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Abstract 
 

Sonar is an efficient and indispensable tool for exploring underwater environments under challenging conditions. The 
research has a crucial impact on domains such as marine exploration, environmental monitoring, defence, 
archaeological discoveries, resource exploration, and climate research. Extracting valuable insights from sonar images 
and detecting objects within obscure sonar images is tedious and challenging for both human experts and conventional 
machine learning models. This study explores state-of-the-art deep learning methods for enhanced underwater object 
detection in multibeam forward-looking sonar images, to determine optimal trade-off model between accuracy and 
complexity. A sequence of preprocessing steps is proposed in this work to mitigate noise and enhance images, 
improving the accuracy of benchmark object detection performance. This comprehensive framework for forward-
looking sonar images integrates the preprocessing techniques and target detection thereby enhancing target 
visualization. The model localizes and predicts the target of each class by overcoming the challenges of target detecting 
in hazy images and imbalanced class distribution. The proposed approach yields a mAP of 96.3% with 3M parameters 
which implies a significant increase in efficiency in real time processing in comparison to other models. From the 
analysis, the proposed framework improves visual perception and enhances object localization of the targets in the 
sonar images. 
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Introduction 

The underwater exploration research has a crucial 

impact in domains such as marine exploration, 

environmental monitoring, defence, archaeological 

discoveries, resource exploration, and climate 

research (1–3). In recent decades, there has been 

substantial progress in the technologies deployed 

for gaining insights from deep water environments 

beyond direct human reach. Cutting-edge 

Remotely Operated Vehicles (ROV) and 

Autonomous Underwater Vehicles (AUV), along 

with sophisticated sonar systems and optical 

technology, have revolutionized the field of 

underwater exploration (3–5). Sonar is an efficient 

and indispensable tool for exploring aquatic 

environments, even under challenging conditions. 

Sonar data collected by surveying the location of 

interest using a Sonar device which transmits 

beams of sound known as “pings” into water and 

record the echoes from bottom and any object in 

the water column reflected back to the receiver. 

The acoustic reflectivity from ocean bed and 

objects are differentiated based on the strong 

contrasts from rocks or metal and low contrasts 

from sediments or marine life (6). 

The sonar devices often employed for underwater 

research encompass Single Beam Sonar, 

Multibeam Sonar, Side-Scan Sonar, and Forward-

Looking Sonar (FLS). These sonar devices have 

been instrumental in mapping the seafloor and 

identifying submerged features. For underwater 

exploration, sonar has clear advantages over 

alternative technologies, such as optical imaging 

(4). Sonar excels in low-light conditions, provides 

extended visual ranges and offers efficient 3D 

mapping capabilities in diverse environments, 

from coastal waters to the most profound ocean 

trenches. Extracting valuable insights from sonar 

images poses a formidable challenge due to non-

uniform intensities, acoustic shadowing, speckle 

noise, limited resolution, and lack of colour and  
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texture information. It is essential to address these 

multifaceted hurdles to acquire comprehensive 

insights from sonar images (7, 8). The process of 

underwater object detection using sonar devices 

entails the identification, tracking and localization 

of entities submerged beneath the water’s surface 

within the scanned area. Objects in sonar images 

appear in various sizes and aspect ratios 

depending on the angles of the sonar scan, 

resulting in different structures for the same object 

(9, 10). Detecting objects within obscure sonar 

images is more tedious and challenging for human 

experts (11). 

Sonar object detection requires images of target 

objects along with their respective location 

labelled for training the model. Typically, a variety 

of sonar imaging devices are used to scan the 

seabed, each generating device-specific raw data. 

Subsequently, device modules convert the raw 

data into 2-dimensional images for preprocessing 

and post processing tasks such as detection and 

segmentation aiming to extract insights from the 

seabed. Finally, images collected from test basins 

and sea trials are annotated to train the model (8, 

9). 

