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Abstract

Mixed-mode integrated circuits become increasingly popular in modern VLSI Chip design. However, designing these
circuits in CMOS technology is no small feat given the need to balance a range of conflicting performance criteria and
design constraints. In this work, optimized two-stage operational amplifier designed using meta heuristics ABC
(Artificial Bee Colony) and PSO (Particle Swarm Optimization) algorithms. By leveraging ABC and PSO algorithms, the
design process can efficiently achieve the desired performance goals by optimally sizing of the circuit components. In
the proposed automated optimization environment, implementation of the ABC and PSO algorithms are implemented
in Python language and integrated with the Ngspice simulation tool using BSIM4 MOSFET models in TSMC’s 130nm
technology node. The entire optimization environment is set up on the Ubuntu operating system, and the results
achieved with the ABC and PSO are compared with earlier reported work in which proposed optimized operational
amplifier achieved higher unity gain bandwidth and higher CMRR. Proposed automated design environment interface
between Ngspice circuit simulator and evolutionary algorithm to obtain the optimum results for the mentioned
multidimensional design problem.

Keywords: ABC Algorithm, Automated Environment, Operational Amplifier Design, Optimization, PSO Algorithm.

Introduction

Analog circuits are very important in electronics
because all modern VLSI chips have analog and
digital blocks on the same chip. This makes
designing analog circuits, such as op-amps a quite
interesting and challenging task. Although there
are many optimization tools for digital circuits to
improve their performance, there is also a growing
need for automated design tool for analog circuit
is required. In analog design after choosing proper
circuit topology, the next step is to set the right
values for the circuit components so that the
circuit meets its target specifications. However, as
physical models become more complex and
technology scales down, figuring out these values
by hand calculations becomes very difficult task.
This is why efficient, automated design methods
are needed. Optimizing an electronic circuit
involves selecting appropriate component values
to ensure the desired performance. To streamline
this process, numerous advanced optimization
techniques have been developed for automated
analog circuit design.

Finding solution from Gradient based methods
requires calculation of derivatives and optimal
initial guess of the design parameters (1). If

starting point isn't close to the overall best
solution, these methods tend to find only a local
optimum. Steepest descent search (2), Sequential
Quadratic Programming Method (3), Levenberg-
Marquardt (4), are the examples of gradient based
methods. Convex optimization method gives
global optimal solution but require a deep
understanding of the circuit design and accurate
device models which makes modern design more
challenging (5). Evolutionary algorithms offer
another solution by effectively handling problems
with multiple optima. They sidestep many issues
faced by convex and gradient-based methods
because they do not depend on detailed internal
physics MOSFET device, and they avoid difficult
mathematical computations while still finding the
global optimum (6). Genetic Algorithms have been
widely adopted by many researchers as an
effective optimization technique for various
complex problems.
demonstrated the applicability of GAs in
optimizing analog circuit designs shows its ability
to solve the nonlinear and multimodal problems
(7). The PSO algorithm exhibits superior
computational efficiency and consistency compar-

Several studies have
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ed to the GA in addressing transistor sizing
problems, thereby makes it effective alternative to
replace GA (8). The authors concluded that the
PSO algorithm effectively meets the required
design specifications while minimizing the overall
MOS transistor area. The ABC algorithm exhibits
considerable exploration capability  but
exploitation ability remains relatively limited (9).
Due to this limitation, the ABC algorithm tends to
exhibit convergence on
problems and trapped in local minima for complex
multimodal optimization tasks. Recent research
has increasingly focused on Al-driven approaches
with neural network assisted circuit synthesis,
reducing the reliance on time consuming SPICE
simulations (10). Reinforcement learning has
been applied to sequential circuit construction
and sizing, enabling agents to learn efficient
design strategies through interaction with the
simulator. Likewise, Bayesian optimization offers
a probabilistic, surrogate based framework that
balances exploration and exploitation, making it
well  suited for high
computationally expensive design problems (11).
These Al techniques complement traditional
evolutionary algorithms by offering enhanced

slower unimodal

dimensional and

scalability, faster convergence, and the potential
for knowledge transfer. Integrating such
approaches into automated analog design
frameworks represents a promising avenue for
future research, especially as circuit architectures
continue to increase in complexity.

