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Abstract

Climate variability increasingly disrupts agricultural productivity, demanding systems that couple high-volume data
with interpretable Al. We present AgriClimateAl, a big-data analytics framework that unifies multi-source inputs—
satellite imagery, meteorological records, and crop yield statistics—to monitor climate impacts and support decision
making. At its core is ClimaCropNet, a CNN-LSTM hybrid that learns spatial patterns from remote-sensing features and
temporal dependencies from climate trajectories, followed by an adaptive fusion layer to model climate-crop
interactions jointly. To ensure transparency, AgriClimateAl integrates SHAP and LIME for global and local explanation,
revealing key drivers and validating alignment with agronomic knowledge. Evaluated across multiple agro-climatic
zones, ClimaCropNet achieved an R? of 0.85 and RMSE of 0.43 t/ha for yield forecasting, and 88.6% accuracy for climate-
risk classification, consistently outperforming baseline machine learning and single-stream deep models. Explainability
analyses ranked rainfall and NDVI as the most influential predictors, with consistent seasonal saliency across regions.
The framework’s cloud-scalable design supports near real-time ingestion, spatiotemporal analytics, and deployment
over diverse cropping systems and climates. By delivering accurate forecasts with auditable rationale, AgriClimateAl
enables climate-smart advisories, adaptive input planning, and policy dashboards for resilient agriculture. Overall,
ClimaCropNet advances interpretable spatiotemporal learning for integrated yield prediction and risk assessment,
while AgriClimateAl operationalizes these capabilities into an end-to-end, transferable system for data-driven
agricultural resilience.

Keywords: Climate-Smart Agriculture, Crop Yield Prediction, Explainable Al, Remote Sensing, Spatiotemporal Deep
Learning.

Introduction

Climate change poses a serious threat to global IoT sensor networks and AI for precision

agriculture, affecting crop yields, food security, and
rural livelihoods. Due to temperature fluctuations,
changing precipitation patterns, and extreme
weather events, agriculture has become more
sensitive to climate variability which creates high
uncertainties in uptake of management practices.
This requires high level quantification skills on
climate smart agriculture. Scientists have been
working on using Al, big data, and remote sensing
techniques to forecast crop production and
vulnerability to climate-induced stressors for
more than a decade. Machine learning (ML) models
trained on climatic and edaphic data (1) and
remote sensing (RS)- based imaging has been used
previously to monitor plant health (2). So too have

agriculture merged (3). Most existing works,
however, rely solely on data sources and are
shallow on spatiotemporal features (e.g., at most
temperature and precipitation), limiting their
applicability in capturing the complex climate-
agriculture interactions. Finally, deep learning
suffers from a serious lack of interpretability, and
most works offer very little or no rationale for how
the predictions are derived (4, 5).

Based on those identified gaps, the current study
intends to conceptualise an integrated deep
learning framework—AgriClimateAl, to jointly
sequence remote sensing imagery, climate
observations, and long-term crop yield data in one
continuous pipeline for comprehensive
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monitoring and prediction of agricultural land use.
At the core of this framework is the ClimaCropNet
model, a CNN-LSTM hybrid model we developed
that learns spatial patterns from satellite-based
vegetation index data and temporal trends from
time-series climate data. There are two key
attributes that underline the originality of the
present work: the multi-source data fusion with
the SHAP and LIME explainability-driven analysis,
and its capacity of generalizing and performing
well across different ranges of climatic zones and
types of crops. In contrast to existing approaches
that view spatial and temporal aspects as
independent or learn them separately,
approach does not differentiate between them and
learns them simultaneously, enabling better
interpretative and predictive capability.

ClimaCropNet is a new deep learning-based
architecture to represent the nonlinear
relationships between climate variables and crop
yields. A CNN is the convolutional part if used to
extract spatial features from the remote sensing
imagery, and LSTM is the recurrent part if used to
model temporal dependencies in climate data. An
adaptive feature fusion layer then dynamically
fuses these components, allowing spatiotemporal
dependencies critical to accurate yield prediction
and climate risk classification to be learned jointly.
While previous methods either modelled spatial
and temporal data independently, ClimaCropNet
tackles the spatio-temporal modality into a single

our

explainable framework, thereby advancing the
current of the art
agricultural analytics.

The key contributions of this research include: The
development of the AgriClimateAl system for
climate-aware yield
The design
integrating spatial and temporal learning with an
adaptive feature fusion layer; A comprehensive
correlation and causality analysis guiding feature
selection; Incorporation of explainable Al
techniques to interpret model decisions; and the

state in climate-smart

forecasting and risk

assessment; of ClimaCropNet,

deployment of an interactive decision support
dashboard providing actionable for
stakeholders.

The remainder of this paper is structured as

follows. Section 2 reviews related works on Al-

insights

driven climate impact analysis and agricultural
monitoring. Section 3 presents the proposed
methodology, detailing the system architecture,
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data preprocessing pipelines, ClimaCropNet model
design, and explainability framework. Section 4
presents the experimental results, which include
correlation model  performance
evaluation, studies, and spatial
visualizations. Section 5 discusses the implications
of the results and outlines study limitations.
Finally, Section 6 concludes the paper with a
summary of findings and discusses future research
directions to enhance the system'’s scalability and
adaptability in global agricultural contexts.
Climate-smart agriculture functions

ecosystem which uses artificial intelligence along
with remote sensing and big data analytics to
control climate variability and make agricultural

analysis,
ablation

as an

production more sustainable. The quick
advancement of big data together with artificial
intelligence  technologies has transformed

agricultural operations through scalable systems
for climate observation and yield forecasting. The
solution to agricultural complexities needs system-
level integration according to observations (1).
The evaluation of big data for precision agriculture
focuses on how machine learning (ML) and deep
learning (DL) techniques improve decision-
making and resource optimization (2). The
combination of IoT with big data and ML
technology for smart rice farming has been
documented in literature to enable data-driven
frameworks which improve agricultural task
management (3). The implementation of Al for
climate change adaptation has been studied to
show its role in boosting agricultural resilience (4).
Remote sensing serves as an effective solution for
monitoring extensive areas because of its ability to
detect climate-induced salinity changes that
(5). The
destructive effects of agriculture along with

impact soil conditions combined
climate change on worldwide insect populations
consequences that affect
pollination and crop health (6). Climate change has
caused a reduction of around 21% in worldwide

agricultural productivity (7). The analysis of Al-

create indirect

based crop production systems for sustainable
agriculture includes a thorough evaluation of their
benefits and a review of big data analytics used for
weather forecasting in climate-smart agriculture
(8, 9). Al-driven climate adaptation strategies for
agricultural productivity improvement have been
examined (10).
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An Al system has been developed to predict crop
yields securely through IoT sensors and smart data
integration (11). Al-based time series models
which use embedded real-time monitoring data
have been employed for fruit yield prediction (12).
The analysis examines how artificial intelligence
improves  agricultural  productivity = while
enhancing sustainability and enabling data-based
resource management (13). A summary of
machine learning approaches for climate change
studies includes predictive models which forecast
environmental changes and  agricultural
consequences (14). Spectral intelligence together
with hyperspectral imaging techniques serve as
monitoring tools for agricultural areas and
(15). Research has extensively
explored the applications of ML and DL techniques
for yield prediction together with pest and disease
identification as well as soil fertility mapping and
precision irrigation management (16). ML-based
analytical systems model specific agricultural
climate risk factors at local levels (17). The
summary of deep learning algorithms
agricultural monitoring presents two important
trends in automation and scalability (18). A
detailed analysis of ML applications in agriculture
both new patterns and operational
difficulties (19). Al systems have been developed
for predicting agricultural yields across different
regions in multiple geographical areas (20).

of
applications highlight the need for adaptable and

ecosystems

for

shows

Reviews agricultural machine learning

scalable modeling frameworks
assessments of current challenges (21). The
research evaluated how data quality and model
generalization affect the processing of large

agricultural datasets (22). Deep learning and

along with

remote sensing methods have been used to
evaluate drought early warning systems in
agricultural areas (23). The implementation of
regression and deep learning-based yield
prediction models delivers precise predictions for
specific regional datasets (24). The review of
remote sensing applications in agriculture and
forestry established a framework for big data
analytics in ecosystem monitoring (25). Intelligent

weather data management systems powered by
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artificial intelligence have been developed to
provide precise agricultural climate predictions
(26). Researchers have investigated how to
combine hyperspectral data with ML and big data
systems to improve crop health monitoring
capabilities (27). The effectiveness of remote
sensing technologies for agricultural observation
and analysis has been evaluated through a
comprehensive (28). The study
demonstrates agricultural production
systems benefit from Al and remote sensing
integration during climate stress situations (29).
The analysis of [oT and big data integration shows
potential for precision crop production when
sensor data collection is implemented (30).

