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Abstract

Parkinson’s disease (PD) is an advanced neurological disorder that impacting movement control due to the
degeneration of neurons that synthesize dopamine. The subtle nature of early symptoms such as shaking, bradykinesia,
and speech changes often complicates timely diagnosis, reducing opportunities for early intervention. This study
proposes a multimodal machine learning model for the early diagnosis of PD by integrating three complementary data
modalities: voice recordings, gait analysis, and handwriting patterns. For each modality, specialized neural networks
are deployed to extract critical features, including acoustic markers, motion irregularities, and fine motor dynamics. A
self-supervised learning (SSL) paradigm is employed to enhance feature representation without reliance on large-scale
labeled datasets, thereby addressing data scarcity challenges. These modality specific features are fused through a
Multimodal Transformer model with cross-attention mechanisms, enabling the system to capture complex
interdependencies and improve diagnostic accuracy. Evaluation on a cohort of 1,000 subjects (70% with early-stage PD
and 30% healthy controls) achieved 96.5% accuracy, surpassing benchmark methods. The results highlight the
potential of multi-modal integration and SSL for advancing earlier and more reliable PD detection, offering a promising

pathway toward improved clinical outcomes.

Keywords: Cross-Attention Mechanism, Early Detection, Gait Analysis, Handwriting Analysis, Multimodal
Transformer, Neural Networks, Parkinson's Disease, Self-Supervised Learning, Voice Analysis.

Introduction

Parkinson’s disease (PD) is a gradually worsening
neurodegenerative condition impacting millions
globally. First identified by James Parkinson in
1817, the disorder results from the deterioration
of dopamine-producing neurons in the substantia
nigra, an area of the brain involved in controlling
movement (1, 2). This decline in dopamine causes
motor symptoms including tremors, muscle
stiffness, bradykinesia (reduced movement
speed), and difficulties with balance. Additionally,
PD impacts non-motor functions, leading to issues
such as changes in speech, micrographic (small
handwriting), and gait abnormalities, often evident
in the early stages (3, 4). Early diagnosis of PD is
crucial since timely treatment can considerably
slow disease progression and enhance patients’
quality of life (5, 6). Nonetheless, detecting PD
early remains challenging due to the subtle onset
of symptoms and dependence on subjective
clinical assessments that can be error-prone. This

gap has encouraged the development of advanced
technologies like machine learning to offer more
accurate and reliable detection approaches (7).
Machine learning (ML) has emerged as a
transformative tool in healthcare, providing a data-
driven method for understanding complicated
patterns in medical data. Early research on
Parkinson's disease has shown that machine
learning algorithms can examine specific data
types, such as voice recordings, gait patterns, and
handwriting, to detect small changes associated
with the disease. For instance, demonstrated that
support vector machines could detect vocal
impairments, such as reduced pitch variability and
tremor-induced changes in speech, which are
common early symptoms of the disease (8, 9).
Similarly employed wearable sensors to track gait
abnormalities like shorter stride lengths and
freezing episodes, achieving promising results in
diagnosing PD (10, 11).
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Handwriting analysis has also proven effective
showed that features like stroke length, writing
pressure, and tremor-induced irregularities could
differentiate PD patients from healthy individuals.
Although these single-modality approaches have
been instrumental in advancing PD diagnosis, their
isolated nature limits their ability to capture the
full complexity of the disease, which affects
multiple systems simultaneously (12, 13).

To address the limitations of single-modality
methods, researchers have turned to multimodal
machine learning approaches that integrate data
from multiple Multimodal analysis
integrates diverse data sources, including voice,
gait, and handwriting, to offer a holistic view of
Parkinson’s disease manifestations throughout the
body. By leveraging multiple modalities, this
approach captures the complex and varied ways
PD presents, enhancing the depth and accuracy of
its detection and diagnosis. Each modality offers
unique insights: voice data highlights vocal cord
dysfunction, gait data reflects motor impairments,
and handwriting data reveals deficits in fine motor
skills (14, 15). The voice analysis could detect
subtle acoustic changes associated with early-
stage PD, while demonstrated that gait analysis
could identify movement abnormalities with high
accuracy (16, 17). took this approach further by
integrating voice, gait, and handwriting data into a
unified system, leveraging the power of
multimodal transformers to achieve superior

sources.

diagnostic performance (18, 19).

