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Abstract

Predicting a protein's secondary structure directly from its amino acid sequence is a key challenge in bioinformatics.
Successfully doing so has significant implications for understanding how proteins function and for designing new drugs.
This study presents a comparative evaluation of seven distance and similarity measures—Euclidean, Manhattan,
Minkowski, Cosine, Chebyshev, Mahalanobis, and Jaccard - for classifying proteins into four major secondary structural
classes: a, 3, a + B, and a/f3. Using a curated dataset of 120 protein sequences represented by the frequency of 20 amino
acids, each metric was employed in a minimum-distance-based classification framework. Group-wise frequency
statistics, including mean, maximum, and minimum values, were analyzed to understand amino acid distribution across
structural classes. A classification algorithm was then designed to compute distances between an unknown protein and
each class group, identifying the closest match. Accuracy was measured by comparing predicted labels against true
structural categories. The results show that the Mahalanobis distance achieved the highest mean classification accuracy
(64.17%), closely followed by Cosine distance (61.67%), due to their ability to capture feature dependencies and
directional similarity, respectively. Jaccard similarity performed poorly, indicating its inadequacy for continuous
numerical data. The method yielded a maximum prediction accuracy of 79% for some cases. This comprehensive
performance evaluation underscores the importance of selecting appropriate distance metrics for structural
classification tasks and sets the foundation for future integration with ensemble or deep learning models.

Keywords: Amino Acid Frequency, Bioinformatics, Distance Metrics, Prediction Models, Protein Secondary
Structure (PSS), Secondary Structural Classes (SSC).

Introduction

The function of proteins, the essential bricks of
biological systems, is closely tied to their intricate
3D structures (1). The way these proteins are
organized into secondary structure classes—
specifically a-helices, B-sheets, and combinations
of the two—is a key factor in determining their
biological roles (2). For years, a major focus in
computational biology and bioinformatics has
been predicting these secondary structure classes
based on a protein's amino acid sequence. This
ability provides vital information for annotating
protein function, discovering new drugs, and
gaining insights into disease mechanisms (3).
Traditional approaches for predicting protein
(PSS) have relied on
statistical methods, machine learning algorithms,

secondary structures

and sequence alignment techniques. Recently,
distance and similarity-based models have gained
attention due to their simplicity, interpretability,

and effectiveness, particularly when the structural
characteristics are embedded in amino acid
composition profiles. Selecting an appropriate
distance measure becomes critical because it
directly impacts the ability to capture subtle
variations and patterns in amino acid frequency
distributions across protein classes. In the
literature, several efforts have been made to
predict protein structure classes using amino acid
compositions. For instance, Chou introduced early
statistical models in a 19-dimensional composition
space, demonstrating the predictive value of amino
acid frequencies (4). More recent studies have
incorporated various distance functions to
enhance prediction accuracy, yet a systematic
comparison across multiple distance metrics
remains limited. In this research, systematically
performance have been evaluated of seven widely
used distance and similarity measures- Euclidean,
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Manhattan, Minkowski, Cosine Distance,
Chebyshev, Mahalanobis, and Jaccard similarity—
for classifying proteins into their secondary
structure classes based solely on amino acid
sequence information. A dataset containing 120

proteins classified into o, 8, « + B, and a/f
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categories is utilized, and the classification is
performed using a minimum distance-based
strategy. An overview of the methodology is
presented in Figure 1, illustrating the key steps:
data preprocessing, distance computation, protein
class prediction, and performance evaluation.

Amino Acid
Frequency
Data

Distance
Computation

Accuracy
Evolution

Group
Prediction

Figure 1: Overview of the Protein Structure Classification Process Based on Distance Metrics

This work offers several methodological
contributions that distinguish it from existing
approaches in protein structural class prediction.
First, the dataset of 120 proteins was carefully
curated to ensure representation across all four
major secondary structural classes (o, 3, a+f3, o/f3).
This balanced dataset allows for fairer comparison
of classification methods compared to commonly
used imbalanced benchmarks.

Second, each protein sequence was transformed
into a 20-dimensional amino acid frequency
vector. This serves as a form of dimensionality
reduction, compressing variable-length sequences
into fixed-length representations while preserving
essential biochemical information. Such a
representation not only simplifies computation
but also provides biological interpretability, as
class-specific amino acid usage can be directly
analyzed through mean, maximum, and minimum
frequency statistics.