Agricultural big data analysis tools based on Al
have been used to forecast disease outbreaks in
crops because of climate change while assisting
with response strategies (31). Big data analytics
enables the implementation of weather-based crop
prediction systems which enhances yield
predictions across various climatic zones (32). Al
technologies in climate-smart agriculture receive
promotion because they enable sustainable
adaptive farming approaches (33). The integration
of IoT systems with blockchain technology and
intelligent data management approaches enables
secure traceability for climate-smart agriculture
(34). The deployment of Al in agriculture requires
examination of its ethical and legal aspects to
promote responsible innovation (35). The analysis

review
how

of [oT and big data together with Al examines their
developing sustainable agricultural
technologies (36). Big data alongside Al
demonstrates its transformative power to enhance
agricultural productivity and strengthen farm
resilience against climate fluctuations (37). The

role in

recent developments in smart agriculture through
IoT combined with ML and big data analytics for
sustainable food systems have been documented
(38). Research has explored how innovative
farming technologies trigger agricultural changes
that result from climatic conditions (39). Practical
use of Al-based climate-smart agricultural models
requires on-farm validation and implementation
(40).
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Table 1: Literature Review Summary of Key Works on Big Data and Al-Driven Climate-Agriculture
Analytics with Identified Research Gaps

Ref. Author(s), Problem Methodology / Key Findings Identified Research
Year Addressed Models Used Gap
(1 Osinga et al, Considerable data Agricultural data Big data  offers Limited system-level
2022 potential and platforms and opportunities but integration for
limitations in solution gaps lacks end-to-end  climate-agriculture
agriculture system integration analytics
(2) Bhat and Al and significant Survey on ML, IoT, Al improves Lacks climate-specific
Huang, 2021 data trends in and big data decision-making in multi-modal
precision solutions precision farming predictive frameworks
agriculture
4) Leal Filho et Al for climate Al algorithms for Al enables adaptive Few systems integrate
al, 2022 change adaptation adaptive farming responses to climate climate change
in agriculture variability adaptation with crop
yield forecasting
(7 Ortiz-Bobea  Impact of climate Econometric Climate change Predictive solutions
etal, 2021 change on global models, slowed agricultural are absent for
agricultural productivity productivity growth local/regional  yield
growth analysis globally forecasts
9 Ali et al, Altechnologiesfor Review of Al- Al optimizes Lacks spatiotemporal
2025 sustainable crop driven crop resource use and modeling for climate-
production production crop growth driven yield
technologies fluctuations
(12) Liu et al, Time series crop Al time series Integrated fruit Limited generalization
2025 yield prediction analysis, fruit monitoring and beyond crop-specific
monitoring weather data case studies
improve yield
predictions
(23) Prodhan et Monitoring Deep learning with  Effective drought Focused on drought
al, 2021 agricultural remote sensing detection in South only; does not address
drought using datasets Asia yield impact
remote sensing prediction
(32) Gupta et al, Weather-based Big data analytics, Demonstrated crop Focuses on India;lacks
2021 crop yield ML regression yield prediction from explainability and
prediction in India models weather patterns global scalability

Table 1 summarizes key studies on Al and big data
agriculture, highlighting methodologies,
findings, and research gaps addressed in this work.

in

The reviewed works underline the integration of
Al-driven models, climate data analytics, and
adaptive
studies

remote sensing for agricultural
monitoring. These collectively
demonstrate the potential of big data and machine
learning to predict crop yields, assess climate risks,
and enhance decision-making. The proposed work

builds on these foundations to develop an

integrated climate-agriculture prediction
framework.

Methodology

This  section introduces the  proposed

AgriClimateAl framework and the architectural
components, data processing pipelines, and model
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design within it. It includes multi-source data
acquisition, spatial-temporal feature extraction
based on the ClimaCropNet model, and
transparent prediction that explains Al modules.
The full collaboration between the modules
facilitates the monitoring and predictive analytics
of agriculture, and provides
interpretable assessments of expected yield and
climate threats.

System Overview

AgriClimateAl is a comprehensive, big data and
Artificial Intelligence-based system that has been
designed to monitor, assess, and forecast the
impacts of climate change on agriculture. By

climate-smart

relying on a multi-source data integration, big data
processing, and machine learning and deep

learning models, as well as explainable Al
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components, it translates the science into
actionable information for climate-resilient
agriculture.

AgriClimateAl Architecture. Figure 1 represents a
high-level overview of the AgriClimateAl design.
The system consists of the following key layers:

1. The multi-source data streams constitute the
Data  Acquisition Layer, which includes
meteorological parameters (temperature, rainfall,
humidity), remote sensing imagery (NDVI, SAVI,
soil moisture), soil composition data, and historical
crop yield records. The datasets come from public

Vol 6 | Issue 4

repositories such as Copernicus, NASA Earthdata,
ERAS, SoilGrids, and FAOSTAT.

2. Big Data Processing and Storage Layer: This
layer is used to ingest, clean, and integrate large
volumes of data into distributed computing
platforms, such as Apache Spark and Hadoop
Distributed File System (HDFS). It provides a
scalable, fault-tolerant architecture for handling
the data and also creates a standard for
harmonizing datasets at different resolutions and
formats.

Meteorological Data

Data

Data Sources

Remote Sensing Data

S

Ingesti Big Data Processing and Storage Spark Monitoring
gestion Engine, HDFS, Data Cleaning, Integration
Pipeline g g gra Module
ATl-Based Analytics Module
Climate-Agriculture Predictive Model: Explainability Module
Correlation Engine ClimaCropNet (SHAP, LIME)

Agronomic and Yield

l

Visualization and D

Spatial Maps, Risk Dashboards, Adaptive Farming Insights

ecision Support System

Figure 1: System Architecture of AgriClimateAl for Climate-Aware Agricultural Monitoring,
Spatiotemporal Data Integration, and Al-Driven Yield Prediction

3. Developed analytical modules are built in the
heart of the system: the Al-Based Analytics Layer.
This consists of a Climate-Agriculture Causality
Evolution Analysis Engine, which performs time-
series correlation and causality analysis to identify
climate factors that have a significant effect on
agricultural outputs. The predictive modeling
aspect is addressed by the introduced
ClimaCropNet deep learning model, which couples
a CNN for spatial feature extraction from satellite
images and an LSTM for modeling temporal
dependencies the conditions.
Moreover, in the second case, the combination of
different ML models with interpretable XAI
from SHAP and LIME generates
explainability of the predictive outcomes, allowing
the pinpointing of some of the main climate drivers
affecting AG productivity.

in weather

modules

4. The Visualization and Decision Support Layer,
the top layer, delivers the analytic results through

GIS-based spatial visualizations, interactive
dashboards, and adaptive agriculture
recommendations. This will enable farmers,

agronomists, and policymakers to make informed
decisions on climate-resilient agricultural
management practices, optimize resource use, and
reduce the risks of crop yield loss. In summary,
AgriClimateAl provides a scalable, interpretable,
and adaptive solution for agricultural climate
monitoring, addressing the shortcomings of data
analyses that remain fragile and arbitrary within
siloed modeling operations in traditional systems.
A CNN-LSTM-based deep
(ClimaCropNet) for the simultaneous extraction of
spatial features from remote sensing data and
temporal patterns in sequential climate data We
introduce the adaptive feature fusion layer that

learning model
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coalesces these expressed temporal counterparts
to enable the joint learning of spatiotemporal
interrelations and a climate-agnostic, unified yet
explainable crop yield prediction model.

Multi-Source Data Acquisition and Pre-

processing
We utilize a range of remote sensing, climate, soil,
and crop yield data in the current study to facilitate
a more comprehensive analysis of climate-
agriculture systems, including Sentinel-2 satellite
images. Retrieve the Sentinel-2 satellite images
from the Copernicus Open Access Hub (41) and the
MODIS land products (42), which provide multi-
spectral spatial granularities for data processing,
including vegetation indices such as NDVI and
SAVI. Climate parameters, including rainfall,
temperature, humidity, and solar radiation, were
obtained from the ERA5 reanalysis dataset in the
Copernicus Climate Data Store (43) and the NASA
POWER agro-climatic platform (44). Historical
crop yield data were extracted from FAOSTAT
(45), which records annual production levels of
major crops by region. Soil characteristics,
including pH, organic carbon, and texture classes,
were also derived from the SoilGrids global soil
database and improved the agronomic context of
the analysis. Joined efforts can provide multimodal
feature extraction and predictive modeling for
monitoring and forecasting yield with climate
awareness.

The AgriClimateAl platform aggregates data from
various sources to account for the complex
interplay between climate variables and crop
production. The data includes remote sensing
derived from satellite

images monitoring,

meteorological observations, soil and other
empirical data sources, and historical yield
statistics. High-resolution vegetation index
products, such as the Normalized Difference
Vegetation Index (NDVI) and the Soil-Adjusted
Vegetation Index (SAVI), are derived from remote
sensing data, such as Sentinel-2 and MODIS. These
indices are determined by spectral reflectance in
the red (R,4) and the near infrared (R,,;-) bands,

being NDVI expressed as:
NDV]=Ruir—Rred [1]

Rpir+Rred
and SAVI, the same effect of soil brightness into
account, calculated as:

SAVI:(1+L )(Rnir—Rred) [2]

Rpir+Ryeq+L

Vol 6 | Issue 4

where L is the soil adjustment factor, usually equal
to 0.5 for moderate vegetation.

Weather data, including temperature,
precipitation, humidity, wind speed, and solar
radiation, are extracted from the ERA5 and NASA
POWER datasets to obtain the spatio-temporal
granularity of climate variables in agricultural
areas. Soil property information (e.g., pH, organic
carbon content, and texture composition) is
harvested from the SoilGrids global dataset. We
obtain historical crop production and yield data
from various regions and crop types in FAOSTAT,
which can be used for supervising climate impact
modeling.

The pre-processing pipeline addresses the
heterogeneity of data in both temporal and spatial
domains. All datasets are quality controlled,
normalized, and missing data is imputed.
Atmospherically corrected and reprojected remote
sensing imagery to a standard spatial reference
system. The data are temporally aligned by
resampling the datasets to uniform time
sequences, and spatial resolution harmonization
was implemented to reconcile the discrepancy
between coarse-grained climate data and high-
resolution satellite imagery.