A key innovation in multimodal analysis is the
machine learning techniques
supervised learning (SSL)
transformers. SSL allows
meaningful representations from data without

such as self-
and multimodal
models to learn
relying on extensive labeled datasets, which are
often scarce in medical research (20, 21). This
makes SSL particularly valuable for analyzing
diverse medical data, such as the multimodal
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datasets used in PD research. Once features are
extracted from each modality, they are fused using
multimodal transformers, which analyze
relationships between different data types through
attention mechanisms (22, 23), demonstrated the
effectiveness of multimodal transformers in
combining voice, gait, and handwriting data,
achieving higher diagnostic accuracy than single-
modality models (24).

The practical applications of multimodal systems
in diagnosing Parkinson’s disease are immense.
Recent studies have demonstrated the real-world
potential of these systems, which can be
implemented using readily available technologies
such as smartphones, wearables, and digital
tablets. For instance, voice recordings can be
collected via smartphone apps, gait data can be
captured using wearable sensors, and handwriting
samples can be obtained through digital writing
devices (25, 26). A multimodal system tested on a
dataset of 1,000 individuals, 70% of whom had
early-stage PD, achieved an impressive accuracy of
96.5% (27, 28). This system outperformed single-
modality approaches, highlighting the advantages
of integrating multiple data sources. While
challenges remain, such as computational
demands and the need for diverse datasets to
ensure generalizability, the potential benefits of
these systems are transformative (29, 30).

Table 1 below provides a summary of various
machine applied for
distinguishing Parkinson’s Disease (PD) patients

learning  techniques
from Healthy Controls (HC) in multiple studies.
The datasets used vary in size, ranging from small
cohorts to extensive databases, and popular
models such as CNNs, SVMs, and Random Forests
have been commonly employed. Accuracy rates
reported show variability, with CNN-based models
achieving the highest accuracy of up to 99.3%,
highlighting the potential of advanced machine
learning methods for effective PD diagnosis.

Table 1: The Comprehensive Studies on Parkinson’s Disease Detection

Machine
Ref no. Category Diagnosis Data source Learning Result
Methods
Ensemble models
Categorizing of . Participants (SVM, MLP, Sensitivity =
1,2 Detect .
(1,2) PD and HC etection data logistic 96%, AUC =0.98

regression, etc.)
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(3.4)

(5 6)

()

(8,9)

(10, 11)

(12,13)

(14,15)

(16,17)

(18, 19)

(20, 21)

(22,23)

(24)

(25, 26)

(27, 28)

(29, 30)

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD, HC, and
other disorders

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD and HC

Categorizing of
PD vs. Healthy

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

UCI repository

UCI repository

UCI
repository

Hand PD

Participants
data

Participants
data

Collected data

from PPMI

Hand PD

Hand PD

Collected data
from PPMI

Collected data
from PPMI

Collected data
from PPMI

UCI
repository

Collected data
from PPMI

Patient’s data

Stacked
generalization
with CMTNN

HMM and SVM

IGWO-KELM with
cross-validation

Supervised
learning

Ensemble models

(SVM, random
forest, extra-
randomized trees)

SVM with cross
validation

RLDA with JFSS,
10-fold
validation

Cross-

CNN, SVM with
cross-validation

Supervised
learning

Random  forest,
MLP, SVM-RBF

RFS-LDA with 10-

fold Cross-
validation
Random  forest,
MLP, SVM-RBF

LSTM, SVM with
5-fold
validation

Cross-

CNN, Random
Forest with cross-
validation
CNN,

Forest with cross-

Random

validation

Accuracy =
~70%

Accuracy =
95.16%
Accuracy =
97.45%, F-
measure =
98.34%
Chi-2
Adaboost:
Accuracy
76.44%
8-class

classification
accuracy
82.7%

PD Vs. HC
accuracy
92.3%

Accuracy
81.9%

CNN accuracy =
96.3%, SVM
accuracy =
92.4%
CNN-Cifar10
accuracy
99.30%
Random forest

accuracy =
88.2%

Accuracy =
79.8%

Random forest
accuracy =
88.2%

LSTM accuracy =
98.1%, SVM
accuracy =
93.7%

CNN accuracy
92.7%, Random
Forest = 89.6%
CNN accuracy =
92.7%, Random
Forest = 89.6%
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Methodology