Third, unlike previous studies that applied
individual distance measures in isolation, this
study presents a systematic and comparative
evaluation of seven widely used distance and
similarity metrics under a uniform minimum-
distance-based classification framework. The
results reveal that Mahalanobis and Cosine
distances best capture biological and statistical
dependencies in composition,
highlighting their interpretability in terms of
correlation and directional similarity.
aspects—dataset
dimensional reduction, and

amino acid

Together, these curation,

interpretable

systematic comparative evaluation—form the
unique contributions of this work to protein
structural class prediction.

The remainder of the paper contains the
discussion on related work and background
studies, the materials and methods, results and
discussion, and the conclusion of the study with
insights and future work.

The analysis of genome sequences is fundamental
to understanding evolutionary relationships,
genetic variation, and functional genomics across
species. Traditional alignment-based methods,
though useful, become inefficient when dealing
with large and complex datasets. Recent
advancements, such as the use of alignment-free
techniques based on numerical descriptors and
distance metrics, allow for faster and more
scalable comparisons (5, 6). These methods
convert nucleotide sequences into
multidimensional numeric vectors and apply
metrics like Bray-Curtis or positional difference-
based
phylogenetic trees. Such strategies not only
improve the efficiency of genome sequence
analysis but also enhance the accuracy of
identifying evolutionary

datasets of unequal lengths. This opens up new

descriptors to construct accurate

links, even among
avenues in comparative genomics, taxonomy, and
evolutionary biology.

In parallel, protein sequence and structure
analysis perform a vital role in deciphering the
functional and structural dynamics of biological
molecules. The alignments of the protein-protein
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interaction (PPI) network and secondary structure
comparisons provide information on the structural
similarities that govern protein function (7, 8).
Understanding these structural elements allows
researchers to predict protein functions, identify
conserved motifs, and explore cross-species
functional orthologs. Novel approaches like the
TOPS-based numerical descriptors and moment-
of-inertia  analysis = demonstrate  superior
performance in generating phylogenetic trees for
structural classification. As proteins are the
primary effectors of cellular function, these
techniques are pivotal in drug discovery,
functional annotation, and systems biology,
ultimately bridging the gap between sequence data
and biological insights.

Grasping a protein's structure is essential for
understanding how it functions, which in turn is
crucial for progress in fields like molecular biology,
pharmacology, and medicine. Unfortunately,
current experimental methods for determining
these structures, such as X-ray crystallography and
NMR spectroscopy, are expensive, require
significant time and effort, and are often very slow
(4). As a result, computational approaches have
emerged as efficient and scalable alternatives that
complement traditional techniques by accelerating
structural prediction and functional annotation.
Recent breakthroughs in machine learning have
pointedly enhanced the accuracy of protein
structure prediction. It is emphasized by Seok et al.
that accurate prediction of secondary structures is
important for measuring the three-dimensional
(3D) conformation of a protein, which is critical for
understanding molecular functions, protein-
protein interactions, and disease mechanisms (9).
Tools such as AlphaFold and RoseTTAFold
demonstrate remarkable performance in modeling
complex protein structures, thereby enhancing
disease modeling and drug discovery pipelines.
The transformative impact of deep learning-based
models such as AlphaFold2, which enable large-
scale and high-throughput structural predictions,
is further highlighted (10). These tools have played
a pivotal role in research areas such as vaccine
design, mutation effect analysis, and protein
engineering. Moreover, emerging models such as
ESMFold are
predicting the

addressing the challenges of

structural consequences of
sequence variations, contributing to a deeper

understanding of protein dynamics.

Vol 6 | Issue 4

The value of accurate structure prediction is
reinforced, with the determination of protein
structure asserted by AlQuraishi et al. as essential
for uncovering biological function, facilitating drug
discovery, and supporting protein engineering
efforts (11). Advances in deep learning and
machine learning have significantly enhanced
structural modeling, bridging the gap between
sequence data and functional understanding.

The importance of secondary structure prediction
is also echoed in the work of Pakhrin et al., where
its role in understanding protein function, cellular
processes, and interaction networks is noted (12).
With the growing gap between rapidly
accumulating protein sequences and
experimentally resolved structures, computational
methods have become increasingly vital for
research in drug design and the study of protein
misfolding diseases.

The view that secondary structure prediction
serves as a foundational step in protein function
annotation is emphasized in the study that depicts
that accurate prediction provides crucial insights
into 3D conformation and disease mechanisms
(13). By introducing improved models like
MLPRNN, the researchers aim to make protein
structure prediction more efficient and scalable,
particularly for large and complex datasets.

The limitations of alignment-based methods for
structure prediction, particularly in handling large
datasets or orphan proteins, are addressed in a
study where the work is on the RGN2 model, which
predicts structures from single sequences using
alignment-free techniques,
potential of such approaches
annotation, novel protein design, and systems
biology (14).

