO algorithm initializes a swarm of par-

ticles, each encoding a water distribution plan for 

Thanh Xuan District Nodes, using GIS data  (𝑥𝑖 , 𝑦𝑖) 

It iteratively refines these plans by updating posi-

tions, applying mutation, and evaluating fitness to 

ensure fairness and efficiency. The process repeats 

until a Pareto-optimal set is delivered, balancing 

management, leakage, and pressure stability. 

Based on the workflow delineated in Figure 6, the 

pseudo code for OMOPSO (Figure 7) formalizes its 

methodology for addressing the SCWRA problem. 

It initializes a swarm of particle encoding strate-

gies  𝑠𝑖  , evaluates fitness using GIS coordinates 

(𝑥𝑖, 𝑦𝑖), and iterates over T cycles with mutation to 

refine positions and archive non-dominated solu-

tions in A. The algorithm terminates upon reaching 

the iteration threshold, yielding a Pareto-optimal 

set of water management strategies. 
 

 
Figure 7: Pseudo Code of OMOPSO Algorithm in SCWRA 
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In experiment, all computational tests were exe-

cuted on a high-performance system configured 

with a 12th Gen Intel(R) Core(TM) i5-12450H pro-

cessor, an NVIDIA GeForce GTX 1650 GPU, and 15.7 

DDR4 RAM. These hardware specifications were 

chosen to optimize the algorithm's performance. 

Table 3 below details the experimental parameters 

used in this study. 
 

Table 3: Experiment Parameters for OMOPSO 

Swarm 

Size(𝑵) 

Maximum 

Iterations ( 

𝑻) 

Inertia 

Weight 

(w) 

Cognitive Co-

efficient (𝒄𝟏) 

Social Coef-

ficient (𝒄𝟐) 

Mutation 

Probability 

Speed Con-

straints 

(𝑽𝒎𝒂𝒙) 

50 100 0.5 2.0 2.0 0.1 0.6 
 

Results and Discussion 
This study introduces a dataset with weighted val-

ues for factors affecting water management across 

four Nodes, each assessed with two strategies. Key 

indicators for each Node include allocated water, 

distance from the water source, priority level, leak-

age coefficient (scaled by a factor of 10 for optimi-

zation consistency), water demand, water pres-

sure, and optimal pressure, as summarized in the 

table below for the first four Nodes. Utilizing the 

dataset partially outlined in Table 4, the experi-

mental outcomes are summarized in Table 5, Table 

6, and Figure 8. Table 5 displays the optimal water 

management solution for each Node, including its 

respective payoff value, highlighting the balance 

between gains and losses across the Node through 

the application of the OMOPSO algorithm. 

Leveraging the optimal strategies and correspond-

ing payoff values presented in Table 5, Table 6 eval-

uates the performance of various optimization al-

gorithms (VEGA, NSGAII, NSGAIII, SMPSO, PESA2, 

and OMOPSO) when applied to the dataset. The fig-

ure quantitatively assesses the convergence effi-

ciency of each algorithm toward the optimal solu-

tions derived from Table 5, illustrating their fitness 

values across multiple iterative cycles. 

 