Deep learning-based Detection techniques can be 

divided into two categories: one stage and two-

stage detection techniques, based on whether or 

not a region proposal algorithm is needed to 

determine the target location. Specifically, while 

one-stage detection methods attempt to predict 

object bounding boxes and class labels in a single 

pass (12, 13), they usually do not necessitate an 

additional region proposal phase. Two-stage 

detection algorithms, on the other hand, use a 

region proposal algorithm in the first stage to 

identify possible regions of interest, and then 

refine and classify these regions in the second stage 

(14). Deep learning-based detection methods 

commonly use Convolution Neural Networks 

(CNN) which is the primary building block of the 

technique which extracts intricate image features, 

accurately predicts both object class and spatial 

location. 

Advancements in object detection based on deep 

learning techniques are designed for optical 

images captured in air medium. Recently several 

studies on detection of objects and classification 

are evolving. Based on the previous literature, A 

non-gaussian detection method for Synthetic 

Aperture Sonar (SAS) imagery, applying a 

multivariate extension of Laplace distribution was 

introduced (15). The iterative nature of this 

approach made it highly computational. 

Traditional techniques are unable to scale for vast 

data sets and lose their efficacy in range of 

environments. Furthermore, current research 

indicates that conventional methods imply 

iterative approaches, which increases the 

computational requirements for developing real-

time systems (15, 16). Viola and Jones boosted 

classifiers cascade was suggested to reduce false-

positive errors caused by acoustic artefacts in the 

Forward-Looking Sonar images (16). A CNN based 

model presented for localization of agent vehicles 

where the ROV was identified in real time when 

trained with two classes: small ROV and 

background image (11). A study by Valdenegro-

Toro experimented detection of an object trained 

with a nine categories dataset captured in a lab 

water tank (4). An end-to-end system having 

detectors based on Haar features and boosted 

Cascades for Autonomous Underwater Vehicles 

was suggested. 
 

Table 1: A Review of Relevant Literature on Object Detection in Sonar Images 

Ref. 
Author and 

Year 
DL Method Dataset Metrics Remarks 

(16) 
Sawas et al., 

2010 

Viola and Jones 

boosted classifiers 

cascade 

Synthetic data and semi 

synthetic data 
ROC curve 

Target detection with the 

local clutter 

(17) 
Kim et al., 

2016 

Convolutional 

Neural Network 
Agent vehicle dataset 99 % accuracy 

Localization of agent 

vehicles (small ROV). 

(4) 
Valdenegro 

-Toro, 2016 

Convolutional 

Neural 

Network 

Ocean Systems 

Lab dataset 

 
 

Accuracy to 85%. 

Recall:93% 

Object detection and 

recognition in 

FLS images 

(5) 
Song et al., 

2019 

Self-cascaded 

CNN 

(SC-CNN) 

SSS images mIOU:0.8401 

Real-time object detection 

for 

SAILFISH AUV 
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(7) 
Karimanzira  

et al., 2020 
Faster R-CNN 

small dataset large 

dataset 

ExAUV 

AP : 0.98392 and 

P-R curve 

a generalised solution 

based on AutoML to detect 

an underwater docking 

station 

(18) 
Zhang et al., 

2021 

self-trained 

AutoDLwith FL-

DARTS 

detectors 

SSDD and SCTD mAP :92.8 

self-trained target 

detection strategy using 

AutoDL 

(19) 
Yu et al., 

2021 
TR–YOLOv5s SSS web data 

mAP :85.6% and 

macro-F2 :87.8% 

Real-time target detection 

in SSS images 

(8) 
Liu et al., 

2022 

Yolov5 with 

DCNet 
SCTD1.0 dataset 

precision : 92.5 Recall : 

99.3 mAP@50: 98.1 

mAP@5:95: 65.1 

Ship and plane wreckage 

detection 

(10) 
Wang et al, 

2022 

Multilevel feature 

fusion network 

(MLFFNet). 

