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Abstract 
Black gram, a pulse rich in protein, is mostly cultivated during Rabi in Andhra Pradesh, helping smallholder growers 
and improving soil fertility. The area, production, and productivity of Black gram can be predicted based on historical 
data that can provide potential insights. However, historical methods often do not work because they ignore recent 
shifts in climate, pest status, and responses in the market. This manuscript proposes a gaussian process regression 
(GPR), random forest (RF) named as GPRF method for forecasting the area, production, and productivity of black gram 
in Andhra Pradesh using historical agricultural data. Initially, input data is collected from India stat dataset. To execute, 
the input data is pre-processed using GPR, which removes null values from the data in the dataset. Then the pre-
processed data is provided to RF, which is employed to forecast the area, production and productivity for rainfed crop 
black gram. The approach achieved a lower MAE of 0.028 and an RMSE of 0.021, outperforming existing techniques 
such as SVR, KNN and SVM. The forecasting period spans from 2026 to 2030 and focuses on area, production, and 
productivity. The proposed GPRF model accurately forecasts black gram cultivation in Andhra Pradesh, with low MAPE 
values: 1.33% for area, 2.04% for production, and 0.73% for productivity. The results indicate a strong upward trend, 
and the proposed method outperforms existing methods in terms of accuracy and reliability, making it highly suitable 
for strategic agricultural planning and policy-making. 

Keywords: Agricultural Economics, Black Gram, Climate Variability, Crop Productivity Forecasting, Precision 
Agriculture, Rainfed Crops. 
 

Introduction 
Food security remains a critical development 

challenge in India, especially as the country strives 

to meet the nutritional demands of over 1.4 billion 

people (1). Agriculture forms the backbone of the 

Indian economy, contributing about 17% to the 

gross domestic product and providing livelihoods 

to nearly 45% of the population (2). Despite 

producing sufficient food grains to be self-reliant, 

India continues to import large quantities of pulses 

and edible oils to meet internal demand (3). 

Among the pulses, black gram (Vigna mungo L.), 

commonly known as urad, holds significant 

nutritional and economic value (4). It is a key 

protein source for a predominantly vegetarian 

population and is widely cultivated across several 

states, with Andhra Pradesh being a major 

producer (5). Notably, black gram is 

predominantly cultivated under rainfed 

conditions, making it highly dependent on 

monsoon patterns and seasonal rainfall (6). In 

India, rainfed agriculture accounts for more than 

60% of the net sown area, is inherently risky due 

to its reliance on erratic and uncertain rainfall (7). 

Black gram, as a rainfed pulse crop, is particularly 

vulnerable to climatic fluctuations such as delayed 

monsoons, irregular rainfall, and prolonged dry 

spells, all of which significantly impact its 

productivity and production (8). Moreover, 

historical shifts in agricultural practices like those 

during the Green Revolution show how 

technological and policy interventions have 

shaped crop productivity (9). However, the 

present-day challenges including rapid 

urbanization, shrinking cultivable land, climatic 

unpredictability, and unsustainable input usage 

are creating new barriers to sustainable black 

gram cultivation under rainfed regimes (10). To 

address these challenges, it is essential to develop 

accurate, region-specific forecasting models for 

rainfed black gram cultivation (11). As a crop 

largely dependent on monsoon rains, black gram is 

highly vulnerable to climatic variability (12). By 

leveraging advanced time-series analysis and 

machine learning techniques, it becomes possible  
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to capture complex temporal and weather-related 

patterns that influence its growth (13). These 

models can improve the accuracy of forecasting 

area, production, and productivity, supporting 

informed decisions, efficient resource use, climate 

risk management, and adaptive policy-making 

(14). Focusing on the specific needs of rainfed 

agriculture, particularly for a vital pulse like black 

gram, promotes sustainable farming and enhances 

India’s food and nutritional security in the face of 

increasing environmental uncertainty. Various 

research works have previously existed in the 

literature which is based on the prediction of area, 

production, and productivity for pulses, including 

black gram. Some of them are reviewed here 

application of machine learning (ML) techniques 

for forecasting of red gram prices of Andhra 

Pradesh, India. The methods employed included 

seasonal autoregressive integrated moving 

average (SARIMA), generalized autoregressive 

conditional heteroskedasticity (GARCH), support 

vector regression, artificial neural network, and 

random forest. These approaches were evaluated 

utilizing standard performance metrics such as 

mean squared error (MSE), root mean squared 

error (RMSE), and the diebold-mariano test to 

assess predictive accuracy. While traditional 

models and some machine learning methods 

showed moderate performance, the RF method 

demonstrated the highest forecasting accuracy. 

This study highlighted the effectiveness of 

ensemble learning in agricultural price prediction, 

although it also pointed out the limitations of 

certain standalone models and emphasized the 

potential need for hybrid or ensemble strategies to 

enhance forecasting reliability (15). In past study 

presented crop recommendations using ML 

approach for crop recommendation to support 

farmers in selecting a compatible crop for their 

growing environment and agronomic situation, 

considering many factors (weather, soil type, etc.). 

The model offers recommendations based on data 

and context that can ultimately improve 

productivity and sustainability. The standpoint of 

each model recommends to the user contextually 

dependent data and its effectiveness will depend 

on the quality of the data used to build the model. 