The ingestion and transformation of big data are
conducted with Apache Spark in a Hadoop
Distributed File System (HDFS). Data ingestion
uses  parallelized batch  processing to
accommodate extensive datasets. Numerical
features x; are normalized through a min-max
scaling method by:

norm _ _Xi~Xmin [3]

Xi

Xmax~Xmin

scaling all input dimensions to a similar scale, and
can improve the stability of the learning of the
model.

For missing values, we interpolate them or simply
substitute by the climatological mean according to
the type of data. Satellite derived VEGETATION
indices are temporally interpolated with the linear
or spline method and meteorological gaps are
filled using long-term averages of the station.

Due to its distributed processing capacity, the pre-
processed datasets are then partitioned into
region-wise and crop-specific subsets, which
allows the training of scalable models for different
areas and crops. This harmonized multi-source
data environment is the base input for the
ClimaCropNet model and the overall AgriClimateAl
framework.
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Climate-Agriculture Correlation
Analysis Module

The climate-agriculture relationship analysis
module, which automatically recognizes and
estimates the statistical linkages of climatic
stressors on the geo-referenced agricultural
parameters. The goal of this module is to capture
linear and non-linear dependencies on climate, and
possible cause-effect relations, in a way that will

g (=x)(

Yi=Y)

Vol 6 | Issue 4

allow the better understanding of the complex
connections between climate variability and
agricultural outcome.

First, the pairwise correlation analysis is computed
by using Pearson’s correlation coefficient for the
linear relationships between continuous climate
variables and crop yield data. The Pearson
correlation 7, for two variables x and y is
expressed as:

[4]

Ty =
\/Z?_l (xi—g)z\/Z?_l i-y)?

where x and yare the averages of x and y,

respectively, and n is the number of observations.
We also compute Spearman’s rank correlation for
learning monotonic but nonlinear relationships
between dependent and independent variables,
and determines the correlation based on the
ranked values of the independent and dependent
variables.

Apart from simple associations, the module
examines causal inference through Granger
causality test and investigates the relationship
between time series data of climatic variables and

I(XY)=Yxex Zyer P(x,¥) log log

where I(X;Y) is the mutual information.

where p(X, y) the joint probability distribution, and
p(x) and p(y) the marginal distributions of X and Y
This analysis reveals which climate factors
transport the most information with respect to
agricultural yield.

Lag analysis in time is also performed to determine
delayed effect of climate on growth stages of crops.
Cross-correlation functions are calculated with
different temporal lags to determine the most
suitable shifts for the association between climate
variables and yield indicators.

The outputs of this module are ordered lists of
climate variables according to their correlation
intensity and causality significance, which are then
utilized as input predictors for the ClimaCropNet
architecture. This will help to ensure that the
predictive modeling is centred on meteorological
conditions that have a demonstrated statistical and
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trends of crop yields. The technique of Granger
causality tests whether the past values of a climate
variable X,can add statistically significant
information in the forecasting of another time
series Y;, assuming that causality follows a
temporal precedence order.

Footnote1l9 For a general, non-linear or even
multi-modal relationship, mutual information
analysis is used. The mutual information function
I(X; Y) quantifies the decrease in the uncertainty of
one variable with the knowledge of the other and
is defined as:

p(xy)

p()p ()

[5]

causal relationship with the performance of
agriculture.

Parallelization of correlations all the correlation
calculations and causality analyses parallelized
with Spark™ MLIib and distributed statistical
libraries to manage large-scale, multi-regional
datasets in an efficient manner.

Design of ClimaCropNet Model

This article presents the architecture of the
ClimaCropNet model, the predictive
machinery inside AgriClimateAl. The model
ClimaCropNet combines a Convolutional Neural
Network (CNN) to extract the spatial information

main

of remote sensing data and a Long Short-Term
Memory (LSTM) network to learn the temporal
patterns due to climate. Such representations are
combined via an adaptive feature fusion layer for
making accurate spatiotemporally-informed crop
yield predictions.
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CNN Module
c L LSTM Module
Multi Modal Input Data ony Layers LSTM Layers
(Remote Sensing, Climate ) »
Data, Soil Data, Yield Pooling Layers Temporal Feature
Records) :
Flatten Layer Extacien
Output Layer Fully Connected Layers
Crop Yield Prediction / | |q—o Dense Layers + «—— Feature Fusion
Climate Impact Risk Activation (ReLU /
: Sigmoid)
i
r==-=-=-=--- Voo 1
! Explainability (SHAP/ |
! LIME) '

Figure 2: Architectural Design of the ClimaCropNet Model for Spatiotemporal Crop Yield Prediction

Figure 2 depicts the architecture of ClimaCropNet,
the pivotal prediction module of AgriClimateAl
framework. The model consists of a CNN to digest
spatial remote sensing features such as NDVI and
SAVI; and an LSTM to capture the temporal
patterns from the sequential climate data. These
spatial and temporal characteristics are combined
using an adaptive feature fusion layer to achieve
joint learning of spatiotemporal dependencies.
Fused features are propagated through fully
connected layers to produce predictions for crop
yields or to classify climate-induced risk zones,
thus enabling accurate agricultural analytics that
are interpretable across environments.

Zi,j,k = f(z%—l Zﬁ—l Zg—l Wm,n,c,k'Xi+m—1,j+n—1,c + bk)

where Z; ; , is the output feature map at location (j,
j), in channel k, W denotes the convolutional kernel
weights, by, is the bias term for the k" filter and M,
and N are the dimensions of the kernel, and f(+) is a
non-linear activation function such as Relu defined
by:

f(x)= max (0, x) [7]

The CNN CDo-based module incorporates
additional convolutional layers running in parallel
with max-pooling blocks. Max-pooling pool reduce
the spacial dimensions and help the model reduce
the pre-processing step, by of capturing spatial
invariance features. The output of the last pooling
layer is flattened into a feature vector F,,,

1137

CNN Module: Spatial Feature Extraction
The CNN module in ClimaCropNet is developed
considering the ability to capture spatial patterns
and textures in the remote sensing images, more
specifically, it acts on vegetation indices such as
NDVI, and SAVI (obtained as described by
equations [1] and [2]). These indices, in the form of
multi-channel input matrices, represent changes in
crop health, soil texture, and water stress by
agricultural zones.

Here, CNN module takes input multi-dimensional

tensor XERH*XWXC

, where H and W are the spatial
dimensions of the satellite image patch and C is the
number of input channels available (like NDVI,
SAV], LST, and other derived indices). The filtering
or convolution operation applied to input tensor is

mathematically formulated as:

(6]

retaining the most discriminative spatial patterns
over the satellite images.

Batch normalization
convolutional layer to stabilize the learning and

is used following each

speed up convergence. Optionally, dropout
regularization is applied in order to cope with
overfitting, particularly when the provided

training examples are relatively scarce crop-
specific regions.

The extracted spatial features F.,, are then fed
into the following LSTM module for temporal
learning. This modular isolation enables the CNN
to effectively learn local spatial variations, such as
crop clustering phenomena, soil anomalies, and
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moisture-distribution  patterns, which
for the interpretation of spatially
heterogeneous climate impact on agriculture.

The CNN module is created using TensorFlow or
PyTorch to modify models, including kernel sizes,
number of layers, and activation methods,
according to the specific data properties of a region
during the experiment.

LSTM Module: Temporal Feature

Learning

The LSTM unit of the ClimaCropNet architecture
aims at extracting temporal patterns in climatic
variables and how they have reacted on the
different growth stages of the crop. Concretely, the
CNN module captures spatial characteristics from

are
essential

fi = c(Ws. [he—y, x,] + bf)

iy = o(W;. [he_y, xc] + by)

C, = tanh(We. [he_1, %] + b¢)
CtzftQCt—1+it®€t

0y = o(W,. [he—q, ] + b,)

ht’ = 0¢ Q tanh (Cf)

where, f;, i;, and o, are forget, input and output
gates respectively; C, is candidate cell state; C, is
updated cell state; h, is hidden state; W, W;, W,
and W, are weight matrices; bf, b;, b;, and b, are
bias vectors; o is a sigmoid function; and © is
element-wise multiplication.

Such repeated scheme would help LSTM module to
memorize the long-term dependencies, on the one
hand, exclude the tipsy old information by forget
gate; on the other hand highlight the new pattern
by input gate. The LSTM temporal abstraction is
suitable to capture delayed climatic effects, such as
post-precipitation soil moisture retention and
lagged temperature stress in critical crop stages.
the last time step), which includes the complete
time dependent information about the videos and
is sent to the feature fusion layer and concatenate
with the spatial features. This modular separation
of spatial and temporal learning allows the model
to generalize over different climatic patterns and
cropping seasons.

We train the LSTM block using adaptive learning
rates scheme (such as Adam) in the optimization

Ffusion= [Fennll Fisem]

where [[I] is a vector concatenation. This

operation generates an overall feature space
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remote sensing images, while the LSTM module
operates on the sequences of climate data
consisting of temperature, rain-fall, humidity, etc.,
over several time steps for modeling their
variations over time in the crop growth period.
The LSTM module takes spatial feature vector
F_pn from the CNN module, is concatenating with
the time-series of  climate variables.
Mathematically the LSTM model reads in a
sequence {x.}!_;, where x,€R® is the feature
vector at time step t and T is the total number of
time steps that correspond with the key
phenological stages of the crop.