This paper proposes an automated simulation
framework for optimizing CMOS operational
amplifier parameters using ABC and PSO
algorithms, implemented in Python and interfaced
with Ngspice circuit simulator. ABC and PSO are
tested with the various unimodal and multi modal
benchmark functions to evaluate the overall
performance and the comparative study has been
carried out. The framework is applied to a two
stage CMOS operational amplifier, and the results
demonstrate improved optimization efficiency
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and optimized design specification compared with
the previous studies.

The Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm models
the foraging behavior of bees to find food in a
search space (12). The algorithm operates through
several key stages. Initially, food sources are
generated randomly to create the starting
population. In the employed bee stage, each bee
explores the local search space to improve its
assigned food source, and information about the
food source is communicated to neighboring bees
using a greedy selection mechanism. During the
onlooker bee stage, food sources with higher
probability of improvement are selected and
further exploited. In the scout bee stage, food
sources that have not shown improvement are
abandoned, and new sources are randomly chosen
from the search space. In this way, employed bees
focus on improving all food sources, while
onlooker bees concentrate on those with the
highest likelihood of enhancement (13).

The Particle Swarm Optimization

Algorithm

The Particle Swarm Optimization (PSO) algorithm
is a nature-inspired method that mimics the
flocking behavior of birds. In PSO, each bird in the
flock is modeled as a particle that explores the
problem space with its own position and velocity
(14). These particles update their velocities based
on both their individual past performance and the
successes of neighboring particles, gradually
steering toward the best-found solution over
successive iterations. This iterative process
continues till optimum results are not obtained.
Let, N is swarm number and D is dimension of
swarm. The velocity and position of the
updated by V, = [Vyy, Via,
..... ,Vop] andx, = [Xp1, Xp2, --.. Xppl. The nth
particle velocity updated by every each iteration is
calculated by mathematical expression as stated in
past study (15).

nt" particle s

= w *Viy + C; xrand; * (pbestyy — x,4) + C, * rand, * (gbesty — x4) [1]

Here, d is in the range of {1,2,3,...,D}, n is in the range of {1,2,3,..., N},t is in the range of {1,2,3,..,,
maximum number of iteration}. V!, x}; are the velocity and position of n‘" particle respectively, pbest’,

is personal best position, gbest} is global best of the n'* particle for the

tt" jteration in d'"* dimension.

Random numbers rand; and rand, are uniformly generated between 0 and 1, C; and C, are the constants

are also called acceleration coefficients, initially inertia weight w selected less than one and reduced

linearly after every iteration.
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The n*" particle position is updated by equation following equation.

— At t+1
= Xnd + Vnd

[2]

The linearly varying inertia weight w is calculated using mathematical equation from past study (16).

(tmax—t)
= (wmax - wmin) * %

+ a)max

[3]

Where, w4 and wyy;,, are the maxiimum and minimum value of w. Current and maximum iterations are t

and t,, 4, respectively.

Testing of Algorithms

To evaluate the effectiveness of the evolutionary
algorithms, standard benchmark functions are
employed for performance comparison (17). This
study demonstrates the comparative effectiveness
of well-established evolutionary algorithms,
Particle Swarm Optimization (PSO) and Artificial
Bee Colony (ABC), in achieving faster convergence
for global optimization problems (18). The main
focus of this work is on analyzing convergence
behavior and robustness when applied to both
unimodal and multimodal benchmark functions,
which represent challenging test cases in analog

circuit optimization which is a multi-dimensional
design problem. The obtained results from each
algorithm are compared with the known optima of
the benchmark functions to validate their
efficiency in global search. A set of commonly used
unimodal
considered within the specified search space, as
summarized in Table 1. This table lists the
mathematical formulations of five standard
benchmark functions used for testing
optimization algorithms, along with their types
(unimodal or multimodal), search spaces, and
global optima.

and multimodal functions are

Table 1: Standard Benchmark Functions for the Comparative Analysis of Metaheuristic Algorithms

Global
Benchmark . . Type of Search ola
. Mathematical Equation of . Optimal
Function i Function Space .
Benchmark Function Solution

—0.2 lZD_ x2 .