DL-Dataset and 

QD-Dataset 

mAP :DL– 98.31 and 

QD–98.64 memory : 

5.82GB, train 

time:3.65h, testing 

time 1.73s, 

parameters:32M 

Multiscale features based 

Sonar image object 

detection 

(20) 
Yang et al., 

2023 

Foreground 

enhancement 

network (FEN) with 

FCOS 

sonar images from 

the Web 
mAP: 0.851 

Feature 

representation of 

foreground 

objects and 

detection 

(21) 
Zhang et al., 

2023 

Yolov7 with BiFPN 

and 

Attention layer 

SSS dataset 

Precision: 95.5%, 

Recall:87.0%, 

mAP@.5 : 86.9%, 

mAP@.5:95 :55.1 

Detecting small objects in 

SSS images 

 

A module for real-time object detection used in 

SAILFISH AUV using Side scan sonar image patches 

of size 37 X 37 trained with Self-Cascaded CNN (5). 

A generalised underwater object detection 

solution based on Automated Machine Learning 

(AutoML) was employed to detect an underwater 

docking station trained with Faster R-CNN (7). 

Procedures for a self-trained target detection 

strategy using AutoML were investigated, with 

detectors implemented using the Differentiable 

Architecture Search algorithm with flexible search 

space and large inputs (18). Real-time target 

recognition was performed on SSS images 

retrieved from the web containing shipwreck and 

container as target using the TR–YOLOv5s model 

achieving 85.6% of mAP (19). Ship and plane 

wreckage detection using deep convolutional 

networks based on dual channel attention 

mechanism was presented (8). A MLFFNet which 

utilised feature correlation between multiple 

object categories was presented (10). A FEN to 

reduce false alarms caused by noise was evaluated 

(20). Further improvements were achieved 

utilising yolov7 with Bidirectional Feature 

pyramid network incorporating attention layer, 

trained on the SSS image dataset, where some 

occurrences of false detection were observed (21). 

Table 1 shows that existing work contributed to 

the detection of objects in sonar images. The 

authors identified limitations in recognising 

extremely small objects, computationally 

expensive models affecting some inference speed, 

ubiquitous noise, and the absence of high-

frequency information (16, 20). Whereas the deep 

learning techniques adapted for sonar images 

require customization to enhance accuracy, 

especially in low-contrast and noisy underwater 

sonar data (20, 22). 

Generic object identification models have been 

successfully applied to natural images, 

demonstrating their usefulness in a range of 

applications and proving their adaptability and 

efficacy. However, because of the complicated 

ambient noise, identifying objects in underwater 

images is more difficult (23). From the review of 

literature, inferred that the performance of models 

may suffers in diverse object detection, requiring 

image refinement for distinguishing between 

targets having similar structural properties (21). 

Furthermore, scalability in resource-constrained 

environments can impact the robustness of the 

models. Advanced deep learning-driven object 

detection approaches can effectively tackle such 

challenges with reduced human resources. 
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The potential of advanced DL models for 

underwater sonar images needs further 

exploration. This paper explores the recent 

advancements in deep learning methods for 

underwater object detection in multibeam 

forward-looking sonar images. A combination of 

preprocessing steps is curated to mitigate noise 

and enhance images, thereby considerably 

improving the model’s performance along with the 

precision of each target. The significant 

contributions of this study are developing an end-

to-end framework for sonar images that integrates 

sonar image preprocessing with an advanced 

object detection method, evaluating the 

performance of various preprocessing techniques 

to overcome challenges in detecting objects in 

obscure underwater sonar images, aiming for 

enhanced visualization of targets, and analysis of 

advanced deep learning architectures proposed for 

detection of targets in underwater sonar 

environments.  

