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Abstract 
Climate variability increasingly disrupts agricultural productivity, demanding systems that couple high-volume data 
with interpretable AI. We present AgriClimateAI, a big-data analytics framework that unifies multi-source inputs—
satellite imagery, meteorological records, and crop yield statistics—to monitor climate impacts and support decision 
making. At its core is ClimaCropNet, a CNN–LSTM hybrid that learns spatial patterns from remote-sensing features and 
temporal dependencies from climate trajectories, followed by an adaptive fusion layer to model climate–crop 
interactions jointly. To ensure transparency, AgriClimateAI integrates SHAP and LIME for global and local explanation, 
revealing key drivers and validating alignment with agronomic knowledge. Evaluated across multiple agro-climatic 
zones, ClimaCropNet achieved an R² of 0.85 and RMSE of 0.43 t/ha for yield forecasting, and 88.6% accuracy for climate-
risk classification, consistently outperforming baseline machine learning and single-stream deep models. Explainability 
analyses ranked rainfall and NDVI as the most influential predictors, with consistent seasonal saliency across regions. 
The framework’s cloud-scalable design supports near real-time ingestion, spatiotemporal analytics, and deployment 
over diverse cropping systems and climates. By delivering accurate forecasts with auditable rationale, AgriClimateAI 
enables climate-smart advisories, adaptive input planning, and policy dashboards for resilient agriculture. Overall, 
ClimaCropNet advances interpretable spatiotemporal learning for integrated yield prediction and risk assessment, 
while AgriClimateAI operationalizes these capabilities into an end-to-end, transferable system for data-driven 
agricultural resilience. 

Keywords: Climate-Smart Agriculture, Crop Yield Prediction, Explainable AI, Remote Sensing, Spatiotemporal Deep 
Learning. 
 

Introduction 
Climate change poses a serious threat to global 

agriculture, affecting crop yields, food security, and 

rural livelihoods. Due to temperature fluctuations, 

changing precipitation patterns, and extreme 

weather events, agriculture has become more 

sensitive to climate variability which creates high 

uncertainties in uptake of management practices. 

This requires high level quantification skills on 

climate smart agriculture. Scientists have been 

working on using AI, big data, and remote sensing 

techniques to forecast crop production and 

vulnerability to climate-induced stressors for 

more than a decade. Machine learning (ML) models 

trained on climatic and edaphic data (1) and 

remote sensing (RS)- based imaging has been used 

previously to monitor plant health (2). So too have 

IoT sensor networks and AI for precision 

agriculture merged (3). Most existing works, 

however, rely solely on data sources and are 

shallow on spatiotemporal features (e.g., at most 

temperature and precipitation), limiting their 

applicability in capturing the complex climate-

agriculture interactions. Finally, deep learning 

suffers from a serious lack of interpretability, and 

most works offer very little or no rationale for how 

the predictions are derived (4, 5). 

Based on those identified gaps, the current study 

intends to conceptualise an integrated deep 

learning framework—AgriClimateAI, to jointly 

sequence remote sensing imagery, climate 

observations, and long-term crop yield data in one 

continuous pipeline for comprehensive
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monitoring and prediction of agricultural land use. 

At the core of this framework is the ClimaCropNet 

model, a CNN-LSTM hybrid model we developed 

that learns spatial patterns from satellite-based 

vegetation index data and temporal trends from 

time-series climate data. There are two key 

attributes that underline the originality of the 

present work: the multi-source data fusion with 

the SHAP and LIME explainability-driven analysis, 

and its capacity of generalizing and performing 

well across different ranges of climatic zones and 

types of crops. In contrast to existing approaches 

that view spatial and temporal aspects as 

independent or learn them separately, our 

approach does not differentiate between them and 

learns them simultaneously, enabling better 

interpretative and predictive capability. 

ClimaCropNet is a new deep learning-based 

architecture to represent the nonlinear 

relationships between climate variables and crop 

yields. A CNN is the convolutional part if used to 

extract spatial features from the remote sensing 

imagery, and LSTM is the recurrent part if used to 

model temporal dependencies in climate data. An 

adaptive feature fusion layer then dynamically 

fuses these components, allowing spatiotemporal 

dependencies critical to accurate yield prediction 

and climate risk classification to be learned jointly. 

While previous methods either modelled spatial 

and temporal data independently, ClimaCropNet 

tackles the spatio-temporal modality into a single 

explainable framework, thereby advancing the 

current state of the art in climate-smart 

agricultural analytics. 

The key contributions of this research include: The 

development of the AgriClimateAI system for 

climate-aware yield forecasting and risk 

assessment; The design of ClimaCropNet, 

integrating spatial and temporal learning with an 

adaptive feature fusion layer; A comprehensive 

correlation and causality analysis guiding feature 

selection; Incorporation of explainable AI 

techniques to interpret model decisions; and the 

deployment of an interactive decision support 

dashboard providing actionable insights for 

stakeholders. 

The remainder of this paper is structured as 

follows. Section 2 reviews related works on AI-

driven climate impact analysis and agricultural 

monitoring. Section 3 presents the proposed 

methodology, detailing the system architecture, 

data preprocessing pipelines, ClimaCropNet model 

design, and explainability framework. Section 4 

presents the experimental results, which include 

correlation analysis, model performance 

evaluation, ablation studies, and spatial 

visualizations. Section 5 discusses the implications 

of the results and outlines study limitations. 

Finally, Section 6 concludes the paper with a 

summary of findings and discusses future research 

directions to enhance the system’s scalability and 

adaptability in global agricultural contexts. 

Climate-smart agriculture functions as an 

ecosystem which uses artificial intelligence along 

with remote sensing and big data analytics to 

control climate variability and make agricultural 

production more sustainable. The quick 

advancement of big data together with artificial 

intelligence technologies has transformed 

agricultural operations through scalable systems 

for climate observation and yield forecasting. The 

solution to agricultural complexities needs system-

level integration according to observations (1). 

The evaluation of big data for precision agriculture 

focuses on how machine learning (ML) and deep 

learning (DL) techniques improve decision-

making and resource optimization (2). The 

combination of IoT with big data and ML 

technology for smart rice farming has been 

documented in literature to enable data-driven 

frameworks which improve agricultural task 

management (3). The implementation of AI for 

climate change adaptation has been studied to 

show its role in boosting agricultural resilience (4). 

Remote sensing serves as an effective solution for 

monitoring extensive areas because of its ability to 

detect climate-induced salinity changes that 

impact soil conditions (5). The combined 

destructive effects of agriculture along with 

climate change on worldwide insect populations 

create indirect consequences that affect 

pollination and crop health (6). Climate change has 

caused a reduction of around 21% in worldwide 

agricultural productivity (7). The analysis of AI-

based crop production systems for sustainable 

agriculture includes a thorough evaluation of their 

benefits and a review of big data analytics used for 

weather forecasting in climate-smart agriculture 

(8, 9). AI-driven climate adaptation strategies for 

agricultural productivity improvement have been 

examined (10). 
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An AI system has been developed to predict crop 

yields securely through IoT sensors and smart data 

integration (11). AI-based time series models 

which use embedded real-time monitoring data 

have been employed for fruit yield prediction (12). 

The analysis examines how artificial intelligence 

improves agricultural productivity while 

enhancing sustainability and enabling data-based 

resource management (13). A summary of 

machine learning approaches for climate change 

studies includes predictive models which forecast 

environmental changes and agricultural 

consequences (14). Spectral intelligence together 

with hyperspectral imaging techniques serve as 

monitoring tools for agricultural areas and 

ecosystems (15). Research has extensively 

explored the applications of ML and DL techniques 

for yield prediction together with pest and disease 

identification as well as soil fertility mapping and 

precision irrigation management (16). ML-based 

analytical systems model specific agricultural 

climate risk factors at local levels (17). The 

summary of deep learning algorithms for 

agricultural monitoring presents two important 

trends in automation and scalability (18). A 

detailed analysis of ML applications in agriculture 

shows both new patterns and operational 

difficulties (19). AI systems have been developed 

for predicting agricultural yields across different 

regions in multiple geographical areas (20). 

Reviews of agricultural machine learning 

applications highlight the need for adaptable and 

scalable modeling frameworks along with 

assessments of current challenges (21). The 

research evaluated how data quality and model 

generalization affect the processing of large 

agricultural datasets (22). Deep learning and 

remote sensing methods have been used to 

evaluate drought early warning systems in 

agricultural areas (23). The implementation of 

regression and deep learning-based yield 

prediction models delivers precise predictions for 

specific regional datasets (24). The review of 

remote sensing applications in agriculture and 

forestry established a framework for big data 

analytics in ecosystem monitoring (25). Intelligent 

weather data management systems powered by 

artificial intelligence have been developed to 

provide precise agricultural climate predictions 

(26). Researchers have investigated how to 

combine hyperspectral data with ML and big data 

systems to improve crop health monitoring 

capabilities (27). The effectiveness of remote 

sensing technologies for agricultural observation 

and analysis has been evaluated through a 

comprehensive review (28). The study 

demonstrates how agricultural production 

systems benefit from AI and remote sensing 

integration during climate stress situations (29). 

The analysis of IoT and big data integration shows 

potential for precision crop production when 

sensor data collection is implemented (30). 

