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Abstract 
For the protection of digital infrastructures, strong and flexible security structures are necessary due to the fast rise in 
cyber threats, such as spyware, phishing emails, and distributed denial-of-service (DDoS) attacks. By combining the 
advantages of several techniques, ensemble machine learning (EML) has become a potent paradigm to improve cyber 
defense by increasing detection accuracy and resistance against changing attack vectors. In order to successfully detect 
and prevent network intrusions, this research investigates an ensemble strategy that makes use of K-Nearest Neighbors 
(KNN), Long Short-Term Memory (LSTM) networks, and Multi-Layer Perception (MLP) models. MLP offers nonlinear 
feature training for complicated threat landscapes, LSTM is excellent at identifying sequential relationships in network 
data, and KNN offers effective recognition of patterns for static attack signatures. By combining these models, temporal 
and geographical features are exploited, lowering false positives and improving prediction accuracy. Recent benchmark 
datasets, such as CIC-DDoS2019, are used to assess performance in a variety of attack scenarios, offering a thorough 
understanding of practical application. The suggested ensemble performs noticeably better than individual models in 
accuracy, precision, and recall, according to experimental data, making it a viable instrument for proactive cyber 
defense tactics. This study emphasizes how ensemble learning may improve cybersecurity and network resilience in a 
revolutionary way. 

Keywords: Cybersecurity, Distributed Denial-Of-Service, Ensemble Machine Learning, K-Nearest Neighbors, Long 
Short-Term Memory Networks, Multi-Layer Perception. 
 

Introduction 
There has been a meteoric rise in the use of web-

based applications and services within the last two 

decades. As of right now, 57% of the global 

population is online. Because of this, worries about 

the safety of the internet have grown substantially. 

Numerous security threats have often been 

present on the Internet. Online anomalies such as 

Trojan horses, malware, port scanning, and DoS 

attacks are commonplace (1). When dealing with 

large and complicated networks, typical network 

topologies often fail. An alternative method that 

uses software rather than hardware components 

like switches and routers to manage network 

traffic is known as software-defined networking 

(SDN). A centralized controller acts as the principal 

decision-maker for the network in SDN, taking 

over the control plane (2-3).  

In response to these limitations, researchers have 

used advanced machine learning and deep 

learning approaches, particularly neural networks, 

to create context-aware forecasting systems for 

detecting DDoS attacks and predicting. However, 

existing methods in the literature employ outdated 

datasets for training and struggle to distinguish 

between legitimate traffic and application-layer 

DDoS attacks (4). 

The potential of EML to develop more reliable and 

accurate attack detection systems has garnered a 

lot of research interest. This method overcomes 

the drawbacks of individual algorithms, such as 

bias, overfitting, and inadequate generalization of 

fresh data. Ensemble learning continuously 

outperforms individual models by merging many 

classifiers, leading to improved accuracy. To 

enhance model performance, a variety of ensemble 

algorithm combination techniques, including 

bagging, stacking, and boosting, may be set up and 

created. It is also crucial to use the capabilities and  
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advantages of distinct algorithms in various 

contexts. In various settings with varying 

dimensionalities, machine learning algorithms 

provide a unique collection of features and 

operational efficiency. By combining these 

accessible capabilities, ensemble learning creates a 

system that can accurately detect possible 

unknown attacks. Furthermore, enabling the 

efficiency advantages of another method might 

help prevent the drawbacks of a certain approach. 

A benchmark dataset like CIC-DDoS2019, which 

includes a variety of characteristics pertaining to 

network traffic and intrusion detection, is used to 

guarantee a reliable experimental assessment. To 

increase overall prediction accuracy, decrease 

computing complexity, and improve detection 

performance, the dataset characteristics are 

examined, assessed, and processed. 

On the other hand, passive attacks include secretly 

watching data transfers to get private information 

or unencrypted passwords (5–7). These attacks 

don't change system resources, yet they are 

nonetheless quite dangerous since they break data 

privacy without anybody knowing. Figure 1 shows 

common threats such as DoS and DDoS attacks, 

Man-in-the-Middle attacks, packet sniffing, port 

scanning, and ARP spoofing (8-9). 

 

 
Figure 1: Cyberattack Architecture 

 

Threat Model 

Large-scale and varied DDoS attack characteristics seen 

in the CIC-DDoS2019 dataset, such as high-rate flooding 

assaults, protocol exploitation, and temporally scattered 

attack patterns, are now explicitly taken into account by 

the Threat Model. Additionally, it takes into 

consideration adversaries trying to avoid detection by 

imitating legal traffic, which directly drives the 

employment of neighborhood-based (KNN), nonlinear 

(MLP), and temporal (LSTM) learning processes. 

Background 

The exponential expansion of digital connections 

and the increasing number of smart gadgets have 

increased the potential attack surface for hackers. 

Threats, including large-scale DDoS assaults, zero-

day vulnerabilities, and advanced persistent 

threats (APTs), have therefore become more 

complex. Conventional security methods that rely 

on rules and signatures work well against known 

threats, but they can't keep up with the constantly 

evolving nature of modern attacks. Machine 

learning techniques have gained popularity in 

cybersecurity for identifying irregularities and 

forecasting dangers because of their data-driven 

and flexible nature. However, because of problems 

like excessive fitting, skewed learning, and poor 

generalization, relying only on one machine 

learning model may be troublesome when 

confronted with novel attack patterns. To 

overcome these challenges, EML techniques that 

integrate many models, such as MLP, KNN, and 

LSTM, have been successful.  Ensemble techniques 

use the advantages of many algorithms to enhance 

detection precision, false positive rate, and 

network defensive capabilities. Using current 

benchmark datasets like CIC-DDoS2019, 

researchers can train and evaluate robust hybrid 

approaches that change with dynamic cyber 

environments, enhancing the adaptability of 

critical systems against known and unknown 

attacks. 