An alignment-free,

demonstrates the
in functional

embedding-based method
using protein language models to efficiently
predict conservation patterns was proposed by
where unlike traditional alignment-based
approaches, which are computationally intensive
and sensitive to sequence order, their method
enables accurate conservation 4 analysis even in
multi-domain or fast-evolving proteins (15). This
has important applications in identifying
functional domains, regulatory elements, and in
accelerating drug discovery.

The narrowing of the conformational search space
and the improvement of functional inference for
low-homology sequences are achieved through
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structural class prediction is also highlighted (16).
The proposed method enhances prediction
accuracy, contributing to bioinformatics research
in drug discovery, functional annotation, and
systems biology.

Studies Based on Identical Dataset

The dataset selected for this research has been
widely used by many other researcher, and it is
obtained from and also been utilized by several
other researcher (4). The structure of the insulin
molecule was investigated using a novel cybernetic
and mathematical model is approached (17). By
analyzing the atomic composition of amino acids
and calculating standard deviations, the study
revealed a digital bio-code underlying insulin’s
sequence. The findings suggest a balance of
positive and negative deviations, indicating a
possible algorithmic structure in protein
biochemistry. This approach opens new pathways
for digital modeling in bioinformatics and genetics.
An alignment-free method for identifying Soluble
N-ethylmaleimide - Sensitive factor Attachment
Protein Receptor (SNARE) proteins was
introduced by utilizing multi scan convolutional
neural networks (CNNs) based on PSSM profiles
(18). Protein sequences were encoded into 20x20
matrices to capture evolutionary data, and SMOTE
was applied to counter class imbalance. The CNN,
equipped with varying filter sizes, extracted
discriminative features effectively, reaching 95.5%
accuracy and an AUC of 0.963. t-SNE and UMAP
were used for visualization, confirming a clear
separation between SNARE and non-SNARE
classes.

A two-level multi-label classification system
known as iAMP-2L has been introduced to
recognize antimicrobial peptides (AMPs) and
determine their functional roles. The classifier
initially detects whether a peptide is an AMP and
subsequently classifies its functional categories—
even when they belong to multiple types. Using a
combination of pseudo-amino acid composition
(PseAAC) and a fuzzy K-nearest neighbour (FKNN)
algorithm, this model achieves high accuracy in
classification. The tool is easily accessible through
a user-friendly web server. Significant promise for
advancing antimicrobial drug discovery through
accurate peptide function prediction is shown by
this approach (19).

An automatic feature learning framework for
activity recognition was proposed which leveraged
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Principal Component Analysis (PCA) and deep
autoencoders on raw sensor data (20). To preserve
structural patterns, ECDF-based normalization
was introduced. Evaluations across four public
datasets demonstrated that learned features,
especially from deep models, consistently
outperformed handcrafted ones, even under
sparse data conditions.

The development of a neural network-based
method to determine protein subcellular location
using only amino acid composition is attributed
which didn't depend on similar sequences or
motifs, achieved an accuracy of 81% for
prokaryotic proteins and 66% for eukaryotic
proteins (21). The method demonstrated
robustness even when the first few amino acids
were incorrect and
performance on independent data. This prediction
tool was made obtainable, facilitating genome
analysis and protein location prediction.

The influence of the hydrophobic effect on protein
interactions was examined through an extensive
statistical analysis was performed that involved
362 protein-protein interfaces and 57 oligomeric
interfaces (22). They measured hydrophobicity
based on factors like amino acid composition,
interactions between amino acid residues, and the
amount of buried nonpolar surface area. Although
the hydrophobic effect was found to be significant
in protein binding, it was less dominant than in
folding. Charged and polar residues appeared to

maintained reliable

contribute more to interface stability. The study
underscored distinctions between monomer
folding and protein-protein interactions, especially
for interface-specific model design.

The introduction of DPP-PseAAC, a computational
model for predicting DNA-binding proteins based
solely on amino acid sequence, was reported which
involved extracting features using Chou's general
PseAAC, then using Random Forest to rank these
features (23). Finally, they trained the model with
an SVM (linear kernel), and a process called
Recursive Feature Elimination (RFE). The method
showed superior performance compared to
existing predictors and was made publicly
accessible via a web server.