_ \ =1 % _ Multi-
Ackley filx) = 20e P = uH (-32, 32) (0, ., 0)

eb i1 ST 4 90 4 modal

£(x) = (1.5 — x5 + xox1)% + Uni-
Beal -4.5,4.5 3,0.5
cale (2.25 —xy + x9x2)? + modal ( ) ( )
(2.625 — x5 + xox3)?2

Multi-
Gri k -600, 600 0,.,0
riewan fi(x) = —¥2, x2 —TI%, cos ( ) +1 modal ( ) )

4000

D Multi-
Rastrigin -5.12,5.12 0,.,0
8 fo(x) = 10D + Z [x? — 10 cos(2mx;)] modal ( ) )

i=1
D
Sphere fo(x) = Z x? Uni-
-100,1 .

i=1 Modal (-100, 100) (©,,0)

For the PSO algorithm (Figure 1), it is essential to
properly initialize the control parameters (C1, C2,
and w), population size, and maximum iterations
to ensure reliable convergence. In this study, the
parameter settings were adopted in line with
established allow fair and
reproducible comparison: Number of particles =

literature to

30, C1 = 1.4962, C2 = 14962, w initially set to
0.995 and linearly decreased at each iteration. The
desired fitness value is set to 1le-6, with a
maximum of 1000 iterations. Termination occurs
when either the fitness threshold is met or the
iteration limit is reached (19).
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Cy, Cp,Vinax, Inertia weight (w),

Input population size (N), Problem size (D),

Number of iterations, Desired fitness value

v

Generates random particle’s
position and velocity

v

Calculate fitness of each particle

Fitness (current
particle) < fitness
(pbest)

Particle number
< max. number

pbest= Current
Position

Choose the particle with the best
fitness value from all as gBest

4
For each particle update
velocity and position

Termination Criteria

Desired optimize
solution

Figure 1: Flow Diagram of the PSO Algorithm (6)

Table 2: Control Parameters of Algorithms

Sr. No. Parameters of ABC algorithm Parameters of PSO algorithm
1 Total Number of Bees (N) = 30 Number of Particles (N) = 30

2 Fitness = 1e-6 Fitness = 1le-6

3 Maximum Iteration = 1000 Maximum Iteration = 1000

4 Dimension = 10 Dimension = 10

5 Number of Runs = 100 Number of Runs = 100

For the uniformity the majority of the parameters
of ABC and PSO algorithms are set equal and listed

in Table 2 which lists common control parameters
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Table 3: Standard Benchmark Function Solution Results

Benchmark functions ABC PSO
Min 2.32e-7 1.72e-7
Max 9.99e-7 9.96e-7
Mean 8.20e-7 6.51e-7
Ackley SD 1.59e-7 2.33e-7
Total Time (S) 39.9 5.34
Average Iteration 354 129
Confidence Intervals 100 100
Min 4.72e-8 3.15e-9
Max 7.14e-5 7.62e-1
Mean 4.37e-6 3.04e-2
Beale SD 1.26e-5 1.50e-1
Total Time (S) 31.41 3.75
Average I[teration 599 121
Confidence Intervals 75 96
Min 8.48e-2 1.47e-2
Max 5.14e-1 4.20e-1
Mean 3.08e-1 9.85e-2
Griewank SD 8.42e-2 6.24e-2
Total Time (S) 106.96 96.2
Average [teration 1000 1000
Confidence Intervals 0 0
Min 4.09 1.98
Max 33.69 37.80
. Mean 20.92 10.88
Rastrigin SD 5.84 6.16
Total Time (S) 40.67 56.14
Average Iteration 1000 1000
Min 8.31e-8 2.60e-7
Max 9.96e-7 9.94e-7
Mean 7.01e-7 7.37e-7
Sphere SD 2.38e-7 1.85e-7
Total Time (S) 13.63 5.09
Average Iteration 184 150
Confidence Intervals 100 100

