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Abstract 
 

Predicting a protein's secondary structure directly from its amino acid sequence is a key challenge in bioinformatics. 
Successfully doing so has significant implications for understanding how proteins function and for designing new drugs. 
This study presents a comparative evaluation of seven distance and similarity measures—Euclidean, Manhattan, 
Minkowski, Cosine, Chebyshev, Mahalanobis, and Jaccard - for classifying proteins into four major secondary structural 
classes: α, β, α + β, and α/β. Using a curated dataset of 120 protein sequences represented by the frequency of 20 amino 
acids, each metric was employed in a minimum-distance-based classification framework. Group-wise frequency 
statistics, including mean, maximum, and minimum values, were analyzed to understand amino acid distribution across 
structural classes. A classification algorithm was then designed to compute distances between an unknown protein and 
each class group, identifying the closest match. Accuracy was measured by comparing predicted labels against true 
structural categories. The results show that the Mahalanobis distance achieved the highest mean classification accuracy 
(64.17%), closely followed by Cosine distance (61.67%), due to their ability to capture feature dependencies and 
directional similarity, respectively. Jaccard similarity performed poorly, indicating its inadequacy for continuous 
numerical data. The method yielded a maximum prediction accuracy of 79% for some cases. This comprehensive 
performance evaluation underscores the importance of selecting appropriate distance metrics for structural 
classification tasks and sets the foundation for future integration with ensemble or deep learning models. 

Keywords: Amino Acid Frequency, Bioinformatics, Distance Metrics, Prediction Models, Protein Secondary 

Structure (PSS), Secondary Structural Classes (SSC). 
 

Introduction 

The function of proteins, the essential bricks of 

biological systems, is closely tied to their intricate 

3D structures (1). The way these proteins are 

organized into secondary structure classes—

specifically α-helices, β-sheets, and combinations 

of the two—is a key factor in determining their 

biological roles (2). For years, a major focus in 

computational biology and bioinformatics has 

been predicting these secondary structure classes 

based on a protein's amino acid sequence. This 

ability provides vital information for annotating 

protein function, discovering new drugs, and 

gaining insights into disease mechanisms (3). 

Traditional approaches for predicting protein 

secondary structures (PSS) have relied on 

statistical methods, machine learning algorithms, 

and sequence alignment techniques. Recently, 

distance and similarity-based models have gained 

attention due to their simplicity, interpretability, 

and effectiveness, particularly when the structural 

characteristics are embedded in amino acid 

composition profiles. Selecting an appropriate 

distance measure becomes critical because it 

directly impacts the ability to capture subtle 

variations and patterns in amino acid frequency 

distributions across protein classes. In the 

literature, several efforts have been made to 

predict protein structure classes using amino acid 

compositions. For instance, Chou introduced early 

statistical models in a 19-dimensional composition 

space, demonstrating the predictive value of amino 

acid frequencies (4). More recent studies have 

incorporated various distance functions to 

enhance prediction accuracy, yet a systematic 

comparison across multiple distance metrics 

remains limited. In this research, systematically 

performance have been evaluated of seven widely 

used distance and similarity measures- Euclidean,  
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Manhattan, Minkowski, Cosine Distance, 

Chebyshev, Mahalanobis, and Jaccard similarity—

for classifying proteins into their secondary 

structure classes based solely on amino acid 

sequence information. A dataset containing 120 

proteins classified into α, β, α + β, and α/β 

categories is utilized, and the classification is 

performed using a minimum distance-based 

strategy. An overview of the methodology is 

presented in Figure 1, illustrating the key steps: 

data preprocessing, distance computation, protein 

class prediction, and performance evaluation. 
 

 
Figure 1: Overview of the Protein Structure Classification Process Based on Distance Metrics 

 

This work offers several methodological 

contributions that distinguish it from existing 

approaches in protein structural class prediction. 

First, the dataset of 120 proteins was carefully 

curated to ensure representation across all four 

major secondary structural classes (α, β, α+β, α/β). 

This balanced dataset allows for fairer comparison 

of classification methods compared to commonly 

used imbalanced benchmarks. 

Second, each protein sequence was transformed 

into a 20-dimensional amino acid frequency 

vector. This serves as a form of dimensionality 

reduction, compressing variable-length sequences 

into fixed-length representations while preserving 

essential biochemical information. Such a 

representation not only simplifies computation 

but also provides biological interpretability, as 

class-specific amino acid usage can be directly 

analyzed through mean, maximum, and minimum 

frequency statistics. 

Third, unlike previous studies that applied 

individual distance measures in isolation, this 

study presents a systematic and comparative 

evaluation of seven widely used distance and 

similarity metrics under a uniform minimum-

distance-based classification framework. The 

results reveal that Mahalanobis and Cosine 

distances best capture biological and statistical 

dependencies in amino acid composition, 

highlighting their interpretability in terms of 

correlation and directional similarity. 

Together, these aspects—dataset curation, 

interpretable dimensional reduction, and 

systematic comparative evaluation—form the 

unique contributions of this work to protein 

structural class prediction. 