A predictive drug-target

interaction was developed by encoding drugs

framework for

based on their functional group compositions and
proteins using biologically meaningful features.
Using mRMR for feature selection followed by
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Nearest Neighbor classification, the model
achieved an accuracy exceeding 78% across four
distinct protein families. Demonstrating both
efficiency and strong predictive capability, this

approach offers practical value in drug discovery
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efforts (24). A detailed summary of the survey's
findings, including the study focus, methodology,
performance/results, and application area for each
work, is presented in Table 1.

Table 1: Summary of Studies Involving Machine Learning and Statistical Methods in Protein and

Bioinformatics Research

Study Focus Methodology Performance Application
/ Results Area
Kuri et al. Structure of Cybernetic and mathematical analysis Revealed Bioinformatics,
17 insulin using atomic composition and digital bio- protein
standard deviation code, balanced
deviations
Kha et al. SNARE CNN model with PSSM profiles, 95.6% Protein
(2022) protein SMOTE, and dimensionality reduction accuracy, AUC classification
(18) detection (t-SNE, UMAP) 0.963
Xiao et al. Antimicrobial Two-level multi-label classification Multi-label Drug discovery,
(2013) peptide using SVM and kNN with web server AMP function peptide
(19) classification  integration prediction classification
Plotzetal. Activity Feature learning with PCA, deep Outperformed Sensor data
(2011) recognition autoencoders, and ECDF handcrafted analysis, pattern
(20) normalization features recognition
Reinhardt Protein Neural network model using amino 81% Genome
et al. subcellular acid composition without homology (prokaryotes), analysis, protein
(1998) localization 66% targeting
21 (eukaryotes)
Tsai et al. Protein- Statistical analysis of hydrophobicity Charged/polar Protein
(1997) protein and residue interaction residues interface
(22) interface stabilize
study interface
Rahman DNA-binding Sequence-based Machine Learning Outperformed Genomic
et al. protein (ML) using Chou’s Random Forestand existing analysis,
(2018) prediction SVM  with  recursive feature models protein-DNA
(23) elimination interaction
He et al. Drug-target ML framework using QSOAR feature >78% Drug discovery,
(2010) interaction selection and Nearest Neighbour accuracy pharmacological
(24) prediction classifiers prediction
Methodology o/ class is characterized by an intricate mix of a

The study classifies 120 proteins into four main
structural categories: Alpha (a), Alpha+Beta (a+f),
Beta (3), and Alpha/Beta (/). This grouping is
based on the dominant type of secondary structure
in each protein. The dataset, used for this
classification, includes the frequencies of the 20
different amino acids for each of the 120 proteins
(4, 25).

The a class contains proteins primarily made of o
helices, while the {3 class is dominated by f3 sheets.
Proteins in the a+f class have distinct, separate
sections of a helices and f sheets. In contrast, the

helices and 3 sheets woven together throughout
This
classification is useful for understanding how
identifying
functional similarities between them. The dataset's
amino acid frequency information can also be used
to predict the names of the proteins.

Group Frequency Measure

To further analyze the dataset, we measured the
group frequencies of all the 20 amino acid groups
based on their occurrence across the four

the protein's structure. system of

proteins are organized and for

structural classes. Specifically, to calculate the
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amino acid of each group (a, o/, a+f3, and (3), we
consider the Average Values of amino acids across
different protein structure groups (summarized in
Table 2), Maximum Value of amino acids across

Vol 6 | Issue 4

different protein structure groups (presented in
Table 3), and Minimum Value (shown in Table 4)
of the entire amino acid frequencies. The algorithm
for this is as provided in Algorithm 1.

Algorithm 1: Computation of Group-Level Amino Acid Frequencies

Input: A matrix F of size 20 x n, where Fj; represents the frequency of the it amino acid in the j-th species

of a group.

Output: A vector G of size 20, where Giis the mean frequency of the it amino acid for the group.

Procedure
1. fori=1to20do

_1 n
a 6= Y Fy

2. end for
3. Return G

D> Iterate over each amino acid

> Compute Mean Frequencies

In Step.1 of Algorithm.1, the equation for mean frequency calculation is portrayed. We may use the

following two equations, Eq.1 and Eq.2 to obtain the frequencies via max or min values respectively.