Final results of benchmark functions for ABC and
PSO algorithms are compared and solutions
obtained for this standard benchmark functions
are listed in Table 3, where metrics such as
minimum value, mean, standard deviation,
iteration count, and confidence intervals are
reported. The corresponding convergence plots
for these benchmark functions are shown in
Figure 2 to Figure 6. As shown in Figure 2
convergence behavior of ABC and PSO for the
Ackley function which highlights PSO’s faster
optimization speed. In the Figure 3, convergence

plot for the Beale function demonstrates that PSO
rapidly achieves the global minimum, while ABC
converges more gradually. Figure 4 convergence
plot for the Griewank function, illustrates
convergence of both algorithms on a multimodal
function, shows ABC’s robustness against local
optima. Figure 5, shows convergence plot for the
Rastrigin function where PSO converges faster but
ABC is more stable. Figure 6, Highlights PSO’s
superior convergence speed on a simple unimodal
function compared to ABC. These plots clearly
illustrate the faster convergence behavior of PSO
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compared to ABC, particularly for unimodal
benchmark functions where PSO quickly reaches
the global optimum. In contrast, ABC shows more
gradual convergence but demonstrates greater
stability in multimodal functions, avoiding
premature convergence to local optima. The

Vol 6 | Issue 4

quantitative outcomes summarized that PSO
achieves higher accuracy and lower error margins
across simpler functions, while ABC provides
more consistent results as the problem complexity
and dimensionality increase.
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Figure 2: Convergence Plot for the Ackley Function
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Figure 3: Convergence Plot for the Beale Function
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Figure 4: Convergence Plot for the Griewank Function
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Figure 5: Convergence Plot for the Rastrigin Function
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Figure 6: Convergence Plot for the Sphere Function
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Two Stage Operational Amplifier

The operational amplifier is widely used as a
fundamental building block in analog CMOS-based
systems, including integrators, differentiators,
summers, oscillators, amplifiers, and filters. It can
be considered the backbone of analog circuits. The
two-stage op-amp is particularly popular due to its
advantages, such as high input impedance and low
output impedance. In CMOS-based two-stage op-
amps, the input stage typically consists of a
differential pair, followed by an additional gain
stage at the output and associated biasing circuits,
as illustrated in Figure 7.

Input Differential Gain Stage

The differential gain stage is made up by two
NMOS transistors having width W1 and length L1
and input is given from vinl and vin2 to the gate
of the transistors. Where, vinl and vin2 acts as the
inverting and non-inverting input respectively.
The two PMOS having width w2 and length L2
work as active load for the differential amplifier
which provides higher output resistance and
improves the common-mode rejection ratio
(CMRR) (20).

Second Gain Stage

The additional gain is provided by the PMOS
transistor having width W3 and length L2
connected in common source configuration. This
PMOS transistor gets the amplified input from the
first differential gain stage and further amplified

Vol 6 | Issue 4

having width W4 and length L3 act as active load
resistor for above common source output stage
amplifier. The PMOS transistor with width W5 and
length L4 provides connection between input
differential stage and output gain stage. Thus this
stage provides additional gain to the operation
amplifier in addition to the first stage (21).
Biasing Circuit

The cascode current mirror is formed by the two
PMOS transistors having widths W7, W8 and
length L5 and circuit’s biasing is handled by these
transistors. The two NMOS transistor having
widths W6, W9 and length L3 act as an active
mirror current source (22). The NMOS transistor
having width W9 and length L3 also act as an
active load transistor. The optimize value of load
capacitor is selected to 0.5 pF. Power supply VDD
is set to 0.6V for the 130 nm technology node.
The overall gain depends on the transconductance
of the differential stage transistors.