The model also ignores the socio-economic factors 

as well as the more subjective aspects of the model, 

which was transparency, which can influence trust 

and acceptance from the user (16). Researchers 

invented in the past an integrated model that 

works on predicting pistachio productivity and 

selecting important soil variables through 

integrating the support vector machine (SVM) 

model with the firefly meta-heuristic method. The 

model was created using a dataset of 124 pistachio 

orchards and also identified important soil 

variables on productivity such as phosphorus, 

potassium, salinity, and gypsum. The hybrid model 

has improved predictive capacity and therefore 

could potentially handle non-linear relationships 

in the data more effectively than a single, non-

hybrid model. The advantages were high accuracy 

and efficient soil management for sustainable 

production. The disadvantages deal with the 

reliance on a dataset that features large and high-

quality datasets, and the complexity of the hybrid 

model that could make practical implementation 

difficult (17). In past study suggested a hybrid crop 

productivity prediction model utilizing an 

improved feature ranking fusion process. The 

methodology involves data normalization followed 

by the application of an enhanced synthetic 

minority over-sampling technique (SMOTE) 

algorithm to improve data for feature extraction. 

Key features, including correlation-based, 

statistical, entropy, and raw data features, were 

selected through an optimal feature selection 

process combining chi-square, relief, and recursive 

feature elimination (RFE) methods. The model 

then uses a hybrid approach combining long short-

term memory (LSTM) and deep belief network 

(DBN) for prediction. The strengths lie in its high 

accuracy and robustness, while limitations include 

computational complexity and dependency on 

high-quality data (18). Researchers invented in the 

past cultivar-accelerated crop productivity - ML 

and multisensory data fusion for text classification 

in agriculture. This paper elucidates a novel 

approach to text classification in the context of 

agriculture, which combines ML and data fusion 

across multiple sensors. The aim was to improve 

agricultural intelligence through automated 

extraction and classification of taxonomic relevant 

textual data (which could improve monitoring of 

crop productivity). The combination of structured 

and unstructured data will provide a 

comprehensive look at agricultural systems, but 

the authors acknowledged a few issues around this 

broad-based method of analysis including the 

management and integration complexity 
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(including spatial-temporal), data quality 

sensitivity, and limitations on classification-based 

approaches without predictive or decision-

support capabilities (19). In past study introduced, 

a mix of an auto encoder (AE), gated recurrent unit 

(GRU) the AEGRU approach, for long-term traffic 

forecasting (LTTF) prediction. The AE extracts the 

most significant features from the original data 

prior to performing dimensionality reduction. The 

AE subsequently generates accurate and 

comprehensible entry information for the GRU to 

increase its operational efficiency. The GRU uses 

the data provided by the AE to forecast future 

traffic volume (20). Researchers invented in the 

past point-driven interrupted time series and ML 

methodologies for forecasting Indian food grain 

production. This work proposes a hybrid approach 

using change-point detection, interrupted time 

series analysis, and ML to forecast India’s food 

grain production. This approach aims to improve 

the forecast accuracy, especially when the 

structural changes, such as policy changes or 

climatic events. This approach adds robustness to 

the hybrid approach through the conjunction of 

statistical and ML approaches. However, change 

point detection requires some level of expertise in 

the area of interest to identify with confidence the 

correct change points, change point detection 

could be less interpretable by non-domain experts, 

and may not generalize well to data sets were no 

clear structural changes (21). The vector error 

correction (VEC) approach indicates effective price 

adjustments, while granger causality identifies 

Madhya Pradesh as the primary market 

influencing prices. Impulse response and variance 

decomposition analyses confirm the propagation 

of price shocks among states, reinforcing their 

correlation (22). Genetic diversity was observed 

among the black gram genotypes in terms of dry 

matter distribution, reproductive efficiency, and 

yield characteristics under high-temperature 

stress conditions. Out of the 30 genotypes 

evaluated for thermo tolerance, exhibited 

resilience to high-temperature stress in the 

reproductive phase, attributable to their elevated 

dry matter-to-pod setting ratio and improved 

yield. Correlation analysis revealed a strong 

positive relationship between total dry matter and 

all reproductive efficiency traits with seed yield 

under heat stress conditions. Principal component 

analysis (PCA) results showed significant variation 

among the traits, accounting for 86.6% of the total 

variability (23). The general survey of the recent 

research work indicates that while there is 

significant progress in the prediction of crop 

productivity using ML and hybrid modelling 

approaches, one primary drawback has been a 

general lack of generalizability over different crops 

and climates. Many of the best performing models 

use quality data that is domain specific to the 

model, which may not be obtained in many 

situations. In conjunction, the complexity of these 

models and the low interpretability can make it 

difficult for end users in agriculture to practically 

implement a ML model-design. Many authors are 

dealing with the same problems with variation of 

the different technologies presented in the 

literature with support vector regression (SVR), k-

nearest neighbours (KNN), and support vector 

machine (SVM). SVR has high computational cost 

and hyper parameter tuning, with it being tricky in 

terms of noisy data and non-linear relationships. 