G; « Fyj [Eq.1]
G; « Fyj [Eq.2]
Table 2: Mean Values of Amino Acids across Different Protein Structure Groups
Group o o/B o+ B
A 11.05983 9.246 6 6
C 0.969533 1.106667 2.786667 2.786667
D 5.553 5.066 4.968333 4.968333
E 7.460583 6.169 4976667 4.976667
F 3.976667 3.296667 4.982667 4.982667
G 6.206833 8.083167 7.509033 7.50903
H 1.0125 2.127 1414 1.414
I 4.025 6.111667 5.054667 5.054667
K 8.59 6.316 6.122 6.122
L 11.27267 7.655833 7.018667 7.018667
M 2.50125 3.156167 1.815167 1.815167
N 2.392 4.311667 5.131667 5.131667
P 4.993 5.651667 5.84 5.84
Q 4.321 4.058 4.296967 4.296967
R 4.584 4.308 3.855 3.855
S 5.136 5.546 8.078667 8.078667
T 5.432833 5.286667 7.672 7.672
\ 5.461583 5.8775 6.704333 6.704333
w 4.021833 1.55 1.583 1.583
Y 2.944 6.262667 4.344 4.344

The average values provide an overall estimate of
the typical amino acid composition across proteins
within a given structural class, offering insight into
common trends and characteristic patterns. The
maximum values highlight the amino acids that are

most frequently occurring within each group,
identifying key residues that may play critical roles
in maintaining the structural integrity of proteins
in that class. Conversely, the minimum values
reveal the least occurring amino acids, suggesting
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potential differences in amino acid utilization composition varies among different protein
based on  structural constraints.  This structural organizations and can further assist in
comprehensive statistical assessment enables a predictive modeling of protein classes based on
deeper understanding of how amino acid sequence information.

Table 3: Max Values of Amino Acids across Different Protein Structure Groups

Group o o/p a+f B

A 22.05 17.72 18.69 18.69

C 9.23 2.72 20 20

D 11.32 10.88 11.24 11.24

E 16.13 13.77 11.65 11.65

F 10.29 8.05 19.35 19.35

G 13.61 12.24 16.16 16.16

H 8.5 4.76 6.45 6.45

I 9.76 10.87 12.12 12.12

K 16.13 10.61 16.67 16.67

L 19.35 12.26 13.16 13.16

M 7.14 4.17 5.41 5.41

N 7.69 7.94 12.9 12.9

P 7.14 9.52 13.51 13.51

Q 10.74 7.1 12.15 12.15

R 15.79 7.29 13.33 13.33

S 9.88 13.82 14.29 14.29

T 8.57 9.04 16.53 16.53

\% 12.33 17.46 11.21 11.21

w 4.52 2.97 3.94 3.94

Y 9.76 9.52 11.36 11.36
Table 4: Min Values of Amino Acids across Different Protein Structure Groups

Group o o/B a+f B

A 0 1.59 0 0

C 0 0 0 0

D 0 3.17 0 0

E 2.04 1.45 0.93 0.83

F 1.09 0 0 0

G 1.75 4.84 2.02 2.02

H 0 0 0 0

I 0 0 0.88 0.88

K 2.01 2.72 0 0

L 3.08 5 3.03 3.03

M 0 0 0 0

N 0 2.04 0 0

P 0 1.75 1.18 1.18

Q 0.56 1.45 0 0

R 0.65 0.73 0 0

S 0 1.52 0 0
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Group o o/B a+f B
T 0 1.52 0 0
\% 0 4.52 0 0
w 0 0 0 0
Y 0 1.11 0 0

Distance Measure
To analyze the performance on predicting Protein
Secondary Structure Classes from Amino Acid

The Euclidean Distance (Eq.3) measures the direct
longitudinal distance between two points and is
commonly applied in continuous space analysis

Sequences, seven traditional distance and (26).
similarity measures have been considered.

d(a, B) = [Eq.3]

(@ — B)?

The Manhattan Distance (Eq.4) measures the sum of the absolute gaps of their coordinates, often applied
when movement is restricted to grid-like paths (26).

dp,q) = Z lp: — qil [Eq.4]
i=1

The Minkowski Distance (Eq.5) simplifies both Euclidean and Manhattan distances by introducing a
parameter p, allowing flexibility in the measurement scale (26).

n z
D(x,y) = (Z I —ym’)

The Cosine Distance (Eq.6) assesses the angular difference between two vectors, focusing on their
orientation rather than magnitude, and is particularly useful in text and high-dimensional data analysis
(26).

