
International Research Journal of Multidisciplinary Scope (IRJMS), 2025; 6(4):1062-1074  

     

Original Article | ISSN (O): 2582-631X                       DOI: 10.47857/irjms.2025.v06i04.06552 

The Multimodal Fusion of Voice, Gait, and Handwriting 
Detection of Parkinson’s Disease Using Machine Learning 
Mirle Bhyraj Meghashree1, Karigowda Dhananjaya Kumar1*, Nagaraju 

Vinutha1, Dinesh Akash2 
1Faculty of Computer Science and Engineering, Vidya Vikas Institute of Engineering and Technology, Mysuru-570028, Karnataka, 
India, 2Faculty of Information Science and Engineering, Vidya Vikas Institute of Engineering and Technology, Mysuru-570028, 
Karnataka, India. *Corresponding Author’s Email: dhananjaya.kumar@vidyavikas.edu.in 

Abstract 
 

Parkinson’s disease (PD) is an advanced neurological disorder that impacting movement control due to the 
degeneration of neurons that synthesize dopamine. The subtle nature of early symptoms such as shaking, bradykinesia, 
and speech changes often complicates timely diagnosis, reducing opportunities for early intervention. This study 
proposes a multimodal machine learning model for the early diagnosis of PD by integrating three complementary data 
modalities: voice recordings, gait analysis, and handwriting patterns. For each modality, specialized neural networks 
are deployed to extract critical features, including acoustic markers, motion irregularities, and fine motor dynamics. A 
self-supervised learning (SSL) paradigm is employed to enhance feature representation without reliance on large-scale 
labeled datasets, thereby addressing data scarcity challenges. These modality specific features are fused through a 
Multimodal Transformer model with cross-attention mechanisms, enabling the system to capture complex 
interdependencies and improve diagnostic accuracy. Evaluation on a cohort of 1,000 subjects (70% with early-stage PD 
and 30% healthy controls) achieved 96.5% accuracy, surpassing benchmark methods. The results highlight the 
potential of multi-modal integration and SSL for advancing earlier and more reliable PD detection, offering a promising 
pathway toward improved clinical outcomes. 

Keywords: Cross-Attention Mechanism, Early Detection, Gait Analysis, Handwriting Analysis, Multimodal 
Transformer, Neural Networks, Parkinson's Disease, Self-Supervised Learning, Voice Analysis. 
 

Introduction 

Parkinson’s disease (PD) is a gradually worsening 

neurodegenerative condition impacting millions 

globally. First identified by James Parkinson in 

1817, the disorder results from the deterioration 

of dopamine-producing neurons in the substantia 

nigra, an area of the brain involved in controlling 

movement (1, 2). This decline in dopamine causes 

motor symptoms including tremors, muscle 

stiffness, bradykinesia (reduced movement 

speed), and difficulties with balance. Additionally, 

PD impacts non-motor functions, leading to issues 

such as changes in speech, micrographic (small 

handwriting), and gait abnormalities, often evident 

in the early stages (3, 4). Early diagnosis of PD is 

crucial since timely treatment can considerably 

slow disease progression and enhance patients’ 

quality of life (5, 6). Nonetheless, detecting PD 

early remains challenging due to the subtle onset 

of symptoms and dependence on subjective 

clinical assessments that can be error-prone. This 

gap has encouraged the development of advanced 

technologies like machine learning to offer more 

accurate and reliable detection approaches (7). 

Machine learning (ML) has emerged as a 

transformative tool in healthcare, providing a data-

driven method for understanding complicated 

patterns in medical data. Early research on 

Parkinson's disease has shown that machine 

learning algorithms can examine specific data 

types, such as voice recordings, gait patterns, and 

handwriting, to detect small changes associated 

with the disease. For instance, demonstrated that 

support vector machines could detect vocal 

impairments, such as reduced pitch variability and 

tremor-induced changes in speech, which are 

common early symptoms of the disease (8, 9). 

Similarly employed wearable sensors to track gait 

abnormalities like shorter stride lengths and 

freezing episodes, achieving promising results in 

diagnosing PD (10, 11).  
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Handwriting analysis has also proven effective 

showed that features like stroke length, writing 

pressure, and tremor-induced irregularities could 

differentiate PD patients from healthy individuals. 