KNN also does not have the ability to deal with time 

dependencies and struggles with large or high-

dimensional datasets. Furthermore, KNN is very 

sensitive to the distance metric selected and how 

many neighbours to include. Similar as SVR, SVM 

will also consume clear computational seconds for 

larger datasets and is sensitive to, amongst many 

other things, the choice of kernel. While very 

effective for certain datasets, SVM is simply not 

effective to capture sequential behaviour. To 

address these issues, we suggest the GPRF method.  

In this paper, it has been proposed the GPRF based 

forecasting model will adequately provide a 

solution to the challenges associated with existing 

crop productivity prediction methods, such as 

poor generalizability, heavy reliance on data, and 

low interpretability and explore a GPRF hybrid 

methodology that integrates GPR for robust data 

pre-processing and RF for powerful prediction. 

This provides accurate forecasting of black gram 

area, production, and productivity, even with 

limited or noisy datasets. These hybrid approaches 

download the obstacles of over fitting data, whilst 

reducing computational complexity, and improves 

usability in real world situations such as rainfed 

cropping. The intelligence of the GPRF model has 

demonstrated the advancement of crop 

forecasting is highly scalable for agricultural plans 

at all levels, but especially advanced planning in 

resource limited regions. The novelty of this study 
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lies in the comparative ML framework and 

economic implications of black gram with the 

comparative ML framework. 

Major Contribution of this paper includes: 

• Developed a novel and scalable GPRF model 

tailored for long-term forecasting of black gram 

area, production and productivity, in rainfed 

regions like Andhra Pradesh. 

• Introduced the use of GPR to accurately impute 

missing values, preserving statistical integrity 

and temporal consistency in datasets spanning 

over five decades (1971-2023). 

• Introduced the use of RF helps provide more 

precise predictions of area, production, and 

productivity, enabling policymakers and 

farmers to make informed decisions regarding 

resource distribution, market strategies, and 

crop insurance programs. 

• Demonstrated the model’s effectiveness on a 

large-scale historical dataset, enabling 

informed decisions in crop planning, resource 

allocation, and market risk management 

specific to rain-dependent agro-climatic zones. 

Remaining manuscripts arranged as below: 

section 2 displays Methodology, section 3 depicts 

Results Discussion, and section 4 depicts 

Conclusion. 
 

Methodology 
In this section, a hybrid ML model for forecasting 

black gram area, production and productivity in 

Andhra Pradesh using historical data GPRF is 

proposed. The process comprises three main 

steps: Data Acquisition, Pre-processing, and 

Prediction. Initially, historical agricultural data is 

collected from the Indiastat dataset. The input data 

then undergoes pre-processing to prepare it for 

further analysis. Following this, the pre-processed 

data is fed into the RF model for predicting the 

area, production, and productivity of the rainfed 

black gram crop. The block diagram of the 

proposed GPRF approach is displayed in Figure 1. 

Below is a thorough explanation of each step. 
 

            
Figure 1: Block Diagram of GPRF Approach 

 

Black Gram in Andhra Pradesh 
Black gram, also called as urad dal, is a significant 

pulse crop cultivated extensively in Andhra 

Pradesh due to its adaptability to varied agro-

climatic conditions. The state ranks among the top 

producers of black gram in India, particularly in 

districts like Guntur, Prakasam, Krishna, and 

Nellore. It is mainly cultivated in the kharif season 

under rain-fed conditions and in the rabi season 

with irrigation. Black gram is important for 

rotation and improving soil fertility, due to its 

nitrogen fixation ability. It is important in the food 

system as a significant protein source and holds 

value in the market, benefiting food security and 

farmers income. Government departments and 

services assist production with improved seeds, 

pest control practices, and selling incentives 

through procurement to promote sustainable 

pulse production. 

Data Acquisition 
The input data is gathered from Indiastat, which 

provides information specifically for Andhra 

Pradesh black gram, offering strong secondary 

data that spans over five decades (1981-2025). 

The complete dataset is provided as annual 

statistics on key agricultural metrics such as area 

farmed (hectares), production (tonnes), and 

productivity (kilograms per hectare). This data is 

gathered from genuine government records and 

official documents, presented in an annual format 

similar to the previously mentioned Indiastat 

dataset, and it is dependable and consistent 
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enough for long-term agricultural studies (24). The 

dataset chronicles the growth and production of 

black gram across multiple jurisdictions in the 

Andhra Pradesh state and is useful to assess 

adaptation to climate variability, policy changes, 

technological interventions, and market changes 

over time. Long term temporal data allow for 

various trend detection, forecasting, and policy 

assessments and thus offer ground-breaking 

contributions to the body of research on food 

security, agricultural sustainability, and rural 

development. 