Agricultural big data analysis tools based on AI 

have been used to forecast disease outbreaks in 

crops because of climate change while assisting 

with response strategies (31). Big data analytics 

enables the implementation of weather-based crop 

prediction systems which enhances yield 

predictions across various climatic zones (32). AI 

technologies in climate-smart agriculture receive 

promotion because they enable sustainable 

adaptive farming approaches (33). The integration 

of IoT systems with blockchain technology and 

intelligent data management approaches enables 

secure traceability for climate-smart agriculture 

(34). The deployment of AI in agriculture requires 

examination of its ethical and legal aspects to 

promote responsible innovation (35). The analysis 

of IoT and big data together with AI examines their 

role in developing sustainable agricultural 

technologies (36). Big data alongside AI 

demonstrates its transformative power to enhance 

agricultural productivity and strengthen farm 

resilience against climate fluctuations (37). The 

recent developments in smart agriculture through 

IoT combined with ML and big data analytics for 

sustainable food systems have been documented 

(38). Research has explored how innovative 

farming technologies trigger agricultural changes 

that result from climatic conditions (39). Practical 

use of AI-based climate-smart agricultural models 

requires on-farm validation and implementation 

(40).
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Table 1: Literature Review Summary of Key Works on Big Data and AI-Driven Climate-Agriculture 

Analytics with Identified Research Gaps 

Ref. Author(s), 

Year 

Problem 

Addressed 

Methodology / 

Models Used 

Key Findings Identified Research 

Gap 

(1) Osinga et al., 

2022 

Considerable data 

potential and 

limitations in 

agriculture 

Agricultural data 

platforms and 

solution gaps 

Big data offers 

opportunities but 

lacks end-to-end 

system integration 

Limited system-level 

integration for 

climate-agriculture 

analytics 

(2) Bhat and 

Huang, 2021 

AI and significant 

data trends in 

precision 

agriculture 

Survey on ML, IoT, 

and big data 

solutions 

AI improves 

decision-making in 

precision farming 

Lacks climate-specific 

multi-modal 

predictive frameworks 

(4) Leal Filho et 

al., 2022 

AI for climate 

change adaptation 

in agriculture 

AI algorithms for 

adaptive farming 

AI enables adaptive 

responses to climate 

variability 

Few systems integrate 

climate change 

adaptation with crop 

yield forecasting 

(7) Ortiz-Bobea 

et al., 2021 

Impact of climate 

change on global 

agricultural 

growth 

Econometric 

models, 

productivity 

analysis 

Climate change 

slowed agricultural 

productivity growth 

globally 

Predictive solutions 

are absent for 

local/regional yield 

forecasts 

(9) Ali et al., 

2025 

AI technologies for 

sustainable crop 

production 

Review of AI-

driven crop 

production 

technologies 

AI optimizes 

resource use and 

crop growth 

Lacks spatiotemporal 

modeling for climate-

driven yield 

fluctuations 

(12) Liu et al., 

2025 

Time series crop 

yield prediction 

AI time series 

analysis, fruit 

monitoring 

Integrated fruit 

monitoring and 

weather data 

improve yield 

predictions 

Limited generalization 

beyond crop-specific 

case studies 

(23) Prodhan et 

al., 2021 

Monitoring 

agricultural 

drought using 

remote sensing 

Deep learning with 

remote sensing 

datasets 

Effective drought 

detection in South 

Asia 

Focused on drought 

only; does not address 

yield impact 

prediction 

(32) Gupta et al., 

2021 

Weather-based 

crop yield 

prediction in India 

Big data analytics, 

ML regression 

models 

Demonstrated crop 

yield prediction from 

weather patterns 

Focuses on India; lacks 

explainability and 

global scalability 

Table 1 summarizes key studies on AI and big data 

in agriculture, highlighting methodologies, 

findings, and research gaps addressed in this work. 

The reviewed works underline the integration of 

AI-driven models, climate data analytics, and 

remote sensing for adaptive agricultural 

monitoring. These studies collectively 

demonstrate the potential of big data and machine 

learning to predict crop yields, assess climate risks, 

and enhance decision-making. The proposed work 

builds on these foundations to develop an 

integrated climate-agriculture prediction 

framework.  
 

Methodology 
This section introduces the proposed 

AgriClimateAI framework and the architectural 

components, data processing pipelines, and model 

design within it. It includes multi-source data 

acquisition, spatial-temporal feature extraction 

based on the ClimaCropNet model, and 

transparent prediction that explains AI modules. 

The full collaboration between the modules 

facilitates the monitoring and predictive analytics 

of climate-smart agriculture, and provides 

interpretable assessments of expected yield and 

climate threats. 

System Overview 
AgriClimateAI is a comprehensive, big data and 

Artificial Intelligence-based system that has been 

designed to monitor, assess, and forecast the 

impacts of climate change on agriculture. By 

relying on a multi-source data integration, big data 

processing, and machine learning and deep 

learning models, as well as explainable AI 
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components, it translates the science into 

actionable information for climate-resilient 

agriculture. 

AgriClimateAI Architecture. Figure 1 represents a 

high-level overview of the AgriClimateAI design. 

The system consists of the following key layers:  

1. The multi-source data streams constitute the 

Data Acquisition Layer, which includes 

meteorological parameters (temperature, rainfall, 

humidity), remote sensing imagery (NDVI, SAVI, 

soil moisture), soil composition data, and historical 

crop yield records. The datasets come from public 

repositories such as Copernicus, NASA Earthdata, 

ERA5, SoilGrids, and FAOSTAT. 

2. Big Data Processing and Storage Layer: This 

layer is used to ingest, clean, and integrate large 

volumes of data into distributed computing 

platforms, such as Apache Spark and Hadoop 

Distributed File System (HDFS). It provides a 

scalable, fault-tolerant architecture for handling 

the data and also creates a standard for 

harmonizing datasets at different resolutions and 

formats.

 

 
Figure 1: System Architecture of AgriClimateAI for Climate-Aware Agricultural Monitoring, 

Spatiotemporal Data Integration, and AI-Driven Yield Prediction 
 

3. Developed analytical modules are built in the 

heart of the system: the AI-Based Analytics Layer. 

This consists of a Climate-Agriculture Causality 

Evolution Analysis Engine, which performs time-

series correlation and causality analysis to identify 

climate factors that have a significant effect on 

agricultural outputs. The predictive modeling 

aspect is addressed by the introduced 

ClimaCropNet deep learning model, which couples 

a CNN for spatial feature extraction from satellite 

images and an LSTM for modeling temporal 

dependencies in the weather conditions. 

Moreover, in the second case, the combination of 

different ML models with interpretable XAI 

modules from SHAP and LIME generates 

explainability of the predictive outcomes, allowing 

the pinpointing of some of the main climate drivers 

affecting AG productivity. 

4. The Visualization and Decision Support Layer, 

the top layer, delivers the analytic results through 

GIS-based spatial visualizations, interactive 

dashboards, and adaptive agriculture 

recommendations. This will enable farmers, 

agronomists, and policymakers to make informed 

decisions on climate-resilient agricultural 

management practices, optimize resource use, and 

reduce the risks of crop yield loss. In summary, 

AgriClimateAI provides a scalable, interpretable, 

and adaptive solution for agricultural climate 

monitoring, addressing the shortcomings of data 

analyses that remain fragile and arbitrary within 

siloed modeling operations in traditional systems. 

A CNN–LSTM-based deep learning model 

(ClimaCropNet) for the simultaneous extraction of 

spatial features from remote sensing data and 

temporal patterns in sequential climate data We 

introduce the adaptive feature fusion layer that 
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coalesces these expressed temporal counterparts 

to enable the joint learning of spatiotemporal 

interrelations and a climate-agnostic, unified yet 

explainable crop yield prediction model. 

Multi-Source Data Acquisition and Pre-

processing 
We utilize a range of remote sensing, climate, soil, 

and crop yield data in the current study to facilitate 

a more comprehensive analysis of climate-

agriculture systems, including Sentinel-2 satellite 

images. Retrieve the Sentinel-2 satellite images 

from the Copernicus Open Access Hub (41) and the 

MODIS land products (42), which provide multi-

spectral spatial granularities for data processing, 

including vegetation indices such as NDVI and 

SAVI. Climate parameters, including rainfall, 

temperature, humidity, and solar radiation, were 

obtained from the ERA5 reanalysis dataset in the 

Copernicus Climate Data Store (43) and the NASA 

POWER agro-climatic platform (44). Historical 

crop yield data were extracted from FAOSTAT 

(45), which records annual production levels of 

major crops by region. Soil characteristics, 

including pH, organic carbon, and texture classes, 

were also derived from the SoilGrids global soil 

database and improved the agronomic context of 

the analysis. Joined efforts can provide multimodal 

feature extraction and predictive modeling for 

monitoring and forecasting yield with climate 

awareness. 

The AgriClimateAI platform aggregates data from 

various sources to account for the complex 

interplay between climate variables and crop 

production. The data includes remote sensing 

images derived from satellite monitoring, 

meteorological observations, soil and other 

empirical data sources, and historical yield 

statistics. High-resolution vegetation index 

products, such as the Normalized Difference 

Vegetation Index (NDVI) and the Soil-Adjusted 

Vegetation Index (SAVI), are derived from remote 

sensing data, such as Sentinel-2 and MODIS. These 

indices are determined by spectral reflectance in 

the red (𝑅𝑟𝑒𝑑) and the near infrared (𝑅𝑛𝑖𝑟) bands, 

being NDVI expressed as: 

NDVI=
𝑅𝑛𝑖𝑟−𝑅𝑟𝑒𝑑

𝑅𝑛𝑖𝑟+𝑅𝑟𝑒𝑑
    [1] 

and SAVI, the same effect of soil brightness into 

account, calculated as: 

SAVI=
(1+𝐿 )(𝑅𝑛𝑖𝑟−𝑅𝑟𝑒𝑑)

𝑅𝑛𝑖𝑟+𝑅𝑟𝑒𝑑+𝐿
  [2] 

where L is the soil adjustment factor, usually equal 

to 0.5 for moderate vegetation. 

Weather data, including temperature, 

precipitation, humidity, wind speed, and solar 

radiation, are extracted from the ERA5 and NASA 

POWER datasets to obtain the spatio-temporal 

granularity of climate variables in agricultural 

areas. Soil property information (e.g., pH, organic 

carbon content, and texture composition) is 

harvested from the SoilGrids global dataset. We 

obtain historical crop production and yield data 

from various regions and crop types in FAOSTAT, 

which can be used for supervising climate impact 

modeling. 

The pre-processing pipeline addresses the 

heterogeneity of data in both temporal and spatial 

domains. All datasets are quality controlled, 

normalized, and missing data is imputed. 

Atmospherically corrected and reprojected remote 

sensing imagery to a standard spatial reference 

system. The data are temporally aligned by 

resampling the datasets to uniform time 

sequences, and spatial resolution harmonization 

was implemented to reconcile the discrepancy 

between coarse-grained climate data and high-

resolution satellite imagery. 

The ingestion and transformation of big data are 

conducted with Apache Spark in a Hadoop 

Distributed File System (HDFS). Data ingestion 

uses parallelized batch processing to 

accommodate extensive datasets. Numerical 

features 𝑥𝑖  are normalized through a min-max 

scaling method by: 

𝑥𝑖
𝑛𝑜𝑟𝑚 =

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
   [3] 

scaling all input dimensions to a similar scale, and 

can improve the stability of the learning of the 

model. 

