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Abstract

Sonar is an efficient and indispensable tool for exploring underwater environments under challenging conditions. The
research has a crucial impact on domains such as marine exploration, environmental monitoring, defence,
archaeological discoveries, resource exploration, and climate research. Extracting valuable insights from sonar images
and detecting objects within obscure sonar images is tedious and challenging for both human experts and conventional
machine learning models. This study explores state-of-the-art deep learning methods for enhanced underwater object
detection in multibeam forward-looking sonar images, to determine optimal trade-off model between accuracy and
complexity. A sequence of preprocessing steps is proposed in this work to mitigate noise and enhance images,
improving the accuracy of benchmark object detection performance. This comprehensive framework for forward-
looking sonar images integrates the preprocessing techniques and target detection thereby enhancing target
visualization. The model localizes and predicts the target of each class by overcoming the challenges of target detecting
in hazy images and imbalanced class distribution. The proposed approach yields a mAP of 96.3% with 3M parameters
which implies a significant increase in efficiency in real time processing in comparison to other models. From the
analysis, the proposed framework improves visual perception and enhances object localization of the targets in the
sonar images.
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Introduction

The underwater exploration research has a crucial
impact in domains such as marine exploration,
environmental monitoring, defence, archaeological
discoveries, resource exploration, and climate
research (1-3). In recent decades, there has been
substantial progress in the technologies deployed
for gaining insights from deep water environments
beyond direct human reach. Cutting-edge
Operated Vehicles (ROV) and
Autonomous Underwater Vehicles (AUV), along
with sophisticated sonar systems and optical
technology, have revolutionized the field of
underwater exploration (3-5). Sonar is an efficient
and indispensable tool for exploring aquatic
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environments, even under challenging conditions.
Sonar data collected by surveying the location of
interest using a Sonar device which transmits
beams of sound known as “pings” into water and
record the echoes from bottom and any object in
the water column reflected back to the receiver.

The acoustic reflectivity from ocean bed and
objects are differentiated based on the strong
contrasts from rocks or metal and low contrasts
from sediments or marine life (6).

The sonar devices often employed for underwater
research encompass Single Beam Sonar,
Multibeam Sonar, Side-Scan Sonar, and Forward-
Looking Sonar (FLS). These sonar devices have
been instrumental in mapping the seafloor and
identifying submerged features. For underwater
exploration, sonar has clear advantages over
alternative technologies, such as optical imaging
(4). Sonar excels in low-light conditions, provides
extended visual ranges and offers efficient 3D
mapping capabilities in diverse environments,
from coastal waters to the most profound ocean
trenches. Extracting valuable insights from sonar
images poses a formidable challenge due to non-
uniform intensities, acoustic shadowing, speckle
noise, limited resolution, and lack of colour and
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texture information. It is essential to address these
multifaceted hurdles to acquire comprehensive
insights from sonar images (7, 8). The process of
underwater object detection using sonar devices
entails the identification, tracking and localization
of entities submerged beneath the water’s surface
within the scanned area. Objects in sonar images
appear in various sizes and aspect ratios
depending on the angles of the sonar scan,
resulting in different structures for the same object
(9, 10). Detecting objects within obscure sonar
images is more tedious and challenging for human
experts (11).

Sonar object detection requires images of target
objects along with their respective location
labelled for training the model. Typically, a variety
of sonar imaging devices are used to scan the
seabed, each generating device-specific raw data.
Subsequently, device modules convert the raw
data into 2-dimensional images for preprocessing
and post processing tasks such as detection and
segmentation aiming to extract insights from the
seabed. Finally, images collected from test basins
and sea trials are annotated to train the model (8,
9).

Deep learning-based Detection techniques can be
divided into two categories: one stage and two-
stage detection techniques, based on whether or
not a region proposal algorithm is needed to
determine the target location. Specifically, while
one-stage detection methods attempt to predict
object bounding boxes and class labels in a single
pass (12, 13), they usually do not necessitate an
additional region proposal phase. Two-stage
detection algorithms, on the other hand, use a
region proposal algorithm in the first stage to
identify possible regions of interest, and then
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refine and classify these regions in the second stage
(14). Deep learning-based detection methods
commonly use Convolution Neural Networks
(CNN) which is the primary building block of the
technique which extracts intricate image features,
accurately predicts both object class and spatial
location.