[Eq.5]

n—-1
i=0 XiYi

n-1 2 n-—1 2
\[ i=0 Xi X\[ i=0 Vi

The Mahalanobis Distance (Eq.7) measures the distance between points while considering correlations
among variables, making it suitable for multivariate data (27).

dcos(XIY) =1-

[Eq.6]

d(pm' pn) = \/(pm - pn)TA(pm - pn) [Eq7]

The Chebyshev Distance (Eq.8) captures the maximum absolute difference among corresponding vector
components, highlighting the dominant difference (26).

dist(A,B) = (|x4 — x|, 1ya — ¥51) [Eq.8]

Finally, the Jaccard Similarity Coefficient (Eq.9) measures the similarity between finite sample sets, widely
used for binary and set-based data comparisons (26).

lp N ql

jac(p,q) =

Protein Species Group Selection

After calculating the distance measure between a
selected species and each of the 19 reference
species, the analysis is performed based on four
distinct protein sequence categories: a, 3, a + f3,

Ipl + lql = lp N ql

[Eq.9]

and a/p. For each category, the distances between
the selected species and the species within that
category are computed separately. The minimum
distance for each group is then determined.
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Algorithm 2 Protein Structure Group Classification Using Minimum Distance Criterion

Procedure PredictProteinClass(P, Cq, Cg, Ca+p, Cosp)

1. classes « {Cq Cg, Co+p, Coyp}
2. minimum distances <[]
D> List to hold the minimum distance for each class
3. Foreach Cinclasses do
i. temp distances « [ ]
ii. For each sample in C do
1. distance « ComputeDistance(P, sample)
2. Append distance to temp distances
iii. End For
iv. min distance < min(temp distances)
V. Append min distance to minimum distances
4. End For
5. predicted index « arg min(minimum distances)
6. Return corresponding class from classes[predicted index]

Ultimately, the group with the smallest minimum
distance among the four categories is considered
the most similar to the selected species. Therefore,
the species is classified into that group, as it shares
the sequence
according to the distance metric. The procedure
for determining the correct group is outlined in
Algorithm 2.

The algorithm has O(km) time complexity, where k
is protein classes and m is samples in each class.
This is because for each class, the algorithm
computes the distance for each sample, and the
distance computation is done for all classes.
Accuracy Measure

To evaluate the performance of the proposed
classification approach, an accuracy assessment
algorithm (Algorithm 3) is used. This algorithm

most similar characteristics

receives two input lists: the true group labels and
the predicted group labels for the 19 protein
species. It evaluates each actual-predicted label
pair and records the count of accurate predictions.
The accuracy is then measured as the proportion
of correctly classified species to the total number
of species, with the result multiplied by 100 to
represent it as a percentage. This straightforward
yet effective metric provides a clear indication of
the model’s effectiveness in correctly categorizing
protein sequences into their corresponding
structural groups.

The algorithm has a time complexity of O(n), with
n representing the total number of protein species
(or the length of the input lists). This is because the
algorithm iterates through each pair of actual and
predicted labels exactly once.

Algorithm 3 Computation of Classification Accuracy for Protein Groups

Procedure ComputeClassificationAccuracy(TrueLabels, PredictedLabels)

1. correctCount « 0
2. numSamples « length(T rueLabels)
3. Fori=1tonumSamples do
a. IfT rueLabels[i] = P redictedLabels[i] then
. correctCount « correctCount + 1
b. EndIf
End For
accuracyPercentage « % 100
6. Return accuracyPercentage

Results and Discussion

Table 5 shows the performance assessment results
of seven distance metrics used for predicting
protein secondary structure classes from amino
acid Each distance

sequences. measure—

1111

Manhattan, Cosine

Distance, Chebyshev, Mahalanobis, and Jaccard—

Euclidean, MinkowskKi,
has been assessed based on its minimum, mean,
and maximum accuracy values. Among these, the
Mahalanobis distance achieved the highest mean
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accuracy (64.17%), highlighting its ability to
capture inter-variable relationships critical for
protein classification tasks. The Cosine distance
also performed competitively with a mean
accuracy of 61.67%, whereas the Jaccard similarity
consistently recorded the lowest performance
(25%), indicating its unsuitability for numerical
frequency-based data. Additionally, a visual

Table 5: Accuracy Measure of all Distance Values

Vol 6 | Issue 4

comparison of these performance metrics is shown
in Figure 2, where it is evident that Mahalanobis
and Cosine distances outperform others. The
combined analysis from Table 5 and Figure 2
underscores the importance of selecting
appropriate distance metrics to augment the
performance of accuracy of protein secondary
structure prediction models.

Distance Measure Minimum Mean or Average Maximum
Euclidean 25 63 25
Manhattan 25 58.34 25
Minkowski 25 60.84 25
Cosine Distance 27.5 61.67 42.5
Chebyshev 25.83 55 29.17
Mahala Nobis 25 64.16 25
Jaccard 25 25 25
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Figure 2: Graphical Representation of Accuracy for Seven Distance Measure

Validation

Process 1: Two datasets consisting of 86 and 106
protein sequences are collected from Protein Data
Bank (PDB) (28). Table 6 presents 86 proteins

representing three distinct families: a, 3, and o + 8
as described in the Sierk-Pearson database (29).
Table 7 classifies 106 proteins into four unique
taxonomies: o, 3, a+f3, a/p (4).