For missing values, we interpolate them or simply 

substitute by the climatological mean according to 

the type of data. Satellite derived VEGETATION 

indices are temporally interpolated with the linear 

or spline method and meteorological gaps are 

filled using long-term averages of the station. 

Due to its distributed processing capacity, the pre-

processed datasets are then partitioned into 

region-wise and crop-specific subsets, which 

allows the training of scalable models for different 

areas and crops. This harmonized multi-source 

data environment is the base input for the 

ClimaCropNet model and the overall AgriClimateAI 

framework. 
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Climate-Agriculture Correlation 

Analysis Module 
The climate-agriculture relationship analysis 

module, which automatically recognizes and 

estimates the statistical linkages of climatic 

stressors on the geo-referenced agricultural 

parameters. The goal of this module is to capture 

linear and non-linear dependencies on climate, and 

possible cause-effect relations, in a way that will 

allow the better understanding of the complex 

connections between climate variability and 

agricultural outcome. 

First, the pairwise correlation analysis is computed 

by using Pearson’s correlation coefficient for the 

linear relationships between continuous climate 

variables and crop yield data. The Pearson 

correlation 𝑟𝑥𝑦 for two variables x and y is 

expressed as:

 

𝑟𝑥𝑦 =
∑  𝑛

𝑖−1 (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

√∑  𝑛
𝑖−1 (𝑥𝑖−𝑥)2√∑  𝑛

𝑖−1 (𝑦𝑖−𝑦)2
     [4] 

 

where 𝑥 and 𝑦 are the averages of x and y, 

respectively, and n is the number of observations. 

We also compute Spearman’s rank correlation for 

learning monotonic but nonlinear relationships 

between dependent and independent variables, 

and determines the correlation based on the 

ranked values of the independent and dependent 

variables. 

Apart from simple associations, the module 

examines causal inference through Granger 

causality test and investigates the relationship 

between time series data of climatic variables and 

trends of crop yields. The technique of Granger 

causality tests whether the past values of a climate 

variable 𝑋𝑡  can add statistically significant 

information in the forecasting of another time 

series 𝑌𝑡 , assuming that causality follows a 

temporal precedence order. 

Footnote19 For a general, non-linear or even 

multi-modal relationship, mutual information 

analysis is used. The mutual information function 

I(X; Y) quantifies the decrease in the uncertainty of 

one variable with the knowledge of the other and 

is defined as:
 

I(X;Y)=∑   
𝑥∈𝑋 ∑   

𝑦∈𝑌 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 𝑙𝑜𝑔 
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
   [5] 

 

where I(X;Y) is the mutual information. 

where p(x, y) the joint probability distribution, and 

p(x) and p(y) the marginal distributions of X and Y 

This analysis reveals which climate factors 

transport the most information with respect to 

agricultural yield. 

Lag analysis in time is also performed to determine 

delayed effect of climate on growth stages of crops. 

Cross-correlation functions are calculated with 

different temporal lags to determine the most 

suitable shifts for the association between climate 

variables and yield indicators. 

The outputs of this module are ordered lists of 

climate variables according to their correlation 

intensity and causality significance, which are then 

utilized as input predictors for the ClimaCropNet 

architecture. This will help to ensure that the 

predictive modeling is centred on meteorological 

conditions that have a demonstrated statistical and 

causal relationship with the performance of 

agriculture. 

Parallelization of correlations all the correlation 

calculations and causality analyses parallelized 

with Spark™ MLlib and distributed statistical 

libraries to manage large-scale, multi-regional 

datasets in an efficient manner. 

Design of ClimaCropNet Model 
This article presents the architecture of the 

ClimaCropNet model, the main predictive 

machinery inside AgriClimateAI. The model 

ClimaCropNet combines a Convolutional Neural 

Network (CNN) to extract the spatial information 

of remote sensing data and a Long Short-Term 

Memory (LSTM) network to learn the temporal 

patterns due to climate. Such representations are 

combined via an adaptive feature fusion layer for 

making accurate spatiotemporally-informed crop 

yield predictions. 
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Figure 2: Architectural Design of the ClimaCropNet Model for Spatiotemporal Crop Yield Prediction 
 

Figure 2 depicts the architecture of ClimaCropNet, 

the pivotal prediction module of AgriClimateAI 

framework. The model consists of a CNN to digest 

spatial remote sensing features such as NDVI and 

SAVI; and an LSTM to capture the temporal 

patterns from the sequential climate data. These 

spatial and temporal characteristics are combined 

using an adaptive feature fusion layer to achieve 

joint learning of spatiotemporal dependencies. 

Fused features are propagated through fully 

connected layers to produce predictions for crop 

yields or to classify climate-induced risk zones, 

thus enabling accurate agricultural analytics that 

are interpretable across environments. 

 

 

 

CNN Module: Spatial Feature Extraction 
The CNN module in ClimaCropNet is developed 

considering the ability to capture spatial patterns 

and textures in the remote sensing images, more 

specifically, it acts on vegetation indices such as 

NDVI, and SAVI (obtained as described by 

equations [1] and [2]). These indices, in the form of 

multi-channel input matrices, represent changes in 

crop health, soil texture, and water stress by 

agricultural zones. 

Here, CNN module takes input multi-dimensional 

tensor X∈𝑅𝐻×𝑊×𝐶 , where H and W are the spatial 

dimensions of the satellite image patch and C is the 

number of input channels available (like NDVI, 

SAVI, LST, and other derived indices). The filtering 

or convolution operation applied to input tensor is 

mathematically formulated as:

 

𝑍𝑖,𝑗,𝑘 = 𝑓(∑  𝑀
𝑚−1 ∑  𝑁

𝑛−1 ∑  𝐶
𝑐−1 𝑊𝑚,𝑛,𝑐,𝑘. 𝑋𝑖+𝑚−1,𝑗+𝑛−1,𝑐 + 𝑏𝑘)   [6] 

 

where 𝑍𝑖,𝑗,𝑘  is the output feature map at location (i, 

j), in channel k, W denotes the convolutional kernel 

weights, 𝑏𝑘  is the bias term for the 𝑘𝑡ℎ filter and M, 

and N are the dimensions of the kernel, and f(·) is a 

non-linear activation function such as Relu defined 

by: 

f(x)= max (0, x)   [7] 
 

The CNN CDo-based module incorporates 

additional convolutional layers running in parallel 

with max-pooling blocks. Max-pooling pool reduce 

the spacial dimensions and help the model reduce 

the pre-processing step, by of capturing spatial 

invariance features. The output of the last pooling 

layer is flattened into a feature vector 𝐹𝑐𝑛𝑛, 

retaining the most discriminative spatial patterns 

over the satellite images. 

Batch normalization is used following each 

convolutional layer to stabilize the learning and 

speed up convergence. Optionally, dropout 

regularization is applied in order to cope with 

overfitting, particularly when the provided 

training examples are relatively scarce crop-

specific regions. 

The extracted spatial features 𝐹𝑐𝑛𝑛 are then fed 

into the following LSTM module for temporal 

learning. This modular isolation enables the CNN 

to effectively learn local spatial variations, such as 

crop clustering phenomena, soil anomalies, and 
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moisture-distribution patterns, which are 

essential for the interpretation of spatially 

heterogeneous climate impact on agriculture. 

The CNN module is created using TensorFlow or 

PyTorch to modify models, including kernel sizes, 

number of layers, and activation methods, 

according to the specific data properties of a region 

during the experiment. 

LSTM Module: Temporal Feature 

Learning 
The LSTM unit of the ClimaCropNet architecture 

aims at extracting temporal patterns in climatic 

variables and how they have reacted on the 

different growth stages of the crop. Concretely, the 

CNN module captures spatial characteristics from 

remote sensing images, while the LSTM module 

operates on the sequences of climate data 

consisting of temperature, rain-fall, humidity, etc., 

over several time steps for modeling their 

variations over time in the crop growth period. 

The LSTM module takes spatial feature vector 

𝐹𝑐𝑛𝑛 from the CNN module, is concatenating with 

the time-series of climate variables. 

Mathematically the LSTM model reads in a 

sequence {𝑥𝑡}𝑡−1
𝑇 , where 𝑥𝑡∈𝑅𝑑  is the feature 

vector at time step t and T is the total number of 

time steps that correspond with the key 

phenological stages of the crop. 

The LSTM cell does the following operations at 

each time-step t: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) [8] 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   [9] 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)    [10] 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡         [11] 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) [12] 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡)             [13] 
 

where, 𝑓𝑡, 𝑖𝑡 , and 𝑜𝑡  are forget, input and output 

gates respectively; 𝐶̃𝑡  is candidate cell state; 𝐶𝑡  is 

updated cell state; ℎ𝑡  is hidden state; 𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , 

and 𝑊𝑜 are weight matrices; 𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , and 𝑏𝑜  are 

bias vectors; σ is a sigmoid function; and ⊙ is 

element-wise multiplication. 

Such repeated scheme would help LSTM module to 

memorize the long-term dependencies, on the one 

hand, exclude the tipsy old information by forget 

gate; on the other hand highlight the new pattern 

by input gate. The LSTM temporal abstraction is 

suitable to capture delayed climatic effects, such as 

post-precipitation soil moisture retention and 

lagged temperature stress in critical crop stages. 

the last time step), which includes the complete 

time dependent information about the videos and 

is sent to the feature fusion layer and concatenate 

with the spatial features. This modular separation 

of spatial and temporal learning allows the model 

to generalize over different climatic patterns and 

cropping seasons. 

We train the LSTM block using adaptive learning 

rates scheme (such as Adam) in the optimization 

process, and overfitting is prevented by the 

dropout regularization applied between the 

recurrent layers. The length of the time sequence T 

and the dimensional number d are determined 

according to the length of the crop growth cycle 

and D the dimension granularity of the climate 

data. 

Feature Fusion Layer 
The feature fusion layer in the ClimaCropNet 

model is designed for fusing the spatial 

representations learned by the CNN module and 

the temporal dependencies encoded by the LSTM 

module. This merger, in turn, allows the model to 

reason together about how the spatial crop 

patterns and the time-varying climate interact and 

drive the agricultural outcomes. 