The LSTM cell does the following operations at
each time-step t:

(8]
[9]
[10]
[11]
[12]
(13]
process, and overfitting is prevented by the
dropout regularization applied between the
recurrent layers. The length of the time sequence T
and the dimensional number d are determined
according to the length of the crop growth cycle
and D the dimension granularity of the climate
data.

Feature Fusion Layer

The feature fusion layer in the ClimaCropNet
model is designed for fusing the spatial
representations learned by the CNN module and
the temporal dependencies encoded by the LSTM
module. This merger, in turn, allows the model to
reason together about how the spatial crop
patterns and the time-varying climate interact and
drive the agricultural outcomes.

Let F.,,, whose rows are the global feature vectors
outputted from the final layer of the CNN module,
and Fjgy, be the final hidden state h;, which is
outputted by the LSTM module as in equation [13].
The two feature vectors will be concatenating to
the combined feature vector:

[14]

Frysion€R%enn*distm, where dp, and d;g, are the
dimensions of CNN and LSTM feature vectors.
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The concated feature vector Fy;,y is sent through
one or several fully connected (dense) layers to
high order interactions between spatial and

HO = (WO, HO-D 4 p©)

where H® is the output of the [** dense layer, W ®
and b® are the weights and the bias, and o(+) is the
activation function (typically ReLU). where the
first input is initialized as H®.

Dropout regularization is used after each dense
layer to improve model generalizability and
prevent overfitting. Batch normalization can be
added between layers to regularize training
dynamics and speed up convergence.

The learned fused feature representation is
capable of encoding the static spatial layout of
agricultural fields as well as the dynamic temporal
evolution patterns of climatic factors. This leads to
limitation of the model to make better and context
specific prediction on crop yield fluctuations or
climate caused agricultural risks.

The output of the feature fusion layer is finally sent
to the prediction layer for regression (continuous

HO = g(w®, gD 4 p©)

where H® is the output feature vector of the layer
, WO and b® are the weight matrix and bias
vector, respectively, of the layer, @(-) is the
activation function, commonly the ReLU function
(#(x)=max(0, x) ) in hidden layers.

Dropout regularization and (optionally) batch
normalization layers

are used to increase

%

here W ©¥) and h©¥D are the weights and bias of
the output layer, respectively, H®) is the feature
vector from the last hidden layer. When the output

expexp (z;)
Py)=gr————————
(i) Z;'(—l expexp (zj)
where the P(y;) is the probability of the i" class,
z; is the raw output score of class i; and K is the

number of all classes.

1 ~
Luse =3 Xl 00 = 9)?

from where y;and ¥;are the accurate and
predicted yields of the i" sample, respectively,
and N is the number of the samples. Categorical
cross-entropy loss is employed for classification
purposes.
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temporal patterns. Every dense layer consists of a
linear transformation of shape.) followed by a
non-linear activation function, that is, (4) where,

[15]

yield values) or classification (categorical risk
levels) purpose.

Fully Connected and Output Layers

The FC and output layers in the ClimaCropNet
model, % take the fused spatio-temporal feature
vector pooled by the ROI pooling layer (sourced
from equation [14]), and predict values for crop-
yield, or climate risk scores. These layers serve as
the last mapping step, but they learn complex non-
linear relationships between the fused features
and the desired agricultural outputs.

Then, the combined feature vector is fed into a
stack of fully connected layers, which apply a linear
transformation followed by a non-linearity. and
the transformation at the thick [*"layer is
mathematically expressed as:

[16]

robustness and avoid overfitting between each
pair of dense layers. The last fully connected layer
computes the output vector Y,,.q, which is the
desired prediction target. If time-dependent yield
prediction is not necessary, a network is trained
with a linear activation in its output layer:

[17]

is categorical, for example risk classification, a
softmax function as the final activation is:

(18]

The model is trained with backpropagation with an
appropriate loss. For yield regression, we use the
squared mean error (MSE) loss:

[19]

This ClimaCropNet model conducts the last stage
produce
predictions,
dependencies learned between climate variability
and agricultural productivity.

to interpretable and actionable

incorporating the spatiotemporal
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An efficient, distributed data pipeline was
developed to populate AgriClimateAl framework
for large-scale datasets. The raw climate and crop
data collected is stored in a scalable fashion by
ingesting it into a cloud HDFS (Hadoop Distributed
File System). Using Apache Spark, data
preprocessing such as cleaning, normalization,
feature extraction, etc., is parallelized, meaning
that several chunks of data can be processed
simultaneously in computing nodes. Through a
series of scheduled batch jobs, we built processing
pipelines to combine real-time weather feeds
together with satellite imagery. For instance, in the
case of model training tasks, GPU-enabled clusters
are used by distributing the CNN and LSTM
computations, thus reducing model training time.
Such an architecture means that AgriClimateAl is
capable of handling terabytes of data at a scale
while retaining throughput and reliability.

1 ~
Leg = —= ?—1 25—1 Yir log log Vi

N

where y;;, is a binary indicator (0 or 1) that the
class for instance i is class k, and k K) J;, is the
predicted probability for class k with K being the
number of classes.
Early-stopping with validation loss checking is
applied to avoid model overfitting and improve
generalization. Dropout layers, L2 regularization,
I 0i-90?
R*=1- S i-9)?

Root Mean Squared Error (RMSE):
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Training Strategy and Evaluation

Protocol

The training of the ClimaCropNet uses the
supervised learning approach where the
concatenated input feature set is used for training
the model with either historical values of crop
yield or risk category defined by climate as ground
truth labels. This dataset is divided into training,
validation, and test set based on the stratified
sampling strategy in order to it to have a balanced
crop-type, climate zone, and temporal period.

The Adam optimizer is used in the training, using
first and second moment estimates of the gradients
to calculate adaptive learning rates for each
parameter. The learning rate m is first set and
decayed across epochs to make sure stable
convergence. The optimization objective changes
with the task as follows:

For classification purposes (e.g. classification of
climate risks), ours downstream loss is minimized,
and but as in (10) it is also given by:

[20]

and batch normalization also help with training
robustness.

The proposed ClimaCropNet is evaluated by the
well-recognized regression and classification
metrics. The measures for regression problems
are:

Coefficient of determination (R?):

[21]

1 A N2
RMSE= \/;ZL - 9)

Mean Absolute Error (MAE):
1 ~
MAE= =31 |y = 9il

classification
precision, recall,
reported, along with confusion matrices to assess
detailed error information.

For problems, the accuracy,

and F1l-score metrics are

Cross-validation is conducted across multiple
cropping seasons and climate zones to assess the
model's robustness and transferability. The K-fold
cross-validation averages the evaluation over each
regional and seasonal subset to avoid data
imbalance bias.
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[22]

(23]

The complete training and evaluation process is
automated in a distributed computing system
based on Apache Spark’s ML pipelines and
TensorFlow’s distributed training framework. This
enables experimentation at scale when working
with large datasets that span multiple years and
geographic regions.

The finalized model is put into inference mode,
where it is passed new climate and satellite data
for computing expected crop yields or climate risk
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categories, which helps to inform and execute
proactive farming decisions.

Explainability with XAl Modules

The  AgriClimateAl system incorporates
explainable artificial intelligence (XAI) modules to
enhance the transparency of model predictions
made by ClimaCropNet. They enable the
interpretation of feature attributions and explain
the impact of climatic and spatial features on
agricultural quantities in terms that are human-
understandable. Interpretability is crucial,
particularly in climate-agriculture applications, as

B=Yscm ISI(IFI-ISI-1)!
where F is the full set of features, S is a subset of
features excluding i and f5(xs) is the model trained
on S. This formulation leads to a fair/non-
contradictory feature attribution across inputs.

LIME, in contrast, aims to approximate the
complicated model f locally with an interpretable
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decisions are informed by the causal analysis of
environmental factors and crop performance.

It uses SHapley Additive exPlanations (SHAP) and
Local Interpretable Model-agnostic Explanations
(LIME) as post-hoc interpretation technique. SHAP
values are determined by a way of calculating the
contribution of each input feature to the model’s
output with using cooperative game theory. Let f
be a trained model and x an input instance then
SHAP value is defined as >The contribution of i in
the difference between the predictions and the
average output when using all possible feature
combinations is the SHAP value @, for feature i
(SHAP).

i oy (xsuiy) — fs(x)]  [24]

local surrogate model g (e.g. a linear regression),
which is valid on the distorted x. Specifically, the
underlying optimization objective of LIME is based
on minimizing the loss L (f, g, m,) between the
black-box f and surrogate g, weighting the loss by
the proximity 7, to the original instance:

arg arg L(f,g,m,) + 2(g) [25]

where G is the set of interpretable models and (g)
is a term for model complexity.

By employing SHAP and LIME, the AgriClimateAl
system computes both global explanations, which
detect trends in feature importance across the
entire dataset, and local explanations, which
provide insights into individual instances. These
descriptions indicate which climatic variables (e.g.,
rainfall during the vegetative stage, extreme
temperatures during flowering) and spatial
patterns (e.g., differences in NDVI among fields)
contribute most to our forecast of yield or risk.
The results of the XAl are visualized in the form of
feature importance bar charts, heatmaps on
remote sensing images, and time series graphs that
show the temporal contribution of climate
features. They help agronomists and policymakers
interpret what is driving predicted agricultural
impacts, thereby assisting in the formulation of
climate-resilient farming practices.