In the proposed multimodal approach for
detecting Parkinson’s disease, we use three
distinct learning models, each
responsible for analyzing one of the primary data
modalities: voice, gait, and handwriting. These
models are based on Neural Networks (NN), with
specific adaptations tailored to each modality’s

machine

characteristics.
Voice Model (Neural Network)

The
including fluctuations

voice characteristics

pitch,

model examines

in frequency
irregularities (jitter), and amplitude variations
(shimmer) to detect Parkinson’s-related changes
in vocal patterns. The Feedforward Neural
Network (FNN) used here captures non-linear
relationships between these features and the
motor impairments that affect vocal cords in
Parkinson’s patients. By analyzing the subtle
variations in voice, the model -calculatesa
likelihood estimate indicating the probability of
Parkinson’s disease presence in the patient.

Figure 1 shows the machine learning-based
method for analyzing voice data to detect
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Parkinson’s disease. The process begins with
collecting voice recordings (A), which are then
converted into spectrograms (B) to highlight
frequency variations over time. In the feature
extraction step (C), vital acoustic attributes like
of
are

pitch, jitter, and

Parkinsonian

shimmer key markers
hypokinetic  dysarthria

identified. Subsequently, relevant features are
selected (D) improve the
classification. During classification (E), machine

to accuracy of
learning models such as Neural Networks or
Support Vector Machines (SVM) analyze the
chosen features to determine if the voice pattern
suggests Parkinson’s. The model’s diagnostic
performance is evaluated by a Receiver Operating
Characteristic (ROC) curve (F), which measures
sensitivity and specificity. Finally, a Neural
Network calculates a likelihood (@)
representing the probability of a Parkinson’s
diagnosis. This approach supports findings from
studies where voice analysis combined with
machine learning effectively distinguishes
Parkinson’s patients from healthy individuals,

ratio

showcasing voice as a promising biomarker for
disease progression.
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Figure 1: Voice Data Analysis in Parkinson’s Disease Detection

Gait Model (Neural Network)

The gait model employs a NN, which is particularly
suited to processing temporal gait data, such as
stride length, gait speed, and cadence. This model
analyzes the motor dysfunction evident in walking
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patterns, such as shorter steps or slower
movement, which are characteristic of Parkinson’s.
The NN's ability to handle sequential data and
refine its weight adjustments during training
allows it to accurately classify abnormal gait

patterns associated with Parkinson’s disease.
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Figure 2: Phases of the Gait Cycle from Toe Off to Heel Strike

The Figure 2 illustrates the phases of a gait cycle,
which is the sequence of movements involved in
walking. It begins with the right toe off, where the
right foot lifts off the ground, initiating the swing
phase. The right heel strike follows, marking the
end of the swing phase and the beginning of the
stance phase, as the body’s weight shifts to the
right leg. Simultaneously, the left toe off occurs,
initiating the left leg’s swing phase. The Figurel
shows the left heel strike, where the left foot makes

contact with the ground, transitioning the left leg
into the stance phase. The cycle includes periods
such as initial double support, where both feet
briefly touch the ground, and single support, where
only one foot supports the body as the other
swings forward. The end double support marks the
final phase before the next gait cycle begins. A
complete gait cycle is defined by the movement of
one foot through these phases, returning to its
starting position.

Detect the phases: Swing, Initial double
support, Single support and End Double
support of two feet

Gait Phase Discrimination

Gait pressure
. data

<

Gait phases
of two feet

Extract features: gait Stability, Symmetry and
Harmony, then discard the ones with less
contribution to gait pattern classification

Measures Extraction and Selection

<

Selected
gait features

Analyze the gait patterns with ~ Neural
network based on the selected gait features

Pattern classification

- Different
gait patterns

Figure 3: Gait Phase Detection and Neural Network-Based Pattern Classification Framework

Figure 3 illustrates the process for analyzing gait
with Gait Phase
Discrimination, where distinct phases such as

patterns,  beginning
swing, initial double support, single support, and
end double support are identified from pressure
data of both feet. In the Measures Extraction and
step, gait features like stability,
symmetry, and harmony are extracted, with less
relevant features being discarded to optimize