Table 4: A part of the Dataset for Nodes 

ID Strategy 𝑾𝑨𝒊 Distance 𝑷𝑳𝒊 𝑳𝑪𝒊 𝑫𝑳𝒊 𝑾𝑷𝒊 𝑾𝑷𝒐𝒑𝒚𝒊  

1 
1 1000 0.36 0.07 0.08 4814.1 2.39 8.87 

2 2000 0.74 0.05 0.06 2188.5 1.09 6.38 

2 
1 1000 0.21 0.07 0.02 4084.9 5.82 6.16 

2 2000 0.62 0.03 0.02 7245.5 5.97 9.24 

3 
1 3000 0.86 0.07 0.02 9411.5 2.36 9.87 

2 4000 0.29 0.08 0.05 3466.8 3.81 6.87 

4 
1 1000 0.33 0.04 0.01 2140.7 2.42 8.17 

2 2000 0.22 0.02 0.08 6344.9 4.13 9.69 
 

Table 5: Result of the Experiment 

Player Chosen Strategy Name Payoff Value 

Node 1 Strategy 38 6230.93 

Node 2 Strategy 25 9510.88 

Node 3 Strategy 5 6988.82 

Node 4 Strategy 53 3717.33 

Node 5 Strategy 8 9162.32 
 

Table 6: Comparison of Fitness Value of Different Algorithms 

Inter VEGA NSGAII NSGAIII SMPSO PESA2 OMOPSO 

1 221.48 0.93 1.69 10-3 29.29 13.99 

2 359.74 0.11 0.70 0.04 7.70 0.02 

3 535.91 7.51 2.60 910-4 0.26 0.25 

4 92.39 1.70 0.04 0.03 149.27 1.65 

5 268.16 0.09 23.99 0.65 0.07 0.01 

6 8.66 16.37 2.98 0.02 5.61 0.03 
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7 783.54 0.32 0.61 2.04 61.80 10-3 

8 505.06 2.26 1.62 3.47 1.69 15.49 

9 2727.70 2.51 22.74 0.07 38.23 0.40 

10 543.47 5.10 0.43 0.97 32.12 0.03 
 

Table 6 examines the fitness values of six optimiza-

tion algorithms (VEGA, NSGAII, NSGAIII, SMPSO, 

PESA2, and OMOPSO) across multiple iterations. 

The table reports the fitness value for each algo-

rithm, which indicates the quality of the solution 

(scaled by a factor of 100,000 for presentation); for 

instance, OMOPSO at the first iteration records a 

fitness value of 13.99. These metrics facilitate a 

quantitative assessment of each algorithm’s con-

vergence performance in deriving optimal solu-

tions. 

 

 
Figure 8: Comparison of Runtime (In Seconds) of Different Algorithms 

 

Figure 8 depicts a runtime comparison of multiple 

optimization algorithms (VEGA, NSGAII, NSGAIII, 

SMPSO, PESA2, and OMOPSO) via a line chart, de-

tailing the computational duration of each algo-

rithm across successive iterations. Collectively, Ta-

ble 7 and Figure 8 offer a rigorous assessment of 

the algorithms’ computational efficiency and 

speed, enabling the determination of the optimal 

algorithm for solving the given problem. 

Table 6 and Figure 8 compare the fitness values 

and runtimes of the VEGA, NSGAII, NSGAIII, 

SMPSO, PESA2, and OMOPSO algorithms across ten 

trials for the multi-objective optimization problem 

of SCWRA. In Table 7, OMOPSO demonstrates supe-

rior performance with fitness values ranging from 

0.001 to 15.49, achieving the lowest at the 7th iter-

ation, far surpassing VEGA with an unstable range 

from 8.66 to 2727.70, peaking at the 9th iteration. 

NSGAIII maintains stability from 0.04 to 23.99, 

highest at the 5th iteration, yet lags behind 

OMOPSO, while NSGAII from 0.09 to 16.37, SMPSO 

from 0.0009 to 3.47, spiking at the 8th iteration, 

and PESA2 from 0.07 to 149.27 exhibit incon-

sistent performance.  

Figure 8 highlights OMOPSO's computational effi-

ciency with a stable runtime of 5.001 to 5.096 sec-

onds, ranking among the fastest. NSGAIII peaks at 

5.229 seconds in the 3rd iteration, showing higher 

cost, while VEGA varies from 5.094 to 5.263 sec-

onds with moderate efficiency, and NSGAII (5.024-

5.163 seconds) and SMPSO (5.012-5.084 seconds) 

remain consistent. OMOPSO's low, stable runtime 

and competitive fitness affirm its reliability for 

SCWRA optimization. 