Table 6: Classification of 86 Proteins by Sierk-Pearson

a a+f

B

lad6, 1a06, 1bbh, 1cns, 1d2z,
1dat, 1el2, leqz, 1gwx, lhgu,
1hlm, 1jnk, Immo, 1nub, 1quu,
1rep, 1sw6, 1trr, 2hpd, 2mta

2tbv

1a8d, 1a8h, laoz, 1b8m, 1bf2,
1bjq, 1bqy, 1btk, 1clz, 1cl7,
1d3s, 1dan, 1dsy, 1dxm, let6,
lext, 1Infi, 1nuk, lotc, 1qdm,
1qe6, 1qfk, 1que, 1rmg, 1tmo,

lalm, 1a2v, lakn, laqz, lasy,
lati, lauq, lax4, 1bOp, 1bZr,
1bcg, 1bcm, 1bf5, 1bkc, 1bp7,
1c4k, 1cd2, lcdg, 1dOn, 1d4o,
1d70, 1doi, 1dy0, 1le2k, lecc,
1fbn, 1gso, 1mpy, lobr, 1pty,
1gb7, 1qmv, lurn, 1zfj, 2acy,
2drp, 2nmt, 2reb, 4mdh, 5uoj
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Table 7: Classification of 106 Proteins
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(04

a+f3

B

/B

lavh, 1bab, 1brd, 1c5a,
lcpc, leco, 1fcs, 1fha,
1fia, 1hbg, 1hdd, 1hig,
1le4, 1lts, 1mbc, 1rpr,
1tro, 1lutg, 256b, 2ccy,

2aak, 1ctf, 1dnk, 1leaf,
1hsb, 1lts, loia, 1poc,
1ppn, 1rnd, 1snc, 1tfg,
1tgs, 2ach, 2act, 2bpa,

2sns, 3ssi, 3il8, 3rub,

41acx, 2ayh, 1cd8, 1cdt,
1cid, 1dfn, 1hil, 1hle,
Imam, 3mon, 2phy,
1rei, 1ten, 1tlk, 2vaa,
2alp, 2avi, 2bpa, 3hhr,

laba, 1cis, 1cse, 1dhr,
2dri, letu, 1fx1, 1gpb,
1pax, 1pfk, 2pgd, 1921,
1s01, 1sbp, 1sbt, 1tim,
1tre, 1ula, 1bks, 2had,

21h1, 2lhb, 2mhb, 2zta,
4mba, 4mbn

3sghb, 3sic, 4blm, 4tms,
8cat, 9rnt, 9rsa

2ila, 2lal, 2snv, 3cd4,
4gcr, 7api, 8fab

2liv, 3gbp, 2fox, 4cpa,
5p21, 8abp, 8atc

Table 8: Accuracy Measures of all Distance Values of 86 and 106 Dataset

Distance Measure

Accuracy on 86 Dataset

Accuracy on 106 Dataset

Euclidean 70.33
Manhattan 66.67
Minkowski 62
Cosine Distance 67.5
Chebyshev 56
Mahala Nobis 72
Jaccard 29

65.48
63.6
60.5
63

55
74.16
26

In both datasets presented in Table 8, a consistent
technique has been employed to predict the group
classification of a selected protein. Specifically, the
method utilizes the mean value to represent the
group frequency, as this approach has
demonstrated  favorable performance, as
evidenced in Table 5. The rationale behind using
the mean value lies in its ability to provide a stable
and representative tendency, which
contributes to improved prediction accuracy. To

central

assess the efficiency of the proposed method, we
have assessed the performance of several distance-
based similarity measures, including Euclidean,
Manhattan, Minkowski, Cosine, Chebyshev,
Mahalanobis, and Jaccard distances. These metrics
were systematically applied to both datasets to
determine their impact on classification
performance. The resulting outcomes highlight the

comparative strengths of each distance measure
under the given experimental conditions.