The remainder of the paper contains the 

discussion on related work and background 

studies, the materials and methods, results and 

discussion, and the conclusion of the study with 

insights and future work. 

The analysis of genome sequences is fundamental 

to understanding evolutionary relationships, 

genetic variation, and functional genomics across 

species. Traditional alignment-based methods, 

though useful, become inefficient when dealing 

with large and complex datasets. Recent 

advancements, such as the use of alignment-free 

techniques based on numerical descriptors and 

distance metrics, allow for faster and more 

scalable comparisons (5, 6). These methods 

convert nucleotide sequences into 

multidimensional numeric vectors and apply 

metrics like Bray-Curtis or positional difference-

based descriptors to construct accurate 

phylogenetic trees. Such strategies not only 

improve the efficiency of genome sequence 

analysis but also enhance the accuracy of 

identifying evolutionary links, even among 

datasets of unequal lengths. This opens up new 

avenues in comparative genomics, taxonomy, and 

evolutionary biology. 

In parallel, protein sequence and structure 

analysis perform a vital role in deciphering the 

functional and structural dynamics of biological 

molecules. The alignments of the protein-protein 
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interaction (PPI) network and secondary structure 

comparisons provide information on the structural 

similarities that govern protein function (7, 8). 

Understanding these structural elements allows 

researchers to predict protein functions, identify 

conserved motifs, and explore cross-species 

functional orthologs. Novel approaches like the 

TOPS-based numerical descriptors and moment-

of-inertia analysis demonstrate superior 

performance in generating phylogenetic trees for 

structural classification. As proteins are the 

primary effectors of cellular function, these 

techniques are pivotal in drug discovery, 

functional annotation, and systems biology, 

ultimately bridging the gap between sequence data 

and biological insights. 

Grasping a protein's structure is essential for 

understanding how it functions, which in turn is 

crucial for progress in fields like molecular biology, 

pharmacology, and medicine. Unfortunately, 

current experimental methods for determining 

these structures, such as X-ray crystallography and 

NMR spectroscopy, are expensive, require 

significant time and effort, and are often very slow 

(4). As a result, computational approaches have 

emerged as efficient and scalable alternatives that 

complement traditional techniques by accelerating 

structural prediction and functional annotation. 

Recent breakthroughs in machine learning have 

pointedly enhanced the accuracy of protein 

structure prediction. It is emphasized by Seok et al. 

that accurate prediction of secondary structures is 

important for measuring the three-dimensional 

(3D) conformation of a protein, which is critical for 

understanding molecular functions, protein–

protein interactions, and disease mechanisms (9). 

Tools such as AlphaFold and RoseTTAFold 

demonstrate remarkable performance in modeling 

complex protein structures, thereby enhancing 

disease modeling and drug discovery pipelines. 

The transformative impact of deep learning-based 

models such as AlphaFold2, which enable large-

scale and high-throughput structural predictions, 

is further highlighted (10). These tools have played 

a pivotal role in research areas such as vaccine 

design, mutation effect analysis, and protein 

engineering. Moreover, emerging models such as 

ESMFold are addressing the challenges of 

predicting the structural consequences of 

sequence variations, contributing to a deeper 

understanding of protein dynamics. 

The value of accurate structure prediction is 

reinforced, with the determination of protein 

structure asserted by AlQuraishi et al. as essential 

for uncovering biological function, facilitating drug 

discovery, and supporting protein engineering 

efforts (11). Advances in deep learning and 

machine learning have significantly enhanced 

structural modeling, bridging the gap between 

sequence data and functional understanding. 

The importance of secondary structure prediction 

is also echoed in the work of Pakhrin et al., where 

its role in understanding protein function, cellular 

processes, and interaction networks is noted (12). 

With the growing gap between rapidly 

accumulating protein sequences and 

experimentally resolved structures, computational 

methods have become increasingly vital for 

research in drug design and the study of protein 

misfolding diseases. 

The view that secondary structure prediction 

serves as a foundational step in protein function 

annotation is emphasized in the study that depicts 

that accurate prediction provides crucial insights 

into 3D conformation and disease mechanisms 

(13). By introducing improved models like 

MLPRNN, the researchers aim to make protein 

structure prediction more efficient and scalable, 

particularly for large and complex datasets. 

The limitations of alignment-based methods for 

structure prediction, particularly in handling large 

datasets or orphan proteins, are addressed in a 

study where the work is on the RGN2 model, which 

predicts structures from single sequences using 

alignment-free techniques, demonstrates the 

potential of such approaches in functional 

annotation, novel protein design, and systems 

biology (14). 

An alignment-free, embedding-based method 

using protein language models to efficiently 

predict conservation patterns was proposed by 

where unlike traditional alignment-based 

approaches, which are computationally intensive 

and sensitive to sequence order, their method 

enables accurate conservation 4 analysis even in 

multi-domain or fast-evolving proteins (15). This 

has important applications in identifying 

functional domains, regulatory elements, and in 

accelerating drug discovery. 