The PAL models for explainability are directly
integrated within the AI analytics layer, so that
every prediction produced by ClimaCropNet
comes with clear, interpretable evidence,
increasing trust and enabling the broader

application of Al in agricultural decision-making.
Algorithmic Implementation

This algorithm describes the methodology for
selecting climatic drivers through a systematic
correlation and causality analysis to influence food
production. The method begins by collecting
multisource data, including climate data, remote
sensing images, soil samples, and historical crop
yields. Preprocessing includes data cleaning,
normalization, and temporal-spatial matching,
from which NDVI, SAVI, and other vegetation
indices are derived as estimates of spatial
normalization factors for crop health.

Algorithm 1: Climate-Agriculture Correlation Analysis Workflow

Input: Multi-source datasets Dgimates Dremoter Dsoits Dyieta

Output: Selected significant climate-agriculture feature set Fyjecteq
1. Acquire D¢jimater Dremoter Dsoits Dyiera from public repositories.
2. Preprocess all datasets: clean, normalize, and align temporally and spatially.
3. Compute vegetation indices (NDVI, SAVI) using equations (1) and (2).
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4. Calculate correlation coefficients between climate variables and crop yield using equation (4).
5. Perform causality analysis with Granger causality and mutual information using equation (5).
6. Identify and rank climate variables with strong correlation or causality.
7. Select the top K features as Fy,jocreq fOr predictive modelling.

End

The algorithm then employs Pearson and
Spearman correlation analyses to assess the linear
and Spearman relationships between climate
variables and crop yield trends. Granger causal
testing is carried out using mutual information
analysis, allowing for the conditioning on all direct
and indirect effects of climate to capture time-
varying causal relationships between the two

systems. The algorithm selects these factors based

on their level of statistical significance and
predictive power.

At last, a subset of the most essential features is
chosen as the optimized -climate-agriculture
feature set Fygocteq- This set of features is then
used as input for the ClimaCropNet model,
allowing the predictive analysis to focus on the
most significant and causal climatic drivers.

Algorithm 2: ClimaCropNet Model Training and Inference
Input: Selected features Fggjocteq, preprocessed datasets
Output: Predicted crop yield ¥ or climate risk score R
1. Extract spatial features from remote sensing data using CNN; compute F,,,, via convolution
(equation (6)) and activation (equation (7)).
2. Extract temporal features from sequential climate data using LSTM; compute F;,, using equations
(8) - (13).
3. Fuse spatial and temporal features as Fy,;0, by concatenation (equation (14)).
4. Pass Fyysi0n through fully connected layers (equation (16)) to learn higher-level representations.
5. Generate output predictions:
o For regression: predict yield ¥ using equation (17).
o For classification: predict risk score R using softmax equation (18).
6. Train the model using MSE loss (equation (19)) or cross-entropy loss (equation (20)) with the
Adam optimizer.
7. Evaluate performance using R?, RMSE, and MAE (equations (21)-(23)); record evaluation metrics.
8. Apply SHAP (equation (24)) and LIME (equation (25)) to interpret model predictions.
9. Export predictions and feature importance scores for visualization and decision support.
End

This is encapsulated within the algorithm training
and testing procedure for the ClimaCropNet
architecture consisting of combined spatial and
temporal feature learning for the prediction of
climate induced effects in agriculture. The first
step of the approach consists on the application of
a CNN F,,,,, on remote sensing images in order to
obtain spatial features describing vegetation and
land surface types. Meanwhile, LSTMs take in
sequences of climate features and model temporal
dynamics and lagged impacts of climate variables
to extract temporal features Fs;,,.

The spatial and temporal representations are
integrated by concatenating and the final feature
vector Frygon VH is sent to several fully-connected
layers to capture complicated correlations. The
output prediction
continuously estimated crop yield or as a classified

is derived either as a

1142

climate risk score depending on the task. The
model is trained by means of the correct loss
function—mean squared error for regression
classification or cross-entropy and it is optimized
with the Adam optimizer. At test, RMSE, R?,and
MAE are calculated to determine the model's
accuracy. Interpretability modules, including SHAP
and LIME, are used then to interpret the effects of
the climate and spatial features on the model's
predictions. The ultimate predictive predictions
and analytic insights are provided to decision
support, and  visualization @ modules  of
AgriClimateAl system.

Decision Support and Visualization

The final step of the AgriClimateAl system
translates high-level predictive results into
decision-support  outputs, represented
interactive visualization tools. This step is crucial

as
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for enabling farmers, agronomists, and
policymakers to accurately interpret the results
generated by the CVA and implement timely
interventions for effective agricultural
management. The predictive and
explainability of the proposed ClimaCropNet
model are integrated into user-friendly interfaces,
enabling region-specific agricultural monitoring
and planning.

Spatial visualization is enabled through mapping
tools using Geographic Information Systems (GIS),
which provide overlaid predictions of crop yields,
vegetation indices, and climate risk scores on
regional agricultural maps. The maps are color-
coded by either risk or predicted productivity,
allowing stakeholders to identify vulnerable areas
or high-performing areas easily. The spatio-
temporal dynamics of these predictions are
presented using dynamic maps, which depict the
difference between individual cropping seasons by
an animation across time, thus identifying new
patterns as a consequence of climatic anomalies.
In addition to the spatial outputs, the system
provides data tables and graphical summaries for
performance indicators, including predicted
yields, confidence intervals, and feature
attribution scores generated by explainability
modules. Time series charts show which specific
climate variables, such as total rainfall or average
temperature, had the most significant effect on
crop yield estimates during the season.

outcomes

These visualizations are integrated into an
interactive Decision Support Dashboard with real-
time querying capabilities. Users can screen search
results by region, crop, and climate type, and
model future climate scenarios based on climate
projections. The dashboard also includes adaptive
recommendations, such as optimized sowing
dates,
strategies based on expected climate impacts.

Moreover, the decision support layer supports
connection to external farm management systems

and government portals, enabling deployment at

irrigation plans, and crop protection

the scale of the entire farming industry. Auto-
reporting systems generate regular summaries
that aid in planning agriculture,
preparedness, and the formulation of food security
policies.

disaster
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The decision support and visualization module
provide transparent, interpretable, and locally
relevant information, thereby connecting complex
Al-driven analysis with the needs of on-the-ground
agricultural decision-making. This enables the
stakeholders
farming practices and pre-empt the climatic
uncertainties.

to undertake climate-resilient

Results
This section provides experimental results 2.1
Validation of AgriClimateAl system and

ClimaCropNet model. Multiple analyses, such as
correlation analysis, predictive modeling and
explainability assessment, were developed over
multi-source agricultural and climate datasets. The
findings illustrate the capability of the system for
predicting the fluctuations of crop yield and
climate-induced risks and also to give
interpretable information for practical agricultural
decision support.

Experimental Setup and

Implementation Details

Experimental evaluation Freitas et al (2016)
evaluated the proposed AgriClimateAl system on a
distributed computing infrastructure and for
large-scale spatiotemporal data. The hardware
configuration: Intel Xeon Gold 6226R CPU (2.90
GHz), 256 GB RAM, and NVIDIA Tesla V100 GPU
(32 GB VRAM) running linux ubuntu 20.04 LTS.
The brushed-off data processing and storage
infrastructure was Hadoop Distributed file system
(HDFS) for scalable processing of data, and Apache
Spark 3.2 for performing distributed in-memory
computation.

The deep learning model ClimaCropNet was
developed using TensorFlow 2.13 and Keras API
for model architecture configuration, training, and
testing. The explainability modules, SHAP and
LIME, were used as SHAP 0.42 and LIME 0.2.0
libraries.  Preprocessing
Preprocessing pipelines were implemented in
Python 3.9 using libraries such as NumPy, Pandas,
and GDAL for spatial data handling, as well as
Scikit-learn for feature transformations. The
hardware, software, and model configuration used
to deploy and evaluate the proposed AgriClimateAl
system are given in Table 2.

time:  Brute-force
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Table 2: Experimental Environment and Configuration Details for Implementing AgriClimateAl and

ClimaCropNet Model Training

Category Specification / Details

Hardware Intel Xeon Gold 6226R CPU @ 2.90 GHz, 256 GB RAM, NVIDIA Tesla V100 (32
GB VRAM)

Operating System Ubuntu Linux 20.04 LTS

Distributed Apache Spark 3.2, Hadoop Distributed File System (HDFS)

Framework

Programming Python 3.9

Language

Deep Learning TensorFlow 2.13, Keras API

Libraries

Explainability SHAP 0.42, LIME 0.2.0

Libraries

Data Processing NumPy, Pandas, GDAL, Scikit-learn

Libraries

Model Architecture CNN + LSTM with Feature Fusion (ClimaCropNet)

Optimizer Adam

Learning Rate 0.001

Batch Size 64

Epochs 150 (with early stopping)

Activation Functions ReLU (intermediate layers), Linear/Softmax (output layers)

Data Split Ratio 70% Training, 15% Validation, 15% Test

Monitoring Tools TensorBoard, Model Checkpointing

Datasets were divided into training (70%),
validation (15%), and test (15%) datasets with a
balanced partition for crop types, climate zones,
and temporal A grid
performed on the hyperparameters using the

seasons. search was
validation set. The most critical hyperparameters
were a learning rate of 0.001, a batch size of 64,
ReLU activation for the hidden layers, and the
Adam optimizer for solving gradients.