Methodology 

Proposed Framework 
This paper presents an improved object 

identification system designed for sonar imaging to 

enhance visibility of objects and localization with 

precision. An end-to-end framework with sonar 

image processing to enhance the sonar image and 

object detection based on YOLOv8 network is 

proposed (24). A preliminary preprocessing 

module is used to lower noise and increase image 

clarity in order to enhance sonar image visibility. 

This preprocessing phase is essential to ensure the 

better-quality data is fed into the object detection 

module. This module yields the precise locations of 

target items inside the images in addition to the 

predictions. It also gives each identified object a 

class and computes a probability score that 

represents the degree of confidence in each 

prediction. This procedure ensures the clarity and 

accuracy of the sonar images when searching for 

objects of interest. 

Data Preprocessing 
The original image in the dataset is raw data, 

making it visually challenging and time consuming 

to locate the objects manually. During signal 

recording and transmission, unintended signal-

dependent speckle noise tends to degrades image 

quality (7). This section explores into the 

preprocessing approaches used to overcome these 

challenges and improve overall image quality. 

Sonar blindness refers to a condition where a sonar 

system is unable to detect or properly identify 

objects due to specific acoustic challenges (25). 

This can occur when the acoustic signals sent by 

the sonar encounter conditions such as strong 

interference, noise, or absorption in the water, 

making it difficult for the system to effectively view 

or detect targets. The accuracy of identifying 

targets by manual setup is determined by the level 

of expertise involved. Due to varying Sonar 

visibility, the operator may fail to provide accurate 

information about underwater objects during the 

scan. 

Preprocessing techniques were examined to 

address low visibility and noise in the UATD-

Dataset. Initially, histogram equalization (26) was 

applied to balance the pixel distribution, but this 

resulted in visually unavailable details. 

Subsequently, the data was converted from 

BMP to Lab space to assess its effectiveness for 

further preprocessing tasks. Also, in an analysis to 

increase image resolution, Gaussian filtering, linear 

interpolation (26) was experimented but found to 

be unsuitable for the data. Further analysis 

revealed, Mean Normalization technique enhances 

the image when combined with binary 

thresholding (26).

 

           
       Figure 1: Preprocessing Outcomes of Sample Image Having Class Human Body from UATD Dataset 
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In the preprocessing module, Binary threshold is 

applied in the raw sonar images, the threshold is 

set at 1, and any pixel with a value greater than 1 is 

set to 255 has been identified from empirical 

testing as specified in equation [1]. This 

preprocessing step in image analysis to enhance or 

isolate specific features in the sonar image. It is 

employed to segment objects or features in an 

image based on their intensity levels (27). 

 

 255 if I(x,y) > 1 

 T(I(x,y)) = [1] 

 0 otherwise 
 

Mean normalization, a statistical method is 

employed that takes a two-dimensional NumPy 

array and performs mean normalization along the 

specified axis. The mean normalization process 

involves subtracting the mean of each column (or 

row) from the corresponding elements in that 

column (or row), resulting in a new array where 

the mean is zero along the specified axis as shown 

in equation [2], where X is the original pixel value, 

µ is the mean pixel value, and σ is the standard 

deviation. 

 

 
Figure 2: Sample Pre-Processed Images from the UATD Dataset with Various Class Objects 

 

 [2] 
 

With our dataset, where the features had varying 

scales, this method performed well. The accuracy 

and efficiency of the analysis and modelling were 

enhanced by normalising them to a common scale 

(27). 

Additionally, resize the image to 640x640 for 

training the model. Figure 1 explains the outcome 

of each stage in the Preprocessing showing the 

visual enhancement gradually and Figure 2 shows 

few sample images from Pre-processed UATD 

dataset with targets after the preprocessing. 

 

SONAR Object Detection 
In this section, an enhanced object detection model 

for sonar image is proposed based on YOLOv8 (24). 