The narrowing of the conformational search space 

and the improvement of functional inference for 

low-homology sequences are achieved through 
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structural class prediction is also highlighted (16). 

The proposed method enhances prediction 

accuracy, contributing to bioinformatics research 

in drug discovery, functional annotation, and 

systems biology. 

Studies Based on Identical Dataset 
The dataset selected for this research has been 

widely used by many other researcher, and it is 

obtained from and also been utilized by several 

other researcher (4). The structure of the insulin 

molecule was investigated using a novel cybernetic 

and mathematical model is approached (17). By 

analyzing the atomic composition of amino acids 

and calculating standard deviations, the study 

revealed a digital bio-code underlying insulin’s 

sequence. The findings suggest a balance of 

positive and negative deviations, indicating a 

possible algorithmic structure in protein 

biochemistry. This approach opens new pathways 

for digital modeling in bioinformatics and genetics. 

An alignment-free method for identifying Soluble 

N-ethylmaleimide - Sensitive factor Attachment 

Protein Receptor (SNARE) proteins was 

introduced by utilizing multi scan convolutional 

neural networks (CNNs) based on PSSM profiles 

(18). Protein sequences were encoded into 20×20 

matrices to capture evolutionary data, and SMOTE 

was applied to counter class imbalance. The CNN, 

equipped with varying filter sizes, extracted 

discriminative features effectively, reaching 95.5% 

accuracy and an AUC of 0.963. t-SNE and UMAP 

were used for visualization, confirming a clear 

separation between SNARE and non-SNARE 

classes. 

A two-level multi-label classification system 

known as iAMP-2L has been introduced to 

recognize antimicrobial peptides (AMPs) and 

determine their functional roles. The classifier 

initially detects whether a peptide is an AMP and 

subsequently classifies its functional categories—

even when they belong to multiple types. Using a 

combination of pseudo-amino acid composition 

(PseAAC) and a fuzzy K-nearest neighbour (FKNN) 

algorithm, this model achieves high accuracy in 

classification. The tool is easily accessible through 

a user-friendly web server. Significant promise for 

advancing antimicrobial drug discovery through 

accurate peptide function prediction is shown by 

this approach (19). 

An automatic feature learning framework for 

activity recognition was proposed which leveraged 

Principal Component Analysis (PCA) and deep 

autoencoders on raw sensor data (20). To preserve 

structural patterns, ECDF-based normalization 

was introduced. Evaluations across four public 

datasets demonstrated that learned features, 

especially from deep models, consistently 

outperformed handcrafted ones, even under 

sparse data conditions. 

The development of a neural network–based 

method to determine protein subcellular location 

using only amino acid composition is attributed 

which didn't depend on similar sequences or 

motifs, achieved an accuracy of 81% for 

prokaryotic proteins and 66% for eukaryotic 

proteins (21). The method demonstrated 

robustness even when the first few amino acids 

were incorrect and maintained reliable 

performance on independent data. This prediction 

tool was made obtainable, facilitating genome 

analysis and protein location prediction. 

The influence of the hydrophobic effect on protein 

interactions was examined through an extensive 

statistical analysis was performed that involved 

362 protein-protein interfaces and 57 oligomeric 

interfaces (22). They measured hydrophobicity 

based on factors like amino acid composition, 

interactions between amino acid residues, and the 

amount of buried nonpolar surface area. Although 

the hydrophobic effect was found to be significant 

in protein binding, it was less dominant than in 

folding. Charged and polar residues appeared to 

contribute more to interface stability. The study 

underscored distinctions between monomer 

folding and protein-protein interactions, especially 

for interface-specific model design. 

The introduction of DPP-PseAAC, a computational 

model for predicting DNA-binding proteins based 

solely on amino acid sequence, was reported which 

involved extracting features using Chou's general 

PseAAC, then using Random Forest to rank these 

features (23). Finally, they trained the model with 

an SVM (linear kernel), and a process called 

Recursive Feature Elimination (RFE). The method 

showed superior performance compared to 

existing predictors and was made publicly 

accessible via a web server. 

A predictive framework for drug–target 

interaction was developed by encoding drugs 

based on their functional group compositions and 

proteins using biologically meaningful features. 

Using mRMR for feature selection followed by 
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Nearest Neighbor classification, the model 

achieved an accuracy exceeding 78% across four 

distinct protein families. Demonstrating both 

efficiency and strong predictive capability, this 

approach offers practical value in drug discovery 

efforts (24). A detailed summary of the survey's 

findings, including the study focus, methodology, 

performance/results, and application area for each 

work, is presented in Table 1. 

 

Table 1: Summary of Studies Involving Machine Learning and Statistical Methods in Protein and 

Bioinformatics Research 

Study Focus Methodology Performance 

/ Results 

Application 

Area 

Kuri et al. 

(17) 

Structure of 

insulin 

Cybernetic and mathematical analysis 

using atomic composition and 

standard deviation 

Revealed 

digital bio-

code, balanced 

deviations 

Bioinformatics, 

protein 

Kha et al. 

