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Abstract 
 

Mixed-mode integrated circuits become increasingly popular in modern VLSI Chip design. However, designing these 
circuits in CMOS technology is no small feat given the need to balance a range of conflicting performance criteria and 
design constraints. In this work, optimized two-stage operational amplifier designed using meta heuristics ABC 
(Artificial Bee Colony) and PSO (Particle Swarm Optimization) algorithms. By leveraging ABC and PSO algorithms, the 
design process can efficiently achieve the desired performance goals by optimally sizing of the circuit components. In 
the proposed automated optimization environment, implementation of the ABC and PSO algorithms are implemented 
in Python language and integrated with the Ngspice simulation tool using BSIM4 MOSFET models in TSMC’s 130nm 
technology node. The entire optimization environment is set up on the Ubuntu operating system, and the results 
achieved with the ABC and PSO are compared with earlier reported work in which proposed optimized operational 
amplifier achieved higher unity gain bandwidth and higher CMRR. Proposed automated design environment interface 
between Ngspice circuit simulator and evolutionary algorithm to obtain the optimum results for the mentioned 
multidimensional design problem. 

Keywords: ABC Algorithm, Automated Environment, Operational Amplifier Design, Optimization, PSO Algorithm. 
 

Introduction 

Analog circuits are very important in electronics 

because all modern VLSI chips have analog and 

digital blocks on the same chip. This makes 

designing analog circuits, such as op-amps a quite 

interesting and challenging task. Although there 

are many optimization tools for digital circuits to 

improve their performance, there is also a growing 

need for automated design tool for analog circuit 

is required. In analog design after choosing proper 

circuit topology, the next step is to set the right 

values for the circuit components so that the 

circuit meets its target specifications. However, as 

physical models become more complex and 

technology scales down, figuring out these values 

by hand calculations becomes very difficult task. 

This is why efficient, automated design methods 

are needed. Optimizing an electronic circuit 

involves selecting appropriate component values 

to ensure the desired performance. To streamline 

this process, numerous advanced optimization 

techniques have been developed for automated 

analog circuit design.  

Finding solution from Gradient based methods 

requires calculation of derivatives and optimal 

initial guess of the design parameters (1). If 

starting point isn’t close to the overall best 

solution, these methods tend to find only a local 

optimum. Steepest descent search (2), Sequential 

Quadratic Programming Method (3), Levenberg-

Marquardt (4), are the examples of gradient based 

methods. Convex optimization method gives 

global optimal solution but require a deep 

understanding of the circuit design and accurate 

device models which makes modern design more 

challenging (5). Evolutionary algorithms offer 

another solution by effectively handling problems 

with multiple optima. They sidestep many issues 

faced by convex and gradient-based methods 

because they do not depend on detailed internal 

physics MOSFET device, and they avoid difficult 

mathematical computations while still finding the 

global optimum (6). Genetic Algorithms have been 

widely adopted by many researchers as an 

effective optimization technique for various 

complex problems. Several studies have 

demonstrated the applicability of GAs in 

optimizing analog circuit designs shows its ability 

to solve the nonlinear and multimodal problems 

(7). The PSO algorithm exhibits superior 

computational efficiency and consistency compar-  
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ed to the GA in addressing transistor sizing 

problems, thereby makes it effective alternative to 

replace GA (8). The authors concluded that the 

PSO algorithm effectively meets the required 

design specifications while minimizing the overall 

MOS transistor area. The ABC algorithm exhibits 

considerable exploration capability but 

exploitation ability remains relatively limited (9). 

Due to this limitation, the ABC algorithm tends to 

exhibit slower convergence on unimodal 

problems and trapped in local minima for complex 

multimodal optimization tasks. Recent research 

has increasingly focused on AI-driven approaches 

with neural network assisted circuit synthesis, 

reducing the reliance on time consuming SPICE 

simulations (10). Reinforcement learning has 

been applied to sequential circuit construction 

and sizing, enabling agents to learn efficient 

design strategies through interaction with the 

simulator. Likewise, Bayesian optimization offers 

a probabilistic, surrogate based framework that 

balances exploration and exploitation, making it 

well suited for high dimensional and 

computationally expensive design problems (11). 

These AI techniques complement traditional 

evolutionary algorithms by offering enhanced 

scalability, faster convergence, and the potential 

for knowledge transfer. Integrating such 

approaches into automated analog design 

frameworks represents a promising avenue for 

future research, especially as circuit architectures 

continue to increase in complexity. 