Advancements in object detection based on deep
learning techniques are designed for optical
images captured in air medium. Recently several
studies on detection of objects and classification
are evolving. Based on the previous literature, A
non-gaussian detection method for Synthetic
Aperture Sonar (SAS) imagery, applying a
multivariate extension of Laplace distribution was
introduced (15). The iterative nature of this
approach made it highly computational.
Traditional techniques are unable to scale for vast
data sets and lose their efficacy in range of

environments. Furthermore, current research
indicates that conventional methods imply
iterative approaches, which increases the

computational requirements for developing real-
time systems (15, 16). Viola and Jones boosted
classifiers cascade was suggested to reduce false-
positive errors caused by acoustic artefacts in the
Forward-Looking Sonar images (16). A CNN based
model presented for localization of agent vehicles
where the ROV was identified in real time when
trained with two ROV and
background image (11). A study by Valdenegro-
Toro experimented detection of an object trained

classes: small

with a nine categories dataset captured in a lab
water tank (4). An end-to-end system having
detectors based on Haar features and boosted
Cascades for Autonomous Underwater Vehicles
was suggested.

Table 1: A Review of Relevant Literature on Object Detection in Sonar Images

Auth
Ref. uthorand DL Method Dataset Metrics Remarks
Year
Viola and Jones . . . .
Sawas et al, . Synthetic data and semi Target detection with the
(16) boosted  classifiers . ROC curve
2010 synthetic data local clutter
cascade
Kim et al, Convolutional Localization of agent
17 Agent vehicle dataset 99 9
a7 2016 Neural Network gent velicle datase Y accuracy vehicles (small ROV).
Convolutional Ocean Systems Object detection and
(4) Valdenegro Neural Lab dataset Accuracy to 85%. recognition in
-Toro, 2016 Network Recall:93% FLS images
Self-cascaded Real-time object detection
Songetal., .
(5) 2019 CNN SSS images ml0U:0.8401 for
(SC-CNN) SAILFISH AUV
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Karimanzira

small dataset large

a generalised solution

AP :0.98392 and based on AutoML to detect

(7) Faster R-CNN dataset .
etal, 2020 ExAUV P-R curve an u-nderwater docking
station
self-trained self-trained target
Zh tal, AutoDLwith FL- . )
(18) angeta oLl SSDD and SCTD mAP :92.8 detection strategy using
2021 DARTS
AutoDL
detectors
Yuetal, mAP  :85.6% and Real-time target detection
19 TR-YOLOvV5 SSS web dat
9 2021 VoS web data macro-F2 :87.8% in SSS images
. . precision : 92.5 Recall : .
Liu et al, Yolov5 with Sh d pl k
8) 2‘0“262 a D(()JISIZt Wi SCTD1.0 dataset 99.3 mAP@50: 98.1 deic?i‘;n plane wreckage
mAP@5:95: 65.1
mAP :DL- 98.31 and
D-98.64
Multilevel feature Q memory- Multiscale features based
Wang et al, . DL-Dataset and 5.82GB, train . .
(10) fusion network . ) Sonar image object
2022 QD-Dataset time:3.65h, testing i
(MLFFNet). . detection
time 1.73s,
parameters:32M
Feature
Foreground .
Yang et al. enhancement sonar images from representation - of
2 N AP: 0.851 fi d
(20) 2023 network (FEN) with the Web mAP: 0.85 or.egroun
objects and
FCOS .
detection
Precision: 95.59
Yolov7 with BiFPN recision >:5%. _ S
21) Zhangetal, and SSS dataset Recall:87.0%, Detecting small objects in
2023 mAP@.5 86.9%, SSSimages

Attention layer

mAP@.5:95 :55.1

A module for real-time object detection used in
SAILFISH AUV using Side scan sonar image patches
of size 37 X 37 trained with Self-Cascaded CNN (5).
A generalised underwater object detection
solution based on Automated Machine Learning
(AutoML) was employed to detect an underwater
docking station trained with Faster R-CNN (7).
Procedures for a self-trained target detection
strategy using AutoML were investigated, with
detectors implemented using the Differentiable
Architecture Search algorithm with flexible search
space and large inputs (18). Real-time target
recognition was
retrieved from the web containing shipwreck and
container as target using the TR-YOLOv5s model
achieving 85.6% of mAP (19). Ship and plane
wreckage detection using deep convolutional

performed on SSS images

networks based on dual channel attention
mechanism was presented (8). A MLFFNet which
utilised feature correlation between multiple
object categories was presented (10). A FEN to
reduce false alarms caused by noise was evaluated
(20). Further
utilising yolov7 with Bidirectional

improvements were achieved
Feature
pyramid network incorporating attention layer,
trained on the SSS image dataset, where some

occurrences of false detection were observed (21).