Motivation 

a) Modern digital infrastructures, such as cloud 

platforms, IoT networks, and business systems, 

are seriously threatened by the sharp growth in 

sophisticated cyberattacks like DDoS, phishing, 

and malware. 

b) High false alarm rates and poor generalization 

are often the consequence of traditional 
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security measures and individual machine 

learning models' inability to adjust to changing 

attack patterns. 

c) A single learning model is unable to adequately 

represent the temporal interdependence and 

static features of network traffic. 

d) Combining complementary classifiers to 

increase detection accuracy and resilience is 

made possible by recent developments in 

ensemble machine learning. 

e) Advanced intrusion detection systems may be 

realistically evaluated under a variety of assault 

scenarios thanks to benchmark datasets like 

CIC-DDoS2019. 

f) Scalable, precise, and intelligent cybersecurity 

frameworks that can function dependably in 

fast and diverse network contexts are 

desperately needed. 

Problem Statement 

Even with state-of-the-art intrusion detection 

systems (IDS), it is very challenging to accurately 

detect new or developing cyber threats. 

Traditional IDSs rely on pattern recognition, which 

makes them ill-equipped to detect sophisticated 

attacks such as zero-day vulnerabilities. 

Nevertheless, IDS that build detection models 

using particular ML techniques have a lot of flaws, 

such as bias, over-fitting, and poor data 

standardization. The implementation of these 

constraints raises the possibility of false positives, 

in which legitimate traffic is incorrectly identified 

as an attack, and false negatives, in which attacks 

are not detected. EML is a practical approach to 

increasing the accuracy of attack detection while 

overcoming these limitations. When it comes to 

NIDS, it's important to study the pros and cons of 

different ensemble techniques and algorithm 

combinations in terms of comprehensibility, 

complexity, and computational power. A machine 

learning-based intrusion detection system that 

minimizes false positives and false negatives while 

precisely recognizing and classifying various DDoS 

attack types from high-dimensional and time-

dependent network traffic. The updated definition 

also highlights issues with class imbalance, real-

time detection restrictions, and traffic fluctuation. 

Research Gap 

a) Single classifiers, which are inadequate for 

managing intricate and dynamic cyberattack 

behaviors, are the basis of the majority of 

current intrusion detection research. 

b) Hybrid ensemble frameworks that combine 

temporal (LSTM), distance-based (KNN), and 

nonlinear (MLP) learning models have not 

received much attention. 

c) Current ensemble approaches often 

concentrate only on accuracy, failing to 

adequately analyze temporal attack patterns, 

false positives, and false negatives. 

d) A lot of research fails to properly assess 

ensemble models using current, actual datasets 

like CIC-DDoS2019. 

e) In ensemble-based cybersecurity research, 

scalability, computing cost, and real-time 

deployment issues are often disregarded. 

f) The limits and practical application of 

ensemble learning in actual network protection 

systems are not well discussed. 

Objective 

This study's goal is to identify a variety of 

cyberthreats by integrating the complementary 

capabilities of KNN, LSTM, and MLP in an ensemble 

machine learning framework. By lowering false 

positives and raising accuracy, recall, and F1-score, 

the suggested model seeks to outperform 

individual classifiers. Modern benchmark datasets 

like CIC-DDoS2019 are used to assess their efficacy 

and guarantee dependable performance in current 

attack situations. The ensemble is appropriate for 

real-time network monitoring and security since it 

was created with low-latency prediction in mind. 

The system successfully handles changing attack 

vectors by combining the sequential learning 

capabilities of LSTM, the nonlinear feature 

abstraction of MLP, and the pattern recognition of 

KNN. In order to offer scalable and reliable 

cybersecurity defense, the paper also provides a 

practical roadmap for incorporating the ensemble 

model into intrusion detection systems (IDSs) and 

security operations centers (SOCs). Below is the 

literature work. 

This approach quickly and accurately identified 

botnets while using few resources. Negative 

aspects include a low recognition rate, high 

complexity, and unpredictability. Presented here 

was a hybrid technique for selecting characteris-

tics and categorizing cyberattacks. The k-means 

clustering technique and the correlation-based 

selection of features method were combined to 

produce an ideal feature subset. In order to do 

classification, the decision tree (J48) was merged 

with the stochastic Naïve Bayes (NB) method. The 



Sivasangeetha et al.,                                                                                                                                       Vol 7 ǀ Issue 1 

 

1502 
 

complexity of its structure, along with its high 

false-positive rates, is a drawback (10). A botnet 

traffic analyzer called BoTShark was developed 

using deep learning. This method got over the 

restriction on using encrypted payloads.  Another 

interesting finding is that there were correlations 

between the original and recovered attributes 

discovered by every Convolutional Neural 

Network (CNN) layer. The Softmax classification 

algorithm was used as an indicator to successfully 

detect fraudulent traffic (11). Learning techniques 

to ensure that people comprehend IoT, as well as 

having a comprehensive awareness of various 

malware and how to detect them, are the primary 

focus of the study (12). Then, with an emphasis on 

deep learning approaches, we examined and 

evaluated the current status of IDS research in four 

main datasets (13). 

Numerous studies have focused on cyberattack 

predictions using machine learning techniques, 

such as ensemble methods. Network traffic 

categorization has made substantial use of 

supervised machine learning algorithms. Training 

a Network Intrusion Detection System's (NIDS) 

rule-based model on a variety of datasets may 

result in greater accuracy in classification and 

lower false positive rates. On the other hand, 

unsupervised machine learning techniques have 

been used to evaluate connections and clustering 

methods in network data, which might aid in the 

identification of previously unidentified attack 

patterns. However, the main focus of this study is 

on supervised machine learning techniques based 

on binary classification (14-15). 

A flexible NIDS EML model. Model weights are 

dynamically adjustable, and particular model 

configurations are also dynamically adjusted. 

Multiple decision trees, k-NN, DNN, and random 

forests are used as base classifiers. Averaging is a 

method of adaptive voting. The proposed 

architecture achieved an accuracy of 84.2% when 

evaluated on the NSL-KDD dataset, while an 

adaptive voting mechanism achieved an accuracy 

of 85.2%. For improved outcomes, the authors 

suggest making the most of feature selection and 

preprocessing (16). 

In IDSs, machine learning is much more effective 

than conventional approaches, especially in light of 

the increasing complexity of network threats (17). 

System administrators were tasked with manually 

searching logs for faults according to Jim 

Anderson's 1980 notion (18). Conversely, cutting-

edge IDS systems are making more and more use 

of intelligent automation that makes use of 

machine learning methods (19). 