Although these single-modality approaches have 

been instrumental in advancing PD diagnosis, their 

isolated nature limits their ability to capture the 

full complexity of the disease, which affects 

multiple systems simultaneously (12, 13). 

To address the limitations of single-modality 

methods, researchers have turned to multimodal 

machine learning approaches that integrate data 

from multiple sources. Multimodal analysis 

integrates diverse data sources, including voice, 

gait, and handwriting, to offer a holistic view of 

Parkinson’s disease manifestations throughout the 

body. By leveraging multiple modalities, this 

approach captures the complex and varied ways 

PD presents, enhancing the depth and accuracy of 

its detection and diagnosis. Each modality offers 

unique insights: voice data highlights vocal cord 

dysfunction, gait data reflects motor impairments, 

and handwriting data reveals deficits in fine motor 

skills (14, 15). The voice analysis could detect 

subtle acoustic changes associated with early-

stage PD, while demonstrated that gait analysis 

could identify movement abnormalities with high 

accuracy (16, 17). took this approach further by 

integrating voice, gait, and handwriting data into a 

unified system, leveraging the power of 

multimodal transformers to achieve superior 

diagnostic performance (18, 19).  

A key innovation in multimodal analysis is the 

machine learning techniques such as self-

supervised learning (SSL) and multimodal 

transformers. SSL allows models to learn 

meaningful representations from data without 

relying on extensive labeled datasets, which are 

often scarce in medical research (20, 21). This 

makes SSL particularly valuable for analyzing 

diverse medical data, such as the multimodal 

datasets used in PD research. Once features are 

extracted from each modality, they are fused using 

multimodal transformers, which analyze 

relationships between different data types through 

attention mechanisms (22, 23), demonstrated the 

effectiveness of multimodal transformers in 

combining voice, gait, and handwriting data, 

achieving higher diagnostic accuracy than single-

modality models (24).  

The practical applications of multimodal systems 

in diagnosing Parkinson’s disease are immense. 

Recent studies have demonstrated the real-world 

potential of these systems, which can be 

implemented using readily available technologies 

such as smartphones, wearables, and digital 

tablets. For instance, voice recordings can be 

collected via smartphone apps, gait data can be 

captured using wearable sensors, and handwriting 

samples can be obtained through digital writing 

devices (25, 26). A multimodal system tested on a 

dataset of 1,000 individuals, 70% of whom had 

early-stage PD, achieved an impressive accuracy of 

96.5% (27, 28). This system outperformed single-

modality approaches, highlighting the advantages 

of integrating multiple data sources. While 

challenges remain, such as computational 

demands and the need for diverse datasets to 

ensure generalizability, the potential benefits of 

these systems are transformative (29, 30).  

Table 1 below provides a summary of various 

machine learning techniques applied for 

distinguishing Parkinson’s Disease (PD) patients 

from Healthy Controls (HC) in multiple studies. 

The datasets used vary in size, ranging from small 

cohorts to extensive databases, and popular 

models such as CNNs, SVMs, and Random Forests 

have been commonly employed. Accuracy rates 

reported show variability, with CNN-based models 

achieving the highest accuracy of up to 99.3%, 

highlighting the potential of advanced machine 

learning methods for effective PD diagnosis. 
 

Table 1: The Comprehensive Studies on Parkinson’s Disease Detection 

 

Ref no. 

 

Category  Diagnosis Data source 

Machine 

Learning 

Methods 

Result 

(1, 2) 
Categorizing of 

PD and HC 
Detection 

Participants 

data 

Ensemble models 

(SVM, MLP, 

logistic 

regression, etc.) 