Let 𝐹𝑐𝑛𝑛 whose rows are the global feature vectors 

outputted from the final layer of the CNN module, 

and 𝐹𝑙𝑠𝑡𝑚 be the final hidden state ℎ𝑇 , which is 

outputted by the LSTM module as in equation [13]. 

The two feature vectors will be concatenating to 

the combined feature vector: 

 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛= [𝐹𝑐𝑛𝑛∥ 𝐹𝑙𝑠𝑡𝑚]    [14] 
 

where [ ∥ ] is a vector concatenation. This 

operation generates an overall feature space 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛∈𝑅𝑑𝑐𝑛𝑛+𝑑𝑙𝑠𝑡𝑚 , where 𝑑𝑐𝑛𝑛  and 𝑑𝑙𝑠𝑡𝑚  are the 

dimensions of CNN and LSTM feature vectors. 
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The concated feature vector 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 is sent through 

one or several fully connected (dense) layers to 

high order interactions between spatial and 

temporal patterns. Every dense layer consists of a 

linear transformation of shape.,) followed by a 

non-linear activation function, that is, (4) where,
 

𝐻(𝑙) = 𝜎(𝑊(𝑙). 𝐻(𝑙−1) + 𝑏(𝑙))   [15] 
 

where 𝐻(𝑙) is the output of the 𝑙𝑡ℎ dense layer, 𝑊(𝑙) 

and 𝑏(𝑙) are the weights and the bias, and σ(⋅) is the 

activation function (typically ReLU). where the 

first input is initialized as 𝐻(0). 

Dropout regularization is used after each dense 

layer to improve model generalizability and 

prevent overfitting. Batch normalization can be 

added between layers to regularize training 

dynamics and speed up convergence. 

The learned fused feature representation is 

capable of encoding the static spatial layout of 

agricultural fields as well as the dynamic temporal 

evolution patterns of climatic factors. This leads to 

limitation of the model to make better and context 

specific prediction on crop yield fluctuations or 

climate caused agricultural risks. 

The output of the feature fusion layer is finally sent 

to the prediction layer for regression (continuous 

yield values) or classification (categorical risk 

levels) purpose. 

Fully Connected and Output Layers 
The FC and output layers in the ClimaCropNet 

model, % take the fused spatio-temporal feature 

vector pooled by the ROI pooling layer (sourced 

from equation [14]), and predict values for crop-

yield, or climate risk scores. These layers serve as 

the last mapping step, but they learn complex non-

linear relationships between the fused features 

and the desired agricultural outputs. 

Then, the combined feature vector is fed into a 

stack of fully connected layers, which apply a linear 

transformation followed by a non-linearity. and 

the transformation at the thick 𝑙𝑡ℎ layer is 

mathematically expressed as:

 

𝐻(𝑙) = ∅(𝑊(𝑙). 𝐻(𝑙−1) + 𝑏(𝑙))   [16] 
 

where 𝐻(𝑙) is the output feature vector of the layer 

l, 𝑊(𝑙) and 𝑏(𝑙) are the weight matrix and bias 

vector, respectively, of the layer, ∅(⋅) is the 

activation function, commonly the ReLU function 

(∅(x)=max(0, x) ) in hidden layers. 

Dropout regularization and (optionally) batch 

normalization layers are used to increase 

robustness and avoid overfitting between each 

pair of dense layers. The last fully connected layer 

computes the output vector 𝑌𝑝𝑟𝑒𝑑 , which is the 

desired prediction target. If time-dependent yield 

prediction is not necessary, a network is trained 

with a linear activation in its output layer:

 

𝑌𝑝𝑟𝑒𝑑 = 𝑊(𝑜𝑢𝑡). 𝐻(𝐿) + 𝑏(𝑜𝑢𝑡)                     [17] 
 

here 𝑊(𝑜𝑢𝑡) and 𝑏(𝑜𝑢𝑡) are the weights and bias of 

the output layer, respectively, 𝐻(𝐿) is the feature 

vector from the last hidden layer. When the output 

is categorical, for example risk classification, a 

softmax function as the final activation is: 

 

P(𝑦𝑖)= 
𝑒𝑥𝑝𝑒𝑥𝑝 (𝑧𝑖) 

∑  𝐾
𝑗−1 𝑒𝑥𝑝𝑒𝑥𝑝 (𝑧𝑗) 

   [18] 

 

where the P(𝑦𝑖) is the probability of the 𝑖𝑡ℎ class, 

𝑧𝑖  is the raw output score of class i; and K is the 

number of all classes. 

The model is trained with backpropagation with an 

appropriate loss. For yield regression, we use the 

squared mean error (MSE) loss: 
 

𝐿𝑀𝑆𝐸 =
1

𝑁
∑  𝑁

𝑖−1 (𝑦𝑖 − 𝑦̂𝑖)2   [19] 
 

from where 𝑦𝑖  and 𝑦̂𝑖  are the accurate and 

predicted yields of the 𝑖𝑡ℎ sample, respectively, 

and N is the number of the samples. Categorical 

cross-entropy loss is employed for classification 

purposes. 

This ClimaCropNet model conducts the last stage 

to produce interpretable and actionable 

predictions, incorporating the spatiotemporal 

dependencies learned between climate variability 

and agricultural productivity. 
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An efficient, distributed data pipeline was 

developed to populate AgriClimateAI framework 

for large-scale datasets. The raw climate and crop 

data collected is stored in a scalable fashion by 

ingesting it into a cloud HDFS (Hadoop Distributed 

File System). Using Apache Spark, data 

preprocessing such as cleaning, normalization, 

feature extraction, etc., is parallelized, meaning 

that several chunks of data can be processed 

simultaneously in computing nodes. Through a 

series of scheduled batch jobs, we built processing 

pipelines to combine real-time weather feeds 

together with satellite imagery. For instance, in the 

case of model training tasks, GPU-enabled clusters 

are used by distributing the CNN and LSTM 

computations, thus reducing model training time. 

Such an architecture means that AgriClimateAI is 

capable of handling terabytes of data at a scale 

while retaining throughput and reliability. 

 

Training Strategy and Evaluation 

Protocol 
The training of the ClimaCropNet uses the 

supervised learning approach where the 

concatenated input feature set is used for training 

the model with either historical values of crop 

yield or risk category defined by climate as ground 

truth labels. This dataset is divided into training, 

validation, and test set based on the stratified 

sampling strategy in order to it to have a balanced 

crop-type, climate zone, and temporal period. 

The Adam optimizer is used in the training, using 

first and second moment estimates of the gradients 

to calculate adaptive learning rates for each 

parameter. The learning rate η is first set and 

decayed across epochs to make sure stable 

convergence. The optimization objective changes 

with the task as follows: 

For classification purposes (e.g. classification of 

climate risks), ours downstream loss is minimized, 

and but as in (10) it is also given by: 
 

𝐿𝐶𝐸 = −
1

𝑁
∑  𝑁

𝑖−1 ∑  𝐾
𝑘−1 𝑦𝑖𝑘 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑦̂𝑖𝑘    [20] 

 

where 𝑦𝑖𝑘  is a binary indicator (0 or 1) that the 

class for instance i is class k, and k K) 𝑦̂𝑖𝑘  is the 

predicted probability for class k with K being the 

number of classes. 

Early-stopping with validation loss checking is 

applied to avoid model overfitting and improve 

generalization. Dropout layers, L2 regularization, 

and batch normalization also help with training 

robustness. 

The proposed ClimaCropNet is evaluated by the 

well-recognized regression and classification 

metrics. The measures for regression problems 

are: 

Coefficient of determination (𝑅2): 
 

𝑅2 = 1 −
∑  𝑁

𝑖−1 (𝑦𝑖−𝑦̂𝑖)2

∑  𝑁
𝑖−1 (𝑦𝑖−𝑦)2               [21] 

 

Root Mean Squared Error (RMSE): 
 

RMSE= √
1

𝑁
∑  𝑁

𝑖−1 (𝑦
𝑖

− 𝑦̂
𝑖
)

2
   [22] 

 

Mean Absolute Error (MAE): 
 

MAE= 
1

𝑁
∑  𝑁

𝑖−1 |𝑦𝑖 − 𝑦̂𝑖|    [23] 
 

For classification problems, the accuracy, 

precision, recall, and F1-score metrics are 

reported, along with confusion matrices to assess 

detailed error information. 

Cross-validation is conducted across multiple 

cropping seasons and climate zones to assess the 

model's robustness and transferability. The K-fold 

cross-validation averages the evaluation over each 

regional and seasonal subset to avoid data 

imbalance bias. 

The complete training and evaluation process is 

automated in a distributed computing system 

based on Apache Spark’s ML pipelines and 

TensorFlow’s distributed training framework. This 

enables experimentation at scale when working 

with large datasets that span multiple years and 

geographic regions. 

The finalized model is put into inference mode, 

where it is passed new climate and satellite data 

for computing expected crop yields or climate risk 
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categories, which helps to inform and execute 

proactive farming decisions. 

Explainability with XAI Modules 
The AgriClimateAI system incorporates 

explainable artificial intelligence (XAI) modules to 

enhance the transparency of model predictions 

made by ClimaCropNet. They enable the 

interpretation of feature attributions and explain 

the impact of climatic and spatial features on 

agricultural quantities in terms that are human-

understandable. Interpretability is crucial, 

particularly in climate-agriculture applications, as 

decisions are informed by the causal analysis of 

environmental factors and crop performance. 

It uses SHapley Additive exPlanations (SHAP) and 

Local Interpretable Model-agnostic Explanations 

(LIME) as post-hoc interpretation technique. SHAP 

values are determined by a way of calculating the 

contribution of each input feature to the model’s 

output with using cooperative game theory. Let f 

be a trained model and x an input instance then 

SHAP value is defined as >The contribution of i in 

the difference between the predictions and the 

average output when using all possible feature 

combinations is the SHAP value ∅𝑖  for feature i 

(SHAP). 
 

∅𝑖=∑   
𝑆⊆𝐹\{𝑖} 

∣𝑆∣!(∣𝐹∣−∣𝑆∣−1)!