This study significantly enhances the capability to 

collect real-time network data, which serves as 

input for the identification of anomalies algorithm. 

The structure and behavior of data flows across 

networks have evolved a lot because networking 

technology is always becoming better. The 

significance of recording network traffic precisely 

at the moment of intrusions, particularly during 

data exchanges between systems, has increased in 

recent years due to advancements within 

communication protocols and dissemination 

methods. To find bad activity, it's important to 

capture network data rapidly and precisely during 

these periods of transmission (20). 

Machine learning and ensemble techniques for 

improving cybersecurity and intrusion detection 

systems has been the subject of several studies. 

With an emphasis on their flexibility and efficacy in 

complex network contexts, recent research offers 

a comprehensive review of machine learning-

driven methods for identifying and reducing a 

variety of cyberthreats (21). By showing that 

integrating many models may greatly lower false 

positives and increase detection accuracy, the 

improved ensemble defense framework was 

presented to increase the adversarial resilience of 

intrusion detection systems (22). A hybrid 

machine learning approach that improves 

cyberattack detection in cloud computing 

infrastructures by using both supervised and 

unsupervised techniques (23).  The use of machine 

learning in financial systems has also been studied, 

emphasizing its function in maintaining 

cybersecurity in digital banking platforms via real-

time threat prediction and mitigation (24).  The 

combined use of several classifiers surpasses 

single-model techniques in terms of accuracy and 

resilience by presenting an ensemble framework 

that can identify and classify cyberattacks 

successfully.  Together, these studies demonstrate 

the increasing significance and efficacy of 

ensemble and hybrid machine learning 

approaches for reliable and expandable 

cybersecurity solutions (25). 
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Methodology 
This section describes in detail our methodology 

for detecting and classifying DDoS attacks in the 

CIC-DDoS2019 dataset. Incorporating LSTM and 

EML into a KNN and MLP model is our approach. 

The LSTM module enables the analysis of complex 

and massive datasets, and the LSTM model 

employs a probabilistic strategy that accounts for 

the uncertainties and probabilities associated with 

network traffic patterns. The first stages include 

gathering, cleaning, and preparing the data. 

Principal Component Analysis (PCA) is used to 

decrease dimensionality after the extraction of 

relevant information. We proceeded to build and 

train the EML classifier, verify the model, and 

evaluate it using pertinent metrics such as F1 

Score, recall, accuracy, and precision. Finally, we 

save the data from the trained model. Data Fusion 

is included to assess uncertainty; the LSTM method 

integrates features extracted from many data 

sources. Findings from the newly trained model 

are contrasted with those from the EML model and 

other similar models. Finally, we propose an 

approach that relies on an EML model to detect 

DDoS attacks. 

The EDA phase involves tasks such as data 

visualization, feature generation, and correlation 

assessment to ensure high-quality data for training 

models and to understand the dataset. After EDA, 

the processed attributes are kept, and a variety of 

ML algorithms are used. By running the model 

through an accuracy check, we can find out 

whether its predictions are satisfactory. If that 

doesn't work, the approach follows the usual cycle 

of improving machine learning model 

development by recommending algorithm and 

characteristic adjustments until the desired 

accuracy is reached. As seen in Figure 2, the 

research study's procedure includes data 

preparation, model building, ensemble learning, 

real-time implementation, and clarity integration. 

Cyberattacks, which put users' data security and 

privacy at risk, have been on the increase as we 

rely more on equipment that is connected to the 

internet. To protect networks from unwanted 

access, several security measures have been put in 

place, including firewalls, IDS, and anti-malware 

software. These systems can do anything from 

basic rule matching to complex intelligent models. 

CIC-DDoS2019 Dataset 
An essential starting point for assessing the 

efficacy of EML techniques meant to improve 

cybersecurity and the defense of networks is the 

CIC-DDoS2019 dataset. The data, which was 

created by the Canadian Institute for 

Cybersecurity, includes more than 50 different 

kinds of DDoS assaults that are categorized into 

HTTP, UDP, and TCP-based floods, as well as 

amplification attacks that closely resemble actual 

situations. Robust model training and testing are 

made possible by its architecture, which 

incorporates both benign and malicious traffic 

recorded via realistic testbed settings. The dataset 

is suitable for a variety of detection techniques as 

it offers packet-level captures (PCAP) files and 

flow-based characteristics, including packet 

length, length of time, and inter-arrival periods. 

CIC-DDoS2019 provides a rich and extremely 

dimensional feature space for ensemble learning 

models (ELM), such as those that combine KNN, 

LSTM, and MLP, allowing them to take advantage 

of the advantages of many algorithms at once. It 

fills in the gaps left by previous datasets and aids 

in the creation of flexible, highly accurate IDS by 

recording complex and changing assault patterns. 

The assessment of the suggested ensemble 

architecture in this research is supported by CIC-

DDoS2019, which guarantees its applicability to 

contemporary cyber threat environments and 

increases its capacity for proactive network 

security and real-time DDoS detection. 
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Figure 2: System Architecture 

 

Data Acquisition 
The acquisition of varied, high-quality datasets 

that capture both benign and harmful network 

activities is the basis of the suggested EML 

Approaches to Strengthen Cyber Security and 

Network Defense. To guarantee accuracy and 

applicability, benchmark datasets like CIC-

DDoS2019 were obtained for this work from 

respectable cybersecurity research organizations. 

These datasets provide a balanced perspective for 

model training and assessment by combining 

genuine traffic with a variety of contemporary 

cyberthreats, such as DDoS, brute-force, botnet, 

and reconnaissance assaults. Gathering packet-

level captures (PCAP files) and turning them into 

flow-based feature sets with characteristics like 

packet size, protocol type, flow length, and inter-

arrival periods were all part of the data-gathering 

process. To avoid bias in the learning process, this 

preparation step also included addressing missing 

values, cleaning and normalizing the data, and 

class balancing. The ensemble approach gains from 

diverse traffic patterns by combining several 

datasets, which helps it generalize well across a 

range of scenarios for attacks and network 

infrastructures. 