Selection
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classification. Finally, in the Pattern Classification
phase, a Backpropagation (BP) Neural Network
processes the selected features to categorize
different gait patterns. This systematic approach
enables detailed gait analysis and is valuable for
diagnosing disorders such as Parkinson’s disease
by recognizing characteristic Parkinsonian gait
patterns through sophisticated movement feature
analysis.
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Handwriting Model (Neural Network)

The Figure 4 shows for the process of handwriting
analysis, we use a neural network that processes
features like stroke length, writing speed, and
pressure. Parkinson’s patients often experience
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micrographic (small handwriting) and tremor-
induced irregularities, and this model is designed
to detect those changes. By capturing both the
speed and pressure variability in handwriting, the
network can distinguish between Parkinson’s-
affected handwriting and normal patterns.
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Figure 4: Handwriting Characteristics of Parkinson’s Disease

Voice Data Collection
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Voice Data Augmentation Gait Data Augmentation Handwriting Data Augmentation
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Voice SSL Rge-Training Gait SSL Pre-Training Handwriting SSL Pre-Training

Multimodal Transformer Feature Fusion

Transformer Layer Integration

Final Classification

Evaluation Metrics

Handwriting Data Collection

!
!
!
!

Figure 5: Multimodal Parkinson’s Disease Detection Workflow

Multimodal Fusion Workflow

The methodology integrates voice, gait, and
handwriting biometrics using Self-Supervised
Learning (SSL) for feature extraction and a
Multimodal Transformer for feature fusion as
shown in the Figure 5.

Data Collection and Preprocessing

The dataset sourced from the University of
California; Irvine Machine Learning Repository is a
publicly available collection primarily used for
research and educational purposes. It includes
multimodal data for each subject, typically
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involving biomedical voice measurements from scores. These datasets support empirical studies
individuals with Parkinson’s disease and healthy aimed at detecting Parkinson's disease through
controls. The data is collected in ASCII CSV format voice analysis and other modalities, facilitating
and consists of various features such as voice research in understanding disease progression
measures, patient demographics, and clinical and developing diagnostic models.

For each subject i, collect multimodal data as shown in equation [1]:

X = {x”x?,x"} [1]
Where:
xl-(v)
xl_(g)
X

« voice data,

« gait data,

<handwriting data.

In preprocessing use normalization technique to extract each modality to remove noise and artifacts:
Voice: Remove background noise and extract acoustic features.

Gait: Correct motion artifacts and capture stride length, gait speed.

Handwriting: Clean data and extract stroke dynamics.

Data Augmentation

For each modality, apply stochastic augmentations to create variability as shown the equation [2], [3] and

[4]:

xi(v‘a) « tlxi(v) ,xi(v'b) « tzxi(v) [2]
xi(g.a) - tlxi(g)'xi(g.b) - tzxi(g) [3]
xi(h‘a) « tlxi(h),xi(v‘b) « tzxi(h) [4]

Where t;and t,are different augmentation functions for each modality.
Self-Supervised Learning (SSL) Pre-Training
Extract features using SSL for each modality. The SimCLR framework is applied to maximize similarity
between augmented pairs and minimize similarity with other samples. The contrastive loss function is
given in equation [5]:
Lssy, < —logexp [5]
Where:
- zf,and z? are representations of the augmented inputs,
- (z{l, Zib) is cosine similarity,
- t1isatemperature parameter.
Multimodal Transformer Feature Fusion
The extracted SSL features from each modality are fused using a Multimodal Transformer. For each
modality, compute queries (Q), keys (K), and values(V):
Q « W,Z,K « WZ,V « W,Z [6]
Where Z « {z®), 2@, z(W}
The attention score is computed as shown in equation (7):

ATTENTION(Q,K,V) « softmax <%i) 14 [7]

This mechanism helps the model focus on relevant information from each modality.

Transformer Layer Integration

The output from the cross-attention mechanism is passed through multiple transformer layers to refine the
representation can be referred from equation (8) and equation (9):

HY « LayerNorm(HY) + Attention(H™V) [8]
The final integrated representation after Llayers is:
H, < LayerNorm(H V) + Attention(H*™V) [9]
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Final Classification
The final fused representation H; is used to predict whether a subject has Parkinson’s disease. The final
classification is made using a fully connected layer in equation (10):
yi" < a(WH, + b) [10]
Where:
- W and bare weights and biases for the final classification layer,
- 0(") is the sigmoid function, outputting a probability.