∣𝐹∣!
[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]  [24] 

 

where F is the full set of features, S is a subset of 

features excluding i and 𝑓𝑆(𝑥𝑆) is the model trained 

on S. This formulation leads to a fair/non-

contradictory feature attribution across inputs. 

LIME, in contrast, aims to approximate the 

complicated model f locally with an interpretable 

local surrogate model g (e.g. a linear regression), 

which is valid on the distorted x. Specifically, the 

underlying optimization objective of LIME is based 

on minimizing the loss L (f, g, 𝜋𝑥) between the 

black-box f and surrogate g, weighting the loss by 

the proximity 𝜋𝑥 to the original instance:
 

𝑎𝑟𝑔 𝑎𝑟𝑔 𝐿(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔)           [25] 
 

where G is the set of interpretable models and Ω(g) 

is a term for model complexity. 

By employing SHAP and LIME, the AgriClimateAI 

system computes both global explanations, which 

detect trends in feature importance across the 

entire dataset, and local explanations, which 

provide insights into individual instances. These 

descriptions indicate which climatic variables (e.g., 

rainfall during the vegetative stage, extreme 

temperatures during flowering) and spatial 

patterns (e.g., differences in NDVI among fields) 

contribute most to our forecast of yield or risk. 

The results of the XAI are visualized in the form of 

feature importance bar charts, heatmaps on 

remote sensing images, and time series graphs that 

show the temporal contribution of climate 

features. They help agronomists and policymakers 

interpret what is driving predicted agricultural 

impacts, thereby assisting in the formulation of 

climate-resilient farming practices. 

The PAL models for explainability are directly 

integrated within the AI analytics layer, so that 

every prediction produced by ClimaCropNet 

comes with clear, interpretable evidence, 

increasing trust and enabling the broader 

application of AI in agricultural decision-making.  

Algorithmic Implementation 
 This algorithm describes the methodology for 

selecting climatic drivers through a systematic 

correlation and causality analysis to influence food 

production. The method begins by collecting 

multisource data, including climate data, remote 

sensing images, soil samples, and historical crop 

yields. Preprocessing includes data cleaning, 

normalization, and temporal-spatial matching, 

from which NDVI, SAVI, and other vegetation 

indices are derived as estimates of spatial 

normalization factors for crop health. 

 

Algorithm 1: Climate-Agriculture Correlation Analysis Workflow 

Input: Multi-source datasets 𝐷𝑐𝑙𝑖𝑚𝑎𝑡𝑒 , 𝐷𝑟𝑒𝑚𝑜𝑡𝑒 , 𝐷𝑠𝑜𝑖𝑙 , 𝐷𝑦𝑖𝑒𝑙𝑑   

Output: Selected significant climate-agriculture feature set 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑   

1. Acquire 𝐷𝑐𝑙𝑖𝑚𝑎𝑡𝑒 , 𝐷𝑟𝑒𝑚𝑜𝑡𝑒 , 𝐷𝑠𝑜𝑖𝑙 , 𝐷𝑦𝑖𝑒𝑙𝑑  from public repositories. 

2. Preprocess all datasets: clean, normalize, and align temporally and spatially. 

3. Compute vegetation indices (NDVI, SAVI) using equations (1) and (2). 
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The algorithm then employs Pearson and 

Spearman correlation analyses to assess the linear 

and Spearman relationships between climate 

variables and crop yield trends. Granger causal 

testing is carried out using mutual information 

analysis, allowing for the conditioning on all direct 

and indirect effects of climate to capture time-

varying causal relationships between the two 

systems. The algorithm selects these factors based 

on their level of statistical significance and 

predictive power. 

At last, a subset of the most essential features is 

chosen as the optimized climate-agriculture 

feature set 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . This set of features is then 

used as input for the ClimaCropNet model, 

allowing the predictive analysis to focus on the 

most significant and causal climatic drivers. 

 

Algorithm 2: ClimaCropNet Model Training and Inference 

Input: Selected features 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , preprocessed datasets 

Output: Predicted crop yield 𝑌̂ or climate risk score 𝑅̂ 

1. Extract spatial features from remote sensing data using CNN; compute 𝐹𝑐𝑛𝑛 via convolution 

(equation (6)) and activation (equation (7)). 

2. Extract temporal features from sequential climate data using LSTM; compute 𝐹𝑙𝑠𝑡𝑚  using equations 

(8) – (13). 

3. Fuse spatial and temporal features as 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 by concatenation (equation (14)). 

4. Pass 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 through fully connected layers (equation (16)) to learn higher-level representations. 

5. Generate output predictions: 

o For regression: predict yield 𝑌̂ using equation (17). 

o For classification: predict risk score 𝑅̂ using softmax equation (18). 

6. Train the model using MSE loss (equation (19)) or cross-entropy loss (equation (20)) with the 

Adam optimizer. 

7. Evaluate performance using 𝑅2, RMSE, and MAE (equations (21)–(23)); record evaluation metrics. 

8. Apply SHAP (equation (24)) and LIME (equation (25)) to interpret model predictions. 

9. Export predictions and feature importance scores for visualization and decision support. 

End 
 

This is encapsulated within the algorithm training 

and testing procedure for the ClimaCropNet 

architecture consisting of combined spatial and 

temporal feature learning for the prediction of 

climate induced effects in agriculture. The first 

step of the approach consists on the application of 

a CNN 𝐹𝑐𝑛𝑛, on remote sensing images in order to 

obtain spatial features describing vegetation and 

land surface types. Meanwhile, LSTMs take in 

sequences of climate features and model temporal 

dynamics and lagged impacts of climate variables 

to extract temporal features 𝐹𝑙𝑠𝑡𝑚. 

The spatial and temporal representations are 

integrated by concatenating and the final feature 

vector 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 VH is sent to several fully-connected 

layers to capture complicated correlations. The 

output prediction is derived either as a 

continuously estimated crop yield or as a classified 

climate risk score depending on the task. The 

model is trained by means of the correct loss 

function—mean squared error for regression 

classification or cross-entropy and it is optimized 

with the Adam optimizer. At test, RMSE, 𝑅2,and 

MAE are calculated to determine the model's 

accuracy. Interpretability modules, including SHAP 

and LIME, are used then to interpret the effects of 

the climate and spatial features on the model's 

predictions. The ultimate predictive predictions 

and analytic insights are provided to decision 

support, and visualization modules of 

AgriClimateAI system. 

Decision Support and Visualization 
The final step of the AgriClimateAI system 

translates high-level predictive results into 

decision-support outputs, represented as 

interactive visualization tools. This step is crucial 

4. Calculate correlation coefficients between climate variables and crop yield using equation (4). 

5. Perform causality analysis with Granger causality and mutual information using equation (5). 

6. Identify and rank climate variables with strong correlation or causality. 

7. Select the top K features as 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  for predictive modelling. 

End 
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for enabling farmers, agronomists, and 

policymakers to accurately interpret the results 

generated by the CVA and implement timely 

interventions for effective agricultural 

management. The predictive outcomes and 

explainability of the proposed ClimaCropNet 

model are integrated into user-friendly interfaces, 

enabling region-specific agricultural monitoring 

and planning. 

Spatial visualization is enabled through mapping 

tools using Geographic Information Systems (GIS), 

which provide overlaid predictions of crop yields, 

vegetation indices, and climate risk scores on 

regional agricultural maps. The maps are color-

coded by either risk or predicted productivity, 

allowing stakeholders to identify vulnerable areas 

or high-performing areas easily. The spatio-

temporal dynamics of these predictions are 

presented using dynamic maps, which depict the 

difference between individual cropping seasons by 

an animation across time, thus identifying new 

patterns as a consequence of climatic anomalies. 

In addition to the spatial outputs, the system 

provides data tables and graphical summaries for 

performance indicators, including predicted 

yields, confidence intervals, and feature 

attribution scores generated by explainability 

modules. Time series charts show which specific 

climate variables, such as total rainfall or average 

temperature, had the most significant effect on 

crop yield estimates during the season. 

These visualizations are integrated into an 

interactive Decision Support Dashboard with real-

time querying capabilities. Users can screen search 

results by region, crop, and climate type, and 

model future climate scenarios based on climate 

projections. The dashboard also includes adaptive 

recommendations, such as optimized sowing 

dates, irrigation plans, and crop protection 

strategies based on expected climate impacts. 

Moreover, the decision support layer supports 

connection to external farm management systems 

and government portals, enabling deployment at 

the scale of the entire farming industry. Auto-

reporting systems generate regular summaries 

that aid in planning agriculture, disaster 

preparedness, and the formulation of food security 

policies. 

The decision support and visualization module 

provide transparent, interpretable, and locally 

relevant information, thereby connecting complex 

AI-driven analysis with the needs of on-the-ground 

agricultural decision-making. This enables the 

stakeholders to undertake climate-resilient 

farming practices and pre-empt the climatic 

uncertainties. 
 

Results 
This section provides experimental results 2.1 

Validation of AgriClimateAI system and 

ClimaCropNet model. Multiple analyses, such as 

correlation analysis, predictive modeling and 

explainability assessment, were developed over 

multi-source agricultural and climate datasets. The 

findings illustrate the capability of the system for 

predicting the fluctuations of crop yield and 

climate-induced risks and also to give 

interpretable information for practical agricultural 

decision support. 

Experimental Setup and 

Implementation Details 
Experimental evaluation Freitas et al (2016) 

evaluated the proposed AgriClimateAI system on a 

distributed computing infrastructure and for 

large-scale spatiotemporal data. The hardware 

configuration: Intel Xeon Gold 6226R CPU (2.90 

GHz), 256 GB RAM, and NVIDIA Tesla V100 GPU 

(32 GB VRAM) running linux ubuntu 20.04 LTS. 

The brushed-off data processing and storage 

infrastructure was Hadoop Distributed file system 

(HDFS) for scalable processing of data, and Apache 

Spark 3.2 for performing distributed in-memory 

computation. 