This paper proposes an automated simulation 

framework for optimizing CMOS operational 

amplifier parameters using ABC and PSO 

algorithms, implemented in Python and interfaced 

with Ngspice circuit simulator. ABC and PSO are 

tested with the various unimodal and multi modal 

benchmark functions to evaluate the overall 

performance and the comparative study has been 

carried out. The framework is applied to a two 

stage CMOS operational amplifier, and the results 

demonstrate improved optimization efficiency 

and optimized design specification compared with 

the previous studies. 

The Artificial Bee Colony Algorithm 
The Artificial Bee Colony (ABC) algorithm models 

the foraging behavior of bees to find food in a 

search space (12). The algorithm operates through 

several key stages. Initially, food sources are 

generated randomly to create the starting 

population. In the employed bee stage, each bee 

explores the local search space to improve its 

assigned food source, and information about the 

food source is communicated to neighboring bees 

using a greedy selection mechanism. During the 

onlooker bee stage, food sources with higher 

probability of improvement are selected and 

further exploited. In the scout bee stage, food 

sources that have not shown improvement are 

abandoned, and new sources are randomly chosen 

from the search space. In this way, employed bees 

focus on improving all food sources, while 

onlooker bees concentrate on those with the 

highest likelihood of enhancement (13). 

The Particle Swarm Optimization 

Algorithm  
The Particle Swarm Optimization (PSO) algorithm 

is a nature-inspired method that mimics the 

flocking behavior of birds. In PSO, each bird in the 

flock is modeled as a particle that explores the 

problem space with its own position and velocity 

(14). These particles update their velocities based 

on both their individual past performance and the 

successes of neighboring particles, gradually 

steering toward the best-found solution over 

successive iterations. This iterative process 

continues till optimum results are not obtained. 

Let, N is swarm number and D is dimension of 

swarm. The velocity and position of the 

𝑛𝑡ℎ particle is updated by  𝑉𝑛 = [𝑉𝑛1, 𝑉𝑛2,

. . . . . , 𝑉𝑛𝐷] and𝑥𝑛 = [𝑥𝑛1, 𝑥𝑛2, . . . . ., 𝑥𝑛𝐷]. The 𝑛𝑡ℎ 

particle velocity updated by every each iteration is 

calculated by mathematical expression as stated in 

past study (15). 

 

= 𝜔 ∗ 𝑉𝑛𝑑
𝑡  + 𝐶1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑛𝑑

𝑡 − 𝑥𝑛𝑑
𝑡 )  +  𝐶2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏𝑒𝑠𝑡𝑑

𝑡 − 𝑥𝑘𝑑
𝑡 )             [1] 

 

Here, d is in the range of {1, 2, 3, . . . , 𝐷}, n is in the range of {1, 2, 3, . . . , 𝑁},t is in the range of {1,2,3,…, 

maximum number of iteration}. 𝑉𝑛𝑑
𝑡 , 𝑥𝑛𝑑

𝑡  are the velocity and position of 𝑛𝑡ℎ particle respectively, 𝑝𝑏𝑒𝑠𝑡𝑛𝑑
𝑡  

is personal best position, 𝑔𝑏𝑒𝑠𝑡𝑑
𝑡  is global best of the 𝑛𝑡ℎ  particle for the 𝑡𝑡ℎ iteration in 𝑑𝑡ℎ dimension. 

Random numbers 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are uniformly generated between 0 and 1, 𝐶1 and 𝐶2  are the constants 

are also called acceleration coefficients, initially inertia weight 𝜔 selected less than one and reduced 

linearly after every iteration. 
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The 𝑛𝑡ℎ particle position is updated by equation following equation. 
 

= 𝑥𝑛𝑑
𝑡  + 𝑉𝑛𝑑

𝑡+1                                        [2] 
 

The linearly varying inertia weight 𝜔  is calculated using mathematical equation from past study (16).    
 

=   (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) ∗
(𝑡𝑚𝑎𝑥−𝑡)

𝑡
+ 𝜔𝑚𝑎𝑥       [3] 

 

Where, 𝜔𝑚𝑎𝑥  and 𝜔𝑚𝑖𝑛  are the maxiimum and minimum value of 𝜔. Current and maximum iterations are t 

and 𝑡𝑚𝑎𝑥  respectively.  