Process 2: The dataset of 120 protein sequences,
represented by the frequency of 20 amino acids
and categorized into four structural classes—
Alpha (a), Beta (B), Alpha+Beta (a+f), and
Alpha/Beta (a/B)—was analyzed using seven
distance metrics, where Mahalanobis distance
stands out the highest mean accuracy (64.17%)
and to further validate the findings, the same
dataset was reanalyzed using both distance-to-
reference and k-NN classifiers (k=3,5) (4). The use
of k-NN validated the effectiveness of distance
metrics within a standard classifier, confirming
that the observed performance trends were not
restricted to the distance-to-reference approach. A
graphical and classification
accuracy of these performance metrics are shown
Figure 3 and Table 9.

representation

Table 9: Accuracy (%) of Distance-Based and k-NN Classification for Seven Distance Metrics

Metric Distance-to- Distance-to- Distance-to- Kk-NN Kk-NN
Mean Min Max (k=3) (k=5)
Euclidean 62.50% 25.00% 25.00% 60.00% 59.17%
Manhattan 58.33% 25.00% 25.00% 56.67% 55.83%
MinkowskKi 62.50% 25.00% 25.00% 60.00% 59.17%
Cosine 61.67% 27.50% 42.50% 63.33% 60.83%
Chebyshev 55.00% 25.83% 29.17% 60.83% 60.00%
Mahalanobis 64.17% 25.00% 25.00% 54.17% 55.00%
Jaccard 25.00% 25.00% 25.00% 32.50% 32.50%
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Figure 3: Graphical Representation of Distance-Based and k-NN Classification for Seven Distance Metrics

Table 9 represents the classification of accuracy
(%) of seven distance metrics for protein
secondary structure prediction using both
distance-to-reference and k-NN classifiers (k=3
and k=5). Distance-to-Mean consistently
generated the  highest with
Mahalanobis distance performing best at 64.17%,
Closely approached by Euclidean and Minkowski
(62.5%) and Cosine (61.67%). Distance-to-Min
and Distance-to-Max profiles resulted in much
lower accuracies, mostly between 25% and 42%,
indicating that
representative of structural classes. In the k-NN
classification, similar trends were observed:

accuracies,

extreme values are less

Cosine distance achieved slightly higher accuracy
(63.33% for k=3), Mahalanobis showed lower
performance (54.17-55%), and Jaccard remained
unsuitable for this dataset (32.5%). Overall, the
validation confirms that mean-based reference
profiles are the most representative and effective
for distance-based protein classification with
Mahalanobis demonstrated the highest accuracy
for protein secondary structure prediction.

The accuracy obtained with Mahalanobis distance
(64.17%) is lower than recent deep learning-based
approaches such as CNN-based SNARE detection,
which reported 95.6% accuracy (18). However,
deep
intensive and require large curated datasets,
whereas the present approach offers a lightweight
and interpretable solution suitable for scenarios
with limited resources. The reliance on amino acid

learning models are computationally

composition and sequence-based comparisons in
our study aligns with earlier investigations where
homology modeling and sequence similarity were

effectively used to explore evolutionary
relationships, such as in the analysis of the LFY
gene across plant families (30). These findings
support the utility of alignment-free and distance-
based approaches revealing biologically
meaningful patterns, even when predictive

accuracy is moderate.

in

Conclusion

In this study, we evaluated the effectiveness of
seven traditional distance and similarity measures
- Euclidean, Manhattan, Minkowski, Cosine,
Chebyshev, Mahalanobis, and Jaccard
classifying protein secondary structure types
based on amino acid sequence data. By analyzing a
curated dataset of 120 proteins categorized into
four major secondary structure classes, we
performed a systematic comparison of these
metrics

for

using a minimum distance-based
classification approach.

Our results demonstrate that the Mahalanobis
distance metric achieves the highest average
classification accuracy (64.17%), closely followed
by the Cosine distance (61.67%), indicating their
superior ability to capture important patterns and
relationships among amino acid frequencies. In
the Jaccard similarity consistently
showed the lowest performance, highlighting its
limitation in handling continuous frequency data

in this domain.

contrast,

The study also underlines the significance of
choosing appropriate distance measures to
enhance predictive performance in bioinformatics
applications. Through the proposed methodology,
a maximum observed prediction accuracy of 79%
suggesting the potential of

was achieved,
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information-based and correlation-aware distance
improving protein
classification tasks.

Future work could extend this approach by
integrating ensemble techniques that combine
multiple distance metrics or hybrid similarity
measures, thereby  enhancing  predictive
robustness and accuracy across diverse protein
families. In addition, incorporating deep learning-
based embeddings and evaluating performance on
larger, more diverse datasets from repositories
such as the Protein Data Bank (PDB) would further
validate and generalize the findings. Beyond
structural class prediction, the insights gained here
may also be applied to related bioinformatics
challenges, including drug-target interaction
studies, protein functional annotation, and the
classification of intrinsically disordered proteins,
where accurate sequence-structure modeling
plays a pivotal role.

measures in structure
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