The deep learning model ClimaCropNet was 

developed using TensorFlow 2.13 and Keras API 

for model architecture configuration, training, and 

testing. The explainability modules, SHAP and 

LIME, were used as SHAP 0.42 and LIME 0.2.0 

libraries. Preprocessing time: Brute-force 

Preprocessing pipelines were implemented in 

Python 3.9 using libraries such as NumPy, Pandas, 

and GDAL for spatial data handling, as well as 

Scikit-learn for feature transformations. The 

hardware, software, and model configuration used 

to deploy and evaluate the proposed AgriClimateAI 

system are given in Table 2. 
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Table 2: Experimental Environment and Configuration Details for Implementing AgriClimateAI and 

ClimaCropNet Model Training 

Category Specification / Details 

Hardware Intel Xeon Gold 6226R CPU @ 2.90 GHz, 256 GB RAM, NVIDIA Tesla V100 (32 

GB VRAM) 

Operating System Ubuntu Linux 20.04 LTS 

Distributed 

Framework 

Apache Spark 3.2, Hadoop Distributed File System (HDFS) 

Programming 

Language 

Python 3.9 

Deep Learning 

Libraries 

TensorFlow 2.13, Keras API 

Explainability 

Libraries 

SHAP 0.42, LIME 0.2.0 

Data Processing 

Libraries 

NumPy, Pandas, GDAL, Scikit-learn 

Model Architecture CNN + LSTM with Feature Fusion (ClimaCropNet) 

Optimizer Adam 

Learning Rate 0.001 

Batch Size 64 

Epochs 150 (with early stopping) 

Activation Functions ReLU (intermediate layers), Linear/Softmax (output layers) 

Data Split Ratio 70% Training, 15% Validation, 15% Test 

Monitoring Tools TensorBoard, Model Checkpointing 
 

Datasets were divided into training (70%), 

validation (15%), and test (15%) datasets with a 

balanced partition for crop types, climate zones, 

and temporal seasons. A grid search was 

performed on the hyperparameters using the 

validation set. The most critical hyperparameters 

were a learning rate of 0.001, a batch size of 64, 

ReLU activation for the hidden layers, and the 

Adam optimizer for solving gradients. 

The model was trained for 150 epochs, and early 

stopping was used based on validation loss to 

prevent overfitting. The training dynamics and the 

performance metrics were monitored throughout 

the experiments using model checkpoints and 

TensorBoard visualizations. This experimental 

setup enabled the processing of heterogeneous, 

multi-source data streams in a scalable manner, 

while also facilitating the scaling up of robust 

model training and accurate performance 

evaluation. 

Dataset Characteristics and 

Preparation 
The experimental studies were conducted with 

multi-source data, including RS image, climate 

data, field properties and crop yield data. The 

datasets included multiple cropping areas and 

climatic zones and were used for model robustness 

training and validation. 

Remote sensing data consisted of Sentinel-2 (10–

20 m spatial resolution) images and MODIS 

vegetation indices for the period 2015–2024. 

Vegetation indices, namely NDVI and SAVI, were 

calculated using the near-infrared and red spectral 

bands based on equations (1) and (2). The data 

was aggregated into a 16-day temporal resolution 

corresponding to the stages of cropping cycle. 

The climate datasets comprised daily temperature, 

precipitation, humidity, wind speed, and solar 

radiation data from the ERA5 reanalysis and NASA 

POWER platforms. The spatial resolution was 

harmonized to 0.25° grids, and temporal 

aggregation was performed on a weekly basis to 

align with crop phenological stages. 

Historical crop yield data for major crops, 

including rice, wheat, and maize, were obtained 

from FAOSTAT, providing annual yield statistics at 

the regional level. Where available, sub-national 

yield records were integrated for finer-grained 

analysis. 

Soil property data, including pH, organic carbon, 

and texture class, was sourced from the SoilGrids 

database and used as auxiliary input features. The 
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soil data was static and aligned spatially with the 

climate and remote sensing layers. 

During data preparation, all datasets underwent 

spatial re-projection to a standard coordinate 

reference system (WGS 84). Temporal gaps in 

climate data were filled using linear interpolation, 

while missing yield values were imputed using 

multi-year rolling means. Spatial layers were 

clipped to agricultural land-use boundaries 

derived from land cover maps. 

The final prepared dataset comprised climate 

variables (15+ features), vegetation indices (5 

features), and soil properties (3 features), 

aggregated across 250+ regional zones over 

multiple years. This comprehensive dataset 

enabled the training and validation of the 

ClimaCropNet model for spatiotemporal yield and 

climate risk prediction.

 

 
Figure 3: Exploratory Data Analysis of Climate and Agricultural Variables 

 

Figure 3 presents key exploratory insights from 

the climate and agricultural datasets. Subfigure (A) 

shows yearly trends in rainfall and temperature, 

highlighting seasonal variability. Subfigure (B) 

illustrates a positive relationship between NDVI 

and crop yield. Subfigure (C) displays correlation 

strengths among climate and yield variables. 

Subfigure (D) depicts regional disparities in crop 

yields across major agricultural zones. 

Correlation and Causality Analysis 

Results 
To assess the influence of climatic factors on 

agricultural productivity, statistical correlation 

and causality analyses were performed on the 

prepared datasets. Pearson’s correlation 

coefficient, computed using equation (4), was 

applied to quantify the linear relationships 

between climate variables and crop yield. 

Spearman’s rank correlation analysis 

supplemented this by capturing monotonic but 

potentially non-linear associations. 

The results revealed that rainfall and NDVI 

exhibited the strongest positive correlations with 

crop yield, with Pearson correlation coefficients of 

0.72 and 0.68, respectively. Temperature 

displayed a moderate negative correlation of –

0.45, suggesting the detrimental effect of excessive 

heat on crop performance during critical growth 

stages. Humidity and wind speed demonstrated 

weaker but statistically significant correlations 

with yield, ranging between 0.30 and 0.40. 

To investigate potential causality, Granger 

causality tests were applied, revealing that rainfall 

and NDVI significantly Granger-caused yield 

variations (p<0.05p < 0.05p<0.05), indicating that 

past values of these factors improve yield 

prediction accuracy. Mutual information analysis, 
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using equation (5), further confirmed the 

dependency structure, with rainfall and NDVI 

contributing the highest information gain values of 

0.87 and 0.75, respectively. 

Temporal lag analysis highlighted that rainfall 

during the vegetative stage (weeks 4–8) and NDVI 

during the flowering stage (weeks 8–12) had the 

highest predictive influence on yield outcomes. 

These findings align with agronomic 

understanding of crop growth cycles, where early 

moisture availability and mid-season vegetation 

health are critical determinants of final yield. The 

correlation and causality results guided the feature 

selection process, prioritizing rainfall, 

temperature, NDVI, and soil moisture as primary 

predictors for the ClimaCropNet model, ensuring 

that the most impactful climatic drivers were 

emphasized during model training. 
 

Table 3: Correlation and Causality Analysis of Climate Variables and Crop Yield 

Variable Pearson 

Correlation 

Spearman 

Correlation 

Granger Causality (p-

value) 

Mutual 

Information 

Rainfall 0.72 0.70 0.012 0.87 

NDVI 0.68 0.69 0.018 0.75 

Temperatu

re 

-0.45 -0.48 0.045 0.60 

Humidity 0.35 0.32 0.085 0.42 

Wind Speed -0.30 -0.28 0.110 0.38 
 

 
Figure 4: Correlation and Causality Analysis of Climate Variables and Crop Yield 

 

Table 3 presents the quantitative results of the 

correlation and causality analysis between climate 

variables and crop yield. Rainfall and NDVI exhibit 

strong positive correlations and significant 

causality with yield, confirming their predictive 

importance. Temperature exhibits a negative 

correlation, indicating that heat stress has an 

impact. Mutual information scores further validate 

these relationships, guiding the selection of 

features for predictive modeling. 

Climate-Yield Relationships Based on Four 

Statistical Measures In subplot (A) of Fig. 4, the 

Pearson correlation is displayed, and we find for 

crop yield that rainfall and NDVI have the strongest 

positive correlation, implying these factors are 

directly influencing production. Temperature has a 

negative correlation indicating that the higher this 

parameter, the yield is negatively affected, while 

humidity has a lower positive correlation and wind 

speed has a low negative correlation. Subplot (B) 

shows the similar pattern in the Spearman 
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correlation also supports the trends shown in 

Pearson correlation, indicating that the 

associations are consistent across statistical 

approaches. 

Subplot (C) shows the Granger causality p-values 

suggesting the strength of the temporal causal 

relationships. The rainfall and NDVI reach the 

lowest value of p, therefore it is significant 

causality with yield over time, while the 

temperature, humidity, and wind speed show a 

relatively weaker causal effect. Mutual information 

— plots in Subplot (D) that capture both linear and 

non-linear dependencies between variables and 

yield. Finally, the most significant factors with 

most mutual information values are the same: 

Rainfall and NDVI, followed by temperature, 

humidity and wind speed. 

In totality, the figure highlights that rainfall and 

NDVI are the primary predictors of crop yield in all 

three statistical metrics, while temperature, 

humidity, and wind speed are secondary although 

still significant drivers. This insight offers a 

quantitative tool to figure out how climate 

variables interact to affect productivity. 

Model Performance Analysis 
The performance of the proposed ClimaCropNet 

model was evaluated on the prepared test dataset, 

focusing on both regression and classification 

tasks depending on the output type (yield 

prediction or climate risk classification). The 

model demonstrated robust convergence during 

training, as evidenced by the training and 

validation loss curves, which stabilized within the 

first 100 epochs under early stopping conditions. 

As shown in Table 4, for the regression task of 

predicting crop yield, the model achieved a 

coefficient of determination (R²) of 0.85, indicating 

strong predictive power. The Root Mean Squared 

Error (RMSE) was 0.43 tons/ha, and the Mean 

Absolute Error (MAE) was 0.35 tons/ha, reflecting 

low deviation from the actual yield values. These 

results confirm the effectiveness of the 

ClimaCropNet model in capturing spatiotemporal 

patterns from remote sensing and climate data to 

estimate variations in crop yields. 

 

Table 4: Performance Comparison of ClimaCropNet and Baseline Models 

Model R2 

(Yield) 

RMSE 

(tons/ha) 

MAE 

(tons/ha) 

Classification 

Accuracy (%) 

F1-Score 

(%) 

ClimaCropNet 0.85 0.43 0.35 88.6 87.5 

Random Forest 0.73 0.61 0.48 79.4 78.6 

Gradient Boosting 0.76 0.58 0.45 81.1 80.3 

Support Vector Machine 

(SVM) 

0.69 0.65 0.52 76.8 75.4 

 

We, here, benchmark ClimaCropNet against 

several common models: Random Forest (RF), 

Gradient boosting (GB), Support Vector Machine 

(SVM), and a LSTM model trained only on temporal 

climate data with neither crop nor LSTM layers. 