The detection of objects is a critical research 

subject in the fields of underwater acoustics and 

researchers have been working to resolve it. The 

underwater acoustic signal is unstable due to 

factors such as noise, and this phenomenon 

considerably lowers the precision of detection. 
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Feature extraction is one approach to solving this 

challenge, and the features supplied to the 

classifier are critical to its effectiveness. It is 

inferred that when it comes to enhancing the 

precision of detection with localisation, the 

selection of the dataset, image resolution, and 

volume of samples may be more essential than 

model alteration. 

YOLO (You Only Look Once) is an exceptionally 

rapid object identification method that exploits a 

single neural network. Because it examines the 

entire image at once rather than assessing it pixel 

by pixel, YOLO is usually quicker than other 

detection methods. Objects in an image are defined 

by bounding boxes which is a rectangular box 

specified by top-left corner coordinates and width, 

height to locate the target class. Each of the 

predicted boxes containing an object of interest 

assigned a confidence score indicating model’ 

certainty. Finally, to eliminate multiple detections 

of the same object by retaining only the bounding 

box with the highest confidence score and 

discarding others that overlap, a post processing 

technique of Non- max Suppression is employed. 

To detect targets from input images, YOLO divides 

an image into a grid, which is then divided into 

sections. Each area of the grid is then classified and 

localised, meaning that the structures and objects 

are identified. Subsequently, it forecasts the 

location of boundary boxes. Regression-based 

methods are used to predict these boundary boxes. 

Most classification-based methods are executed in 

two stages: first, the Region Of Interest (ROI) is 

chosen, and then the CNN is trained to detect the 

object(s) in the areas that were selected. 

Unlike previous models, YOLO’s regression 

technique predicts the bounding boxes for the 

complete image concurrently. To determine which 

model performed better, we conducted 

experiments using YOLOv5 and YOLOv8. 

The YOLOv5 models consist of the same three 

parts: Spatial Pyramid Pooling (SPP) and Path 

Aggregation Network (PANet) in the model neck 

and head, and CSP-Darknet53 as the backbone 

(28). Sigmoid Linear Unit or SiLU as it is commonly 

referred to as the swish activation function, is the 

model’s activation function. It has been applied to 

the hidden layers’ convolution operations. In the 

output layer, convolution techniques have been 

combined with the Sigmoid activation function. 

Object classes, bounding boxes, and objectness 

scores are the three outputs that YOLOv5 outputs. 

Therefore, the classes loss and the objectness loss 

are calculated using Binary Cross Entropy (BCE). 

When calculating the location loss using the 

Complete Intersection over Union (CIoU) loss 

function as shown in equation [3]. 

 

 loss = λ1Lcls + λ3Lobj + λ3Lloc. [3] 
 

Similarly, YOLOv8 performs detection of objects 

through the single pass whereas traditional 

methods of detection methods apply classifiers at 

multiple scales and location. Entire image is 

divided into grids (say, 13x13 or 19x19 cells) given 

as input. Each grid cell predicts the objects whose 

centre falls within the cell. Convolutional Neural 

network architecture used to extract features from 

Input image. The YOLO model consists of several 

Convolutional, pooling and fully connected layers. 

While last layer outputs tensor containing 

bounding box coordinates, class probabilities and 

confidence score for each grid cell. Multiple 

bounding boxes, namely anchors are predicted 

from each grid cell along with a confidence score 

that identifies how certain the Bounding box 

Prediction contains an object. The coordinates are 

normalized to fall between 0 and 1. As an anchor 

free detection method, it predicts object bounding 

boxes and class probabilities based on features 

extracted from the input image instead of 

predefined anchor boxes which are priors of fixed 

sizes and aspect ratios. 

Along with bounding boxes, each grid cell predicts 

the probability distribution over predefined 

classes. Class probabilities are calculated from the 

grid cell containing an object. Finally, threshold is 

applied to filter out low confidence prediction of 

the cells. Non-Max suppression is used to eliminate 

redundant bounding boxes while holding only the 

highest confidence score for each detected object. 