Figure 9 illustrates the spatial distribution of water 

management results in Thanh Xuan District on a 

GIS map, utilizing optimal solutions derived from 

OMOPSO. It marks the locations of 10 Nodes, color-

coded to represent the allocated water. This visual-

ization demonstrates the framework’s ability to 

achieve equitable and efficient water distribution 

across the district. 
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Figure 9:  Spatial Distribution of Water Allocation in Thanh Xuan District, Ha Noi, Vietnam 

 

The experimental results provided a quantitative 

validation of OMOPSO’s superior efficacy in ad-

dressing the multi-objective water management 

problem (SCWRA). OMOPSO consistently achieved 

the lowest fitness values (0.001-15.49), outper-

forming VEGA’s unstable range (8.66-2727.70), 

while NSGAIII (0.04-23.99), NSGAII (0.09-16.37), 

PESA2 (0.07-149.27), and SMPSO (peak 3.47) fell 

short of its precision and consistency, emphasizing 

OMOPSO’s superior convergence in complex multi-

objective scenarios. Additionally, OMOPSO’s stable 

runtime (5.001-5.096 seconds) surpassed NSGAIII 

(peak 5.229 seconds), VEGA (5.094-5.263 sec-

onds), NSGAII (5.024-5.163 seconds), and SMPSO 

(5.012-5.084 seconds), confirming its efficiency 

and rapid convergence, which is vital for timely wa-

ter management decisions. 

Beyond direct optimization performance, our 

study advanced existing research on MOEAs and 

OMOPSO applications by integrating these meth-

odologies with theoretical constructs such as GT 

and Nash Equilibrium. Additionally, the compara-

tive fitness analysis suggested the potential inte-

gration of GIS to enhance smart city applications by 

embedding socio-dynamic factors into optimiza-

tion models. Such an interdisciplinary approach 

strengthens the theoretical foundation for the pro-

posed methodology, offering new perspectives on 

sustainable urban water management. 
 

Conclusion 
This study proposed an integrated approach com-

bining GIS with a NE-based model to address the 

SCWRA problem. The NE model provides a robust 

mathematical structure for modeling strategic in-

teractions among suppliers, consumers, and sys-

tem performance entities. By explicitly formulating 

players' strategies and payoffs and solving for Nash 

Equilibrium, the model captures stable states 

where no participant can improve their outcome 

by unilaterally changing their strategy. The conflict 

structure is represented through a vector space 𝑅𝑐 , 

ensuring detailed modeling of strategic tensions 

across the system. This combination of GIS and NE 

modeling offers a powerful decision-support 

framework, balancing individual interests and sys-

tem-wide objectives in complex water resource al-

location scenarios. 

Despite these contributions, the study was subject 

to several constraints. The NE formulation 

assumed rational behavior and complete 

information, which may not fully reflect real-world 

stakeholder decision-making. Furthermore, the 

analysis was conducted under static equilibrium 

conditions, without explicitly incorporating 

dynamic changes in demand, rainfall variability, or 

long-term climate uncertainty. The model also did 

not consider potential cooperative agreements or 

coalition-building mechanisms, which may 

influence allocation outcomes in practice. 

Future research should extend the framework by 

integrating dynamic or repeated game 

formulations to capture time-dependent 

adjustments in stakeholder strategies. 

Incorporating stochastic variables related to 

hydrological uncertainty and climate change 

scenarios would further improve robustness. In 

addition, combining the NE model with 

cooperative game theory or agent-based modeling 

could offer deeper insights into coalition formation 

and adaptive management. Finally, applying the 

framework to real-world case studies with 

empirical data would help validate its practical 

applicability and inform policy design. 

Abbreviations 
SCWRA - Smart City Water Resource Allocation,  

NE – Nash Equilibrium,  

MOEA- Multi-Objective Evolutionary Algorithm, 

GIS – Geographic Information System,  

GT - Game theory,  
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