The model was trained for 150 epochs, and early
stopping was used based on validation loss to
prevent overfitting. The training dynamics and the
performance metrics were monitored throughout
the experiments using model checkpoints and
TensorBoard visualizations. This experimental
setup enabled the processing of heterogeneous,
multi-source data streams in a scalable manner,
while also facilitating the scaling up of robust

model training and accurate performance
evaluation.

Dataset Characteristics and
Preparation

The experimental studies were conducted with
multi-source data, including RS image, climate
data, field properties and crop yield data. The
datasets included multiple cropping areas and

climatic zones and were used for model robustness
training and validation.

Remote sensing data consisted of Sentinel-2 (10-
20 m spatial resolution) images and MODIS
vegetation indices for the period 2015-2024.
Vegetation indices, namely NDVI and SAVI, were
calculated using the near-infrared and red spectral
bands based on equations (1) and (2). The data
was aggregated into a 16-day temporal resolution
corresponding to the stages of cropping cycle.

The climate datasets comprised daily temperature,
precipitation, humidity, wind speed, and solar
radiation data from the ERAS reanalysis and NASA
POWER platforms. The spatial resolution was
harmonized to 0.25° grids, and temporal
aggregation was performed on a weekly basis to
align with crop phenological stages.

Historical crop yield data for major crops,
including rice, wheat, and maize, were obtained
from FAOSTAT, providing annual yield statistics at
the regional level. Where available, sub-national
yield records were integrated for finer-grained
analysis.

Soil property data, including pH, organic carbon,
and texture class, was sourced from the SoilGrids
database and used as auxiliary input features. The
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soil data was static and aligned spatially with the
climate and remote sensing layers.

During data preparation, all datasets underwent
spatial re-projection to a standard coordinate
reference system (WGS 84). Temporal gaps in
climate data were filled using linear interpolation,
while missing yield values were imputed using
multi-year rolling means. Spatial layers were
clipped to agricultural land-use boundaries
derived from land cover maps.

Vol 6 | Issue 4

The final prepared dataset comprised climate
variables (15+ features), vegetation indices (5
features), and soil properties (3 features),
aggregated across 250+ regional zones over
multiple years. This comprehensive dataset
enabled the training and validation of the
ClimaCropNet model for spatiotemporal yield and
climate risk prediction.
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Figure 3: Exploratory Data Analysis of Climate and Agricultural Variables
Figure 3 presents key exploratory insights from Spearman’s rank correlation analysis

the climate and agricultural datasets. Subfigure (A)
shows yearly trends in rainfall and temperature,
highlighting seasonal variability. Subfigure (B)
illustrates a positive relationship between NDVI
and crop yield. Subfigure (C) displays correlation
strengths among climate and yield variables.
Subfigure (D) depicts regional disparities in crop
yields across major agricultural zones.
Correlation and Causality Analysis

Results

To assess the influence of climatic factors on
agricultural productivity, statistical correlation
and causality analyses were performed on the
prepared correlation
coefficient, computed using equation (4), was

datasets. Pearson’s

applied to quantify the linear relationships

between climate variables and crop yield.

supplemented this by capturing monotonic but
potentially non-linear associations.

The results revealed that rainfall and NDVI
exhibited the strongest positive correlations with
crop yield, with Pearson correlation coefficients of
0.72 and 0.68, respectively. Temperature
displayed a moderate negative correlation of -
0.45, suggesting the detrimental effect of excessive
heat on crop performance during critical growth
stages. Humidity and wind speed demonstrated
weaker but statistically significant correlations
with yield, ranging between 0.30 and 0.40.
To potential causality,
causality tests were applied, revealing that rainfall
and NDVI significantly Granger-caused yield
variations (p<0.05p < 0.05p<0.05), indicating that
past values of these factors improve yield
prediction accuracy. Mutual information analysis,

investigate Granger
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using equation (5), further confirmed the
dependency structure, with rainfall and NDVI
contributing the highest information gain values of
0.87 and 0.75, respectively.

Temporal lag analysis highlighted that rainfall
during the vegetative stage (weeks 4-8) and NDVI
during the flowering stage (weeks 8-12) had the
highest predictive influence on yield outcomes.

Vol 6 | Issue 4

understanding of crop growth cycles, where early
moisture availability and mid-season vegetation
health are critical determinants of final yield. The
correlation and causality results guided the feature
selection process, prioritizing rainfall,
temperature, NDVI, and soil moisture as primary
predictors for the ClimaCropNet model, ensuring
that the most impactful climatic drivers were

These  findings align  with  agronomic emphasized during model training.
Table 3: Correlation and Causality Analysis of Climate Variables and Crop Yield
Variable Pearson Spearman Granger Causality (p- Mutual
Correlation Correlation value) Information
Rainfall 0.72 0.70 0.012 0.87
NDVI 0.68 0.69 0.018 0.75
Temperatu  -0.45 -0.48 0.045 0.60
re
Humidity 0.35 0.32 0.085 0.42
Wind Speed -0.30 -0.28 0.110 0.38
(A) Pearson Correlation (B) Spearman Correlation
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Figure 4: Correlation and Causality Analysis of Climate Variables and Crop Yield

Table 3 presents the quantitative results of the
correlation and causality analysis between climate
variables and crop yield. Rainfall and NDVI exhibit
strong positive correlations and significant
causality with yield, confirming their predictive
importance. Temperature exhibits a negative
correlation, indicating that heat stress has an
impact. Mutual information scores further validate
these relationships, guiding the selection of
features for predictive modeling.

Climate-Yield Relationships Based on Four
Statistical Measures In subplot (A) of Fig. 4, the
Pearson correlation is displayed, and we find for
crop yield that rainfall and NDVI have the strongest
positive correlation, implying these factors are
directly influencing production. Temperature has a
negative correlation indicating that the higher this
parameter, the yield is negatively affected, while
humidity has a lower positive correlation and wind
speed has a low negative correlation. Subplot (B)
shows the similar pattern in the Spearman
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correlation also supports the trends shown in
Pearson correlation, indicating that the
associations are consistent across statistical
approaches.

Subplot (C) shows the Granger causality p-values
suggesting the strength of the temporal causal
relationships. The rainfall and NDVI reach the
lowest value of p, therefore it is significant
causality with yield over time, while the
temperature, humidity, and wind speed show a
relatively weaker causal effect. Mutual information
— plots in Subplot (D) that capture both linear and
non-linear dependencies between variables and
yield. Finally, the most significant factors with
most mutual information values are the same:
Rainfall and NDVI, followed by temperature,
humidity and wind speed.

In totality, the figure highlights that rainfall and
NDVI are the primary predictors of crop yield in all
three statistical metrics, while temperature,
humidity, and wind speed are secondary although
still significant drivers. This insight offers a
quantitative tool to figure out how climate
variables interact to affect productivity.

Vol 6 | Issue 4

Model Performance Analysis

The performance of the proposed ClimaCropNet
model was evaluated on the prepared test dataset,
focusing on both regression and classification
tasks depending on the output type (yield
prediction or climate risk classification). The
model demonstrated robust convergence during
training, as evidenced by the training and
validation loss curves, which stabilized within the
first 100 epochs under early stopping conditions.
As shown in Table 4, for the regression task of
predicting crop yield, the model achieved a
coefficient of determination (R?) of 0.85, indicating
strong predictive power. The Root Mean Squared
Error (RMSE) was 0.43 tons/ha, and the Mean
Absolute Error (MAE) was 0.35 tons/ha, reflecting
low deviation from the actual yield values. These
results confirm the effectiveness of the
ClimaCropNet model in capturing spatiotemporal
patterns from remote sensing and climate data to
estimate variations in crop yields.

Table 4: Performance Comparison of ClimaCropNet and Baseline Models

Model R? RMSE MAE Classification F1-Score
(Yield) (tons/ha) (tons/ha) Accuracy (%) (%)

ClimaCropNet 0.85 0.43 0.35 88.6 87.5

Random Forest 0.73 0.61 0.48 79.4 78.6

Gradient Boosting 0.76 0.58 0.45 81.1 80.3

Support Vector Machine 0.69 0.65 0.52 76.8 75.4

(SVM)

We, here, benchmark ClimaCropNet against accurate climate-aware agricultural predictions as

several common models: Random Forest (RF),
Gradient boosting (GB), Support Vector Machine
(SVM), and a LSTM model trained only on temporal
climate data with neither crop nor LSTM layers.
ClimaCropNet had the most accurate prediction
capability with the highest R? yield results value
(0.85) and the lowest RMSE (0.43 tons/ha, Table 4
and Figure 5). ClimaCropNet achieved 88.6%
overall accuracy (87.5%  Fl-score) for
tasks thus outperforming all
baselines. On the other hand, the Random Forest
model's 0.73 R? and 0.61 tons/ha RMSE, as well as
the non-spatial LSTM model's less than favourable
performance in representing spatial variability,
were only able to provide moderate levels of
accuracy. It is evident from these results that the
joint learning of spatial and temporal features

classification

using ClimaCropNet yields much more stable and

compared to conventional machine learning and
standard deep learning models.

Crop yield showed significant positive correlations
with rainfall and NDVI, which agreed with previous
research works indicating vegetation indices and
precipitation being the most important yield
drivers (7, 23). Moreover, rainfall and NDVI
showed the strongest positive correlation with
crop yield. Likewise negative correlation was
observed for temperature, corroborating another
past research (32) that identified heat stress as a
primary contributor of decreased yields.