Data Pre-Processing 
A thorough data pre-processing pipeline was put in 

place before model training in order to guarantee 

the dependability and effectiveness of the EML 

Approaches to Strengthen Cyber Security and 

Network Defense. To eliminate duplicate entries, 

unnecessary characteristics, and missing records, 

raw network traffic data from benchmark datasets 

like CIC-DDoS2019 was cleaned. While categorical 

data, such as protocol kinds, were converted using 

one-hot encoding to make them compatible with 

machine learning models, missing values were 

handled using imputation or elimination. To 

guarantee uniform scaling, which is essential for 

algorithms like KNN and MLP that are susceptible 

to feature size, continuous features were 

normalized or standardized. To eliminate bias 

toward majority classes, oversampling Synthetic 

Minority Oversampling Technique (SMOTE) and 

under-sampling approaches were used to alleviate 

class imbalance, a typical problem in cybersecurity 

datasets. Following preprocessing, the dataset was 
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methodically separated into subsets for testing 

(15%), validation (15%), and training 70%. The 

testing set offered an objective assessment of the 

ensemble's performance, the validation set 

adjusted hyperparameters and avoided overfitt-

ing, and the training set made it easier to learn the 

model. The ensemble framework was trained on 

clean, balanced, and representative data thanks to 

this organized pre-processing and data split-up 

technique, which produced more accurate and 

broadly applicable cyber threat identification 

findings. 

Feature Selection for Forward 

Selection 
This study used Forward Selection on the CIC-

DDoS2019 dataset to systematically determine the 

most important network traffic variables for the 

EML framework. All of the more than 80 flow-

based parameters included in the CIC-DDoS2019 

dataset, including packet size, flow duration, 

protocol flags, and inter-arrival delays, might be 

overwhelming for model training when used in 

their entirety. When using Forward Selection, the 

ensemble model is trained on each characteristic, 

such as packet size, flow time, or protocol type, 

independently; this is done starting with no 

features. Here, the CIC-DDoS2019 dataset is used. 

To begin, we provide the feature (accuracy, F1-

score, etc.) that has the greatest impact on 

enhancing detection performance. The process 

then iteratively continues, this time adding to the 

subset the characteristics that provide the highest 

performance increase following each other's 

evaluation alongside the previously selected 

features. This approach continues until either the 

number of features reaches a certain limit or 

adding additional features no longer improves the 

model significantly. Since only the most important 

and useful properties from CIC-DDoS2019 are 

selected, noise is decreased without compromising 

critical indicators for detecting DDoS attacks. 

Feature Scaling 
To provide consistent input for the ensemble 

framework, the CIC-DDoS2019 dataset employs 

feature scaling to normalize numerical parameters 

such as packet size, flow duration, and byte counts. 

Because algorithms like KNN and MLP are very 

sensitive to changes in feature magnitudes, 

standardization, which involves converting data to 

have zero mean and unit variance, and Min-Max 

normalization, which involves scaling values 

between 0 and 1, were used. Because this 

preprocessing step ensures that no single feature 

dominates the learning process due to its size, the 

ensemble of KNN, LSTM, and MLP can train more 

effectively, achieve faster convergence, and deliver 

balanced, high-accuracy detection of DDoS attacks. 

Data Classification 
Data classification in the proposed EML 

framework makes use of a combination of KNN, 

Multi-Layer Perceptron (MLP), and LSTM models, 

all of which have their distinct analytical 

capabilities. By classifying network traffic 

according to the distance between a new data point 

and its closest neighbors in the feature space, KNN, 

acting as a lazy learner, helps identify known 

attack patterns in static data. By analyzing the 

normalized and selected data over several hidden 

layers, MLP, a deep feed-forward neural network, 

captures complex, non-linear connections between 

malicious and benign traffic characteristics. 

Meanwhile, LSTM, a kind of recurrent neural 

network (RNN), can simulate sequential 

dependencies in network flow data, making it 

possible to identify time-dependent attack 

fingerprints like evolving DDoS patterns. To 

improve the accuracy and reliability of classifying 

network traffic as either legal or malicious, the 

ensemble framework combines the predictions of 

various classifiers. This is achieved by merging 

LSTM's temporal learning capabilities with KNN's 

pattern recognition and MLP's feature abstraction. 

Overall, cybersecurity is enhanced, false positives 

are reduced, and detection accuracy is increased 

by this cooperative technique. 

K-Nearest Neighbors (KNN) 
To detect hostile and benign traffic patterns in the 

CIC-DDoS2019 dataset, the K-Nearest Neighbors 

(KNN) method is used as a baseline classifier inside 

the suggested Machine Learning Approaches to 

Strengthen Cyber Security and Network Defense. 

Using parameters like packet size, flow time, and 

byte count, KNN compares a new network flow to 

its k closest neighbors in the training data to 

classify it, as shown in Table 1. KNN is a distance-

based, non-parametric technique. In CIC-

DDoS2019, KNN was able to identify several types 

of DDoS attacks, such as UDP floods, SYN floods, 

and amplification assaults, by using metrics like 

Euclidean distance to identify commonalities in 

traffic flow. Due to KNN's lack of data distribution 

assumptions, it can adapt well to this dataset's 
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diversified and high-dimensional feature space. To 

avoid computational inefficiencies and bias caused 

by features with wider numerical ranges, 

preprocessing procedures like feature scaling and 

dimensionality reduction were essential.  

 

Table 1: KNN Pseudocode 
Step 1: Load the Dataset 

 Import the CIC-DDoS2019 dataset. 

 Load flow-based features (packet size, flow duration, protocol flags) and labels (benign or DDoS attack types). 

Step 2: Pre-process Data 

 Handle missing values (remove or impute). 

 Encode categorical features (e.g., protocol type → one-hot encoding). 

 Apply feature scaling (Min-Max or Standardization). 

 Split the dataset into a training set (70%) and a testing set (30%). 

Step 3: Choose Parameters 

 Select k (number of neighbors, k=5). 

 Choose a distance metric (Euclidean, Manhattan, or Minkowski). 

Step 4: Training Phase (Lazy Learning) 

 Store all training data points and their labels in memory (KNN does not “train” in the traditional sense). 

Step 5: Classification Phase (For each test sample) 

 a. Calculate the distance between the test sample and all training samples. 

 b. Sort distances in ascending order. 

 c. Select the k nearest neighbors. 

 d. Count the labels of these k neighbors (benign vs. attack types). 

 e. Assign the majority label to the test sample. 