Testing of Algorithms 
To evaluate the effectiveness of the evolutionary 

algorithms, standard benchmark functions are 

employed for performance comparison (17). This 

study demonstrates the comparative effectiveness 

of well-established evolutionary algorithms, 

Particle Swarm Optimization (PSO) and Artificial 

Bee Colony (ABC), in achieving faster convergence 

for global optimization problems (18). The main 

focus of this work is on analyzing convergence 

behavior and robustness when applied to both 

unimodal and multimodal benchmark functions, 

which represent challenging test cases in analog 

circuit optimization which is a multi-dimensional 

design problem. The obtained results from each 

algorithm are compared with the known optima of 

the benchmark functions to validate their 

efficiency in global search. A set of commonly used 

unimodal and multimodal functions are 

considered within the specified search space, as 

summarized in Table 1. This table lists the 

mathematical formulations of five standard 

benchmark functions used for testing 

optimization algorithms, along with their types 

(unimodal or multimodal), search spaces, and 

global optima. 
 

Table 1: Standard Benchmark Functions for the Comparative Analysis of Metaheuristic Algorithms 

Benchmark 

Function 

 

Mathematical Equation of 

Benchmark Function 

Type of 

Function 

Search 

Space 

Global  

Optimal 

Solution 

Ackley 𝑓1(𝑥) = − 20𝑒
−0.2√

1

𝐷
∑  𝐷

𝑖=1 𝑥𝑖
2

 −

                       𝑒
1

𝐷
∑  𝐷

𝑖=1 𝑐𝑜𝑠(2𝜋𝑥𝑖)
+ 20 + 𝑒  

Multi- 

modal 
(-32, 32) (0, .., 0) 

Beale 

 

𝑓2(𝑥) =  (1.5 − 𝑥0  +  𝑥0𝑥1)2 +

                (2.25 − 𝑥0  +  𝑥0𝑥1
2)2 +

                (2.625 − 𝑥0  +  𝑥0𝑥1
3)2   

Uni- 

modal 
(-4.5, 4.5) (3, 0.5) 

Griewank 
 

𝑓3(𝑥) =
1

4000
∑  𝐷

𝑖=1 𝑥𝑖
2 − ∏  𝐷

𝑖=1 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1  

Multi- 

modal 
(-600, 600) (0, .., 0) 

Rastrigin 

 

𝑓4(𝑥) = 10𝐷 + ∑  

𝐷

𝑖=1

[𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖)] 

Multi- 

modal 
(-5.12, 5.12) (0, .., 0) 

Sphere 

 

𝑓5(𝑥) = ∑  

𝐷

𝑖=1

𝑥𝑖
2 

 

Uni- 

Modal 
(-100, 100) (0, .., 0) 

 

For the PSO algorithm (Figure 1), it is essential to 

properly initialize the control parameters (C1, C2, 

and ω), population size, and maximum iterations 

to ensure reliable convergence. In this study, the 

parameter settings were adopted in line with 

established literature to allow fair and 

reproducible comparison: Number of particles = 

30, C1 = 1.4962, C2 = 1.4962, ω initially set to 

0.995 and linearly decreased at each iteration. The 

desired fitness value is set to 1e-6, with a 

maximum of 1000 iterations. Termination occurs 

when either the fitness threshold is met or the 

iteration limit is reached (19).  
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Particle number          

< max.  number 

Generates random particle’s 

position and velocity

Calculate fitness of each particle

For each particle update 

velocity and position 

Yes

No

Choose the particle with the best 

fitness value from all as gBest

Termination Criteria

Desired optimize 

solution

Yes

No

pbest= Current 

Position

Fitness (current 

particle) < fitness 

(pbest)

Yes

No

Input population size (N), Problem size (D),

 C1, C2,Vmax, Inertia weight (w),

Number of iterations, Desired fitness value

 
Figure 1: Flow Diagram of the PSO Algorithm (6) 

 

Table 2: Control Parameters of Algorithms 

Sr. No. Parameters of ABC algorithm Parameters of PSO algorithm 

1 Total Number of Bees (N) = 30 Number of Particles (N) = 30 

2 Fitness = 1e-6 Fitness = 1e-6 

3 Maximum Iteration = 1000 Maximum Iteration = 1000 

4 Dimension = 10 Dimension = 10 

5 Number of Runs = 100 Number of Runs = 100 
 

For the uniformity the majority of the parameters 

of ABC and PSO algorithms are set equal and listed 

in Table 2 which lists common control parameters 

like population size, dimension, and maximum 

iterations used in the ABC and PSO algorithms. 
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Table 3: Standard Benchmark Function Solution Results 