The overview of proposed approach and the 

outcomes at each step of object detection pipeline 

shown in Figure 3. 
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                       Figure 3: Outputs of the Proposed Object Detection Framework for Forward-Looking  

Sonar Images at Each Layer 
 

YOLOv8 has an anchor-free detection system, 

whereas YOLOv5 has anchor-based approach is 

used in comparison. In YOLOv8, objects are 

predicted by their centres rather than by offsets 

from predefined anchor boxes. this method 

reduces the number of box predictions, resulting in 

robust non-maximum suppression. Convolutional 

block especially in the neck architecture, the kernel 

size is 1X1, which is resembles closely with ResNet 

block architecture. Additionally, to reduce the 

parameter count and tensor size by concatenating 

features directly in the neck without enforcing the 

same channel dimension (24). 

The anchor-free technique to sonar image analysis 

improves detection accuracy in complex 

underwater environments by reducing false 

positives and enhancing object localization. The 

streamlined design and decreased parameter 

count enable faster inference times and lower 

computational requirements which are critical for 

real-time applications in AUVs and maritime 

surveillance systems. By tailoring for efficiency and 

accuracy, YOLOv8 considerably improves the 

capacity to detect and monitor underwater objects, 

which boosts operational effectiveness in sonar-

based applications. 

Results and Discussion 

Dataset and Experimental Setup 
The outcomes and feasibility of the proposed 

approach is illustrated with the help of a sonar 

image dataset containing multiple object 

categories named Underwater Acoustics Target 

Detection (UATD) dataset. It was constructed using 

image acquisition equipment Tritech Gemini 

1200ik sonar. This is a Multibeam Forward 

Looking Sonar device for Underwater Object 

Detection experiment available publicly for 

researchers (29). Data collection was performed in 

a lake and shallow water environment. This 

dataset consists of total of 9000 MFLS images 

captured using Tritech Gemini 1200ik sonar that 

provides raw data of sonar images with annotation 

of 10 categories of target objects. Targets included 

diverse materials such as ball, circle cage, cube, 

cylinder, human body, metal bucket, plane, rov, 

square cage, tyre. Some of the sample images of 

UATD Dataset as shown in Figure 2 and the boxes 

represent the object region and target class. The 

domain experts have labelled the object using an 

annotation software for sonar images named 

forward-looking sonar label tool (OpenSLT) 

through input image stream and real time 

annotation (29). The dataset used 7600 images as 

the training set, 800 for validation set and 800 

images as the testing set. The dataset exhibits that 

there is an imbalance among the object in the 

image instances. This data set is a multi-object data 

set with serious seabed reverberation interference, 

and each image contains multiple object regions. 

The Windows 10 operating system and Intel(R) 

Core i7-7700K CPU running at 4.20GHz served as 

the experimental setup. The NVIDIA GeForce GTX 

1050 Ti was the graphics card which was utilised. 

The hyperparameter settings for each model were 

as follows to ensure comparability. The images 

were resized to 640 x 640 pixels for the input size, 

there were eight batches, and the training period 

lasted for one hundred epochs. 

Evaluation Metrics 
Sonar object detection presents distinct challenges 

as compared to other types due to the inherent 

characteristics of underwater acoustics. This 

section examines a Precision, Recall and mean 

Average Precision(mAP) methods of evaluation for 

detecting objects in sonar data. Precision evaluates 

the accuracy of the model prediction in classifying 
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the instance as true positive. In this study, the 

measure of each target that correctly identify 

actual target out of all the predicted categories. 

Mathematically equation [4] defines precision. 
 

  [4] 

Recall evaluates ability of model to correctly identify all positive instances out of the total positive 

instances as shown in equation [5]. 

  [5] 

Mean average precision(mAP) metric is crucial for assessing a model’s ability to accurately localize 

objects within the image. It compares the ground-truth bounding box to the detected box and delivers a 

score based on equation [6]. The model determines and predicts more accurately as its mAP score 

increases. 