The findings demonstrate that the fusion of CNN
and LSTM in ClimaCropNet is effective in capturing
spatial and temporal relationships from a complex
multi-source agricultural dataset, surpassing
traditional machine learning methods in terms of
predictive accuracy and generalization.
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Figure 5: Performance Comparison of ClimaCropNet and Baseline Models for Yield Prediction and
Climate Risk Classification

ClimaCropNet and three baseline models (Random
Forest, Gradient Boosting and SVM) were
diagnosed with their performance on five metrics
in Figure 5. In subplot (A),
ClimaCropNet displayed the largest coefficient of
determination (R* = 0.85), best capturing the
variability in yield, compared to the other models.
In subplot (B), it depicts the low RMSE calculated
where ClimaCropNet had the lowest RMSE (0.43
tons/ha) indicating its accuracy predicting the
deviation between observed yield.

Average absolute error (MAE) is compared in
subplot (C), again, ClimaCropNet earns the lowest
error value (0.35 tons/ha) showing the relative
strength of the model's robustness in overall yield
prediction accuracy. Classification accuracy is
shown in Subplot (D), in which ClimaCropNet
achieved the bestaccuracy at 88.6% and surpassed
all baseline approaches in producing the correct
class for climate and crop-related conditions.

as presented
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Lastly, we can see that in subplot (E), in the domain
of F1 score, which is a weighted average of
precision and recall, ClimaCropNet also has high
results at 87.5%.

The figure as a whole indicates that ClimaCropNet
significantly outperformed its baseline models on
all evaluation metrics. The results validate the
capability of its hybrid CNNLSTM architecture with
adaptive feature fusion to achieve state-of-the-art
yield forecasting and classification performance
under the AgriClimateAl framework.

The training and validation accuracies over 150
epochs for the ClimaCropNet model are illustrated
in Figure 6. The training accuracy slowly rises and
plateaus at around 95%, and the validation
accuracy caps at 88%, suggesting successful
generalization. The lack of significant differences
between the curves indicates that the learning
dynamics are stable and that overfitting is not
detrimental.
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Figure 7: Training and Validation Loss Dynamics of the ClimaCropNet Model Across Epochs

Figure 7 shows the training and validation loss
trends of the ClimaCropsNet model for 150 epochs.
The value of the training loss decreases rapidly in
the initial few epochs and eventually levels off to a
low value; similarly, the value of the validation loss
also appears to decrease. The convergent behavior
of the two curves suggests good learning and low
overfitting, indicating strong generalization
performance of the model across various sample
data.

Ablation Study

An ablation study was conducted to assess the
relative importance of the main components of the
ClimaCropNet architecture. Specifically, three
critical modules were studied: the CNN-based
spatial feature extractor (namely, convspatial), the
LSTM-based temporal feature learner, and the
feature fusion layer. Different models based on
these components were tested by discarding or
modifying them, and their performance was
compared to that of the complete ClimaCropNet
architecture.
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Table 5: Ablation Study Results of ClimaCropNet Model Components
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Model Variant Spatial Learning Temporal Feature R? RMSE
(CNN) Learning (LSTM) Fusion Score  (tons/ha)

Full ClimaCropNet V4 N4 Learned 0.85 0.43
Fusion

Without CNN X N4 Learned 0.71 0.58
Fusion

Without LSTM V4 X Learned 0.74 0.55
Fusion

Without Feature Fusion N4 Simple 0.78 0.50

(Simple Concatenation) Concat

Climate Time Series Only X v N/A 0.69 0.61

(No CNN, No Fusion)

Remote Sensing Only X N/A 0.66 0.64

(No LSTM, No Fusion)

Those results are summarized in Table 5, adaptive feature interaction of the fusion layer,

indicating that without the CNN module (based
solely on climate time series), the R? value would
decrease from 0.85 0.71,
highlighting the importance of spatial features
computed through remote sensing imagery.
Likewise, for static climate summaries, we also
removed the LSTM module, resulting in the loss of
further temporal feature tracking; the R2 score
dropped to 0.74.

A third variant, which replaces the feature fusion
layer with a simple concatenation operation
without learned interactions, also degrades
performance, yielding an R? of 0.78. These results
confirm that the hybrid learning of spatial and

significantly, to

significantly improves prediction accuracy. The
complete ClimaCropNet model, which integrates
CNN, LSTM, and a fusion mechanism,
demonstrated the best predictive performance,
validating the effectiveness of the proposed
spatiotemporal learning approach.

ClimaCropNet also significantly outperformed the
traditional machine learning approaches (i.e.
Random Forest and Gradient Boosting), achieving
an R? of 0.85 and RMSE of 0.43 tons/ha (Table 4).
Earlier studies conducted on these traditional
architectures mentioned the explained R? to be
between 0.70-0.78 (12, 16, 19), which confirms
the better performance of our hybrid CNN-LSTM

temporal dependencies, combined with the model with adaptive feature fusion.
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Figure 8: R? Score Comparison of ClimaCro

Figure 8 presents the R? score comparison of
various ClimaCropNet model variants from the
ablation study. The full model demonstrates
superior performance with an R? of 0.85.
Removing the CNN, LSTM, or replacing the feature
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pNet Model Variants in Ablation Study

fusion mechanism leads to a substantial decline in
predictive accuracy, validating the necessity of
integrating spatial, temporal, and fusion modules
for optimal yield forecasting.
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Explainability Analysis Results

To interpret the ClimaCropNet model's
predictions, SHAP and LIME explainability
techniques were applied to quantify the
contribution of each input feature to the crop yield
and climate risk predictions. The results provide
transparency into how spatial and climatic
variables influence the model’s decision-making
process.

As shown in Figure 9, the SHAP summary analysis

revealed that rainfall during the vegetative stage

Vol 6 | Issue 4

and NDVI during the flowering stage were the most
influential features, followed by temperature and
soil moisture. Rainfall contributed a SHAP value of
0.32, indicating its dominant positive influence on
yield prediction. NDVI had a SHAP contribution of
0.28, emphasizing the importance of vegetation
health during mid-season. The temperature
showed a negative contribution, consistent with
the negative correlation observed in earlier
analyses.

(A) SHAP Feature Importance
Rainfall
NDVI

Temperature

Feature
Feature

Soil Moisture

Humidity

Wind Speed |

0.0 0.1 0.2 0.3
Mean SHAP Value

Temperature (Reproductive) |

(B) LIME Local Explanation

Soil Moisture |

NDVI (Flowering) |

Rainfall (Vegetative) |

-0.1 0.0 0.1 0.2
Feature Contribution

Figure 9: Explainability Analysis of ClimaCropNet Model Predictions Using SHAP and LIME Techniques

For specific predictions, LIME explanations
highlighted how the combination of lower rainfall
and higher temperature during sensitive crop
stages reduced yield predictions in drought-prone
regions. Conversely, regions with consistently high
NDVI and balanced rainfall
attributed positive weight in yield outcomes.
SHAP value bar plots and feature dependence plots
further illustrated the non-linear interactions
between climate variables and yield predictions.
Temporal plots indicated that rainfall during
weeks 4-8 and NDVI during weeks 8-12 had peak
influence periods, aligning with key crop growth
stages.

The explainability analysis of the framework show
that rainfall and NDVI were the most important
variables, which validates findings from previous
studies that employed interpretable Al to explain
climate-smart agriculture and yield forecasting
(14, 15). Joins domain knowledge bolsters the
credibility and authenticity of the AgriClimateAl
framework.

These explainability results validate the domain
relevance of the features selected and provide
interpretable evidence supporting the model’s

patterns were

predictions. Such transparency enhances
stakeholder trust and supports
agricultural decision-making.

Spatial Visualization and Decision
Support Outputs

The spatial visualization and decision support

informed

outputs generated by AgriClimateAl provide
actionable insights for farmers, agronomists, and
policymakers by translating predictive results into
geospatially interpretable formats. The system
integrates model predictions with geographic
information system (GIS) layers to produce spatial
maps, dashboards, and
recommendations.

region-specific

As shown in Figure 10, crop yield predictions and
climate risk classifications were visualized as
choropleth maps at the regional level. High-yield
zones were predominantly concentrated in
regions with favorable rainfall and vegetation
indices, while low-yield areas corresponded with
zones experiencing temperature stress and rainfall
deficits. Climate risk maps categorize regions into
low, medium, and high-risk zones, enabling

targeted intervention planning.
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(A) Spatial Distribution of Predicted Crop Yield

Predicted Yield (tons/ha)

Climate Risk Level
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(B) Spatial Classification of Climate Risk Levels
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Figure 10: Spatial Visualization of Crop Yield Predictions and Climate Risk Classifications

As shown in Figure 10, crop yield predictions and
climate risk classifications were visualized as
choropleth maps at the regional level. High-yield
zones were predominantly concentrated in
regions with favorable rainfall and vegetation
indices, while low-yield areas corresponded with
zones experiencing temperature stress and rainfall
deficits. Climate risk maps categorize regions into
low, medium, and high-risk zones, enabling
targeted intervention planning.

The spatial outputs confirmed that drought-prone
regions, particularly those with below-average
NDVI and irregular rainfall patterns, exhibited
higher risk classifications. Conversely, areas with
stable climatic conditions and robust vegetation
cover demonstrated resilient yield outcomes.