Benchmark functions ABC PSO 

Ackley 

Min 2.32e-7 1.72e-7 

Max 9.99e-7 9.96e-7 

Mean 8.20e-7 6.51e-7 

SD 1.59e-7 2.33e-7 

Total Time (S) 39.9 5.34 

Average Iteration 354 129 

Confidence Intervals 100 100 

Beale 

Min 4.72e-8 3.15e-9 

Max 7.14e-5 7.62e-1 

Mean 4.37e-6 3.04e-2 

SD 1.26e-5 1.50e-1 

Total Time (S) 31.41 3.75 

Average Iteration 599 121 

Confidence Intervals 75 96 

Griewank 

Min 8.48e-2 1.47e-2 

Max 5.14e-1 4.20e-1 

Mean 3.08e-1 9.85e-2 

SD 8.42e-2 6.24e-2 

Total Time (S) 106.96 96.2 

Average Iteration 1000 1000 

Confidence Intervals 0 0 

Rastrigin  

Min 4.09 1.98 

Max 33.69 37.80 

Mean 20.92 10.88 

SD 5.84 6.16 

Total Time (S) 40.67 56.14 

Average Iteration 1000 1000 

Sphere 

Min 8.31e-8 2.60e-7 

Max 9.96e-7 9.94e-7 

Mean 7.01e-7 7.37e-7 

SD 2.38e-7 1.85e-7 

Total Time (S) 13.63 5.09 

Average Iteration 184 150 

Confidence Intervals 100 100 
 

Final results of benchmark functions for ABC and 

PSO algorithms are compared and solutions 

obtained for this standard benchmark functions 

are listed in Table 3, where metrics such as 

minimum value, mean, standard deviation, 

iteration count, and confidence intervals are 

reported. The corresponding convergence plots 

for these benchmark functions are shown in 

Figure 2 to Figure 6. As shown in Figure 2 

convergence behavior of ABC and PSO for the 

Ackley function which highlights PSO’s faster 

optimization speed. In the Figure 3, convergence 

plot for the Beale function demonstrates that PSO 

rapidly achieves the global minimum, while ABC 

converges more gradually. Figure 4 convergence 

plot for the Griewank function, illustrates 

convergence of both algorithms on a multimodal 

function, shows ABC’s robustness against local 

optima. Figure 5, shows convergence plot for the 

Rastrigin function where PSO converges faster but 

ABC is more stable. Figure 6, Highlights PSO’s 

superior convergence speed on a simple unimodal 

function compared to ABC. These plots clearly 

illustrate the faster convergence behavior of PSO 



Bharvad and Prajapati,                                                                                                                                 Vol 6 ǀ Issue 4 

 

1080 
 

compared to ABC, particularly for unimodal 

benchmark functions where PSO quickly reaches 

the global optimum. In contrast, ABC shows more 

gradual convergence but demonstrates greater 

stability in multimodal functions, avoiding 

premature convergence to local optima. The 

quantitative outcomes summarized that PSO 

achieves higher accuracy and lower error margins 

across simpler functions, while ABC provides 

more consistent results as the problem complexity 

and dimensionality increase.  

 

 

 
Figure 2: Convergence Plot for the Ackley Function 

 

 

 

 
Figure 3: Convergence Plot for the Beale Function 
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Figure 4: Convergence Plot for the Griewank Function 

 

 
Figure 5: Convergence Plot for the Rastrigin Function 

 

 
Figure 6: Convergence Plot for the Sphere Function 
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Two Stage Operational Amplifier  
The operational amplifier is widely used as a 

fundamental building block in analog CMOS-based 

systems, including integrators, differentiators, 

summers, oscillators, amplifiers, and filters. It can 

be considered the backbone of analog circuits. The 

two-stage op-amp is particularly popular due to its 

advantages, such as high input impedance and low 

output impedance. In CMOS-based two-stage op-

amps, the input stage typically consists of a 

differential pair, followed by an additional gain 

stage at the output and associated biasing circuits, 

as illustrated in Figure 7. 

Input Differential Gain Stage  
The differential gain stage is made up by two 

NMOS transistors having width W1 and length L1 

and input is given from vin1 and vin2 to the gate 

of the transistors. Where, vin1 and vin2 acts as the 

inverting and non-inverting input respectively. 