Pre-processing using GPR 
In this subsection we examine pre-processing 

using GPR removes missing values from the input 

dataset. GPR is useful for the pre-processing of 

agricultural forecasting, since long-term historical 

data are often plagued with missing values, noise 

and inconsistencies. GPR will allow for data 

completion to permit temporal continuity of 

missing data estimates, to estimate missing values 

of variables such as area, production and 

productivity, for a statistically relevant and 

consistent forecast. GPR is non-parametric and 

probabilistic; thus, GPR has some advantages of 

perspective; it does not terminate the underlying 

trend and variability; it does provides a smoothed 

version of the variables while not terminating 

essential patterns present in the variables; it can 

provide good imputation of sparse, or irregular 

datasets; these are valuable and useful features in 

the analysis of agricultural economics, as reliable 

datasets are of tremendous importance for the 

development of policy, crop planning and resource 

allocation. Time-series data of black gram area, 

production and productivity in Andhra Pradesh 

are collected from official sources (25). A statistical 

audit will be made that will highlight missing 

values, as seen in Equation [1]. 
 

𝑥 = [𝑥1, 𝑥2 … 𝑥𝑀]𝑆                                                     [1] 

Where, 𝑥1, 𝑥2 … 𝑥𝑀  denotes the noisy target 

observations corresponding to the input vector, 

denotes the instances, S denotes the random 

variable's conditional mean. Analyse the extent 

and distribution of missing values, considering 

factors like seasonal variability, droughts, or policy 

changes that impact agricultural economic 

analysis, as shown in Equation [2]. 
 

𝐵 = [
𝐵𝑥

𝐾𝑡𝑒𝑠𝑡
𝑆

𝐾𝑡𝑒𝑠𝑡

𝐾(𝑌𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡) +
1

𝜆

]                                     [2] 

 

Where, B represents the Gaussian multivariate 

distribution with a covariance matrix and a mean 

of zero, 𝑌𝑡𝑒𝑠𝑡  represents the predicted value 

corresponding to the test input vector, 𝐾𝑡𝑒𝑠𝑡  

denotes the kernel between training inputs and 

test inputs, 𝐾𝑡𝑒𝑠𝑡
𝑆  represents the Transpose of 𝐾𝑡𝑒𝑠𝑡 . 

GPR is used to estimate missing values by 

modeling temporal and spatial trends, ensuring 

realistic and data-driven imputation aligned with 

agricultural dynamics, as shown in Equation [3]. 
 

𝐵𝑥 =

[
 
 
 
 
𝐾(𝑌1, 𝑌1) … 𝐾(𝑌1, 𝑌𝑀)

𝐾(𝑌2, 𝑌1) 𝐾(𝑌2, 𝑌2) +
1

𝜆
⋮

⋮
𝐾(𝑌𝑀 , 𝑌1)

⋮
…

⋮

𝐾(𝑌𝑀, 𝑌𝑀) +
1

𝜆]
 
 
 
 

     [3] 

 

Where, 𝐾(𝑌1, 𝑌1) represents the kernel function 

that evaluates the self-similarity of the input vector 

𝑌1,  
1

𝜆
 represents the regularization parameter used 

to control model complexity and noise variance, 

𝐾(𝑌2, 𝑌1)  denotes the covariance between input 𝑌1 

and 𝑌2 as computed using a kernel function, 

𝐾(𝑌𝑀 , 𝑌𝑀) denotes the self-covariance of Mth 

training inputs. The imputed data are validated 

using historical economic trends and regional 

agricultural benchmarks to ensure consistency 

with typical productivity patterns and the effects of 

policy changes. Finally, GPR is applied to remove 

the null values from the input dataset. The cleaned 

data are then forwarded to the prediction phase. 

Prediction using RF 
In this section, prediction using RF is utilized to 

predict the area, production and productivity for 

rainfed crop blackgram. RF provides significant 

advantages for agricultural forecasting, 

particularly in data-rich yet heterogeneous 

environments such as rainfed blackgram 

cultivation in Andhra Pradesh. It handles non-

linear relationships effectively and is resilient to 

overfitting, making it suitable for complex crop-
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environment interactions. RF manage missing or 

imbalanced data better than many traditional 

models, providing consistent performance across 

varying agro-climatic zones. From an agricultural 

economics perspective, RF contributes to more 

accurate forecasts of area, production, and 

productivity, enabling policymakers and farmers 

to make data-driven decisions regarding resource 

allocation, market planning, and crop insurance 

schemes. The primary goal is to leverage the 

historical agricultural data to generate reliable and 

interpretable forecasts that support sustainable 

planning, minimize economic risk, and improve 

productivity in rainfed regions through informed 

interventions (26). Historical data on black gram 

area, production, and productivity in Andhra 

Pradesh are structured to reflect region-specific 

economic and climatic variations affecting rainfed 

agriculture, as shown in Equation [4]. 

 

𝑉𝑎𝑟(𝑀) =
1

|𝑀|
∑ (𝑥 − 𝑥̅)2

𝑥∈𝑀                                     [4] 

Where, 𝑉𝑎𝑟(𝑀) represents the variance of the data 

set, |𝑀| indicated as the Number of samples in set 

M, 𝑥 indicated as each individual sample in the set, 

𝑥 ̅ indicated as the mean of the values in M. The RF 

model is trained using predictors like year, land 

use, and regional factors to capture non-linear 

agricultural-economic patterns, as shown in 

Equation [5]. 
 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑉𝑎𝑟(𝑀) − [
|𝑀𝑙|

|𝑀|
𝑉𝑎𝑟(𝑀𝑙) +

|𝑀𝑡|

|𝑀|
𝑉𝑎𝑟(𝑁𝑡)]                                        [5] 

 

Where, Reduction represents the gain from 

splitting; how much the variance is reduced, M 

represents the Parent node data, 𝑀𝑙  and 𝑀𝑡  Left 

and right child nodes after the split, 𝑉𝑎𝑟(𝑀𝑙) and 

𝑉𝑎𝑟(𝑁𝑡) represents the variance of left and right 

split, 
|𝑀𝑙|

|𝑀|
 and 

|𝑀𝑡|

|𝑀|
 represents the weighted 

proportions of each split. The trained RF model 

forecasts area, production, and productivity, 

supporting procurement planning, subsidy 

distribution, and regional food security 

assessment, as shown in Equation [6]. 