(2022) 

(18) 

SNARE 

protein 

detection 

CNN model with PSSM profiles, 

SMOTE, and dimensionality reduction 

(t-SNE, UMAP) 

95.6% 

accuracy, AUC 

0.963 

Protein 

classification 

Xiao et al. 

(2013) 

(19) 

Antimicrobial 

peptide 

classification 

Two-level multi-label classification 

using SVM and kNN with web server 

integration 

Multi-label 

AMP function 

prediction 

Drug discovery, 

peptide 

classification 

Plötz et al. 

(2011) 

(20) 

Activity 

recognition 

Feature learning with PCA, deep 

autoencoders, and ECDF 

normalization 

Outperformed 

handcrafted 

features 

Sensor data 

analysis, pattern 

recognition 

Reinhardt 

et al. 

(1998) 

(21) 

Protein 

subcellular 

localization 

Neural network model using amino 

acid composition without homology 

81% 

(prokaryotes), 

66% 

(eukaryotes) 

Genome 

analysis, protein 

targeting 

Tsai et al. 

(1997) 

(22) 

Protein-

protein 

interface 

study 

Statistical analysis of hydrophobicity 

and residue interaction 

Charged/polar 

residues 

stabilize 

interface 

Protein 

interface 

Rahman 

et al. 

(2018) 

(23) 

DNA-binding 

protein 

prediction 

Sequence-based Machine Learning 

(ML) using Chou’s Random Forest and 

SVM with recursive feature 

elimination 

Outperformed 

existing 

models 

Genomic 

analysis, 

protein-DNA 

interaction 

He et al. 

(2010) 

(24) 

Drug-target 

interaction 

prediction 

ML framework using QSOAR feature 

selection and Nearest Neighbour 

classifiers 

>78% 

accuracy 

Drug discovery, 

pharmacological 

prediction 
 

Methodology 
The study classifies 120 proteins into four main 

structural categories: Alpha (α), Alpha+Beta (α+β), 

Beta (β), and Alpha/Beta (α/β). This grouping is 

based on the dominant type of secondary structure 

in each protein. The dataset, used for this 

classification, includes the frequencies of the 20 

different amino acids for each of the 120 proteins 

(4, 25). 

The α class contains proteins primarily made of α 

helices, while the β class is dominated by β sheets. 

Proteins in the α+β class have distinct, separate 

sections of α helices and β sheets. In contrast, the 

α/β class is characterized by an intricate mix of α 

helices and β sheets woven together throughout 

the protein's structure. This system of 

classification is useful for understanding how 

proteins are organized and for identifying 

functional similarities between them. The dataset's 

amino acid frequency information can also be used 

to predict the names of the proteins. 

Group Frequency Measure 
To further analyze the dataset, we measured the 

group frequencies of all the 20 amino acid groups 

based on their occurrence across the four 

structural classes. Specifically, to calculate the 
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amino acid of each group (α, α/β, α+β, and β), we 

consider the Average Values of amino acids across 

different protein structure groups (summarized in 

Table 2), Maximum Value of amino acids across 

different protein structure groups (presented in 

Table 3), and Minimum Value (shown in Table 4) 

of the entire amino acid frequencies. The algorithm 

for this is as provided in Algorithm 1. 
 

Algorithm 1: Computation of Group-Level Amino Acid Frequencies 

Input: A matrix F of size 20 × n, where Fij represents the frequency of the ith amino acid in the j-th species 

of a group. 

Output: A vector G of size 20, where Gi is the mean frequency of the ith amino acid for the group. 

Procedure 

1. for i = 1 to 20 do      ▷ Iterate over each amino acid 

a. 𝐺𝑖 =  
1

𝑛
 ∑𝑛

𝑗=1 𝐹𝑖𝑗     ▷ Compute Mean Frequencies 

2. end for 

3. Return G 
 

In Step.1 of Algorithm.1, the equation for mean frequency calculation is portrayed. We may use the 

following two equations, Eq.1 and Eq.2 to obtain the frequencies via max or min values respectively. 
 

𝐺𝑖 ← 𝐹𝑖𝑗  
 

[Eq.1] 

𝐺𝑖 ← 𝐹𝑖𝑗  
 

[Eq.2] 