The two PMOS having width w2 and length L2 

work as active load for the differential amplifier 

which provides higher output resistance and 

improves the common-mode rejection ratio 

(CMRR) (20).  

Second Gain Stage  
The additional gain is provided by the PMOS 

transistor having width W3 and length L2 

connected in common source configuration. This 

PMOS transistor gets the amplified input from the 

first differential gain stage and further amplified 

by this second gain stage. The NMOS transistor 

having width W4 and length L3 act as active load 

resistor for above common source output stage 

amplifier. The PMOS transistor with width W5 and 

length L4 provides connection between input 

differential stage and output gain stage. Thus this 

stage provides additional gain to the operation 

amplifier in addition to the first stage (21).     

Biasing Circuit  
The cascode current mirror is formed by the two 

PMOS transistors having widths W7, W8 and 

length L5 and circuit’s biasing is handled by these 

transistors. The two NMOS transistor having 

widths W6, W9 and length L3 act as an active 

mirror current source (22). The NMOS transistor 

having width W9 and length L3 also act as an 

active load transistor. The optimize value of load 

capacitor is selected to 0.5 pF. Power supply VDD 

is set to ±0.6V for the 130 nm technology node. 

The overall gain depends on the transconductance 

of the differential stage transistors. 
 

Methodology 
In CMOS based analog circuit design, it is 

important to keep specific relationships between 

circuit parameters, like the channel length L and 

channel width W of the transistors, to obtain the 

required specifications. Figure 8 shows an 

automated optimization environment for analog 

based CMOS circuits, which is part of a larger tool 

where the circuit topology is already chosen by the 

user. 

 

 
Figure 7: Two Stage Operational Amplifier 
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Proposed Automated Optimization 

Environment 
This design system has two main parts: an 

optimizer and a SPICE simulation environment. 

The optimizer uses evolutionary algorithms (EA) 

such as ABC and PSO to adjust circuit parameters 

until the desired performance is reached. Each 

design produced by the EA is checked with the 

Ngspice simulator to make sure it works correctly 

(23). A SPICE netlist for each circuit is created to 

test its performance against the required targets. 

It is important that the transistors work in the 

saturation region, so the netlist is set up with the 

proper voltage transfer characteristic (VTC) and 

bias points. 

The software interface manages the 

communication between the optimizer and the 

simulator. A script provides the necessary 

coordination by accepting inputs like the EA 

settings, the circuit design parameters, and the 

specifications to be met. Initially, the EA randomly 

picks values for the design parameters within 

defined limits, and these values are then sent to 

the simulator (24). In this equation, After the 

simulation is run, a fitness function is calculated 

using the following equation: 

 

= √∑  𝐷
𝑗=1 (

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)

𝑗

2

          [4] 

 

D is the total number of specifications. This root-

mean-square (RMS) error formula provides equal 

weight to each specification. The optimizer's main 

goal is to lower the fitness function value with 

each iteration until it reaches an acceptable level. 

The process stops when either the fitness function 

value drops below a set minimum 1e-6 or reaching 

to maximum number of iterations. If the stopping 

criteria aren’t met, the optimization algorithms 

generate a new set of design parameters and the 

cycle repeats (25). The design targets listed in 

Table 4 (gain, phase margin, UGB, PSRR, CMRR, 

and slew rates) constitute a multi-objective 

optimization problem (26). These specifications 

are often conflicting and must be balanced rather 

than optimized independently (27). In the present 

work we map the multi-objective task onto a 

single objective by using a normalized root-mean-

square (RMS) error fitness metric as shown in 

above equation. This simplifies algorithm 

comparison and allows direct evaluation of 

convergence behavior and robustness for ABC and 

PSO under identical conditions.  

 

Table 4: Design Specification of Two Stage Op-Amp 

Sr. No. Required Specifications 

1 AC voltage gain  AV > 80 dB 

2 Phase margin > 60° 

3 Unit gain bandwidth (UGB) > 100 MHz 

4 Power Supply Rejection Ratio (PSSR) > 75 dB 

5 Common Mode Rejection Ration (CMRR) > 80 dB 

6 Rise Slew Rate (RSR) > 40 V/us 

7 Fall Slew Rate (FSR ) > 40 V/us 
 

The performance of this optimizer depends on 

several factors, including the settings of the 

algorithm, the number of design variables, the 

range of those variables, and the number of 

specifications that need to be optimized. Table 4, 

presents the desired specifications such as gain, 

phase margin, and slew rate, which serve as 

optimization targets for the two-stage operational 

amplifier. These specifications are provided as 

input to the automated design framework to 

define the optimization objectives. Table 5 and 

Table 6 show the optimized parameters of the 

two-stage op-amp which displays the transistor 

sizing and current values obtained using the ABC 

and PSO algorithm for the optimal op-amp design 

in 130 nm CMOS technology respectively. The 

results indicate the transistor dimensions and 

component values that yield the best performance. 