  [6] 

Average Precision is often employed in object detection applications. It considers precision and recall 

across different levels of confidence thresholds. 
 

          
Figure 4: Bar Chart Illustrating the Distribution of Object Classes in the UATD Dataset 

 

Training Results 
In this study, deep learning models utilized the 

preprocessing data. Because the original sonar 

image contains considerable amount of nonlinear 

noise caused by the seabed environment and the 

collect device, a preprocessing module is used to 

minimise the noise. The variation in the number of 

instances of the object categories showing 

imbalance in the data are illustrated in Figure 4. 

Training the model for 100 epochs and testing our 

model performance using test and validation set 

for performance. To compare the performance, 

deep learning models. 

Faster-RCNN, YOLOv3, YOLOv5, YOLOv8 are used. 

The experimental outcomes of the object detection 

are listed in Table 2 which shows that the yolo v3 

has the lowest precision. The accuracy of yolov5 

and yolov8 is similar, also it is visible that yolov8 

has better GFLOPS which can bring precise 

prediction with speed. Furthermore, Preprocess + 

YOLO v8 has the highest inference speed, 

approximately 48.73% less than Preprocess + 

yolov5, and is suitable for deep learning 

framework based real time object detection of 

forward-looking sonar images. From Figure 5 its 

inferred that even when the training samples are 

imbalanced, the State-of-the-art model helps the 

detection capture key features with high efficiency.
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Figure 5: Training Results Plotted for the Box Loss and Class Loss 

 

Table 2: Comparison of the Experimental Results of Various Detection Algorithms on UATD Dataset 

Model mAP Recall APball APcube APhb APtyre APsc APplane AProv APcc APcy APmb Params FLOPs 

Faster RCNN-

Resnet18 
0.839 0.897 0.869 0.717 0.831 0.847 0.547 0.986 0.957 0.666 0.973 1.000 28.17M 49.78G 

Faster RCNN-

Resnet50 
0.829 0.890 0.870 0.686 0.878 0.889 0.621 0.973 0.969 0.538 0.872 1.000 41.17M 63.29G 

Faster RCNN-

Resnet101 
0.818 0.877 0.865 0.697 0.913 0.840 0.572 0.967 0.974 0.491 0.944 0.912 60.16M 82.77G 

YOLO v3-

Darknet-53 
0.801 0.880 0.860 0.669 0.782 0.874 0.470 0.988 0.945 0.519 0.906 1.000 61.57M 49.67G 

YOLO v3-

MobilenetV2 
0.787 0.868 0.790 0.573 0.808 0.738 0.518 0.992 0.986 0.498 0.963 1.000 3.68M 4.22G 

YOLOv5 0.942 0.934 0.952 0.955 0.956 0.933 0.957 0.97 0.939 0.948 0.923 0.891 7.04M 15.G 

YOLOv8 0.945 0.938 0.952 0.958 0.957 0.942 0.96 0.963 0.953 0.943 0.922 0.904 3M 8.1G 

Preprocess 

+YOLOv5 
0.959 0.978 0.959 0.979 0.984 0.924 0.970 0.995 0.992 0.903 0.939 0.943 7.04M 15.8G 

 

Because of the complexity and perpetual changing 

of the underwater environment, environmental 

noise can seriously impair the effectiveness of 

underwater detecting devices (23). A prominent 

colour scheme that differs from optical and natural 

images poses a significant challenge to the ability 

to distinguish underwater sonar objects from the 

background. 

When compared with natural images, deep 

learning-based detection frameworks on sonar 

images do not produce similar outcomes. End-to-

end models designed specifically for sonar data are 

necessary for optimal model performance. In 

addition, when the measured object is far away 

from the sonar, the target size is small in 

proportion to the entire sonar image, making it 

trivial to misunderstand as noise. Target detection 

is made more difficult by these issues. As a result, 

it is now very important to decrease noise 

interference and provide swift, precise automatic 

recognition of small underwater targets with a low 

likelihood of false alarms. 