Table 2:  Mean Values of Amino Acids across Different Protein Structure Groups 

Group  α  α/β α+β β 

A 11.05983  9.246  6  6 

C 0.969533  1.106667  2.786667  2.786667 

D 5.553  5.066 4.968333  4.968333 

E 7.460583  6.169  4.976667 4.976667 

F 3.976667  3.296667  4.982667  4.982667 

G 6.206833  8.083167  7.509033  7.50903 

H 1.0125  2.127  1.414 1.414 

I 4.025  6.111667  5.054667  5.054667 

K 8.59  6.316  6.122  6.122 

L 11.27267  7.655833  7.018667  7.018667 

M 2.50125  3.156167  1.815167  1.815167 

N 2.392  4.311667  5.131667  5.131667 

P 4.993  5.651667  5.84  5.84 

Q 4.321  4.058  4.296967  4.296967 

R  4.584  4.308  3.855  3.855 

S  5.136  5.546  8.078667  8.078667 

T  5.432833  5.286667  7.672  7.672 

V  5.461583  5.8775  6.704333  6.704333 

W  4.021833  1.55  1.583  1.583 

Y  2.944  6.262667  4.344  4.344 
 

The average values provide an overall estimate of 

the typical amino acid composition across proteins 

within a given structural class, offering insight into 

common trends and characteristic patterns. The 

maximum values highlight the amino acids that are 

most frequently occurring within each group, 

identifying key residues that may play critical roles 

in maintaining the structural integrity of proteins 

in that class. Conversely, the minimum values 

reveal the least occurring amino acids, suggesting 
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potential differences in amino acid utilization 

based on structural constraints. This 

comprehensive statistical assessment enables a 

deeper understanding of how amino acid 

composition varies among different protein 

structural organizations and can further assist in 

predictive modeling of protein classes based on 

sequence information. 
 

Table 3: Max Values of Amino Acids across Different Protein Structure Groups 

Group α α/β α+β β 

A 22.05 17.72 18.69 18.69 

C 9.23 2.72 20 20 

D 11.32 10.88 11.24 11.24 

E 16.13 13.77 11.65 11.65 

F 10.29  8.05  19.35  19.35 

G 13.61 12.24 16.16 16.16 

H 8.5 4.76 6.45 6.45 

I 9.76 10.87 12.12 12.12 

K 16.13 10.61 16.67 16.67 

L 19.35 12.26 13.16 13.16 

M 7.14 4.17 5.41 5.41 

N 7.69 7.94 12.9 12.9 

P 7.14 9.52 13.51 13.51 

Q 10.74 7.1 12.15 12.15 

R 15.79 7.29  13.33  13.33 

S 9.88  13.82  14.29  14.29 

T 8.57 9.04 16.53 16.53 

V 12.33 17.46 11.21 11.21 

W 4.52 2.97 3.94 3.94 

Y 9.76 9.52 11.36 11.36 
 

Table 4: Min Values of Amino Acids across Different Protein Structure Groups 

Group α α/β α+β β 

A 0 1.59 0 0 

C 0 0 0 0 

D 0 3.17 0 0 

E 2.04 1.45 0.93 0.83 

F 1.09 0 0 0 

G 1.75 4.84 2.02 2.02 

H 0 0 0 0 

I 0 0 0.88 0.88 

K 2.01 2.72 0 0 

L 3.08 5 3.03 3.03 

M 0 0 0 0 

N 0 2.04 0 0 

P 0 1.75 1.18 1.18 

Q 0.56 1.45 0 0 

R 0.65 0.73 0 0 

S 0 1.52 0 0 
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Group α α/β α+β β 

T 0 1.52 0 0 

V 0 4.52 0 0 

W 0 0 0 0 

Y 0 1.11 0 0 
 

Distance Measure 
To analyze the performance on predicting Protein 

Secondary Structure Classes from Amino Acid 

Sequences, seven traditional distance and 

similarity measures have been considered. 

The Euclidean Distance (Eq.3) measures the direct 

longitudinal distance between two points and is 

commonly applied in continuous space analysis 

(26). 

 

𝑑(𝛼,  𝛽)  =  √(𝛼  −  𝛽)2 
 

[Eq.3] 

The Manhattan Distance (Eq.4) measures the sum of the absolute gaps of their coordinates, often applied 

when movement is restricted to grid-like paths (26).
 

𝑑(𝑝, 𝑞) = ∑  

𝑛

𝑖=1

|𝑝𝑖 − 𝑞𝑖| 

 

[Eq.4] 

The Minkowski Distance (Eq.5) simplifies both Euclidean and Manhattan distances by introducing a 

parameter p, allowing flexibility in the measurement scale (26). 
 

𝐷(𝑥, 𝑦) = (∑  

𝑛

𝑖=1

|𝑥𝑖 − 𝑦𝑖|𝑝)

1
𝑝

 

 

[Eq.5] 

The Cosine Distance (Eq.6) assesses the angular difference between two vectors, focusing on their 

orientation rather than magnitude, and is particularly useful in text and high-dimensional data analysis 

(26). 

𝑑𝑐𝑜𝑠(𝑥, 𝑦) = 1 −
∑  𝑛−1

𝑖=0 𝑥𝑖𝑦𝑖

√∑  𝑛−1
𝑖=0 𝑥𝑖

2 × √∑  𝑛−1
𝑖=0 𝑦𝑖

2

 
[Eq.6] 

 

The Mahalanobis Distance (Eq.7) measures the distance between points while considering correlations 

among variables, making it suitable for multivariate data (27). 
 

𝑑(𝑝𝑚, 𝑝𝑛) = √(𝑝𝑚 − 𝑝𝑛)⊤𝐴(𝑝𝑚 − 𝑝𝑛) [Eq.7] 
 

The Chebyshev Distance (Eq.8) captures the maximum absolute difference among corresponding vector 

components, highlighting the dominant difference (26). 
 