The obtained design parameters were used to 

meet the specifications shown in Table 7, which 

compares the performance of the two-stage op-

amp designs optimized by ABC and PSO with the 

target values and compared with the previously 

reported work in (6,13). 
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Table 5: Optimized Parameters of Two Stage Op-Amp for the ABC Algorithm 

Design Variable Variable Range 
Results for  

130 nm (13) 

Obtained 

Parameters for 

130 nm 

W1 / L1 

W: 0.5 to 10 (µm) 

L: 0.2 to 1 (µm) 

 

Transistor dimensions are in µm. 

5.4/0.6 1.88/0.42 

W2 / L2 0.5/0.3 0.54/0.42 

W3 / L2 4.9/0.3 5.7/0.42 

W4 / L3 9.5/1.0 10/0.76 

W5 / L4 2.7/0.3 10/0.2 

W6 / L3 2.0/1.0 4.13/0.76 

W7 / L5 4.5/0.7 0.54/0.2 

W8 / L5 5.0/0.7 10/0.2 

W9 / L3 3.9/1.0 1.79/0.76 

Io (µA) 1 to 10 µA 2.8 5.10 

C (pF) 0.0001pF to 1 pF 0.043 0.1 
 

Initializing algorithm 

parameters,

 Required specifications, 

Required parameters 

Meta Heuristics Algorithms

Termination criteria

Final optimized solution

Yes

Interfacing Software

Ngspice Circuit simulator

Store simulated Results 

No

Fitness Calculation

SPICE netlist

 
Figure 8: The Automated Analog Circuit Design Environment
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Table 6: Optimized Parameters of Two Stage Op-Amp for the PSO Algorithm 

Design Variable Variable Range 
Results for  

130 nm (6) 

Obtained 

Parameters for  

130 nm 

W1 / L1 

W: 0.5 to 10 (µm) 

L: 0.13 to 1 (µm) 

 

Transistor dimensions are in µm. 

2.5/0.75 1.25/0.35 

W2 / L2 1.5/0.5 2.28/0.38 

W3 / L2 3.8/0.5 6.38/0.38 

W4 / L3 7.0/0.75 9.94/1 

W5 / L4 1.5/0.25 2.87/0.5 

W6 / L3 3.0/0.75 2.5/1 

W7 / L5 4.0/0.75 7.85/1 

W8 / L5 4.0/0.75 5/1 

W9 / L3 5.5/0.75 4.15/1 

Io (µA) 0.01 to 10 µA 4.5 5.52 

C (pF) 0.1fF to 10 pF 0.09 0.06 

 

Results and Discussion 
The two stage CMOS based operational amplifier 

designed using TSMC's 130nm CMOS process with 

required specifications as shown in Table 4. The 

simulation is carried out on a Core i5 1.80 GHz 

processor, 8GB RAM, 64 bit Ubuntu operating 

system. The ABC and PSO algorithms are 

implemented and compiled in Python, and all circuit 

simulations were carried out using Ngspice-26. The 

design variables obtained from Tables 3 and 4 were 

used to evaluate the final specifications, and the 

results were compared with previously reported 

work (6, 13). Table 7 shows that both the ABC and 

PSO algorithms meet the all target specification for 

the two-stage op-amp. The required voltage gain is 

set to above 80 dB, with ABC at 80.01 dB and PSO 

slightly higher at 80.96 dB. The phase margin is 

better with PSO (65.97°) compared to ABC (62.44°), 

both above the 60° target. Unity gain bandwidth is 

also higher than the target, with ABC reaching 123 

MHz and PSO 121 MHz. PSRR and CMRR values 

improved compared to earlier work, as ABC has a 

PSRR of 84.97 dB and CMRR of 80.60 dB, while PSO 

shows 75.77 dB PSRR and 83.74 dB CMRR. Both 

designs exceed the rise slew rate target of 40 V/µs, 

with ABC at 43.82 V/µs and PSO at 44.03 V/µs. The 

fall slew rate is just around the target, with ABC 

slightly above at 40.01 V/µs and PSO a little below at 

39.73 V/µs. Both ABC and PSO algorithms 

successfully met all the required performance 

targets listed and the results were benchmarked 

against previous studies to validate the effectiveness 

of the proposed optimization framework.  
 