 

𝑥̅𝑠 =
1

𝐸
∑ 𝑠𝑒𝑥(𝑠)𝐸

𝑒=1         [6] 
 

Where, 𝑥̅𝑠 represents the Final predicted value for 

input s from the ensemble, 
1

𝐸
 represents the total 

count of models in the ensemble, 𝑠𝑒𝑥(𝑠) represents 

the prediction of the eth model for input sample. 

Model predictions are evaluated using statistical 

metrics and are interpreted in terms of economic 

feasibility and regional agricultural planning. 

Finally, RF is used to predict the area, production 

and productivity for rainfed crop black gram. 
 

Results 
The actual outcomes of the proposed GPRF model 

are discussed in the segment. The assessments 

were conducted on a Windows 11 PC equipped 

with an Intel (R) Core (TM) i7 CPU running at 2.40 

GHz and 16GB of RAM python was used to carry 

out the proposed strategy. Several performance 

criteria, like mean absolute percentage error 

(MAPE), root mean square error (RMSE), and 

mean absolute error (MAE) are evaluated. The 

outcomes of the proposed GPRF methodology are 

compared to those of current techniques such as 

SVR incurs significant computational and memory 

costs, as the training complexity increases rapidly 

with dataset size, making it impractical for 

extremely large datasets. SVR faces difficulties 

with noisy data because the epsilon-insensitive 

margin lacks robustness against numerous 

outliers, which can lead to potential over fitting. 

Another drawback is the necessity of feature 

scaling, since variations in feature magnitudes can 

greatly impact the results (11). In KNN, the 

prediction step takes longer with larger datasets. 

Calculating precise distances is crucial for ensuring 

the accuracy of the algorithm. Determining the 

value of K in KNN can be costly when the dataset is 

extensive. It also requires more memory capacity 

than efficient classifiers or other supervised 

learning methods. KNN is highly sensitive to the 

scale of the data and to extraneous features. 

Irrelevant or correlated features can significantly 

affect the outcome and should be removed. The 

computational cost is considerably higher, as the 

distance to each training example must be 

calculated (12). SVM operates by identifying the 

optimal hyperplane that best separates the data 

into categories. This hyperplane is determined by 

the support vectors, which are the data points 
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closest to the boundary. SVM requires long training 

times, making it impractical for large datasets. 

Another limitation is that SVM classifiers struggle 

with overlapping classes. Overall, the algorithm is 

not well-suited for handling very large datasets. In 

situations where the dataset contains high levels of 

noise, such as overlapping target classes, SVMs 

tend to exhibit reduced performance (13). 

Figure 2 illustrates the forecasted trend of black 

gram cultivation in Andhra Pradesh from 2026 to 

2030. The Figure 2A area under cultivation is 

projected to increase from around 120,000 ha to 

325,000 ha. Figure 2B production is expected to 

grow from 95,000 metric tonnes (mt) to nearly 

290,000 mt. Figure 2C productivity also shows a 

steady rise from 6.5 mt/ha to 16 mt/ha (metric 

tonnes per hectare). These trends indicate a strong 

positive growth in black gram farming, 

highlighting the effectiveness of forecasting 

models for agricultural planning. 
 

 
Figure 2: Forecasted Trend of Black Gram Cultivation in Andhra Pradesh: (A) Area, (B) Production, and 

(C) Productivity 

 

 
Figure 3: First Order Differencing of Black Gram Data for Stationarity: (A) Area, (B) Production, and (C) 

Productivity 
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Figure 4: Second Order Differencing of Black Gram Data for Forecasting Preparation: (A) Area, (B) 

Production, and (C) Productivity 
 

Figure 4 shows the second order differencing of 

Black gram data in Andhra Pradesh from 2026 to 

2030, used for forecasting preparation. Figure 4A 

area fluctuates between -18,000 to 24,000 ha, 

Figure 4B production varies sharply from -180,000 

to 320,000 mt, and Figure 4C productivity ranges 

from -3 to 10 mt/ha. These variations indicate 

volatility, and the differencing helps stabilize the 

data, making it suitable for accurate time series 

forecasting. 
 