Step 6: Evaluation 

 Compare predicted labels with actual labels. 

 Compute performance metrics: Accuracy, Precision, Recall, F1-score. 
 

Multi-Layer Perceptron (MLP) 
To classify network traffic from the CIC-DDoS2019 

dataset, the proposed Machine Learning 

Approaches to Strengthen Cyber Security and 

Network Defense mainly depend on the MLP for 

learning complex, non-linear connections between 

benign and malicious flows. The dataset's diverse 

properties, such as packet length, flow duration, 

and inter-arrival periods, are entered in the MLP's 

input layer, shown in Table 2. To find deeper 

patterns that could point to DDoS attacks, many 

hidden layers use weighted transformations and 

non-linear activation functions, such as ReLU. The 

MLP continuously modifies weights during 

training via backpropagation, lowering the 

classification error, with optimizers such as Adam. 

After training, the network can accurately identify 

freshly arriving traffic records as either benign, 

UDP flood, or SYN flood. Because of the high 

dimensionality of the data it contains, CIC-

DDoS2019 required preprocessing techniques, 

including feature scaling and forward selection, to 

improve convergence and reduce overfitting. 
 

Table 2: MLP Pseudocode 
Step 1: Load the Dataset 

 Import the CIC-DDoS2019 dataset. 

 Extract features (X) such as packet size, flow duration, and byte counts. 

 Extract labels (y) (benign, UDP flood, SYN flood, etc.). 

Step 2: Data Pre-processing 

 Handle missing values (impute or remove). 

 Encode categorical features (e.g., protocol type → one-hot encoding). 

 Scale features using Min-Max normalization or Standardization. 

 Split the dataset into a Training set (70%), Validation set (15%), and Testing set (15%). 

Step 3: Initialize MLP Architecture 

 Define Input Layer: Number of neurons = number of selected features. 

 Add Hidden Layers (1–3 layers, with ReLU activation). 

 Add Output Layer: 

  Softmax activation (for multi-class attack classification) 

  Sigmoid activation (if binary classification: benign vs. attack). 

Step 5: Set Training Parameters 

 Loss function: Cross-Entropy Loss (for multi-class tasks). 

 Optimizer: Adam (adaptive learning). 

 Define the number of epochs and batch size. 

Step 6: Training Phase 

 For each epoch: 

  a. Feed training data through the network (forward pass). 

  b. Compute the prediction error (loss). 

  c. Perform backpropagation to update weights using gradients. 

  d. Adjust weights with the optimizer to minimize loss. 

Step 7: Validation Phase 

 After each epoch, evaluate the model on the validation set to monitor overfitting and adjust hyperparameters if needed. 

Step 8: Testing Phase 
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 Run the trained MLP on unseen test data. 

 Generate predicted labels. 

Step 9: Performance Evaluation 

 Compute metrics: Accuracy, Precision, Recall, F1-Score. 

 Analyze the confusion matrix to identify misclassifications. 
 

Long Short-Term Memory (LSTM) 
The LSTM network is used in the proposed 

Machine Learning Approaches to Strengthen Cyber 

Security and Network Defense to capture the 

temporal and sequential patterns found in the CIC-

DDoS2019 dataset, which comprises flow-based 

records of both malicious and benign traffic. In 

contrast to conventional feed-forward networks, 

LSTM is a specific kind of RNN that is very 

successful in analyzing time-series network traffic 

data because it is designed to manage long-term 

dependencies and solve the vanishing gradient 

issue shown in Table 3. In the LSTM, memory cells 

use input, output, and forget gates to selectively 

keep or delete information based on features 

including packet arrival timings, flow lengths, and 

inter-packet intervals. Through this method, the 

model may discover patterns that static models 

would miss by learning how DDoS attack behaviors 

change over time.  The LSTM provides rich 

contextual knowledge into attack evolution by 

classifying traffic flow sequences by categories 

such as benign, SYN flood, or UDP flood when 

applied to CIC-DDoS2019. When included in the 

ensemble, LSTM has strong temporal learning 

capabilities that enhance the instance-based 

recognition of KNN and the non-linear feature 

abstraction of MLP, resulting in a comprehensive 

and flexible cybersecurity defensive model. 
 

Table 3: LSTM Pseudocode 
Step 1: Load the Dataset 

 Import the CIC-DDoS2019 dataset. 

 Extract features (X) such as packet size, flow duration, and inter-arrival times. 

 Extract labels (y) (benign, UDP flood, SYN flood, etc.). 

Step 2: Pre-processing 

 Handle missing or inconsistent values. 

 Encode categorical data (protocol types → one-hot encoding). 

 Apply feature scaling (Min-Max or Standardization). 

 Reshape the feature data into a 3D format: (samples, timesteps, features) for LSTM input. 

 Split the dataset into training (70%), validation (15%), and testing (15%) sets. 

Step 3: Build an LSTM Model 

 Define Input Layer: matching the shape of (timesteps, features). 

 Add one or more LSTM layers with memory cells (64 or 128 units). 

 Optionally include Dropout layers to prevent overfitting. 

 Add a Dense (Fully Connected) layer for classification. 

 Use Softmax activation for multi-class classification or Sigmoid for binary classification. 

Step 4: Compile Model 

 Set loss function: 

 Categorical Cross-Entropy for multi-class 

 Binary Cross-Entropy for binary classification 

 Choose optimizer: Adam (common choice for LSTM). 

 Define evaluation metrics (accuracy, precision, recall). 

Step 5: Train Model 

 For each epoch: 

  a. Feed training sequences into the LSTM (forward pass). 

  b. Calculate the loss and generate gradients (backpropagation through time). 

  c. Update weights using the optimizer. 

  d. Validate on the validation set to track performance and prevent overfitting. 

Step 6: Test Model 

 Use the testing set for unseen traffic data. 

 Generate predictions (benign or attack class labels). 

Step 7: Evaluate Performance 

 Compute metrics: Accuracy, Precision, Recall, F1-Score. 

 Analyze the confusion matrix to identify misclassifications. 
 