Table 1 shows that existing work contributed to
the detection of objects in sonar images. The
authors identified limitations in recognising
extremely objects, computationally
expensive models affecting some inference speed,

small

ubiquitous noise, and the absence of high-
frequency information (16, 20). Whereas the deep
learning techniques adapted for sonar images
require enhance accuracy,
especially in low-contrast and noisy underwater
sonar data (20, 22).

Generic object identification models have been
successfully  applied to
demonstrating their usefulness in a range of
applications and proving their adaptability and
efficacy. However, because of the complicated

customization to

natural  images,

ambient noise, identifying objects in underwater
images is more difficult (23). From the review of
literature, inferred that the performance of models
may suffers in diverse object detection, requiring
image refinement for distinguishing between
targets having similar structural properties (21).
Furthermore, scalability in resource-constrained
environments can impact the robustness of the
models. Advanced deep learning-driven object
detection approaches can effectively tackle such
challenges with reduced human resources.
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of advanced DL models for
images further
exploration. This paper explores the recent
advancements in deep learning methods for
object detection in multibeam
forward-looking sonar images. A combination of
preprocessing steps is curated to mitigate noise
and enhance images, thereby considerably
improving the model’s performance along with the
precision of each target. The significant
contributions of this study are developing an end-
to-end framework for sonar images that integrates
sonar image preprocessing with an advanced
object detection method, evaluating the
performance of various preprocessing techniques
to overcome challenges in detecting objects in
obscure underwater sonar images, aiming for
enhanced visualization of targets, and analysis of
advanced deep learning architectures proposed for

The potential

underwater  sonar needs

underwater

detection of targets in underwater sonar
environments.

Methodology

Proposed Framework

This paper presents an improved object

identification system designed for sonar imaging to
enhance visibility of objects and localization with
precision. An end-to-end framework with sonar
image processing to enhance the sonar image and
object detection based on YOLOv8 network is
proposed (24). A preliminary preprocessing
module is used to lower noise and increase image
clarity in order to enhance sonar image visibility.
This preprocessing phase is essential to ensure the
better-quality data is fed into the object detection
module. This module yields the precise locations of
target items inside the images in addition to the
predictions. It also gives each identified object a
class and computes a probability score that
represents the degree of confidence in each
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prediction. This procedure ensures the clarity and
accuracy of the sonar images when searching for
objects of interest.
Data Preprocessing
The original image in the dataset is raw data,
making it visually challenging and time consuming
to locate the objects manually. During signal
recording and transmission, unintended signal-
dependent speckle noise tends to degrades image
quality (7). This section explores into the
preprocessing approaches used to overcome these
challenges and improve overall image quality.
Sonar blindness refers to a condition where a sonar
system is unable to detect or properly identify
objects due to specific acoustic challenges (25).
This can occur when the acoustic signals sent by
the sonar encounter conditions such as strong
interference, noise, or absorption in the water,
making it difficult for the system to effectively view
or detect targets. The accuracy of identifying
targets by manual setup is determined by the level
of expertise involved. Due to varying Sonar
visibility, the operator may fail to provide accurate
information about underwater objects during the
scan.
Preprocessing techniques were examined to
address low visibility and noise in the UATD-
Dataset. Initially, histogram equalization (26) was
applied to balance the pixel distribution, but this
resulted in visually unavailable details.
Subsequently, the data was converted from
BMP to Lab space to assess its effectiveness for
further preprocessing tasks. Also, in an analysis to
increase image resolution, Gaussian filtering, linear
interpolation (26) was experimented but found to
be unsuitable for the data. Further analysis
revealed, Mean Normalization technique enhances
the image when
thresholding (26).