Methodology

In CMOS based analog circuit design, it is
important to keep specific relationships between
circuit parameters, like the channel length L and
channel width W of the transistors, to obtain the
required specifications. Figure 8 shows an
automated optimization environment for analog
based CMOS circuits, which is part of a larger tool
where the circuit topology is already chosen by the

by this second gain stage. The NMOS transistor user:
° \E)I)
W, /1 W Wa /1
Wy /15 2/12 2712 372
GY L —AiL
Wg/ls Ws/l4
i
C Voul
| Wiy Wiy e ]
Vinl Vin2 I L
:ll 1 |
I 1 1
W /13 W /4 Wo/l3 Walls

GND

Figure 7: Two Stage Operational Amplifier
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Proposed Automated Optimization

Environment

This design system has two main parts: an
optimizer and a SPICE simulation environment.
The optimizer uses evolutionary algorithms (EA)
such as ABC and PSO to adjust circuit parameters
until the desired performance is reached. Each
design produced by the EA is checked with the
Ngspice simulator to make sure it works correctly
(23). A SPICE netlist for each circuit is created to
test its performance against the required targets.
It is important that the transistors work in the
saturation region, so the netlist is set up with the

Vol 6 | Issue 4

proper voltage transfer characteristic (VTC) and
bias points.

The  software  interface  manages  the
communication between the optimizer and the
simulator. A script provides the necessary
coordination by accepting inputs like the EA
settings, the circuit design parameters, and the
specifications to be met. Initially, the EA randomly
picks values for the design parameters within
defined limits, and these values are then sent to
the simulator (24). In this equation, After the
simulation is run, a fitness function is calculated

using the following equation:

j=1

Specificationgegired

L . Lo . 2
_\/ D (Spectflcatlondesired—Spectfzcatlonsimulated) [4]

D is the total number of specifications. This root-
mean-square (RMS) error formula provides equal
weight to each specification. The optimizer's main
goal is to lower the fitness function value with
each iteration until it reaches an acceptable level.
The process stops when either the fitness function
value drops below a set minimum 1e-6 or reaching
to maximum number of iterations. If the stopping
criteria aren’t met, the optimization algorithms
generate a new set of design parameters and the
cycle repeats (25). The design targets listed in
Table 4 (gain, phase margin, UGB, PSRR, CMRR,

Table 4: Design Specification of Two Stage Op-Amp

J

and slew rates) constitute a multi-objective
optimization problem (26). These specifications
are often conflicting and must be balanced rather
than optimized independently (27). In the present
work we map the multi-objective task onto a
single objective by using a normalized root-mean-
square (RMS) error fitness metric as shown in
above equation. This simplifies algorithm
comparison and allows direct evaluation of
convergence behavior and robustness for ABC and
PSO under identical conditions.

Sr. No. Required Specifications

AC voltage gain AV > 80 dB
Phase margin > 60°

Ul WIN =

Rise Slew Rate (RSR) > 40 V/us
7 Fall Slew Rate (FSR) > 40 V/us

Unit gain bandwidth (UGB) > 100 MHz
Power Supply Rejection Ratio (PSSR) > 75 dB
Common Mode Rejection Ration (CMRR) > 80 dB