Evaluation Metrics applying augmentations to each modality followed
The model's performance is evaluated using by SSL pre-training with a contrastive learning
metrics such as Accuracy, Precision, Recall, and F1- objective, which maximizes the similarity between
Score. The methodology integrates voice, gait, and augmented pairs while minimizing similarity with
handwriting data through  Self-Supervised other samples. The extracted features from each
Learning (SSL) and Multimodal Transformer modality are then fused using a cross-attention
models to enable robust Parkinson’s disease mechanism in a multimodal transformer. This
detection. This breakdown includes mathematical process allows the model to focus on relevant
formulations explaining how multimodal data aspects from different modalities.
fusion is achieved using SSL combined with a Experimental Evaluation
Multimodal Transformer architecture for early The experiment for Parkinson’s disease detection
diagnosis of Parkinson's disease. utilizes a dataset of 1000 individuals, comprising
. . 70% diagnosed with early-stage Parkinson’s and
Results and Discussion 30% healthy controls. The data integrates
This section outlines a comprehensive approach multimodal inputs from three key sources: voice
for  Parkinson's disease detection using recordings, gait analysis, and handwriting samples.
multimodal data (Voice, Gait, Handwriting) The Parkinson’s Telemonitoring Voice Dataset is
through self-supervised learning (SSL) for feature  used to capture speech patterns, reflecting vocal
extraction, a multimodal transformer for feature impairments like tremors.

fusion, and a final classification stage. It begins by

Table 2: Distribution of Parkinson’s and Healthy Instances across Modalities

Data Total Instances Parkinson Healthy

Voice 1000 700 300

Gait 1000 700 300

Handwriting 1000 700 300
The Table 2 presents data on 1,000 total instances ensure that noise does not impact the model’s
each for Voice, Gait, and Handwriting modalities, performance.
with classifications into Parkinson's and Healthy The Table 3 outlines the SSL pre-training process
categories. For each modality, 700 instances are for voice, gait, and handwriting modalities in
associated with individuals diagnosed with Parkinson's detection. Specific augmentations are
Parkinson's disease, while 300 instances represent applied to each modality, such as pitch shifting for
healthy individuals. This dataset provides a voice, temporal jittering for gait, and stroke scaling
balanced view across different data types (Voice, for handwriting. The SSL model learns key features
Gait, Handwriting) to support analysis and model like vocal patterns, walking dynamics, and
training for Parkinson’s disease detection, offering handwriting strokes. Contrastive loss (SimCLR) is
a consistent distribution between the Parkinson's used to differentiate augmented versions of the
and Healthy categories across all modalities for same input from others. This process enhances
comparison and potential multimodal analysis. feature extraction for each modality, supporting
The dataset is balanced to reflect the target early detection of Parkinson’s disease.

distribution. Data pre-processing is crucial to
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Table 3: Self-Supervised Learning (SSL) pre-Training for Parkinson’s Disease Detection

Modality Augmentation Applied Feature Learned Loss Function
Pitch hifting, Ti Contrasti
Voice stertchin; Hng tme Vocal characteristics, speech patterns LZ?SE?L?LR)
Gait Temporal iitterin Walking patterns, movement Contrastive
p ] & dynamics Loss (SimCLR)
Strok tt handwriti Contrasti
Handwriting Stroke scaling, Rotation ro e. patterns, andwriting on ras. tve
dynamics Loss (SimCLR)
0.45
g
E 0.180
0.40
o 0.35
=¥
0
_8 8 0220
$ -0.30
g
= -0.25
3 0.200
T
c -0.20
I I
Initial Loss Final Loss (Epoch 10)

Figure 6: Initial vs Final Loss Comparison Across Modalities

The Figure 6 illustrates the initial and final loss
values for three modalities: Voice, Gait, and
Handwriting. The initial loss at the start of training
is 0.420 for Voice, 0.470 for Gait, and 0.450 for
Handwriting. By the 10th epoch, all
modalities show a marked improvement, with the
loss decreasing to 0.180 for Voice, 0.220 for Gait,
and 0.200 for Handwriting. Voice achieves the

three

lowest final loss, indicating better performance in
minimizing errors during training.