Sensitivity = 

96%, AUC = 0.98 
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(3, 4) 
Categorizing of 

PD and HC 
Detection UCI repository 

Stacked 

generalization 

with CMTNN 

Accuracy = 

~70% 

(5, 6) 
Categorizing of 

PD and HC 
Detection UCI repository HMM and SVM 

Accuracy = 

95.16% 

(7) 
Categorizing of 

PD and HC 
Detection 

 

 UCI 

repository 

IGWO-KELM with 

cross-validation 

Accuracy = 

97.45%, F-

measure = 

98.34% 

(8, 9) 
Categorizing of 

PD and HC 
Detection Hand PD 

Supervised 

learning 

Chi-2 with 

Adaboost: 

Accuracy = 

76.44% 

(10, 11) 

Categorizing of 

PD, HC, and 

other disorders 

Detection 
Participants 

data 

Ensemble models 

(SVM, random 

forest, extra-

randomized trees) 

8-class 

classification 

accuracy = 

82.7% 

(12, 13) 
Categorizing of 

PD and HC 
Detection 

Participants 

data 

SVM with cross 

validation 

PD vs. HC 

accuracy = 

92.3% 

(14, 15) 
Categorizing of 

PD and HC 
Detection 

Collected data 

from PPMI 

RLDA with JFSS, 

10-fold cross-

validation 

Accuracy = 

81.9% 

(16, 17) 
Categorizing of 

PD and HC 
Detection Hand PD 

CNN, SVM with 

cross-validation 

CNN accuracy = 

96.3%, SVM 

accuracy = 

92.4% 

(18, 19) 
Categorizing of 

PD and HC 
Detection Hand PD 

Supervised 

learning 

CNN-Cifar10 

accuracy = 

99.30% 

(20, 21) 
Categorizing of 

PD and HC 
Detection 

Collected data 

from PPMI 

Random forest, 

MLP, SVM-RBF 

Random forest 

accuracy = 

88.2% 

(22, 23) 
Categorizing of 

PD and HC 
Detection 

Collected data 

from PPMI 

RFS-LDA with 10-

fold cross-

validation 

Accuracy = 

79.8% 

(24) 
Categorizing of 

PD and HC 
Detection 

Collected data 

from PPMI 

Random forest, 

MLP, SVM-RBF 

Random forest 

accuracy = 

88.2% 

(25, 26) 
Categorizing of 

PD and HC 
Detection 

 UCI 

repository 

LSTM, SVM with 

5-fold cross-

validation 

LSTM accuracy = 

98.1%, SVM 

accuracy = 

93.7% 

(27, 28) 
Categorizing of 

PD and HC 
Detection 

Collected data 

from PPMI 

CNN, Random 

Forest with cross-

validation 

CNN accuracy = 

92.7%, Random 

Forest = 89.6% 

(29, 30) 
Categorizing of 

PD vs. Healthy 
Detection  Patient’s data 

CNN, Random 

Forest with cross-

validation 

CNN accuracy = 

92.7%, Random 

Forest = 89.6% 
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Methodology 
In the proposed multimodal approach for 

detecting Parkinson’s disease, we use three 

distinct machine learning models, each 

responsible for analyzing one of the primary data 

modalities: voice, gait, and handwriting. These 

models are based on Neural Networks (NN), with 

specific adaptations tailored to each modality’s 

characteristics. 

Voice Model (Neural Network) 
The model examines voice characteristics 

including fluctuations in pitch, frequency 

irregularities (jitter), and amplitude variations 

(shimmer) to detect Parkinson’s-related changes 

in vocal patterns. The Feedforward Neural 

Network (FNN) used here captures non-linear 

relationships between these features and the 

motor impairments that affect vocal cords in 

Parkinson’s patients. By analyzing the subtle 

variations in voice, the model calculates a 

likelihood estimate indicating the probability of 

Parkinson’s disease presence in the patient. 

Figure 1 shows the machine learning-based 

method for analyzing voice data to detect 

Parkinson’s disease. The process begins with 

collecting voice recordings (A), which are then 

converted into spectrograms (B) to highlight 

frequency variations over time. In the feature 

extraction step (C), vital acoustic attributes like 

pitch, jitter, and shimmer key markers of 

Parkinsonian hypokinetic dysarthria are 

identified. Subsequently, relevant features are 

selected (D) to improve the accuracy of 

classification. During classification (E), machine 

learning models such as Neural Networks or 

Support Vector Machines (SVM) analyze the 

chosen features to determine if the voice pattern 

suggests Parkinson’s. The model’s diagnostic 

performance is evaluated by a Receiver Operating 

Characteristic (ROC) curve (F), which measures 

sensitivity and specificity. Finally, a Neural 

Network calculates a likelihood ratio (G) 

representing the probability of a Parkinson’s 

diagnosis. This approach supports findings from 

studies where voice analysis combined with 

machine learning effectively distinguishes 

Parkinson’s patients from healthy individuals, 

showcasing voice as a promising biomarker for 

disease progression. 
 