The performance of this optimizer depends on
several factors, including the settings of the
algorithm, the number of design variables, the
range of those variables, and the number of
specifications that need to be optimized. Table 4,
presents the desired specifications such as gain,
phase margin, and slew rate, which serve as
optimization targets for the two-stage operational
amplifier. These specifications are provided as
input to the automated design framework to
define the optimization objectives. Table 5 and
Table 6 show the optimized parameters of the

two-stage op-amp which displays the transistor
sizing and current values obtained using the ABC
and PSO algorithm for the optimal op-amp design
in 130 nm CMOS technology respectively. The
results indicate the transistor dimensions and
component values that yield the best performance.
The obtained design parameters were used to
meet the specifications shown in Table 7, which
compares the performance of the two-stage op-
amp designs optimized by ABC and PSO with the
target values and compared with the previously
reported work in (6,13).
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Table 5: Optimized Parameters of Two Stage Op-Amp for the ABC Algorithm

Results for Obtained
Design Variable Variable Range Parameters for
130 nm (13)
130 nm
W1 /L1 5.4/0.6 1.88/0.42
W2 /L2 0.5/0.3 0.54/0.42
W3 /L2 W05 to 10 49/0.3 5.7/0.42
W4 /13 L tt01 (“)m) 9.5/1.0 10/0.76
W5 / L4 10-2to 1 (um 2.7/0.3 10/0.2
W6 /L3 Transistor dimensions are in pm. 2.0/1.0 4.13/0.76
W7 /L5 4.5/0.7 0.54/0.2
W8 /L5 5.0/0.7 10/0.2
W9 /L3 3.9/1.0 1.79/0.76
lo (nA) 1t0 10 pA 2.8 5.10
C (pF) 0.0001pF to 1 pF 0.043 0.1
Initializing algorithm
parameters,
Required specifications,
Required parameters
4
Meta Heuristics Algorithms [«
Interfacing Software
4
Ngspice Circuit simulator  <«—7—— SPICE netlist
4
Store simulated Results
4
> Fitness Calculation

Termination criteria

Final optimized solution

Figure 8: The Automated Analog Circuit Design Environment

1084



Bharvad and Prajapati,

Vol 6 | Issue 4

Table 6: Optimized Parameters of Two Stage Op-Amp for the PSO Algorithm

Results for Obtained
Design Variable Variable Range Parameters for

130 nm (6)

130 nm

Ww1/L1 2.5/0.75 1.25/0.35
W2 /L2 1.5/0.5 2.28/0.38
W3 /L2 3.8/0.5 6.38/0.38
W4 /13 W: 0.5t0 10 (pm) 7.0/0.75 9.94/1
W5 / L4 L: 013 to 1 (um) 1.5/0.25 2.87/0.5
W6 /13 Transistor dimensions are in pm. 3.0/075 2.5/1
W7 /L5 4.0/0.75 7.85/1
W8 /L5 4.0/0.75 5/1
W9 /L3 5.5/0.75 4.15/1
o (pA) 0.01to 10 pA 4.5 5.52
C (pF) 0.1fF to 10 pF 0.09 0.06

Results and Discussion

The two stage CMOS based operational amplifier
designed using TSMC's 130nm CMOS process with
required specifications as shown in Table 4. The
simulation is carried out on a Core i5 1.80 GHz
processor, 8GB RAM, 64 bit Ubuntu operating
system. The ABC and PSO algorithms are
implemented and compiled in Python, and all circuit
simulations were carried out using Ngspice-26. The
design variables obtained from Tables 3 and 4 were
used to evaluate the final specifications, and the
results were compared with previously reported
work (6, 13). Table 7 shows that both the ABC and
PSO algorithms meet the all target specification for
the two-stage op-amp. The required voltage gain is
set to above 80 dB, with ABC at 80.01 dB and PSO

Table 7: Obtained Specification of Two Stage Op-Amp

slightly higher at 80.96 dB. The phase margin is
better with PSO (65.97°) compared to ABC (62.44°),
both above the 60° target. Unity gain bandwidth is
also higher than the target, with ABC reaching 123
MHz and PSO 121 MHz. PSRR and CMRR values
improved compared to earlier work, as ABC has a
PSRR of 84.97 dB and CMRR of 80.60 dB, while PSO
shows 75.77 dB PSRR and 83.74 dB CMRR. Both
designs exceed the rise slew rate target of 40 V/ps,
with ABC at 43.82 V/ps and PSO at 44.03 V/us. The
fall slew rate is just around the target, with ABC
slightly above at 40.01 V/ps and PSO a little below at
39.73 V/ps. Both ABC and PSO algorithms
successfully met all the required performance
targets listed and the results were benchmarked
against previous studies to validate the effectiveness
of the proposed optimization framework.