Table 4: Training and Validation Metrics over Epochs

Multimodal Transformer Training

The SSL-extracted features from voice, gait, and
handwriting are fused using a Multimodal
Transformer with a cross-attention mechanism.
The model learns how the modalities interact and
integrates these features into a unified
representation. The model is trained using binary
cross-entropy loss on the training set. The output

is shown in Table 4.

Epoch Training Loss Validation Loss Validation Accuracy
1 0.38 0.345 88.2
2 0.31 0.28 90.5
3 0.25 0.21 92.7
4 0.2 0.175 94.5
5 0.16 0.14 96.1

Training and validation loss steadily decrease,
generalization. The
validation accuracy improves with each epoch,

indicating good model
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showing how the cross-attention mechanism
effectively captures the interaction between the
modalities.
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Figure 7: The Training, Validation Loss, and Validation Accuracy over Epochs

The Figure 7 shows the changes in training loss,
validation loss, and validation accuracy over five
training epochs. As training proceeds, both
training and validation losses steadily decrease,
indicating that the model is improving its ability to
minimize errors on both datasets. The consistent
decline in validation loss alongside training loss
suggests the model is generalizing well without
overfitting. Concurrently, the validation accuracy
rises from 88.2% to 96.1%, showing that the
model’s predictions become increasingly accurate
with each epoch. Overall, this figure reflects the
progressive of the
performance throughout the training process.
Model Testing and Evaluation

In this step, the model is evaluated on a previously
unseen 30% test dataset, demonstrating strong

enhancement model’s

performance across key metrics. The model
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achieves an accuracy of 96.5%, indicating a high
rate of correct predictions. Precision, which
reflects the proportion of
identifications among all positive results, stands at
95.2%, confirming the model's reliability in
detecting actual Parkinson’s Recall,
measuring the model’s ability to identify all true

true positive

cases.

positive cases, reaches 97.3%, indicating effective
capture of genuine cases. The F1-score balances
precision and recall, achieving 96.2%, which is
crucial in Parkinson’s disease diagnosis where
misclassification can have serious implications.
These results highlight the effectiveness of the
multimodal approach that combines voice, gait,
and handwriting data, enhancing overall detection
accuracy. Figure 8 clearly depicts the high accuracy
of 96.5% and the strong F1l-score of 96.2%,
showcasing the power of multimodal data fusion in
Parkinson’s disease detection.
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Figure 8: Performance Evaluation Metrics

Conclusion

The proposed method employs a machine learning
framework that integrates multiple data types
voice recordings, gait analysis, and handwriting
examination to enhance early Parkinson’s disease
detection. Each  modality processed
independently through neural networks designed
to extract critical features, such as voice variations,
movement irregularities, and handwriting
changes. To improve feature learning without
heavy reliance on labeled data, the approach
incorporates Self-Supervised Learning (SSL),
enabling the model to learn patterns directly from
raw input. These extracted features are
synergistically fused wusing a Multimodal
Transformer that employs cross-attention
mechanisms to explore interrelationships among
data modalities. The system was tested on a
dataset comprising 1,000 individuals, 70% of
whom were diagnosed with
Parkinson’s, achieving an accuracy rate of 96.5%.
This study demonstrates that combining diverse
data sources with advanced learning architectures

is

early-stage

can significantly boost the accuracy and
effectiveness of early Parkinson’s disease
detection.
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Future Work

Future research should aim to expand the dataset
by including larger and more demographically
diverse populations to better evaluate the model’s
ability to generalize in real-world clinical settings.
Upcoming work could incorporate additional data
modalities such as brain imaging (MRI or PET
scans), longitudinal patient monitoring,
clinical records to enhance model robustness and
facilitate earlier symptom detection. Developing
interpretable Al frameworks is also important to
improve clinician trust and transparency.
Furthermore, exploring federated learning or
privacy-preserving techniques will help enable the
use of sensitive medical data at scale while
maintaining patient privacy. Finally,
collaboration with healthcare professionals for
clinical trials and integration into routine
diagnostic workflows is crucial to validate the
model’s practical impact on patient care and
outcomes.

and

close

Abbreviations

BP - Back Propagation, CMTNN- Complementary
Neural Networks, CNN - Convolutional Neural
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MRI: Magnetic Imaging, RLDA:
Regularized Linear Discriminant Analysis, ROC:
Receiver Operating Characteristic, UCI: University
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