 
Figure 1: Voice Data Analysis in Parkinson’s Disease Detection 

 

Gait Model (Neural Network) 
The gait model employs a NN, which is particularly 

suited to processing temporal gait data, such as 

stride length, gait speed, and cadence. This model 

analyzes the motor dysfunction evident in walking 

patterns, such as shorter steps or slower 

movement, which are characteristic of Parkinson’s. 

The NN's ability to handle sequential data and 

refine its weight adjustments during training 

allows it to accurately classify abnormal gait 

patterns associated with Parkinson’s disease. 
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Figure 2: Phases of the Gait Cycle from Toe Off to Heel Strike 

 

The Figure 2 illustrates the phases of a gait cycle, 

which is the sequence of movements involved in 

walking. It begins with the right toe off, where the 

right foot lifts off the ground, initiating the swing 

phase. The right heel strike follows, marking the 

end of the swing phase and the beginning of the 

stance phase, as the body’s weight shifts to the 

right leg. Simultaneously, the left toe off occurs, 

initiating the left leg’s swing phase. The Figure1 

shows the left heel strike, where the left foot makes 

contact with the ground, transitioning the left leg 

into the stance phase. The cycle includes periods 

such as initial double support, where both feet 

briefly touch the ground, and single support, where 

only one foot supports the body as the other 

swings forward. The end double support marks the 

final phase before the next gait cycle begins. A 

complete gait cycle is defined by the movement of 

one foot through these phases, returning to its 

starting position.  
 

 
Figure 3: Gait Phase Detection and Neural Network-Based Pattern Classification Framework 

 

Figure 3 illustrates the process for analyzing gait 

patterns, beginning with Gait Phase 

Discrimination, where distinct phases such as 

swing, initial double support, single support, and 

end double support are identified from pressure 

data of both feet. In the Measures Extraction and 

Selection step, gait features like stability, 

symmetry, and harmony are extracted, with less 

relevant features being discarded to optimize 

classification. Finally, in the Pattern Classification 

phase, a Backpropagation (BP) Neural Network 

processes the selected features to categorize 

different gait patterns. This systematic approach 

enables detailed gait analysis and is valuable for 

diagnosing disorders such as Parkinson’s disease 

by recognizing characteristic Parkinsonian gait 

patterns through sophisticated movement feature 

analysis. 
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Handwriting Model (Neural Network) 
The Figure 4 shows for the process of handwriting 

analysis, we use a neural network that processes 

features like stroke length, writing speed, and 

pressure. Parkinson’s patients often experience 

micrographic (small handwriting) and tremor-

induced irregularities, and this model is designed 

to detect those changes. By capturing both the 

speed and pressure variability in handwriting, the 

network can distinguish between Parkinson’s-

affected handwriting and normal patterns. 
 

 
Figure 4: Handwriting Characteristics of Parkinson’s Disease 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Multimodal Parkinson’s Disease Detection Workflow 
 

Multimodal Fusion Workflow 
The methodology integrates voice, gait, and 

handwriting biometrics using Self-Supervised 

Learning (SSL) for feature extraction and a 

Multimodal Transformer for feature fusion as 

shown in the Figure 5. 

 

 

Data Collection and Preprocessing 
The dataset sourced from the University of 

California; Irvine Machine Learning Repository is a 

publicly available collection primarily used for 

research and educational purposes. It includes 

multimodal data for each subject, typically  
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involving biomedical voice measurements from 

individuals with Parkinson’s disease and healthy 

controls. The data is collected in ASCII CSV format 

and consists of various features such as voice 

measures, patient demographics, and clinical 

scores. These datasets support empirical studies 

aimed at detecting Parkinson's disease through 

voice analysis and other modalities, facilitating 

research in understanding disease progression 

and developing diagnostic models.  
 