Results for

Results for ABC Results for PSO

;I;. Required Specifications 130 nm Algorithm Algorithm
(6,13) 130 nm 130 nm

1 Av >80 dB 86.16 dB 80.01 dB 80.96 dB

2 Phase Margin > 60° 61.79° 62.44° 65.97°

3 UGB > 100 MHz 101 MHz 123 MHz 121 MHz

4 PSSR > 75 dB --- 84.97 dB 75.77 dB

5 CMRR > 80 dB --- 80.60 dB 83.74 dB

6 Rise Slew rate (RSR) > 40 V/ ps 50.33V/ us 43.82V/ ps 44.03V/us
7 Fall Slew rate (FSR) > 40 V/ us 37.79V/ us 40.01V/ ps 39.73V/ us
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In addition to convergence speed, a comparative
evaluation was carried out with respect to
scalability, accuracy, and efficiency. The results
show that PSO generally achieves faster
convergence and higher accuracy in reaching the
target specifications, making it more efficient when
computational time is a critical factor. However, ABC
demonstrates greater robustness and scalability, as
it maintains stable performance even when the
number of design variables or specifications
increases. The main trade-off, therefore, lies
between speed PSO and robustness ABC. Figure 9
displays how the ABC algorithm minimizes the

Vol 6 | Issue 4

both the strengths and limitations of the two
approaches, offering guidance for their use in
practical analog circuit optimization depending on
design priorities.

The present work has focused on optimizing a two-
stage CMOS operational amplifier. The future scope
of this research is to demonstrate scalability from
relatively simple circuits, like the two-stage OTA, to
more complex analog blocks and system-level
designs. This would provide deeper insights into the
robustness of the proposed optimization approach
and further establish its value for practical analog
and mixed-signal circuit design, particularly in the

fitness function across iterations for op-amp design context of low-power and Dbattery-operated
and Figure 10, shows PSO’s faster convergence applications.
compared to ABC. This balanced view highlights
12
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Figure 9: Convergence Graph of Op-Amp for the ABC Algorithm
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Figure 10: Convergence Graph of Op-Amp for the PSO Algorithm
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Conclusion

A set of widely used unimodal and multimodal
benchmark functions were employed to evaluate the
performance of optimization algorithms, with
details on their mathematical formulations, search
spaces, and global optima. Leveraging this
evaluation, an automated optimization approach
based on metaheuristic Artificial Bee Colony (ABC)
and Particle Swarm Optimization (PSO) algorithms
was applied to optimize a CMOS two-stage
operational amplifier designed in TSMC’s 130nm
technology node. Both ABC and PSO algorithms
effectively optimized the two-stage op-amp
achieving overall performance metrics. Achieving
key performance metrics including a voltage gain of
80.96 dB, phase margin of 65.97° unity gain
bandwidth of 121 MHz, PSRR of 75.77 dB, CMRR of
83.74 dB, and rise slew rate of 44.03 V/us,
surpassing all target specifications except fall slew
rate of 39.73 V/us using PSO algorithm. The
simulation results for these metrics were compared
against the target specifications and summarized.
These findings demonstrate the effectiveness and
robustness of the proposed metaheuristic
optimization framework for analog circuit design
which satisfy all the specified performance criteria.

Abbreviations

ABC: Artificial Bee Colony, Av: Voltage Gain, CMRR:
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Algorithms, Op-amp: Operational Amplifier, PSO:
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Rejection Ration, UGB: Unity Gain Bandwidth.
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