ClimaCropNet had the most accurate prediction 

capability with the highest R² yield results value 

(0.85) and the lowest RMSE (0.43 tons/ha, Table 4 

and Figure 5). ClimaCropNet achieved 88.6% 

overall accuracy (87.5% F1-score) for 

classification tasks thus outperforming all 

baselines. On the other hand, the Random Forest 

model's 0.73 R² and 0.61 tons/ha RMSE, as well as 

the non-spatial LSTM model's less than favourable 

performance in representing spatial variability, 

were only able to provide moderate levels of 

accuracy. It is evident from these results that the 

joint learning of spatial and temporal features 

using ClimaCropNet yields much more stable and 

accurate climate-aware agricultural predictions as 

compared to conventional machine learning and 

standard deep learning models. 

Crop yield showed significant positive correlations 

with rainfall and NDVI, which agreed with previous 

research works indicating vegetation indices and 

precipitation being the most important yield 

drivers (7, 23). Moreover, rainfall and NDVI 

showed the strongest positive correlation with 

crop yield. Likewise negative correlation was 

observed for temperature, corroborating another 

past research (32) that identified heat stress as a 

primary contributor of decreased yields. 

The findings demonstrate that the fusion of CNN 

and LSTM in ClimaCropNet is effective in capturing 

spatial and temporal relationships from a complex 

multi-source agricultural dataset, surpassing 

traditional machine learning methods in terms of 

predictive accuracy and generalization.
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Figure 5: Performance Comparison of ClimaCropNet and Baseline Models for Yield Prediction and 

Climate Risk Classification 
 

ClimaCropNet and three baseline models (Random 

Forest, Gradient Boosting and SVM) were 

diagnosed with their performance on five metrics 

as presented in Figure 5. In subplot (A), 

ClimaCropNet displayed the largest coefficient of 

determination (R² = 0.85), best capturing the 

variability in yield, compared to the other models. 

In subplot (B), it depicts the low RMSE calculated 

where ClimaCropNet had the lowest RMSE (0.43 

tons/ha) indicating its accuracy predicting the 

deviation between observed yield. 

Average absolute error (MAE) is compared in 

subplot (C), again, ClimaCropNet earns the lowest 

error value (0.35 tons/ha) showing the relative 

strength of the model's robustness in overall yield 

prediction accuracy. Classification accuracy is 

shown in Subplot (D), in which ClimaCropNet 

achieved the best accuracy at 88.6% and surpassed 

all baseline approaches in producing the correct 

class for climate and crop-related conditions. 

Lastly, we can see that in subplot (E), in the domain 

of F1 score, which is a weighted average of 

precision and recall, ClimaCropNet also has high 

results at 87.5%. 

The figure as a whole indicates that ClimaCropNet 

significantly outperformed its baseline models on 

all evaluation metrics. The results validate the 

capability of its hybrid CNNLSTM architecture with 

adaptive feature fusion to achieve state-of-the-art 

yield forecasting and classification performance 

under the AgriClimateAI framework. 

The training and validation accuracies over 150 

epochs for the ClimaCropNet model are illustrated 

in Figure 6. The training accuracy slowly rises and 

plateaus at around 95%, and the validation 

accuracy caps at 88%, suggesting successful 

generalization. The lack of significant differences 

between the curves indicates that the learning 

dynamics are stable and that overfitting is not 

detrimental. 
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Figure 6: Training and Validation Accuracy Dynamics of the ClimaCropNet Model Across Epochs 

 

 

 
Figure 7: Training and Validation Loss Dynamics of the ClimaCropNet Model Across Epochs 

 

Figure 7 shows the training and validation loss 

trends of the ClimaCropsNet model for 150 epochs. 

The value of the training loss decreases rapidly in 

the initial few epochs and eventually levels off to a 

low value; similarly, the value of the validation loss 

also appears to decrease. The convergent behavior 

of the two curves suggests good learning and low 

overfitting, indicating strong generalization 

performance of the model across various sample 

data. 

 

 

Ablation Study 
An ablation study was conducted to assess the 

relative importance of the main components of the 

ClimaCropNet architecture. Specifically, three 

critical modules were studied: the CNN-based 

spatial feature extractor (namely, convspatial), the 

LSTM-based temporal feature learner, and the 

feature fusion layer. Different models based on 

these components were tested by discarding or 

modifying them, and their performance was 

compared to that of the complete ClimaCropNet 

architecture. 
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Table 5: Ablation Study Results of ClimaCropNet Model Components 

Model Variant Spatial Learning 

(CNN) 

Temporal 

Learning (LSTM) 

Feature 

Fusion 

R² 

Score 

RMSE 

(tons/ha) 

Full ClimaCropNet ✓ ✓ Learned 

Fusion 

0.85 0.43 

Without CNN ✗ ✓ Learned 

Fusion 

0.71 0.58 

Without LSTM ✓ ✗ Learned 

Fusion 

0.74 0.55 

Without Feature Fusion 

(Simple Concatenation) 
✓ ✓ Simple 

Concat 

0.78 0.50 

Climate Time Series Only 

(No CNN, No Fusion) 
✗ ✓ N/A 0.69 0.61 

Remote Sensing Only 

(No LSTM, No Fusion) 
✓ ✗ N/A 0.66 0.64 

 

Those results are summarized in Table 5, 

indicating that without the CNN module (based 

solely on climate time series), the R² value would 

decrease significantly, from 0.85 to 0.71, 

highlighting the importance of spatial features 

computed through remote sensing imagery. 

Likewise, for static climate summaries, we also 

removed the LSTM module, resulting in the loss of 

further temporal feature tracking; the R2 score 

dropped to 0.74. 

A third variant, which replaces the feature fusion 

layer with a simple concatenation operation 

without learned interactions, also degrades 

performance, yielding an R² of 0.78. These results 

confirm that the hybrid learning of spatial and 

temporal dependencies, combined with the 

adaptive feature interaction of the fusion layer, 

significantly improves prediction accuracy. The 

complete ClimaCropNet model, which integrates 

CNN, LSTM, and a fusion mechanism, 

demonstrated the best predictive performance, 

validating the effectiveness of the proposed 

spatiotemporal learning approach. 

ClimaCropNet also significantly outperformed the 

traditional machine learning approaches (i.e. 

Random Forest and Gradient Boosting), achieving 

an R² of 0.85 and RMSE of 0.43 tons/ha (Table 4). 

Earlier studies conducted on these traditional 

architectures mentioned the explained R² to be 

between 0.70–0.78 (12, 16, 19), which confirms 

the better performance of our hybrid CNN-LSTM 

model with adaptive feature fusion. 
 

 
Figure 8: R² Score Comparison of ClimaCropNet Model Variants in Ablation Study 

 

Figure 8 presents the R² score comparison of 

various ClimaCropNet model variants from the 

ablation study. The full model demonstrates 

superior performance with an R² of 0.85. 

Removing the CNN, LSTM, or replacing the feature 

fusion mechanism leads to a substantial decline in 

predictive accuracy, validating the necessity of 

integrating spatial, temporal, and fusion modules 

for optimal yield forecasting. 
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Explainability Analysis Results 
To interpret the ClimaCropNet model's 

predictions, SHAP and LIME explainability 

techniques were applied to quantify the 

contribution of each input feature to the crop yield 

and climate risk predictions. The results provide 

transparency into how spatial and climatic 

variables influence the model’s decision-making 

process. 

As shown in Figure 9, the SHAP summary analysis 

revealed that rainfall during the vegetative stage 

and NDVI during the flowering stage were the most 

influential features, followed by temperature and 

soil moisture. Rainfall contributed a SHAP value of 

0.32, indicating its dominant positive influence on 

yield prediction. NDVI had a SHAP contribution of 

0.28, emphasizing the importance of vegetation 

health during mid-season. The temperature 

showed a negative contribution, consistent with 

the negative correlation observed in earlier 

analyses. 

 

 
Figure 9: Explainability Analysis of ClimaCropNet Model Predictions Using SHAP and LIME Techniques 

 

For specific predictions, LIME explanations 

highlighted how the combination of lower rainfall 

and higher temperature during sensitive crop 

stages reduced yield predictions in drought-prone 

regions. Conversely, regions with consistently high 

NDVI and balanced rainfall patterns were 

attributed positive weight in yield outcomes. 

SHAP value bar plots and feature dependence plots 

further illustrated the non-linear interactions 

between climate variables and yield predictions. 

Temporal plots indicated that rainfall during 

weeks 4–8 and NDVI during weeks 8–12 had peak 

influence periods, aligning with key crop growth 

stages. 

The explainability analysis of the framework show 

that rainfall and NDVI were the most important 

variables, which validates findings from previous 

studies that employed interpretable AI to explain 

climate-smart agriculture and yield forecasting 

(14, 15). Joins domain knowledge bolsters the 

credibility and authenticity of the AgriClimateAI 

framework. 

These explainability results validate the domain 

relevance of the features selected and provide 

interpretable evidence supporting the model’s 

predictions. Such transparency enhances 

stakeholder trust and supports informed 

agricultural decision-making. 

Spatial Visualization and Decision 

Support Outputs 
The spatial visualization and decision support 

outputs generated by AgriClimateAI provide 

actionable insights for farmers, agronomists, and 

policymakers by translating predictive results into 

geospatially interpretable formats. The system 

integrates model predictions with geographic 

information system (GIS) layers to produce spatial 

maps, dashboards, and region-specific 

recommendations. 

As shown in Figure 10, crop yield predictions and 

climate risk classifications were visualized as 

choropleth maps at the regional level. High-yield 

zones were predominantly concentrated in 

regions with favorable rainfall and vegetation 

indices, while low-yield areas corresponded with 

zones experiencing temperature stress and rainfall 

deficits. Climate risk maps categorize regions into 

low, medium, and high-risk zones, enabling 

targeted intervention planning. 
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Figure 10: Spatial Visualization of Crop Yield Predictions and Climate Risk Classifications 

 

As shown in Figure 10, crop yield predictions and 

climate risk classifications were visualized as 

choropleth maps at the regional level. High-yield 

zones were predominantly concentrated in 

regions with favorable rainfall and vegetation 

indices, while low-yield areas corresponded with 

zones experiencing temperature stress and rainfall 

deficits. Climate risk maps categorize regions into 

low, medium, and high-risk zones, enabling 

targeted intervention planning. 