For each subject 𝑖, collect multimodal data as shown in equation [1]: 

                                                                 𝑋𝑖 ← {𝑥𝑖
(𝑣), 𝑥𝑖

(𝑔)
, 𝑥𝑖

(ℎ)}                                                               [1] 

Where: 

 𝑥𝑖
(𝑣) ← voice data, 

 𝑥𝑖
(𝑔)

← gait data, 

 𝑥𝑖
(ℎ) ←handwriting data. 

In preprocessing use normalization technique to extract each modality to remove noise and artifacts: 

Voice: Remove background noise and extract acoustic features. 

Gait: Correct motion artifacts and capture stride length, gait speed. 

Handwriting: Clean data and extract stroke dynamics. 

Data Augmentation 
For each modality, apply stochastic augmentations to create variability as shown the equation [2], [3] and 

[4]: 

                                                           𝑥𝑖
(𝑣,𝑎) ← 𝑡1𝑥𝑖

(𝑣), 𝑥𝑖
(𝑣,𝑏) ← 𝑡2𝑥𝑖

(𝑣)                                                   [2] 

                                                           𝑥𝑖
(𝑔,𝑎)

← 𝑡1𝑥𝑖
(𝑔)
, 𝑥𝑖

(𝑔,𝑏)
← 𝑡2𝑥𝑖

(𝑔)
                                                  [3] 

                                                          𝑥𝑖
(ℎ,𝑎) ← 𝑡1𝑥𝑖

(ℎ), 𝑥𝑖
(𝑣,𝑏) ← 𝑡2𝑥𝑖

(ℎ)                                                   [4] 

Where  𝑡1and 𝑡1are different augmentation functions for each modality. 

Self-Supervised Learning (SSL) Pre-Training 
Extract features using SSL for each modality. The SimCLR framework is applied to maximize similarity 

between augmented pairs and minimize similarity with other samples. The contrastive loss function is 

given in equation [5]: 

                                                 𝐿𝑆𝑆𝐿 ← −𝑙𝑜𝑔𝑒𝑥𝑝⁡                                                            [5] 

Where: 

- 𝑧𝑖
𝑎 ,and 𝑧𝑖

𝑏 are representations of the augmented inputs,  

- (𝑧𝑖
𝑎 , 𝑧𝑖

𝑏) is cosine similarity, 

- 𝜏 is a temperature parameter. 

Multimodal Transformer Feature Fusion 
The extracted SSL features from each modality are fused using a Multimodal Transformer. For each 

modality, compute queries (𝑄), keys (𝐾), and values(𝑉): 

                                                  𝑄 ← 𝑊𝑞𝑍, 𝐾 ← 𝑊𝑘𝑍, 𝑉 ← 𝑊𝑣𝑍                                                  [6] 

Where  𝑍 ← {𝑍(𝑣), 𝑍(𝑔), 𝑍(ℎ)} 

The attention score is computed as shown in equation (7): 

                                                  𝐴𝑇𝑇𝐸𝑁𝑇𝐼𝑂𝑁(𝑄, 𝐾, 𝑉) ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑡

√𝑑𝑘
) 𝑉                                    [7] 

This mechanism helps the model focus on relevant information from each modality. 

Transformer Layer Integration 
The output from the cross-attention mechanism is passed through multiple transformer layers to refine the 

representation can be referred from equation (8) and equation (9): 

                                         𝐻(𝑙) ← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻(𝑙−1)) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻(𝑙−1))                                [8] 

The final integrated representation after 𝐿layers is: 

                                          𝐻𝐿 ← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻(𝑙−1)) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻(𝑙−1))                                  [9] 
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Final Classification 
The final fused representation 𝐻𝐿  is used to predict whether a subject has Parkinson’s disease. The final 

classification is made using a fully connected layer in equation (10): 

                                                                 𝑦𝑖^ ← 𝜎(𝑊𝐻𝐿 + 𝑏)                                                                   [10] 

Where: 

- 𝑊 and 𝑏are weights and biases for the final classification layer, 

- 𝜎(∙) is the sigmoid function, outputting a probability. 