combined with binary

RAW UATD image After Binary Thresholding

W0 20 00 00 0 @0

After Mean Normalization After Resizing

Figure 1: Preprocessing Outcomes of Sample Image Having Class Human Body from UATD Dataset

1052



Divyabarathi et al,

In the preprocessing module, Binary threshold is
applied in the raw sonar images, the threshold is
setat 1, and any pixel with a value greater than 1 is
set to 255 has been identified from empirical

testing as specified in equation [1]. This
255

T(I(xy)) =
0

Mean normalization, a statistical method is
employed that takes a two-dimensional NumPy
array and performs mean normalization along the
specified axis. The mean normalization process
involves subtracting the mean of each column (or

row) from the corresponding elements in that
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preprocessing step in image analysis to enhance or
isolate specific features in the sonar image. It is
employed to segment objects or features in an
image based on their intensity levels (27).

ifI(xy)>1
(1]

otherwise

column (or row), resulting in a new array where
the mean is zero along the specified axis as shown
in equation [2], where X is the original pixel value,
u is the mean pixel value, and o is the standard
deviation.

human body
L .

Figure 2: Sample Pre-Processed Images from the UATD Dataset with Various Class Objects

X —pu

a

Xn orm —

With our dataset, where the features had varying
scales, this method performed well. The accuracy
and efficiency of the analysis and modelling were
enhanced by normalising them to a common scale
27).

Additionally, resize the image to 640x640 for
training the model. Figure 1 explains the outcome
of each stage in the Preprocessing showing the
visual enhancement gradually and Figure 2 shows
few sample images from Pre-processed UATD
dataset with targets after the preprocessing.

(2]

SONAR Object Detection

In this section, an enhanced object detection model
for sonar image is proposed based on YOLOvS8 (24).
The detection of objects is a critical research
subject in the fields of underwater acoustics and
researchers have been working to resolve it. The
underwater acoustic signal is unstable due to
factors such as noise, and this phenomenon
considerably lowers the precision of detection.
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Feature extraction is one approach to solving this
challenge, and the features supplied to the
classifier are critical to its effectiveness. It is
inferred that when it comes to enhancing the
precision of detection with localisation, the
selection of the dataset, image resolution, and
volume of samples may be more essential than
model alteration.

YOLO (You Only Look Once) is an exceptionally
rapid object identification method that exploits a
single neural network. Because it examines the
entire image at once rather than assessing it pixel
by pixel, YOLO is usually quicker than other
detection methods. Objects in an image are defined
by bounding boxes which is a rectangular box
specified by top-left corner coordinates and width,
height to locate the target class. Each of the
predicted boxes containing an object of interest
assigned a confidence score indicating model’
certainty. Finally, to eliminate multiple detections
of the same object by retaining only the bounding
box with the highest confidence score and
discarding others that overlap, a post processing
technique of Non- max Suppression is employed.
To detect targets from input images, YOLO divides
an image into a grid, which is then divided into
sections. Each area of the grid is then classified and
localised, meaning that the structures and objects
are identified. Subsequently, it forecasts the
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location of boundary boxes. Regression-based
methods are used to predict these boundary boxes.
Most classification-based methods are executed in
two stages: first, the Region Of Interest (ROI) is
chosen, and then the CNN is trained to detect the
object(s) in the areas that were selected.

Unlike previous models, YOLO’s regression
technique predicts the bounding boxes for the
complete image concurrently. To determine which
performed better, we conducted
experiments using YOLOv5 and YOLOvS.

The YOLOv5 models consist of the same three
parts: Spatial Pyramid Pooling (SPP) and Path
Aggregation Network (PANet) in the model neck
and head, and CSP-Darknet53 as the backbone
(28). Sigmoid Linear Unit or SiLU as it is commonly
referred to as the swish activation function, is the
model’s activation function. It has been applied to
the hidden layers’ convolution operations. In the
output layer, convolution techniques have been
combined with the Sigmoid activation function.
Object classes, bounding boxes, and objectness
scores are the three outputs that YOLOv5 outputs.
Therefore, the classes loss and the objectness loss
are calculated using Binary Cross Entropy (BCE).
When calculating the location loss using the
Complete Intersection over Union (CloU) loss
function as shown in equation [3].