The spatial outputs confirmed that drought-prone 

regions, particularly those with below-average 

NDVI and irregular rainfall patterns, exhibited 

higher risk classifications. Conversely, areas with 

stable climatic conditions and robust vegetation 

cover demonstrated resilient yield outcomes. 

An interactive decision support dashboard was 

built to visualize predictive insights provided by 

the AgriClimateAI system. The dashboard displays 

near-real-time crop yield predictions, identifies 

areas with climate anomalies, and categorizes 

agricultural zones according to risk level. It also 

visualizes explainability plugins as feature 

importance scores, which improves model 

interpretability. Users can select, for example, the 

crop type, the region (on the map), and the 

cropping season to customize the analysis. 

Additionally, the dashboard, designed to facilitate 

scenario-based forecasting, enables stakeholders 

to model how varying climate variables will impact 

crop productivity and resource allocation. By 

integrating these analytical products into a user-

friendly platform, the dashboard enables data-

driven, climate-sensitive agricultural decision-

making, allowing farmers, agronomists, and 

decision-makers to apply risk management 

measures. 

An explainability feature within AgriClimateAI is 

critical tohelping users to identify and understand 

the key underlying drivers of yield predictions. 

With the help of SHAP and LIME visualizations 

(Figure 9), we assessed the role of individual 

climate variables in model predictions. Rainfall 

and NDVI were found to be the key drivers in the 

underlying analysis, whereas temperature and 

solar radiation proved to the least influential but 

still dominant in their contribution to yield 

variation driven by climate. Such insights not only 

ground the outputs of the model in the reality of 

agronomic knowledge and best-practice, but 

allows for transparency, providing confidence and 

trust in the decisions made by the system from 

every stakeholder, from farmers to policymakers. 
 

Discussion 
Mapping the impact of climate and weather on 

agricultural production is now a pressing task, due 

to the complex relationship between 

environmental stresses and crop yields. Current 

research that leverages AI, machine learning, and 

big data strategies for yield prediction and climate 

adaptation has been studied; however, the results 

are not integrated because they are fragmented, 

utilize only a single modality of input data, and do 

not produce explainable outputs. Some models use 

remote sensing images or climate time series, but 

are primarily unable to account for the spatial-

temporal interdependencies that are crucial for 

comprehending agricultural systems as a whole. 

The consistently better performance of 
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ClimaCropNet relative to the Random Forest, 

Gradient Boosting, and standalone LSTM indicates 

that it is preferable to have an integrated 

architecture that incorporates spatial and 

temporal components together, instead of 

separate or independent models. 

The outstanding prediction performance of 

ClimaCropNet compared to Random Forest, 

Gradient Boosting and LSTM separated models 

confirmed the key role of both spatial and 

temporal features integration. Traditional machine 

learning methods such as Random Forest and 

Gradient Boosting can model non-linear relations 

well but cannot model sequential dependencies 

which exist in climate data. While LSTM-based 

models can capture temporal dynamics, they do 

not consider the spatial heterogeneity in remote 

sensing images. Finally, involved in ClimaCropNet 

the key components of these strengths then 

translated to a single hybrid architecture in 

ClimaCropNet, which contributes to a more overall 

perspective in understanding climate-crop 

relationships and enhancing predictive 

performance and interpretability. 

Our results confirm previous findings suggesting 

that using climate and vegetation indices were our 

highest contributors to predicting the yields (7, 

32). In comparison, previous models only 

incorporated either spatial or temporal data inputs 

exclusively, whereas ClimaCropNet’s hybrid CNN-

LSTM architecture jointly integrates both sources 

of information, resulting in a major advancement 

over existing models (16, 19). 

This paper fills the gap by proposing the 

AgriClimateAI system and its flagship 

ClimaCropNet model, which introduces a hybrid 

CNN-LSTM architecture that can jointly harness 

spatial and temporal features from multiple 

datasets. This method differs from previous 

attempts by considering vegetation indices, 

climate variables, and soil properties within a 

single predictive pipeline and by improving 

explainability using explainable AI (SHAP and 

LIME). This multi-modal and spatiotemporal 

feature fusion has therefore led to more accurate 

and easily interpretable predictions of crop yield 

across different climatic zones. 

Experimental results demonstrate that 

ClimaCropNet consistently outperforms state-of-

the-art machine learning models, including 

Random Forest and Gradient Boosting, with a high 

R² score, low error metric, and strong classification 

accuracy for climate risk zones. Explainability 

analysis also confirms the model's integration with 

agronomic knowledge and emphasizes that 

variables such as rainfall at vegetative stages and 

NDVI at flowering are the primary yield drivers. If 

this is true, it validates the model and allows us to 

draw inferences that align with our theory. 

Realizing that potential, the AgriClimateAI 

framework can be used by a diverse range of 

stakeholders and is ripe for practical 

implementation — agritech companies, farmers, 

and policymakers can all find use for the 

framework. The system may serve as a decision-

support service for farmers by providing valuable 

information related to crop status, soil moisture 

status, and climate-induced stress on time. This 

helps in taking informed decisions regarding crop 

selection, optimal irrigation scheduling and, 

precautionary measures in the form of early 

warning systems, to reduce any yield losses. 

AgriClimateAI can be used by the agritech space 

itself for building precision agriculture solutions, 

output can be integrated into automated farm 

machinery, smart irrigation, and digital advisory 

platforms, with no human involvement at all. The 

predictive analytics and explainability modules 

can facilitate climate-resilient agriculture policies, 

subsidy distribution and regional planning for food 

security for legislators and policymakers. 

AgriClimateAI translates complex spatiotemporal 

data and advanced AI modelling into actionable 

insights to support adaptive and climate-smart 

agricultural management. 

Although ClimaCropNet captures the effects of 

climatic and crop growth factors well, this version 

lacks the explicit representation of the effects of 

soil fertility, pest and disease pressure, and 

socioeconomic conditions. All these factors are key 

drivers of yield variability and will be essential 

areas for further developments of the framework. 

For improvements in the generalizability, 

ClimaCropNet can be improved with transfer 

learning and domain adaptation approaches. 

Quickly acting with other geographical areas is 

possible through transfer learning, using pre-

trained big-scale climate and crop datasets able to 

transfer deep learning performances through 

lower computational cost and lesser quantity of 

data. Likewise, domain adaptation methods could 

mitigate heterogeneity in regional climate, soil and 
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cropping systems to make model robust across 

multiple realities. Combining these techniques will 

enable AgriClimateAI to expand to multi-regional 

applications on a scalable basis 

By addressing data fragmentation, improving 

prediction accuracy, and generating interpretable 

outputs, the system developed in this study 

represents a significant advancement over current 

art in climate-smart agriculture. Its modular 

design and decision support products encourage 

realistic take-up for climate-resilient farming. The 

study's constraints are described in detail in 

Section 5.1. 

Limitations of the Study 
The present study is not without limitations; 

however, we argue that there are at least three key 

limitations. Firstly, the model was tested on a 

relatively small number of regions and crops, 

which may limit its applicability to other 

agroecosystems. Second, the time scale of some 

climate datasets was limited by data availability, 

which may influence predictions for short-

duration crops. Third, the use of pre-processed VIs 

does not account for real-time changes in cloud 

cover or image quality, which can affect the 

reliability of satellite data. Next steps will be to 

broaden the dataset scope to include higher 

temporal resolution and to incorporate dynamic 

methods for in-flight quality testing of remote 

sensing data. 
 

Conclusion  
This study presents the AgriClimateAI system, an 

integrated deep learning framework for 

monitoring the climate's impact on agriculture 

using multi-source data fusion and explainable AI 

techniques. By leveraging remote sensing imagery, 

climate variables, and crop yield data, the 

proposed ClimaCropNet model demonstrated 

strong predictive accuracy and interpretability. 

The hybrid CNN-LSTM architecture effectively 

captured spatial and temporal dependencies 

critical for yield forecasting, addressing limitations 

of prior single-modality models. Experimental 

results across multiple regions confirmed that the 

system outperforms baseline machine learning 

approaches in both yield prediction and climate 

risk classification. Explainability analyses 

validated that the model's outputs align with 

domain knowledge, enhancing stakeholder trust 

and practical decision-making in climate-resilient 

agriculture. However, as highlighted in the study 

limitations, the model's evaluation was 

constrained to selected regions and crop types, and 

certain temporal limitations in climate data 

remain. Moreover, remote sensing data pre-

processing did not fully account for real-time 

variability in image quality. Addressing these gaps 

forms the basis for future research. Future work 

will focus on expanding the system’s applicability 

by incorporating diverse crops and broader 

geographic regions to improve generalizability. 

Enhancing temporal resolution through the 

integration of near-real-time weather feeds and 

dynamic remote sensing data quality assessments 

will further refine prediction accuracy. 

Additionally, the system will be extended to 

support adaptive learning, enabling models to 

evolve in response to changing climate patterns 

and agricultural practices. In addition to its 

technical contributions, AgriClimateAI is a climate 

informed farm decision-support tool for farmers, 

agritech companies and policy-makers to help 

grow crops in a climate-smart manner (i.e., the 

right crops at the right place and at the right time), 

irrigate at the right time to minimize waste, and 

mitigate crop yield loss. AgriClimateAI will be 

expanded to include soil properties, pest and 

disease monitoring information, and 

socioeconomic variables. Such an integration will 

enhance the yield forecasting and decision-

support for agriculture with a synthesis of holistic 

approach. Main Focus of Future Improvements will 

be on transfer learning and domain adaptation 

Overall, this will allow ClimaCropNet to react 

quickly to new regions and crop types, benefiting 

from the knowledge acquired from available 

datasets and enhancing its scalability while 

reducing extensive localized data collection. 

Ultimately, the aim is to deploy AgriClimateAI as a 

scalable, real-world decision support system for 

policymakers and farmers in advancing climate-

smart agriculture across global contexts. 
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