Evaluation Metrics 
The model’s performance is evaluated using 

metrics such as Accuracy, Precision, Recall, and F1-

Score. The methodology integrates voice, gait, and 

handwriting data through Self-Supervised 

Learning (SSL) and Multimodal Transformer 

models to enable robust Parkinson’s disease 

detection. This breakdown includes mathematical 

formulations explaining how multimodal data 

fusion is achieved using SSL combined with a 

Multimodal Transformer architecture for early 

diagnosis of Parkinson's disease. 
 

Results and Discussion 
This section outlines a comprehensive approach 

for Parkinson's disease detection using 

multimodal data (Voice, Gait, Handwriting) 

through self-supervised learning (SSL) for feature 

extraction, a multimodal transformer for feature 

fusion, and a final classification stage. It begins by 

applying augmentations to each modality followed 

by SSL pre-training with a contrastive learning 

objective, which maximizes the similarity between 

augmented pairs while minimizing similarity with 

other samples. The extracted features from each 

modality are then fused using a cross-attention 

mechanism in a multimodal transformer. This 

process allows the model to focus on relevant 

aspects from different modalities.  

Experimental Evaluation  
The experiment for Parkinson’s disease detection 

utilizes a dataset of 1000 individuals, comprising 

70% diagnosed with early-stage Parkinson’s and 

30% healthy controls. The data integrates 

multimodal inputs from three key sources: voice 

recordings, gait analysis, and handwriting samples. 

The Parkinson’s Telemonitoring Voice Dataset is 

used to capture speech patterns, reflecting vocal 

impairments like tremors. 

 

Table 2: Distribution of Parkinson’s and Healthy Instances across Modalities 

Data Total Instances Parkinson Healthy 

Voice 1000 700 300 

Gait 1000 700 300 

Handwriting 1000 700 300 
 

The Table 2 presents data on 1,000 total instances 

each for Voice, Gait, and Handwriting modalities, 

with classifications into Parkinson's and Healthy 

categories. For each modality, 700 instances are 

associated with individuals diagnosed with 

Parkinson's disease, while 300 instances represent 

healthy individuals. This dataset provides a 

balanced view across different data types (Voice, 

Gait, Handwriting) to support analysis and model 

training for Parkinson’s disease detection, offering 

a consistent distribution between the Parkinson's 

and Healthy categories across all modalities for 

comparison and potential multimodal analysis. 

The dataset is balanced to reflect the target 

distribution. Data pre-processing is crucial to 

ensure that noise does not impact the model’s 

performance. 

The Table 3 outlines the SSL pre-training process 

for voice, gait, and handwriting modalities in 

Parkinson's detection. Specific augmentations are 

applied to each modality, such as pitch shifting for 

voice, temporal jittering for gait, and stroke scaling 

for handwriting. The SSL model learns key features 

like vocal patterns, walking dynamics, and 

handwriting strokes. Contrastive loss (SimCLR) is 

used to differentiate augmented versions of the 

same input from others. This process enhances 

feature extraction for each modality, supporting 

early detection of Parkinson’s disease. 
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Table 3: Self-Supervised Learning (SSL) pre-Training for Parkinson’s Disease Detection 

Modality Augmentation Applied Feature Learned Loss Function 

Voice 
Pitch shifting, Time 

stretching 
Vocal characteristics, speech patterns 

Contrastive 

Loss (SimCLR) 

Gait Temporal jittering 
Walking patterns, movement 

dynamics 

Contrastive 

Loss (SimCLR) 

Handwriting Stroke scaling, Rotation 
Stroke patterns, handwriting 

dynamics 

Contrastive 

Loss (SimCLR) 
 

 
Figure 6: Initial vs Final Loss Comparison Across Modalities 

 

The Figure 6 illustrates the initial and final loss 

values for three modalities: Voice, Gait, and 

Handwriting. The initial loss at the start of training 

is 0.420 for Voice, 0.470 for Gait, and 0.450 for 

Handwriting. By the 10th epoch, all three 

modalities show a marked improvement, with the 

loss decreasing to 0.180 for Voice, 0.220 for Gait, 

and 0.200 for Handwriting. Voice achieves the 

lowest final loss, indicating better performance in 

minimizing errors during training.  

Multimodal Transformer Training 
The SSL-extracted features from voice, gait, and 

handwriting are fused using a Multimodal 

Transformer with a cross-attention mechanism. 