model

loss = AlLcls + A3Lobj + A3Lloc. [3]

Similarly, YOLOv8 performs detection of objects
through the single pass whereas traditional
methods of detection methods apply classifiers at
multiple scales and location. Entire image is
divided into grids (say, 13x13 or 19x19 cells) given
as input. Each grid cell predicts the objects whose
centre falls within the cell. Convolutional Neural
network architecture used to extract features from
Input image. The YOLO model consists of several
Convolutional, pooling and fully connected layers.
While last layer outputs tensor containing
bounding box coordinates, class probabilities and
confidence score for each grid cell. Multiple
bounding boxes, namely anchors are predicted
from each grid cell along with a confidence score
that identifies how certain the Bounding box
Prediction contains an object. The coordinates are

normalized to fall between 0 and 1. As an anchor
free detection method, it predicts object bounding
boxes and class probabilities based on features
extracted from the input image instead of
predefined anchor boxes which are priors of fixed
sizes and aspect ratios.

Along with bounding boxes, each grid cell predicts
the probability distribution over predefined
classes. Class probabilities are calculated from the
grid cell containing an object. Finally, threshold is
applied to filter out low confidence prediction of
the cells. Non-Max suppression is used to eliminate
redundant bounding boxes while holding only the
highest confidence score for each detected object.
The overview of proposed approach and the
outcomes at each step of object detection pipeline
shown in Figure 3.
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Input Image

Enhanced Image

Object

Detection
model

Feature Maps and
Region proposals

Object classification and
Bounding box regression

Figure 3: Outputs of the Proposed Object Detection Framework for Forward-Looking
Sonar Images at Each Layer

YOLOv8 has an anchor-free detection system,
whereas YOLOv5 has anchor-based approach is
used in comparison. In YOLOv8, objects are
predicted by their centres rather than by offsets
from predefined anchor boxes. this method
reduces the number of box predictions, resulting in
robust non-maximum suppression. Convolutional
block especially in the neck architecture, the kernel
size is 1X1, which is resembles closely with ResNet
block architecture. Additionally, to reduce the
parameter count and tensor size by concatenating
features directly in the neck without enforcing the
same channel dimension (24).

The anchor-free technique to sonar image analysis
improves detection accuracy in complex
underwater environments by reducing false
positives and enhancing object localization. The
streamlined design and decreased parameter
count enable faster inference times and lower
computational requirements which are critical for
real-time applications in AUVs and maritime
surveillance systems. By tailoring for efficiency and
accuracy, YOLOv8 considerably improves the
capacity to detect and monitor underwater objects,
which boosts operational effectiveness in sonar-

based applications.
Results and Discussion

Dataset and Experimental Setup

The outcomes and feasibility of the proposed
approach is illustrated with the help of a sonar
image dataset containing multiple object
categories named Underwater Acoustics Target
Detection (UATD) dataset. It was constructed using
image acquisition equipment Tritech Gemini
1200ik sonar. This is a Multibeam Forward
Looking Sonar device for Underwater Object
Detection experiment available publicly for
researchers (29). Data collection was performed in

a lake and shallow water environment. This
dataset consists of total of 9000 MFLS images
captured using Tritech Gemini 1200ik sonar that
provides raw data of sonar images with annotation
of 10 categories of target objects. Targets included
diverse materials such as ball, circle cage, cube,
cylinder, human body, metal bucket, plane, rov,
square cage, tyre. Some of the sample images of
UATD Dataset as shown in Figure 2 and the boxes
represent the object region and target class. The
domain experts have labelled the object using an
annotation software for sonar images named
forward-looking sonar label tool (OpenSLT)
through input image stream and real time
annotation (29). The dataset used 7600 images as
the training set, 800 for validation set and 800
images as the testing set. The dataset exhibits that
there is an imbalance among the object in the
image instances. This data set is a multi-object data
set with serious seabed reverberation interference,
and each image contains multiple object regions.
The Windows 10 operating system and Intel(R)
Core i7-7700K CPU running at 4.20GHz served as
the experimental setup. The NVIDIA GeForce GTX
1050 Ti was the graphics card which was utilised.
The hyperparameter settings for each model were
as follows to ensure comparability. The images
were resized to 640 x 640 pixels for the input size,
there were eight batches, and the training period
lasted for one hundred epochs.