Basic Forecasts 
A first assessment of the effectiveness and 

suitability of the suggested EML Approaches to 

Strengthen Cyber Security and Network Defense is 

given via basic predictions. Using classifiers like 

KNN, MLP, and LSTM on the CIC-DDoS2019 

dataset, the ensemble should minimize false 

positives and achieve high detection accuracy. 

According to preliminary estimates, the system 

will be able to successfully adjust to a variety of 

DDoS assault patterns and changing threat 

landscapes thanks to the combination of instance-

based learning KNN, deep feature extraction MLP, 

and temporal sequence modeling LSTM. The 

predictions also point to increased preparedness 

for real-time intrusion detection applications, less 
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computing cost via optimal feature selection, and 

better generalization across various network 

settings. These projections provide a solid 

performance baseline, but they will be verified by 

thorough testing and comparison with current 

cybersecurity models. 

Ensemble Learning Model (ELM) 
An ELM combines the advantages of KNN, MLP, and 

LSTM in the suggested EMLApproaches to 

Strengthen Cyber Security and Network Defense to 

categorize network traffic in the CIC-DDoS2019 

dataset more accurately and robustly than any one 

model could show in Table 4. A unique capacity is 

contributed by each base learner: LSTM captures 

temporal correlations in sequential traffic flows, 

MLP recovers intricate, non-linear feature 

interactions, and KNN provides robust instance-

based detection of static attack signatures. A voting 

system or weighted average technique is used to 

aggregate their separate forecasts, resulting in a 

single categorization output for both benign and 

malevolent classes, including amplification 

assaults, UDP floods, and SYN floods. While 

enhancing their combined capabilities, this hybrid 

technique lessens the drawbacks of individual 

models, such as LSTM's computational expense or 

KNN's sensitivity to high-dimensional data. The 

ensemble model delivers strong detection 

performance, enhanced generalization across a 

variety of DDoS attack types, and reduced false-

positive rates by using the rich flow-based 

properties of CIC-DDoS2019. This makes it a 

potent and scalable solution for contemporary 

network protection. 
 

Table 4: ELM Pseudocode 
Step 1: Load the Dataset 

 Import the CIC-DDoS2019 dataset. 

 Extract features (X) (packet size, flow duration, byte counts). 

 Extract labels (y) (benign, UDP flood, SYN flood, etc.). 

Step 2: Data Pre-processing 

 Handle missing values (impute or remove). 

 Encode categorical features (protocol type → one-hot encoding). 

 Apply feature scaling (Min-Max or Standardization). 

 Optionally perform feature selection (Forward Selection) to remove irrelevant features. 

 Split data into Training (70%), Validation (15%), and Testing (15%) sets. 

Step 3: Initialize Base Classifiers 

 Define the KNN model with the chosen k value and distance metric. 

 Define an MLP model with input, hidden, and output layers. 

 Define an LSTM model with a time-series input structure. 

Step 4: Train Base Models 

 For each model: 

  a. Train KNN using the training set (store data for distance calculation). 

  b. Train MLP with forward pass and backpropagation. 

  c. Train LSTM with sequential data (using backpropagation through time). 

Step 5: Generate Predictions (Validation and Test Sets) 

 Feed validation/test samples into KNN, MLP, and LSTM. 

 Collect each model’s predictions for every sample. 

Step 6: Combine Predictions (Ensemble Step) 

 Apply majority voting (for classification) or weighted voting (if accuracy weights are assigned to models). 

 Generate final class label (benign or attack category). 

Step 7: Evaluate Ensemble Model 

 Compare ensemble predictions with true labels. 

 Compute metrics: Accuracy, Precision, Recall, F1-Score. 

 Analyze the confusion matrix to assess misclassification patterns. 

Step 8: Output Results 

 Report final detection performance. 

 Highlight the ensemble’s improvement over individual models. 

 

Performance Metrics 
In the classification trials, we evaluate the 

performance of our models using many critical 

metrics: 

In order to quantify the efficacy of machine 

learning models, indicators of assessment are 

essential. F1 Score, recall, accuracy, and precision 

are some of the most common evaluation metrics 

used in model classifications. 

 

 

Accuracy 
Equation [1] describes the accuracy in 

cybersecurity, which refers to the completeness of 

a detection system, such as an intrusion detection 

or malware classification tool. It displays the 

frequency with which the model separates harmful 

from secure network traffic. A high accuracy score, 

for example, would mean that the system is 

correctly classifying most incoming data as either 

safe or dangerous in the framework of smart 

homeowner network monitoring. However, if the 
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dataset is uneven, accuracy may be misleading in 

real-world cybersecurity scenarios. For instance, if 

the majority of traffic is routine and just a small 

percentage represents an attack, the system may 

seem correct, yet overlook significant dangers. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 [1] 

Where TP is the True Positive, correctly predicted the positive cases, TN is the True Negative, correctly 

predicted the negative cases, FP is the False Positive, incorrectly predicted the positive cases, and FN is the 

False Negative, incorrectly predicted the negative cases. 
 

Precision 
Equation [2] describes detecting something as 

malicious, and cybersecurity precision measures 

how reliable the system's alerts are. When a very 

precise system warns of a potentially harmful file, 

email, or connection, it is likely correct; such 

notifications are very rare from such a system. This 

is especially important in domains where a large 

volume of false positives may overwhelm security 

teams or cause users to ignore alerts, such as 

phishing detection, intrusion detection, and spam 

filters. By making sure that cybersecurity experts 

are confident in the signals that they receive, high 

accuracy lowers the time wasted on innocent 

behavior that is falsely categorized as attacks. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 [2] 

Recall 
Equation [3] describes the Recall in cybersecurity, 

which refers to a system's ability to recognize real 

threats. For example, a high-recall DDoS attack 

detection appliance efficiently detects most of the 

malicious traffic trying to overload the network. On 

the other hand, a low recall rate suggests that the 

infrastructure is missing a large number of genuine 

threats, thus leaving the network vulnerable. It is 

important for security-sensitive applications like 

fraud prevention or malware detection because, 

even if the system is accurate most of the time, 

failing to identify an attack might have disastrous 

consequences. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 [3] 

F1-Score 
A cybersecurity simulation's efficacy may be fairly 

evaluated using the F1-Score, which combines 

accuracy and recall into one score. Unfortunately, 

cybersecurity teams frequently face the difficult 

choice between tuning their systems for high 

accuracy and designing them for high recall. The 

former may miss some attacks to avoid 

unnecessary warnings, while the latter may detect 

every possible danger but generate an elevated 

number of false alarms. Equation [4] describes the 

F1-Score shines in scenarios where detecting 

threats and avoiding unnecessary false positives 

are of equal importance, such as anomaly 

surveillance in smart homes or intrusion detection. 