This paper proposed an approach that uses state-

of-the-art detection models after pre-processing to 
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identify objects in forward-looking sonar imagery. 

As the precision recall curve and confusion matrix 

in Figure 6 and Figure 7 respectively shows, the 

training experiments have improved the ability to 

detect various types of objects positioned on the 

seabed under varied sonar operating conditions or 

parameter settings. For maritime archaeological 

surveys looking to discover shipwreck sites and 

evaluate their state in relation to the surrounding 

environment (30), this work could become 

particularly relevant. 

 

 
Figure 6: Precision-Recall Curve of YOLOV8 Model Trained with Pre-Processed Images 

The present study provides a framework 

technique to combine the forward-looking sonar 

image with deep convolutional neural networks to 

improve the Mean Average Precision of 

underwater multiclass target detection tasks. To 

perform target detection, a training approach 

based on Preprocess + YOLOv8 model is used to 

construct an end-to-end preprocessing system that 

can automatically extract high-level features from 

sonar images. The effects of training techniques 

and network design on recognition performance 

are explored through a number of experiments. 

The proposed approach achieves mAP of 0.96 

which represents a significant enhancement in 

detection accuracy across the test dataset. The 

higher mAP indicates that our model is effective at 

accurately localizing objects making it a valuable 

tool for applications requiring high precision. The 

object detection result of the proposed model is 

shown in Figure 8 having bounding box and 

confidence score of the target prediction. 

 

 
Figure 7: Confusion Matrix of YOLOV8 Model Trained with Pre-Processed Images
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Figure 8: Detection Results Produced by the Proposed Object Detection Approach 

 

According to results from experiments, the 

suggested framework outperforms the Yolov3 and 

Faster-RCNN models (29) in terms of real-time 

performance, precision, and effective anti-noise 

properties. On a ten-class underwater object 

detection challenge, our framework using 

preprocess+yolov5 and preprocess+ yolov8 can 

achieve a mAP@50 of 95.9% and 96.3%, 

respectively. Our study showed the significant 

potential of imaging sonar for underwater 

forward-looking sonar, which is crucial for 

underwater vehicles to sense their surroundings 

and navigate autonomously. 

Enhanced inference speed enables autonomous 

underwater vehicles to detect objects rapidly, 

allowing dynamic navigation. Identifying 

submerged vessels or potential threats improves 

marine surveillance. Improved detection aids in 

monitoring changes in underwater ecosystems, 

resulting in better decisions and conservation 

efforts for aquatic species. 

The performance of the proposed method may be 

hindered by the challenges of the sonar image 

dataset, which is limited in size and diversity, 

potentially limiting generalisation across varied 

underwater conditions. Meanwhile, the efficacy of 

target detection may vary in response to 

irregularly shaped objects, marine life occlusion, 

and underwater vegetation interference. 
 

Conclusion 
In this study, a preprocessing framework was 

proposed for object detection in multibeam 

forward-looking Sonar images having a low visual 

perception. The need for exploring specific 

detectors for complex environments having low to 

zero visibility and small targets is crucial. The 

outcome of proposed model includes visually 

enhanced image with object detection. A mAP of 

96.3% with 3M parameters which implies a 

significant increase in efficiency in real time 

processing in the YOLOv8 model. 

The practical relevance and effectiveness of the 

proposed approach are shown in the comparison 

study using a forward-looking sonar image dataset 

collected in an underwater environment. 

Compared with other existing models, the 

proposed framework has a higher precision for 

each object category irrespective of the imbalance 

of objects in the dataset. Further research may 

explore expanding dataset with diverse 

environment and object types to improve 

robustness and incorporating multiscale feature 

fusion and ensemble techniques for precise 

detection. 
 

Abbreviations 
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