Evaluation Metrics

Sonar object detection presents distinct challenges
as compared to other types due to the inherent
characteristics of underwater acoustics. This
section examines a Precision, Recall and mean
Average Precision(mAP) methods of evaluation for
detecting objects in sonar data. Precision evaluates
the accuracy of the model prediction in classifying
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the instance as true positive. In this study, the actual target out of all the predicted categories.
measure of each target that correctly identify Mathematically equation [4] defines precision.
. TruePositive
Precision =

TruePositive + FalsePositive [4]
Recall evaluates ability of model to correctly identify all positive instances out of the total positive
instances as shown in equation [5].

Recall =

TruePositive

TruePositive + FalseNegative [5]
Mean average precision(mAP) metric is crucial for assessing a model’s ability to accurately localize
objects within the image. It compares the ground-truth bounding box to the detected box and delivers a
score based on equation [6]. The model determines and predicts more accurately as its mAP score

increases.
cC

1 &
mAP = — Z AveragePrecision;
C 4
i=1 [6]
Average Precision is often employed in object detection applications. It considers precision and recall
across different levels of confidence thresholds.

2500 -

2000 -

1500 -

instances

1000 -

500 -

0_

ball
rov -

circle cage -

cylinder -
tyre

plane -

human body -
square cage

metal bucket -

Figure 4: Bar Chart Illustrating the Distribution of Object Classes in the UATD Dataset

Training Results Faster-RCNN, YOLOv3, YOLOv5, YOLOvS8 are used.
In this study, deep learning models utilized the The experimental outcomes of the object detection
preprocessing data. Because the original sonar are listed in Table 2 which shows that the yolo v3
image contains considerable amount of nonlinear has the lowest precision. The accuracy of yolov
noise caused by the seabed environment and the and yolov8 is similar, also it is visible that yolov8
collect device, a preprocessing module is used to has better GFLOPS which can bring precise
minimise the noise. The variation in the number of ~ Prediction with speed. Furthermore, Preprocess +
instances of the object categories showing YOLO v8 has the highest inference speed,
imbalance in the data are illustrated in Figure 4. ~ approximately 48.73% less than Preprocess +
Training the model for 100 epochs and testing our yolov5, and is suitable for deep learning
model performance using test and validation set framework based real time object detection of
for performance. To compare the performance, forward-looking sonar images. From Figure 5 its
deep learning models. inferred that even when the training samples are

imbalanced, the State-of-the-art model helps the
detection capture key features with high efficiency.
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Figure 5: Training Results Plotted for the Box Loss and Class Loss

Table 2: Comparison of the Experimental Results of Various Detection Algorithms on UATD Dataset

Model mAP Recall APvan APcue APhb APtyre APs. APplane AProv  APcc APcy APmp» Params FLOPs
FRaeSStlf:tlngN' 0.839 0897 0869 0717 0831 0.847 0547 0986 0957 0.666 0973 1.000 28.17M 49.78G
FRa:Str:t?gNN' 0.829 0.890 0.870 0.686 0878 0889 0.621 0973 0969 0538 0.872 1.000 41.17M 63.29G
Faster RONN- 018 0877 0.865 0.697 0913 0840 0572 0967 0974 0491 0944 0912 60.16M 82.77G
Resnet101
YOLO  v3-
0.801 0.880 0.860 0.669 0782 0.874 0470 0988 0945 0.519 0906 1.000 61.57M 49.67G
Darknet-53
YOLO  v3-
) 0.787 0.868 0790 0573 0.808 0738 0518 0992 0986 0498 0963 1.000 3.68M  4.22G
MobilenetV2
YOLOVS 0942 0934 0952 0955 0956 0933 0957 097 0939 0948 0923 0.891 7.04M 15.G
YOLOVS 0.945 0938 0952 0958 0957 0942 096 0963 0953 0943 0922 0904 3M 8.1G
E;e()p]fgizss 0959 0.978 0.959 0979 0.984 0924 0970 0.995 0.992 0903 0939 0943 7.04M 158G

Because of the complexity and perpetual changing
of the underwater environment, environmental
noise can seriously impair the effectiveness of
underwater detecting devices (23). A prominent
colour scheme that differs from optical and natural
images poses a significant challenge to the ability
to distinguish underwater sonar objects from the
background.