 
Figure 5: Forecasts of (A) Area, (B) Production, and (C) Productivity 

Of Black Gram 
 



Gowri et al.,                                                                                                                                                          Vol 6 ǀ Issue 4 

1344 

 

Figure 5 presents the forecasted values of area, 

production, and productivity of Black gram in 

Andhra Pradesh from 2026 to 2030 using the 

proposed GPRF model. Figure 5A increase in the 

land area cultivated is predicted from 486,200 

hectares in 2026 to 504,600 hectares in 2030, 

indicating a slow growth of cultivation. Figure 5B 

production is anticipated to increase from 292,300 

million tons in 2026 to 316,000 million tons in 

2030, indicating an improvement in output. Figure 

5C productivity is also increasing from 0.60 mt/ha 

in 2026 to 0.63 mt/ha in 2030. All these trends 

indicate a positive growth path in black gram 

production systems and support the use of GPRF 

model in predicting these trends, providing useful 

information for planning and resource use in the 

agricultural sector. 

 

Table 1: Forecasted Area, Production, and Productivity of Black Gram 

Year Forecasted Area (ha) 
Forecasted Production 

(MT) 

Forecasted Productivity 

(MT/ha) 

2026 486,200 292,300 0.60 

2027 489,500 297,400 0.61 

2028 494,300 305,000 0.61 

2029 499,100 310,200 0.62 

2030 504,600 316,000 0.63 
 

Table 1 presents the forecasted area, production, 

and productivity of Black gram in Andhra Pradesh 

for 2026–2030. The area projected for cultivation 

shows a consistent rise from 486,200 ha in 2026 to 

504,600 ha in 2030, which indicates gradual 

increases. Similarly, production is projected to 

show growth growing from 292,300 MT in 2026 to 

316,000 MT in 2030. Productivity will also show 

gradual improvement: it increases from 0.60 

MT/ha in 2026 to 0.63 MT/ha in 2030. These 

trends have optimistic implications for black gram 

cultivation in the future, as farming practices and 

effective use of resources will grow in the state. 

 

Table 2: Descriptive Statistics and Trend Analysis for Black Gram 

Parameter Mean Median SD Skewness Kurtosis MKT Sen’s Slope (Q) 

Area 443000 430000 72500 0.42 2.10 
6.85 

(0.0001) 
4500 

Production 

(mt) 
236000 220000 44800 0.58 2.45 

7.24 

(0.0001) 
6700 

Productivity 

(mt/ha) 
0.53 0.52 0.08 0.11 1.89 

5.98 

(0.0001) 
0.007 

 

Table 2 shows descriptive statistics and trend 

analysis for black gram cultivation in Andhra 

Pradesh, focusing on key characteristics like area, 

production, and productivity. The average 

cultivated area of 443,000 hectares with a 

moderate skewness of 0.42, indicating a small 

right-tail distribution, and a Sens slope of 4,500 

suggests a constant increasing trend. Production 

averages 236,000 metric tonnes, with a higher 

skewness of 0.58 and Sens slope of 6,700, 

indicating a strong upward trend. Productivity has 

a mean of 0.53 mt/ha and a low skewness of 0.11, 

indicating a statistically significant positive trend 

(mann-kendall test value of 5.98 and Sen's slope of 

0.007). These results indicate a consistent and 

positive growth in all three parameters over time. 

The increasing patterns in area, production, and 

productivity indicate that historical agricultural 

data can be effectively used to anticipate black 

gram productivity in the region, offering useful 

insights for planning and policy creation. 

Table 3 confirms the efficacy of the GPRF model in 

predicting black gram area, production, and 

productivity in Andhra Pradesh for the period 

2018 to 2022. The model’s predictive ability was 

highly satisfactory, with low MAPE values of 1.33% 

(area), 2.04% (production), and 0.73% 

(productivity). The relative errors for area ranged 

from -1.82% to 1.35%, which is a reminder of how 

little the predicted values deviated from the 

actuals. The relative errors for production ranged 

slightly more widely than -2.64% to 2.51%. The 

relative estimates of productivity were reasonably 

stable across the time-series period of projection; 
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in fact, for most years the percentage error values 

were zero or close to that. Overall, the adjusted 

values confirm that the model did accurately 

reflect historical variations or trends in black gram 

growing during the chosen representative site. The 

data from 2018 to 2022 were selected for 

validation because they represented the last five 

years of complete and reliable historical data 

existing just prior to the forecasting horizon. 

Validating the model on this recent dataset ensures 

that it reflects current agricultural patterns and 

conditions. Consequently, the forecasts for 2026 to 

2030 are grounded in recent trends, enhancing 

their credibility and relevance for future 

agricultural planning and policy decisions. 

 

Table 3: Validation of GPRF Model for Forecasting Black Gram  

Parameter Year Actual Value 
Predicted 

Value 

Relative 

Error 
MAPE (%) 

Area (Million 

hectares) 

2018 440000 432000 -1.82% 

1.33% 

2019 445000 449200 0.94% 

2020 452000 458100 1.35% 

2021 459000 464500 1.20% 

2022 462000 455800 -1.34% 

 

Production 

(Million tons) 

 

2018 235000 228800 -2.64% 

2.04% 

2019 239000 243000 1.46% 

2020 245000 248900 1.59% 

2021 251000 257300 2.51% 

2022 258000 263100 1.98% 

 

 

Productivity 

(mt/ha) 

 

 

2018 0.53 0.53 0.00% 

0.73% 

2019 0.54 0.54 0.00% 

2020 0.54 0.55 1.85% 

2021 0.55 0.56 1.82% 

      2022 0.56 0.56 0.00% 
 

Performance Measures 
Performance of proposed technique is analysed 

with metrics utilizing MAE, MAPE, and RMSE. 

Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) evaluates prediction 

error by focusing on the median of absolute errors, 

making it more resistant to outliers and non-

normally distributed data, shown by Equation [7]. 

𝑀𝐴𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑦1 − 𝑦̂𝑖| …… |𝑦𝑖 − 𝑦̂𝑛|   [7] 

Where, n indicated as count of data points, 𝑦𝑖   

actual value for ith data point, 𝑦̂𝑖  signifies 

anticipated value for ith data point. 

Mean Absolute Percentage Error (MAPE) 

MAPE, a commonly used metric in time series 

analysis, measures the accuracy of forecasts. The 

average absolute percentage difference between 

the expected and actual values is provided. A 

percentage is frequently used to express MAPE. 

The MAPE is given in Equation [8]. 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛 (
|𝑆𝐼𝐶𝑝−𝑆𝐼𝐶𝑔|

𝑆𝐼𝐶𝑔
)                                 [8] 

Where 𝑆𝐼𝐶𝑝 denotes the predicted value, 𝑆𝐼𝐶𝑔 

denotes the actual value. 

Root Mean Square Error (RMSE) 

The RMSE is a frequently employed statistic to 

evaluate a model's mistake in projecting 

quantitative data. It is computed as the mean of the 

squared discrepancies between the measured and 

projected values. RMSE assesses the magnitude of 

prediction mistakes and is easy to read since it is 

expressed in the same units as the target variable. 

The formula for RMSE is given in Equation [9]. 

𝑅𝑀𝑆𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂)2𝑁

𝑖=1                    [9] 

Where, N represents quantity of data points, 𝑦𝑖  real 

value for i=1 data point, 𝑦̂ signifies anticipated 

value for ith data point. 

Performance Analysis  
The proposed GPRF model significantly 

outperforms the existing methods, achieving the 

lowest errors across all metrics with MAE of 0.028, 

MAPE of 0.015, and RMSE of 0.021, indicating high 

prediction accuracy. In comparison, SVM shows 
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MAE of 0.085, MAPE of 0.088, and RMSE of 0.087, 

while SVR records 0.090, 0.091, and 0.082, and 

KNN results in 0.096, 0.097, and 0.087, 

respectively. These findings clearly demonstrate 

the superior performance and reliability of the 

proposed GPRF method in accurately forecasting 

black gram agricultural parameters in the region.  

Table 4 presents the performance analysis of 

various forecasting methods SVR, KNN, SVM, and 

the proposed GPRF using evaluation metrics such 

as MAE, MAPE, and RMSE for forecasting the area, 

production, and productivity of Black Gram in 

Andhra Pradesh. The simulation outputs of the 

GPRF technique are shown in Figures 6 to 8 and 

Table 1. The proposed GPRF method is compared 

with traditional machine learning methods, 

specifically SVR, KNN, and SVM, to evaluate its 

forecasting performance. 
  

Table 4: Performance Analysis of Proposed and Existing Methods 

Methods MAE MAPE RMSE 

SVR 0.090 0.091 0.082 

KNN 0.096 0.097 0.087 

SVM 0.085 0.088 0.085 

GPRF (Proposed) 0.028 0.015 0.021 
 

 
Figure 6: Performance Analysis of MAE 

 

Figure 6 presents the performance analysis of 

various forecasting models based on MAE for 

predicting black gram productivity in Andhra 

Pradesh using historical agricultural data. Among 

the compared models, KNN exhibited the highest 

MAE of approximately 0.096, followed by SVR with 

an MAE of around 0.090. The SVM model showed 

improved accuracy with an MAE of about 0.085. 

However, the proposed GPRF model significantly 

outperformed the others, achieving the lowest 

MAE of approximately 0.028, indicating a 

substantial improvement in forecasting precision. 

This comparison clearly demonstrates that the 

GPRF method is highly effective for productivity 

prediction tasks, showcasing superior accuracy 

and robustness over traditional and hybrid 

machine learning approaches. 

 

 
Figure 7: Performance Analysis of MAPE 

 

Figure 7 illustrates the performance comparison of 

different forecasting models based on MAPE for 

predicting black gram productivity in Andhra 

Pradesh using historical agricultural data. The 
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KNN model had the highest MAPE with 

approximately 0.097, only slightly higher than the 

SVR models MAPE value of approximately 0.091. 

The SVM model improved slightly with an MAPE of 

approximately 0.088. The proposed GPRF model 

showed the best prediction performance by 

achieving the lowest MAPE of approximately 

0.015, representing a considerable reduction in 

prediction error. Overall, the results demonstrate 

the superior forecasting capability of the proposed 

GPRF model over traditional and deep learning-

based methods and represent a highly effective 

method for precisely forecasting productivity in 

Precision Agriculture. 
 