An interactive decision support dashboard was
built to visualize predictive insights provided by
the AgriClimateAl system. The dashboard displays
near-real-time crop yield predictions, identifies
areas with climate anomalies, and categorizes
agricultural zones according to risk level. It also
visualizes explainability plugins feature
importance which
interpretability. Users can select, for example, the
crop type, the region (on the map), and the
cropping season to customize the analysis.
Additionally, the dashboard, designed to facilitate
scenario-based forecasting, enables stakeholders

as

scores, improves model

to model how varying climate variables will impact
crop productivity and resource allocation. By
integrating these analytical products into a user-
friendly platform, the dashboard enables data-
driven, climate-sensitive agricultural decision-
making, and

allowing farmers, agronomists,
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decision-makers to apply risk management
measures.

An explainability feature within AgriClimateAl is
critical tohelping users to identify and understand
the key underlying drivers of yield predictions.
With the help of SHAP and LIME visualizations
(Figure 9), we assessed the role of individual
climate variables in model predictions. Rainfall
and NDVI were found to be the key drivers in the
underlying analysis, whereas temperature and
solar radiation proved to the least influential but
still dominant in their contribution to yield
variation driven by climate. Such insights not only
ground the outputs of the model in the reality of
agronomic knowledge and best-practice, but
allows for transparency, providing confidence and
trust in the decisions made by the system from
every stakeholder, from farmers to policymakers.

Discussion

Mapping the impact of climate and weather on
agricultural production is now a pressing task, due
the complex  relationship
environmental stresses and crop yields. Current
research that leverages Al, machine learning, and
big data strategies for yield prediction and climate

to between

adaptation has been studied; however, the results
are not integrated because they are fragmented,
utilize only a single modality of input data, and do
not produce explainable outputs. Some models use
remote sensing images or climate time series, but
are primarily unable to account for the spatial-
temporal interdependencies that are crucial for
comprehending agricultural systems as a whole.
The consistently better performance of
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ClimaCropNet relative to the Random Forest,
Gradient Boosting, and standalone LSTM indicates
that it is preferable to have an integrated
architecture that incorporates spatial and
temporal components together, instead of
separate or independent models.

The outstanding prediction performance of
ClimaCropNet compared to Random Forest,
Gradient Boosting and LSTM separated models
confirmed the key role of both spatial and
temporal features integration. Traditional machine
learning methods such as Random Forest and
Gradient Boosting can model non-linear relations
well but cannot model sequential dependencies
which exist in climate data. While LSTM-based
models can capture temporal dynamics, they do
not consider the spatial heterogeneity in remote
sensing images. Finally, involved in ClimaCropNet
the key components of these strengths then
translated to a single hybrid architecture in
ClimaCropNet, which contributes to a more overall
perspective understanding climate-crop
relationships and enhancing predictive
performance and interpretability.

Our results confirm previous findings suggesting
that using climate and vegetation indices were our
highest contributors to predicting the yields (7,
32). previous
incorporated either spatial or temporal data inputs
exclusively, whereas ClimaCropNet’s hybrid CNN-
LSTM architecture jointly integrates both sources

in

In comparison, models only

of information, resulting in a major advancement
over existing models (16, 19).

This paper fills the gap by proposing the
AgriClimateAl  system and its  flagship
ClimaCropNet model, which introduces a hybrid
CNN-LSTM architecture that can jointly harness
spatial and temporal features from multiple
datasets. This method differs from previous
attempts by considering vegetation indices,
climate variables, and soil properties within a
single predictive pipeline and by improving
explainability using explainable Al (SHAP and
LIME). This multi-modal and spatiotemporal
feature fusion has therefore led to more accurate
and easily interpretable predictions of crop yield
across different climatic zones.

that
ClimaCropNet consistently outperforms state-of-

Experimental results demonstrate
the-art machine

Random Forest and Gradient Boosting, with a high

learning models, including
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R? score, low error metric, and strong classification
accuracy for climate risk zones. Explainability
analysis also confirms the model's integration with
agronomic knowledge and emphasizes that
variables such as rainfall at vegetative stages and
NDVI at flowering are the primary yield drivers. If
this is true, it validates the model and allows us to
draw inferences that align with our theory.

Realizing that potential, the AgriClimateAl
framework can be used by a diverse range of
stakeholders ripe practical
implementation — agritech companies, farmers,
and policymakers can all find use for the
framework. The system may serve as a decision-
support service for farmers by providing valuable
information related to crop status, soil moisture
status, and climate-induced stress on time. This
helps in taking informed decisions regarding crop
selection, optimal irrigation scheduling and,
precautionary measures in the form of early

and is for

warning systems, to reduce any yield losses.
AgriClimateAl can be used by the agritech space
itself for building precision agriculture solutions,
output can be integrated into automated farm
machinery, smart irrigation, and digital advisory
platforms, with no human involvement at all. The
predictive analytics and explainability modules
can facilitate climate-resilient agriculture policies,
subsidy distribution and regional planning for food
security for legislators and policymakers.
AgriClimateAl translates complex spatiotemporal
data and advanced Al modelling into actionable
insights to support adaptive and climate-smart
agricultural management.

Although ClimaCropNet captures the effects of
climatic and crop growth factors well, this version
lacks the explicit representation of the effects of
soil fertility, pest and disease pressure, and
socioeconomic conditions. All these factors are key
drivers of yield variability and will be essential
areas for further developments of the framework.
For improvements in the generalizability,
ClimaCropNet can be improved with transfer
learning and domain adaptation approaches.
Quickly acting with other geographical areas is
possible through transfer learning, using pre-
trained big-scale climate and crop datasets able to
transfer deep learning performances through
lower computational cost and lesser quantity of
data. Likewise, domain adaptation methods could
mitigate heterogeneity in regional climate, soil and
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cropping systems to make model robust across
multiple realities. Combining these techniques will
enable AgriClimateAl to expand to multi-regional
applications on a scalable basis

By addressing data fragmentation, improving
prediction accuracy, and generating interpretable
outputs, the system developed in this study
represents a significant advancement over current
art in climate-smart agriculture. Its modular
design and decision support products encourage
realistic take-up for climate-resilient farming. The
study's constraints are described in detail in
Section 5.1.

Limitations of the Study

The present study is not without limitations;
however, we argue that there are at least three key
limitations. Firstly, the model was tested on a
relatively small number of regions and crops,
which may limit its applicability to other
agroecosystems. Second, the time scale of some
climate datasets was limited by data availability,
which may influence predictions for short-
duration crops. Third, the use of pre-processed VIs
does not account for real-time changes in cloud
cover or image quality, which can affect the
reliability of satellite data. Next steps will be to
broaden the dataset scope to include higher
temporal resolution and to incorporate dynamic
methods for in-flight quality testing of remote
sensing data.

Conclusion

This study presents the AgriClimateAl system, an
integrated deep
monitoring the climate's impact on agriculture
using multi-source data fusion and explainable Al
techniques. By leveraging remote sensing imagery,
climate variables, and crop yield data, the
proposed ClimaCropNet model demonstrated

learning framework for

strong predictive accuracy and interpretability.
The hybrid CNN-LSTM architecture effectively
captured spatial and temporal dependencies
critical for yield forecasting, addressing limitations
of prior single-modality models. Experimental
results across multiple regions confirmed that the
system outperforms baseline machine learning
approaches in both yield prediction and climate
Explainability = analyses
validated that the model's outputs align with
domain knowledge, enhancing stakeholder trust
and practical decision-making in climate-resilient

risk  classification.
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agriculture. However, as highlighted in the study
limitations, the model's evaluation was
constrained to selected regions and crop types, and
certain temporal limitations in climate data
remain. Moreover, remote sensing data pre-
processing did not fully account for real-time
variability in image quality. Addressing these gaps
forms the basis for future research. Future work
will focus on expanding the system’s applicability
by incorporating diverse crops and broader
geographic regions to improve generalizability.
Enhancing temporal resolution through the
integration of near-real-time weather feeds and
dynamic remote sensing data quality assessments
will  further refine prediction accuracy.
Additionally, the system will be extended to
support adaptive learning, enabling models to
evolve in response to changing climate patterns
and agricultural practices. In addition to its
technical contributions, AgriClimateAl is a climate
informed farm decision-support tool for farmers,
agritech companies and policy-makers to help
grow crops in a climate-smart manner (i.e., the
right crops at the right place and at the right time),
irrigate at the right time to minimize waste, and
mitigate crop yield loss. AgriClimateAl will be
expanded to include soil properties, pest and
disease
socioeconomic variables. Such an integration will
enhance the yield forecasting and decision-
support for agriculture with a synthesis of holistic

monitoring information, and

approach. Main Focus of Future Improvements will
be on transfer learning and domain adaptation
Overall, this will allow ClimaCropNet to react
quickly to new regions and crop types, benefiting
from the knowledge acquired from available
datasets and enhancing its scalability while
reducing extensive localized data collection.
Ultimately, the aim is to deploy AgriClimateAl as a
scalable, real-world decision support system for
policymakers and farmers in advancing climate-
smart agriculture across global contexts.

Abbreviations

Al: Artificial Intelligence, CNN: Convolutional
Neural Network, DL: Deep Learning, 1oT: Internet
of Things, LIME: Local Interpretable Model-
Agnostic Explanations, LSTM: Long Short-Term
Memory, ML: Machine Learning, NDVI: Normalized
Difference Vegetation Index, RMSE: Root Mean
Square Error, RS: Remote Sensing, SHAP: SHapley
Additive exPlanations.
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