𝑑𝑖𝑠𝑡(𝐴, 𝐵) = (|𝑥𝐴 − 𝑥𝐵|, |𝑦𝐴 − 𝑦𝐵|)  [Eq.8] 
 

Finally, the Jaccard Similarity Coefficient (Eq.9) measures the similarity between finite sample sets, widely 

used for binary and set-based data comparisons (26). 
 

𝑗𝑎𝑐(𝑝, 𝑞) =
|𝑝 ∩ 𝑞|

|𝑝| + |𝑞| − |𝑝 ∩ 𝑞|
 [Eq.9] 

 

Protein Species Group Selection 

After calculating the distance measure between a 

selected species and each of the 19 reference 

species, the analysis is performed based on four 

distinct protein sequence categories: α, β, α + β, 

and α/β. For each category, the distances between 

the selected species and the species within that 

category are computed separately. The minimum 

distance for each group is then determined. 
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Algorithm 2 Protein Structure Group Classification Using Minimum Distance Criterion 

Procedure PredictProteinClass(P, Cα, Cβ, Cα+β, Cα/β) 

1. classes ← {Cα, Cβ, Cα+β, Cα/β} 

2. minimum distances ← [ ]   

▷ List to hold the minimum distance for each class 

3. For each C in classes do 

i. temp distances ← [ ] 

ii. For each sample in C do 

1. distance ← ComputeDistance(P, sample) 

2. Append distance to temp distances 

iii. End For 

iv. min distance ← min(temp distances) 

v. Append min distance to minimum distances 

4. End For 

5. predicted index ← arg min(minimum distances) 

6. Return corresponding class from classes[predicted index] 
 

Ultimately, the group with the smallest minimum 

distance among the four categories is considered 

the most similar to the selected species. Therefore, 

the species is classified into that group, as it shares 

the most similar sequence characteristics 

according to the distance metric. The procedure 

for determining the correct group is outlined in 

Algorithm 2. 

The algorithm has O(km) time complexity, where k 

is protein classes and m is samples in each class. 

This is because for each class, the algorithm 

computes the distance for each sample, and the 

distance computation is done for all classes. 

Accuracy Measure 
To evaluate the performance of the proposed 

classification approach, an accuracy assessment 

algorithm (Algorithm 3) is used. This algorithm 

receives two input lists: the true group labels and 

the predicted group labels for the 19 protein 

species. It evaluates each actual–predicted label 

pair and records the count of accurate predictions. 

The accuracy is then measured as the proportion 

of correctly classified species to the total number 

of species, with the result multiplied by 100 to 

represent it as a percentage. This straightforward 

yet effective metric provides a clear indication of 

the model’s effectiveness in correctly categorizing 

protein sequences into their corresponding 

structural groups. 

The algorithm has a time complexity of O(n), with 

n representing the total number of protein species 

(or the length of the input lists). This is because the 

algorithm iterates through each pair of actual and 

predicted labels exactly once. 
 

Algorithm 3 Computation of Classification Accuracy for Protein Groups 

Procedure ComputeClassificationAccuracy(TrueLabels, PredictedLabels) 

1. correctCount ← 0 

2. numSamples ← length(T rueLabels) 

3. For i = 1 to numSamples do 

a. If T rueLabels[i] = P redictedLabels[i] then 

i. correctCount ← correctCount + 1 

b. End If 

4. End For 

5. accuracyPercentage ←  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐶𝑜𝑢𝑛𝑡

𝑛𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠
× 100 

6. Return accuracyPercentage 
 

Results and Discussion 
Table 5 shows the performance assessment results 

of seven distance metrics used for predicting 

protein secondary structure classes from amino 

acid sequences. Each distance measure—

Euclidean, Manhattan, Minkowski, Cosine 

Distance, Chebyshev, Mahalanobis, and Jaccard—

has been assessed based on its minimum, mean, 

and maximum accuracy values. Among these, the 

Mahalanobis distance achieved the highest mean 
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accuracy (64.17%), highlighting its ability to 

capture inter-variable relationships critical for 

protein classification tasks. The Cosine distance 

also performed competitively with a mean 

accuracy of 61.67%, whereas the Jaccard similarity 

consistently recorded the lowest performance 

(25%), indicating its unsuitability for numerical 

frequency-based data. Additionally, a visual 

comparison of these performance metrics is shown 

in Figure 2, where it is evident that Mahalanobis 

and Cosine distances outperform others. The 

combined analysis from Table 5 and Figure 2 

underscores the importance of selecting 

appropriate distance metrics to augment the 

performance of accuracy of protein secondary 

structure prediction models. 
 

Table 5: Accuracy Measure of all Distance Values  

Distance Measure Minimum Mean or Average Maximum 

Euclidean 25 63 25 

Manhattan 25 58.34 25 

Minkowski 25 60.84 25 

Cosine Distance 27.5 61.67 42.5 

Chebyshev 25.83 55 29.17 

Mahala Nobis 25 64.16 25 

Jaccard 25 25 25 
 

 
Figure 2: Graphical Representation of Accuracy for Seven Distance Measure 

 

Validation 
Process 1: Two datasets consisting of 86 and 106 

protein sequences are collected from Protein Data 

Bank (PDB) (28). Table 6 presents 86 proteins 

representing three distinct families: α, β, and α + β 

as described in the Sierk-Pearson database (29). 