Table 7: Obtained Specification of Two Stage Op-Amp 

Sr. 

No. 
Required Specifications 

Results for  

130 nm 

(6,13) 

Results for ABC 

Algorithm 

130 nm 

Results for PSO 

Algorithm 

130 nm 

1 AV  > 80 dB 86.16 dB 

 

80.01 dB 80.96 dB 

2 Phase Margin > 60° 61.79° 62.44° 

 

65.97° 

3 UGB > 100 MHz 101 MHz 

 

123 MHz 121 MHz 

4  PSSR > 75 dB - - -  

 

84.97 dB 75.77 dB 

5 CMRR > 80 dB - - -  

 

80.60 dB 83.74 dB 

6 Rise Slew rate (RSR) > 40 V/ µs 50.33 V/ µs 43.82 V/ µs 44.03 V/µs 

 

7 Fall Slew rate (FSR) > 40   V/ µs 37.79 V/ µs 40.01 V/ µs 39.73 V/ µs 
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In addition to convergence speed, a comparative 

evaluation was carried out with respect to 

scalability, accuracy, and efficiency. The results 

show that PSO generally achieves faster 

convergence and higher accuracy in reaching the 

target specifications, making it more efficient when 

computational time is a critical factor. However, ABC 

demonstrates greater robustness and scalability, as 

it maintains stable performance even when the 

number of design variables or specifications 

increases. The main trade-off, therefore, lies 

between speed PSO and robustness ABC. Figure 9 

displays how the ABC algorithm minimizes the 

fitness function across iterations for op-amp design 

and Figure 10, shows PSO’s faster convergence 

compared to ABC. This balanced view highlights 

both the strengths and limitations of the two 

approaches, offering guidance for their use in 

practical analog circuit optimization depending on 

design priorities. 

The present work has focused on optimizing a two-

stage CMOS operational amplifier. The future scope 

of this research is to demonstrate scalability from 

relatively simple circuits, like the two-stage OTA, to 

more complex analog blocks and system-level 

designs. This would provide deeper insights into the 

robustness of the proposed optimization approach 

and further establish its value for practical analog 

and mixed-signal circuit design, particularly in the 

context of low-power and battery-operated 

applications. 

 

 
Figure 9: Convergence Graph of Op-Amp for the ABC Algorithm 

 

 
Figure 10: Convergence Graph of Op-Amp for the PSO Algorithm
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Conclusion 
A set of widely used unimodal and multimodal 

benchmark functions were employed to evaluate the 

performance of optimization algorithms, with 

details on their mathematical formulations, search 

spaces, and global optima. Leveraging this 

evaluation, an automated optimization approach 

based on metaheuristic Artificial Bee Colony (ABC) 

and Particle Swarm Optimization (PSO) algorithms 

was applied to optimize a CMOS two-stage 

operational amplifier designed in TSMC’s 130nm 

technology node. Both ABC and PSO algorithms 

effectively optimized the two-stage op-amp 

achieving overall performance metrics. Achieving 

key performance metrics including a voltage gain of 

80.96 dB, phase margin of 65.97°, unity gain 

bandwidth of 121 MHz, PSRR of 75.77 dB, CMRR of 

83.74 dB, and rise slew rate of 44.03 V/µs, 

surpassing all target specifications except fall slew 

rate of 39.73 V/µs using PSO algorithm. The 

simulation results for these metrics were compared 

against the target specifications and summarized. 

These findings demonstrate the effectiveness and 

robustness of the proposed metaheuristic 

optimization framework for analog circuit design 

which satisfy all the specified performance criteria. 
 

Abbreviations 
ABC: Artificial Bee Colony, AV: Voltage Gain, CMRR: 

Common Mode Rejection Ration, GA: Genetic 

Algorithms, Op-amp: Operational Amplifier, PSO: 

Particle Swarm Optimization, PSRR: Power Supply 

Rejection Ration, UGB: Unity Gain Bandwidth. 
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