Theoretically sound and practically applicable to 

real-world protection, it helps ensure that the 

entire structure is well-designed. 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 [4] 

Result Prediction 
The proposed ensemble model, which integrates 

KNN, MLP, and LSTM, is expected to outperform 

the individual models in terms of classification 

accuracy on the CIC-DDoS2019 dataset by 

leveraging their distinct strengths. By combining 

the instance-based recognition of KNN with the 

deep feature abstraction of MLP and the temporal 

sequence learning of LSTM, we anticipate that the 

ensemble will enhance the detection of different 

forms of DDoS attacks and decrease false positives. 

With the use of Forward Selection and feature 

scaling, a more effective model may converge 
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faster and generalize better to unexpected 

network data. Overall, the anticipated results 

demonstrate that the ensemble framework will 

provide a reliable cybersecurity system that can 

adapt to the network's demands and resist 

emerging and evolving threats. All three models 

are beneficial to the ensemble, but LSTM is 

expected to be the most significant contribution, 

boosting the total detection capabilities and 

guaranteeing that the framework can more 

accurately adjust to contemporary, dependent on 

time security threats. 

Scalability 
The proposed ensemble approach is meant to be 

scalable to edge, fog, and cloud layers, among other 

multi-layer network topologies. While the LSTM 

model may be run at higher layers (fog/cloud) to 

examine temporal traffic patterns, lightweight 

components like KNN and MLP can be deployed at 

edge or fog nodes for quick initial identification. 

The system can manage growing network capacity 

and traffic volume thanks to this tiered 

implementation without experiencing appreciable 

performance deterioration. 
 

Table 5: Experimental Configuration List 

Component Configuration 

Processor (CPU) Intel Core i7.5 GHZ 

Graphics Card (GPU) NVIDIA 2GB 

RAM 32GB DDR4 

IDE Jupyter Notebook 

Software Anaconda Python 

Libraries Scikit-learn, Keras, TensorFlow, Pandas, Numpy, Matplotlib 

 

Results and Discussion 
The experience assessment was conducted on a 

personal computer that met the specifications 

given in Table 5, above. 

A thorough analysis of computational cost has 

been included, emphasizing the trade-off between 

higher processing overhead and better detection 

performance. The complementary characteristics 

of KNN, LSTM, and MLP greatly minimize false 

positives and false negatives, even if ensemble 

learning needs more computing than single 

models, owing to simultaneous training and 

inference. According to the article, layer-wise 

deployment and model optimization may reduce 

the additional computational cost, which is 

warranted for security-critical applications. 

Label distribution and frequency in the CIC-

DDoS2019 dataset highlight the need for 

comprehensive data cleaning and preprocessing 

before model training. At first, the dataset included 

both harmless and malicious traffic, with the 

former comprising 40.43%, the latter 35.06%, UDP 

15.23%, MSSQL 7.22%, and minor amounts of 

LDAP, NetBIOS, and UDPLag. The data was 

prepared by removing duplicate and malformed 

items and handling missing values consistently. 

Methods like resampling and class balancing were 

investigated to make sure those rare attack types, 

which only contribute tiny percentages (e.g., 

UDPLag at 0.05%), shown in Figure 3 (A) and (B), 

did not affect model learning. To make features like 

packet size and flow time more similar, we 

standardized or normalized the feature values. 

These helped algorithms like KNN and MLP 

perform better. Also included for model 

compatibility were categorical variables, such as 

protocol kinds. The ensemble learning framework 

was able to effectively categorize a wide variety of 

attack types with little bias towards popular 

categories like SYN and benign traffic because of 

this preparation workflow, which made sure the 

dataset, was balanced, clean, and training-ready.  

Figure 4 illustrates the distribution of flow time for 

both attacker and benign network traffic using 

logarithmic boxplots. The flow durations for attack 

traffic exhibit a very varied distribution, with flows 

ranging from ephemeral to exceedingly prolong. A 

multitude of elevated outliers and a comparatively 

extended median flow time for assaults signify 

ongoing attack activities, which is characteristic of 

distributed denial of service (DDoS), brute-force, 

or slow-rate attacks. The distribution of benign 

traffic is more concentrated and has a reduced 

interquartile range, indicating that the flow 

duration is more stable and foreseeable. In 

comparison to attack traffic, benign flows have 

fewer and less dispersed long-duration outliers. 
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The graph indicates that attack flows exhibit more 

variability and a broader range of durations, a 

crucial attribute for distinguishing malicious traffic 

from legitimate network activity.  
 

 

 
(A)                                                                       (B) 

Figure 3: (A) Frequency of Label, (B) Percentage of Label 
 

 
Figure 4: Flow Duration Distribution for Attack and Benign 

 

 
Figure 5: Packet Length Mean by Protocol and Attack Label 



Sivasangeetha et al.,                                                                                                                                       Vol 7 ǀ Issue 1 

 

1512 
 

 
Figure 6: Performance Metrics 

 

 
Figure 7: Performance Metrics 

 

Figure 5 displays the distribution of mean packet 

lengths in the CIC-DDoS2019 dataset, broken 

down by attack categories and protocols. Although 

there is a great deal of variance in packet lengths 

between attack types, protocols 6 (TCP) and 17 

(UDP) predominate in the sample. While SYN 

attacks (under TCP) have more concentrated but 

higher mean packet lengths, benign traffic under 

TCP exhibits a broad range of packet durations 

with numerous outliers. The mean packet length is 

more constant for UDP-based attacks, such as UDP 

flood, although there is notable variance for MSSQL 

and LDAP under UDP. Minimal change is seen in 

Protocol 0, despite its low use. This visualization 

shows how the ensemble classification model may 

use the mean of packet length to distinguish 

between various types of attacks and regular 

traffic. 