The model learns how the modalities interact and 

integrates these features into a unified 

representation. The model is trained using binary 

cross-entropy loss on the training set. The output 

is shown in Table 4. 

 

Table 4: Training and Validation Metrics over Epochs 

 

Training and validation loss steadily decrease, 

indicating good model generalization. The 

validation accuracy improves with each epoch, 

showing how the cross-attention mechanism 

effectively captures the interaction between the 

modalities. 

Epoch Training Loss Validation Loss Validation Accuracy 

1 0.38 0.345 88.2 

2 0.31 0.28 90.5 

3 0.25 0.21 92.7 

4 0.2 0.175 94.5 

5 0.16 0.14 96.1 
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Figure 7: The Training, Validation Loss, and Validation Accuracy over Epochs 

 

The Figure 7 shows the changes in training loss, 

validation loss, and validation accuracy over five 

training epochs. As training proceeds, both 

training and validation losses steadily decrease, 

indicating that the model is improving its ability to 

minimize errors on both datasets. The consistent 

decline in validation loss alongside training loss 

suggests the model is generalizing well without 

overfitting. Concurrently, the validation accuracy 

rises from 88.2% to 96.1%, showing that the 

model’s predictions become increasingly accurate 

with each epoch. Overall, this figure reflects the 

progressive enhancement of the model’s 

performance throughout the training process. 

Model Testing and Evaluation 
In this step, the model is evaluated on a previously 

unseen 30% test dataset, demonstrating strong 

performance across key metrics. The model 

achieves an accuracy of 96.5%, indicating a high 

rate of correct predictions. Precision, which 

reflects the proportion of true positive 

identifications among all positive results, stands at 

95.2%, confirming the model's reliability in 

detecting actual Parkinson’s cases. Recall, 

measuring the model’s ability to identify all true 

positive cases, reaches 97.3%, indicating effective 

capture of genuine cases. The F1-score balances 

precision and recall, achieving 96.2%, which is 

crucial in Parkinson’s disease diagnosis where 

misclassification can have serious implications. 

These results highlight the effectiveness of the 

multimodal approach that combines voice, gait, 

and handwriting data, enhancing overall detection 

accuracy. Figure 8 clearly depicts the high accuracy 

of 96.5% and the strong F1-score of 96.2%, 

showcasing the power of multimodal data fusion in 

Parkinson’s disease detection.
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Figure 8: Performance Evaluation Metrics 

 

Conclusion 
The proposed method employs a machine learning 

framework that integrates multiple data types 

voice recordings, gait analysis, and handwriting 

examination to enhance early Parkinson’s disease 

detection. Each modality is processed 

independently through neural networks designed 

to extract critical features, such as voice variations, 

movement irregularities, and handwriting 

changes. To improve feature learning without 

heavy reliance on labeled data, the approach 

incorporates Self-Supervised Learning (SSL), 

enabling the model to learn patterns directly from 

raw input. These extracted features are 

synergistically fused using a Multimodal 

Transformer that employs cross-attention 

mechanisms to explore interrelationships among 

data modalities. The system was tested on a 

dataset comprising 1,000 individuals, 70% of 

whom were diagnosed with early-stage 

Parkinson’s, achieving an accuracy rate of 96.5%. 

This study demonstrates that combining diverse 

data sources with advanced learning architectures 

can significantly boost the accuracy and 

effectiveness of early Parkinson’s disease 

detection. 

Future Work 
Future research should aim to expand the dataset 

by including larger and more demographically 

diverse populations to better evaluate the model’s 

ability to generalize in real-world clinical settings. 

Upcoming work could incorporate additional data 

modalities such as brain imaging (MRI or PET 

scans), longitudinal patient monitoring, and 

clinical records to enhance model robustness and 

facilitate earlier symptom detection. Developing 

interpretable AI frameworks is also important to 

improve clinician trust and transparency. 

Furthermore, exploring federated learning or 

privacy-preserving techniques will help enable the 

use of sensitive medical data at scale while 

maintaining patient privacy. Finally, close 

collaboration with healthcare professionals for 

clinical trials and integration into routine 

diagnostic workflows is crucial to validate the 

model’s practical impact on patient care and 

outcomes. 
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