When compared with natural images, deep
learning-based detection frameworks on sonar
images do not produce similar outcomes. End-to-

end models designed specifically for sonar data are

necessary for optimal model performance. In
addition, when the measured object is far away
from the sonar, the target size is small in
proportion to the entire sonar image, making it
trivial to misunderstand as noise. Target detection
is made more difficult by these issues. As a result,
it is now very important to decrease noise
interference and provide swift, precise automatic
recognition of small underwater targets with a low
likelihood of false alarms.

This paper proposed an approach that uses state-
of-the-art detection models after pre-processing to
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identify objects in forward-looking sonar imagery.
As the precision recall curve and confusion matrix
in Figure 6 and Figure 7 respectively shows, the
training experiments have improved the ability to
detect various types of objects positioned on the

seabed under varied sonar operating conditions or

parameter settings. For maritime archaeological
surveys looking to discover shipwreck sites and
evaluate their state in relation to the surrounding
environment (30),

particularly relevant.

this work could become
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Figure 6: Precision-Recall Curve of YOLOV8 Model Trained with Pre-Processed Images
study provides
technique to combine the forward-looking sonar
image with deep convolutional neural networks to
Mean Average
underwater multiclass target detection tasks. To
perform target detection, a training approach

The present

improve the

based on Preprocess + YOLOv8 model is used to
construct an end-to-end preprocessing system that
can automatically extract high-level features from
sonar images. The effects of training techniques

Precision

a framework

of

and network design on recognition performance

are explored through a number of experiments.
The proposed approach achieves mAP of 0.96
which represents a significant enhancement in
detection accuracy across the test dataset. The
higher mAP indicates that our model is effective at
accurately localizing objects making it a valuable
tool for applications requiring high precision. The
object detection result of the proposed model is
shown in Figure 8 having bounding box and
confidence score of the target prediction.
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Figure 8: Detection Results Produced by the Proposed Object Detection Approach

According to results from experiments, the
suggested framework outperforms the Yolov3 and
Faster-RCNN models (29) in terms of real-time
performance, precision, and effective anti-noise
properties. On a ten-class underwater object
detection challenge, our framework using
preprocess+yolov5 and preprocess+ yolov8 can
achieve a mAP@50 of 959% and 96.3%,
respectively. Our study showed the significant
potential of imaging sonar for underwater
forward-looking sonar, which is crucial for
underwater vehicles to sense their surroundings
and navigate autonomously.

Enhanced inference speed enables autonomous
underwater vehicles to detect objects rapidly,
allowing  dynamic navigation. Identifying
submerged vessels or potential threats improves
marine surveillance. Improved detection aids in
monitoring changes in underwater ecosystems,
resulting in better decisions and conservation
efforts for aquatic species.

The performance of the proposed method may be
hindered by the challenges of the sonar image
dataset, which is limited in size and diversity,
potentially limiting generalisation across varied
underwater conditions. Meanwhile, the efficacy of
target detection may vary in
irregularly shaped objects, marine life occlusion,
and underwater vegetation interference.

response to

Conclusion

In this study, a preprocessing framework was
proposed for object detection in multibeam
forward-looking Sonar images having a low visual
perception. The need for exploring specific
detectors for complex environments having low to
zero visibility and small targets is crucial. The
outcome of proposed model includes visually
enhanced image with object detection. A mAP of
96.3% with 3M parameters which implies a
significant increase in efficiency in real time
processing in the YOLOv8 model.

The practical relevance and effectiveness of the
proposed approach are shown in the comparison
study using a forward-looking sonar image dataset
collected in an

underwater environment.

Compared with other existing models, the
proposed framework has a higher precision for
each object category irrespective of the imbalance
of objects in the dataset. Further research may
explore expanding dataset with diverse
environment and object types to improve
robustness and incorporating multiscale feature
fusion and ensemble techniques for precise

detection.

Abbreviations

AUV: Autonomous Underwater Vehicle, AutoML:
Automated Machine Learning, BCE: Binary Cross
Entropy, CNN: Convolutional Neural Network, FLS:
Forward-Looking Sonar, mAP: mean Average
Precision, ROI: Region of Interest, ROV: Remotely
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