Figures 6 and 7 present a comparative 

performance analysis of four models, ELM, LSTM, 

KNN, and MLP Classifier, based on several 

evaluation metrics for cyberattack detection using 

the CIC-DDoS2019 dataset. Among all models, EML 

consistently achieves the highest scores, with 

Accuracy (0.9925), Precision (0.9927), Recall 

(0.9925), and an impressive F1 Score (0.9923), 

demonstrating its ability to effectively combine the 

strengths of the individual classifiers. It also leads 

in ROC AUC (0.9917) and Cross Validation (CV) 

Score (0.9936), reflecting superior generalization 

and robust detection capability across different 

traffic scenarios. 

KNN follows closely with strong performance 

(Accuracy: 0.9921, F1 Score: 0.9921), showing that 

its instance-based learning contributes well to 

detecting attack patterns. LSTM performs slightly 

lower (Accuracy: 0.9899), but its temporal 

sequence modeling gives it a solid edge in 

understanding time-dependent patterns, 

maintaining high recall and precision. MLP 
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Classifier scores slightly lower across all metrics 

(Accuracy: 0.9876, F1 Score: 0.9875), though it still 

performs competitively. Overall, the table 

highlights that while all models deliver strong 

results, the ensemble approach (EML) provides the 

most balanced and reliable performance, making it 

the optimal choice for strengthening cybersecurity 

and network defense. 
 

 
Figure 8: ROC Curve 

 

Figure 8 illustrates the ROC (Receiver Operating 

Characteristic) curves for all models, ELM, LSTM, 

KNN, and MLP Classifier across multiple attack 

classes in the CIC-DDoS2019 dataset. The ROC 

curve plots the True Positive Rate (TPR) against 

the False Positive Rate (FPR), showcasing each 

model’s ability to distinguish between benign and 

malicious traffic across different DDoS attack 

types. The AUC (Area Under Curve) scores indicate 

overall model performance, with values close to 

1.0 reflecting near-perfect classification. 

The EML model dominates with a consistent AUC 

of 0.9918 across all classes, demonstrating 

superior and balanced detection for every attack 

type. MLP Classifier also performs strongly with an 

AUC of 0.9927, indicating its reliability in 

identifying complex patterns. LSTM achieves an 

AUC of 0.9837, leveraging its temporal sequence 

learning strength but showing slightly lower 

discrimination for some classes compared to EML. 

KNN, while still effective, scores 0.9713, reflecting 

solid but relatively weaker separation capability, 

especially for overlapping traffic patterns. The 

random guessing line (dashed diagonal) at 0.5 

serves as a baseline, and all models significantly 

outperform it. Overall, the figure highlights that all 

models deliver excellent classification 

performance, but the ensemble model achieves the 

most consistent and reliable detection across all 

DDoS attack categories. 
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Figure 9: Accuracy Results 

 

Figure 9 illustrates the accuracy scores of four 

models, EML, LSTM, KNN, and MLP Classifier, used 

in the ensemble learning framework for 

cybersecurity and network defense. The plot 

shows that the ELM achieves the highest accuracy 

at 0.9925, confirming its strength in combining 

multiple classifiers to deliver superior detection 

results. KNN follows closely with an accuracy of 

0.9921, demonstrating strong performance due to 

its ability to classify based on distance metrics and 

neighborhood patterns. LSTM records a slightly 

lower accuracy of 0.9899, yet remains competitive, 

leveraging its capability to capture sequential 

dependencies in traffic data. The MLP Classifier 

scores the lowest accuracy at 0.9876, though it still 

performs well overall. The plotted accuracy line 

indicates only minor fluctuations among the 

models, showing that all four approaches are 

highly effective, but EML consistently outperforms 

the others, validating the benefits of combining 

KNN, LSTM, and MLP into a single, more powerful 

ensemble framework. 

Limitations 
a) Data processing in streaming and real-time. 

When processing continuous high-speed 

network streams, the LSTM model adds extra 

latency and memory expense even while it 

successfully captures temporal relationships.  

b) The research recognizes that reaction time in 

real-world deployments, especially in ultra-

low-latency situations, may be impacted by 

buffering and sequence-window selection. 

c) The experimental evaluation is conducted 

using the CIC-DDoS2019 benchmark dataset, 

which, although comprehensive, may not fully 

capture the diversity and unpredictability of 

real-world network environments.  

d) The study relies on offline training and testing, 

and therefore does not directly address 

challenges associated with real-time 

deployment, such as concept drift, latency 

constraints, and dynamic traffic behavior. 
 

Conclusion 
This study presents an ensemble machine learning 

architecture using the CIC-DDoS2019 dataset, 

combining KNN, LSTM, and MLP to enhance 

cybersecurity and network protection by 

accurately recognizing and classifying diverse 

DDoS attacks. The proposed method achieves 

superior performance across important evaluation 

metrics, such as accuracy, precision, recall, F1 

score, and ROC AUC, by skillfully combining 

neighborhood-based pattern recognition, 

temporal traffic analysis, and nonlinear decision-

making. It has a maximum detection accuracy of 

99.25%. The experimental findings and visual 

assessments, such as ROC curves and comparative 

performance graphs, reveal that the ensemble 

model considerably reduces false positives and 

false negatives. This proves that the model can be 

used in real-world network security situations and 
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that it works well. The proposed architecture 

offers a dependable solution for deployment in 

modern cloud, IoT, and workplace networks where 

adaptive and precise intrusion detection is crucial. 

The study is limited by its reliance on an offline 

evaluation and benchmark dataset, which fails to 

adequately represent evolving attack strategies 

and real-time network dynamics. Future research 

will focus on real-time deployment, online and 

federated learning approaches, cross-dataset 

generalization, and computational optimization to 

make systems more scalable and adaptable to 

emerging cyberthreats. 
 

Abbreviations 
DDoS: Distributed Denial-of-Service, ELM: 

Ensemble Learning Model, EML: Ensemble 

Machine Learning, IDS: Intrusion Detection 

System, KNN: K-Nearest Neighbors, LSTM: Long 

Short-Term Memory, MLP: Multi-Layer 

Perceptron, NIDS: Network Intrusion Detection 

System, SOC: Security Operations Center, PCA: 

Principal Component Analysis.  
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