Table 7 classifies 106 proteins into four unique 

taxonomies: α, β, α+β, α/β (4). 
 

Table 6: Classification of 86 Proteins by Sierk-Pearson 

α  α + β β 

1ad6, 1a06, 1bbh, 1cns, 1d2z, 

1dat, 1e12, 1eqz, 1gwx, 1hgu, 

1hlm, 1jnk, 1mmo, 1nub, 1quu, 

1rep, 1sw6, 1trr, 2hpd, 2mta 

1a8d, 1a8h, 1aoz, 1b8m, 1bf2, 

1bjq, 1bqy, 1btk, 1c1z, 1cl7, 

1d3s, 1dan, 1dsy, 1dxm, 1et6, 

1ext, 1nfi, 1nuk, 1otc, 1qdm, 

1qe6, 1qfk, 1que, 1rmg, 1tmo, 

2tbv 

1a1m, 1a2v, 1akn, 1aqz, 1asy, 

1ati, 1auq, 1ax4, 1b0p, 1b2r, 

1bcg, 1bcm, 1bf5, 1bkc, 1bp7, 

1c4k, 1cd2, 1cdg, 1d0n, 1d4o, 

1d7o, 1doi, 1dy0, 1e2k, 1ecc, 

1fbn, 1gso, 1mpy, 1obr, 1pty, 

1qb7, 1qmv, 1urn, 1zfj, 2acy, 

2drp, 2nmt, 2reb, 4mdh, 5uoj 
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Table 7: Classification of 106 Proteins  

α  α + β β α / β 

1avh, 1bab, 1brd, 1c5a, 

1cpc, 1eco, 1fcs, 1fha, 

1fia, 1hbg, 1hdd, 1hig, 

1le4, 1lts, 1mbc, 1rpr, 

1tro, 1utg, 256b, 2ccy, 

2lh1, 2lhb, 2mhb, 2zta, 

4mba, 4mbn 

2aak, 1ctf, 1dnk, 1eaf, 

1hsb, 1lts, 1oia, 1poc, 

1ppn, 1rnd, 1snc, 1tfg, 

1tgs, 2ach, 2act, 2bpa, 

2sns, 3ssi, 3il8, 3rub, 

3sgb, 3sic, 4blm, 4tms, 

8cat, 9rnt, 9rsa 

41acx, 2ayh, 1cd8, 1cdt, 

1cid, 1dfn, 1hil, 1hle, 

1mam, 3mon, 2phy, 

1rei, 1ten, 1tlk, 2vaa, 

2alp, 2avi, 2bpa, 3hhr, 

2ila, 2lal, 2snv, 3cd4, 

4gcr, 7api, 8fab 

1aba, 1cis, 1cse, 1dhr, 

2dri, 1etu, 1fx1, 1gpb, 

1pax, 1pfk, 2pgd, 1q21, 

1s01, 1sbp, 1sbt, 1tim, 

1tre, 1ula, 1bks, 2had, 

2liv, 3gbp, 2fox, 4cpa, 

5p21, 8abp, 8atc 
 

Table 8: Accuracy Measures of all Distance Values of 86 and 106 Dataset 

Distance Measure Accuracy on 86 Dataset Accuracy on 106 Dataset 

Euclidean 70.33 65.48 

Manhattan 66.67 63.6 

Minkowski 62 60.5 

Cosine Distance 67.5 63 

Chebyshev 56 55 

Mahala Nobis 72 74.16 

Jaccard 29 26 
 

In both datasets presented in Table 8, a consistent 

technique has been employed to predict the group 

classification of a selected protein. Specifically, the 

method utilizes the mean value to represent the 

group frequency, as this approach has 

demonstrated favorable performance, as 

evidenced in Table 5. The rationale behind using 

the mean value lies in its ability to provide a stable 

and representative central tendency, which 

contributes to improved prediction accuracy. To 

assess the efficiency of the proposed method, we 

have assessed the performance of several distance-

based similarity measures, including Euclidean, 

Manhattan, Minkowski, Cosine, Chebyshev, 

Mahalanobis, and Jaccard distances. These metrics 

were systematically applied to both datasets to 

determine their impact on classification 

performance. The resulting outcomes highlight the 

comparative strengths of each distance measure 

under the given experimental conditions. 

Process 2: The dataset of 120 protein sequences, 

represented by the frequency of 20 amino acids 

and categorized into four structural classes—

Alpha (α), Beta (β), Alpha+Beta (α+β), and 

Alpha/Beta (α/β)—was analyzed using seven 

distance metrics, where Mahalanobis distance 

stands out  the highest mean accuracy (64.17%) 

and to further validate the findings, the same 

dataset was reanalyzed using both distance-to-

reference and k-NN classifiers (k=3,5) (4). The use 

of k-NN validated the effectiveness of distance 

metrics within a standard classifier, confirming 

that the observed performance trends were not 

restricted to the distance-to-reference approach. A 

graphical representation and classification 

accuracy of these performance metrics are shown 

Figure 3 and Table 9. 
 