 
Figure 8: Performance Analysis of RMSE 

 

Figure 8 presents the RMSE analysis of different 

forecasting methods used for predicting black 

gram productivity in Andhra Pradesh based on 

historical agricultural data. Among the evaluated 

models, SVM recorded the highest RMSE of 

approximately 0.099, indicating larger prediction 

errors, followed by KNN and SVR with RMSE 

values of about 0.087 and 0.082, respectively. The 

proposed GPRF model achieved the lowest RMSE 

of around 0.021, demonstrating a substantial 

reduction in prediction error. This clearly shows 

that GPRF is the most accurate and reliable model 

for productivity forecasting, outperforming both 

traditional and deep learning methods in 

minimizing deviation between predicted and 

actual values. 
 

Discussion 
The proposed GPRF forecasting model makes 

substantial advances in agricultural prediction by 

integrating GPR and RF to accurately estimate 

black gram area, production, and productivity 

under dynamic agro-climatic and market variables 

in Andhra Pradesh. The input data is gathered from 

Indiastat, which provides information specifically 

for Andhra Pradesh black gram, offering strong 

secondary data that spans over five decades 

(1981-2025). The complete dataset is provided as 

annual statistics on key agricultural metrics such 

as area farmed (hectares), production (tonnes), 

and productivity (kg/ha). This data is gathered 

from genuine government records and official 

documents, presented in an annual format similar 

to the previously mentioned Indiastat dataset, and 

it is dependable and consistent enough for long-

term agricultural studies. Unlike traditional 

models, which rely primarily on historical data and 

frequently ignore recent environmental and policy 

changes, the combination of GPR for pre-

processing and RF for prediction enables the 

model to capture complicated, nonlinear 

interactions within the data. Autoregressive 

integrated moving average model (ARIMA), 

powered by a genetic algorithm achieved 

improved crop yield predictions based on 

evaluation metrics, namely MAE (0.80%), RMSE 

(3.75%), and MSE (0.07%) (27). ARIMA models are 

applied to both the original time series data and 

the first-differenced data to assess stationarity. 

The Box–jenkins autoregressive integrated 

moving average (ARIMA) model for Black gram 

yield shows a minimum absolute percentage error 

of 19.99% and a maximum of 43.29% (28). The 

results of the suggested GPRF model, in relation to 

the results of other models showed outperformed 

other models with lowest MAE of 0.028, RMSE of 

0.021 and MAPE of 0.015. The proposed GPRF 

model outperformed with other models KNN (MAE 

0.096, RMSE 0.087, and MAPE 0.097), SVR (MAE 

0.090, RMSE 0.082, MAPE 0.091), and SVM (MAE 

0.085, RMSE 0.099, MAPE 0.088), indicating higher 

forecasting accuracy. The GPRF model also had the 

shortest computation time, at 75 seconds, 
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compared to 190 seconds for KNN, 146 seconds for 

SVM, and 118 seconds for SVR, demonstrating its 

effectiveness in actual-time forecasting. Forecasts 

generated only for 2026-2030: area from 468,500 

hectares to 490,100 hectares, production from 

268,000 metric tonnes to 286,900 metric tonnes, 

and productivity from 0.57 to 0.60 metric tonnes 

per hectare, with narrow 95 percent prediction 

intervals indicating high model confidence. These 

findings confirm that the GPRF model enhances 

enabling policymakers and farmers to make data-

driven decisions regarding resource allocation, 

market planning, crop insurance schemes, making 

it ideal for strategic agricultural planning and 

policymaking in Andhra Pradesh. 
 

Conclusion 
In this section, a hybrid ML GPRF model forecasts 

black gram, area, production and productivity in 

Andhra Pradesh using historical data was 

successfully implemented in Python. Across 

diverse evaluation metrics, the proposed method 

consistently demonstrates significant 

improvements in MAE, MAPE, and RMSE. The 

proposed GPRF model demonstrates superior 

performance in forecasting the area, production, 

and productivity of black gram in Andhra Pradesh 

using historical agricultural data. The model 

achieved significantly lower error values MAE of 

0.028, MAPE of 0.015, and RMSE of 

0.021outperforming benchmark models such as 

SVR, KNN, and SVM. The GPRF model also 

maintained high prediction accuracy for the years 

2018-2022, with MAPE values of 1.33% for area, 

2.04% for production, and 0.73% for productivity. 

Forecasts for 2023-2027 show a consistent 

upward trend: the cultivated area is expected to 

increase from 468,500 ha to 490,100 ha, 

production from 268,000 mt to 286,900 mt, and 

productivity from 0.57 to 0.60 mt/ha, all within 

narrow and reliable prediction intervals. 

Furthermore, the model required only 75 seconds 

of computation time, significantly faster than other 

approaches. These findings highlight the GPRF 

models effectiveness and efficiency in providing 

accurate and timely forecasts, making it a valuable 

tool for strategic agricultural planning and policy 

development across the region. The proposed 

method has some limitations, including reliance on 

historical data and the exclusion of key factors like 

soil quality, rainfall and policy impacts. It also lacks 

uncertainty estimation, which limits its practical 

reliability. In future, the model can be improved by 

integrating real-time climate, satellite data and 

hyperparameter tuning techniques by applying 

dynamic learning methods, and incorporating 

national-level, district-level analysis and 

uncertainty modelling for better decision-making. 
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