Table 9: Accuracy (%) of Distance-Based and k-NN Classification for Seven Distance Metrics 

Metric 
Distance-to-

Mean 

Distance-to-

Min 

Distance-to-

Max 

k-NN 

(k=3) 

k-NN 

(k=5) 

Euclidean 62.50% 25.00% 25.00% 60.00% 59.17% 

Manhattan 58.33% 25.00% 25.00% 56.67% 55.83% 

Minkowski 62.50% 25.00% 25.00% 60.00% 59.17% 

Cosine 61.67% 27.50% 42.50% 63.33% 60.83% 

Chebyshev 55.00% 25.83% 29.17% 60.83% 60.00% 

Mahalanobis 64.17% 25.00% 25.00% 54.17% 55.00% 

Jaccard 25.00% 25.00% 25.00% 32.50% 32.50% 
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Figure 3: Graphical Representation of Distance-Based and k-NN Classification for Seven Distance Metrics 

 

Table 9 represents the classification of accuracy 

(%) of seven distance metrics for protein 

secondary structure prediction using both 

distance-to-reference and k-NN classifiers (k=3 

and k=5). Distance-to-Mean consistently 

generated the highest accuracies, with 

Mahalanobis distance performing best at 64.17%, 

Closely approached by Euclidean and Minkowski 

(62.5%) and Cosine (61.67%). Distance-to-Min 

and Distance-to-Max profiles resulted in much 

lower accuracies, mostly between 25% and 42%, 

indicating that extreme values are less 

representative of structural classes. In the k-NN 

classification, similar trends were observed: 

Cosine distance achieved slightly higher accuracy 

(63.33% for k=3), Mahalanobis showed lower 

performance (54.17–55%), and Jaccard remained 

unsuitable for this dataset (32.5%). Overall, the 

validation confirms that mean-based reference 

profiles are the most representative and effective 

for distance-based protein classification with 

Mahalanobis demonstrated the highest accuracy 

for protein secondary structure prediction. 

The accuracy obtained with Mahalanobis distance 

(64.17%) is lower than recent deep learning-based 

approaches such as CNN-based SNARE detection, 

which reported 95.6% accuracy (18). However, 

deep learning models are computationally 

intensive and require large curated datasets, 

whereas the present approach offers a lightweight 

and interpretable solution suitable for scenarios 

with limited resources. The reliance on amino acid 

composition and sequence-based comparisons in 

our study aligns with earlier investigations where 

homology modeling and sequence similarity were 

effectively used to explore evolutionary 

relationships, such as in the analysis of the LFY 

gene across plant families (30). These findings 

support the utility of alignment-free and distance-

based approaches in revealing biologically 

meaningful patterns, even when predictive 

accuracy is moderate. 
 

Conclusion 
In this study, we evaluated the effectiveness of 

seven traditional distance and similarity measures 

- Euclidean, Manhattan, Minkowski, Cosine, 

Chebyshev, Mahalanobis, and Jaccard for 

classifying protein secondary structure types 

based on amino acid sequence data. By analyzing a 

curated dataset of 120 proteins categorized into 

four major secondary structure classes, we 

performed a systematic comparison of these 

metrics using a minimum distance-based 

classification approach.  

Our results demonstrate that the Mahalanobis 

distance metric achieves the highest average 

classification accuracy (64.17%), closely followed 

by the Cosine distance (61.67%), indicating their 

superior ability to capture important patterns and 

relationships among amino acid frequencies. In 

contrast, the Jaccard similarity consistently 

showed the lowest performance, highlighting its 

limitation in handling continuous frequency data 

in this domain.  

The study also underlines the significance of 

choosing appropriate distance measures to 

enhance predictive performance in bioinformatics 

applications. Through the proposed methodology, 

a maximum observed prediction accuracy of 79% 

was achieved, suggesting the potential of 



Saha et al.,                                                                                                                                                   Vol 6 ǀ Issue 4 

1115 
 

information-based and correlation-aware distance 

measures in improving protein structure 

classification tasks.  

Future work could extend this approach by 

integrating ensemble techniques that combine 

multiple distance metrics or hybrid similarity 

measures, thereby enhancing predictive 

robustness and accuracy across diverse protein 

families. In addition, incorporating deep learning-

based embeddings and evaluating performance on 

larger, more diverse datasets from repositories 

such as the Protein Data Bank (PDB) would further 

validate and generalize the findings. Beyond 

structural class prediction, the insights gained here 

may also be applied to related bioinformatics 

challenges, including drug–target interaction 

studies, protein functional annotation, and the 

classification of intrinsically disordered proteins, 

where accurate sequence–structure modeling 

plays a pivotal role. 
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