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Abstract

For the protection of digital infrastructures, strong and flexible security structures are necessary due to the fast rise in
cyber threats, such as spyware, phishing emails, and distributed denial-of-service (DDoS) attacks. By combining the
advantages of several techniques, ensemble machine learning (EML) has become a potent paradigm to improve cyber
defense by increasing detection accuracy and resistance against changing attack vectors. In order to successfully detect
and prevent network intrusions, this research investigates an ensemble strategy that makes use of K-Nearest Neighbors
(KNN), Long Short-Term Memory (LSTM) networks, and Multi-Layer Perception (MLP) models. MLP offers nonlinear
feature training for complicated threat landscapes, LSTM is excellent at identifying sequential relationships in network
data, and KNN offers effective recognition of patterns for static attack signatures. By combining these models, temporal
and geographical features are exploited, lowering false positives and improving prediction accuracy. Recent benchmark
datasets, such as CIC-DD0S2019, are used to assess performance in a variety of attack scenarios, offering a thorough
understanding of practical application. The suggested ensemble performs noticeably better than individual models in
accuracy, precision, and recall, according to experimental data, making it a viable instrument for proactive cyber
defense tactics. This study emphasizes how ensemble learning may improve cybersecurity and network resilience in a
revolutionary way.

Keywords: Cybersecurity, Distributed Denial-Of-Service, Ensemble Machine Learning, K-Nearest Neighbors, Long
Short-Term Memory Networks, Multi-Layer Perception.

Introduction

There has been a meteoric rise in the use of web- learning approaches, particularly neural networks,

based applications and services within the last two
decades. As of right now, 57% of the global
population is online. Because of this, worries about
the safety of the internet have grown substantially.
Numerous security threats have often been
present on the Internet. Online anomalies such as
Trojan horses, malware, port scanning, and DoS
attacks are commonplace (1). When dealing with
large and complicated networks, typical network
topologies often fail. An alternative method that
uses software rather than hardware components
like switches and routers to manage network
traffic is known as software-defined networking
(SDN). A centralized controller acts as the principal
decision-maker for the network in SDN, taking
over the control plane (2-3).

In response to these limitations, researchers have
used advanced machine learning and deep

to create context-aware forecasting systems for
detecting DDoS attacks and predicting. However,
existing methods in the literature employ outdated
datasets for training and struggle to distinguish
between legitimate traffic and application-layer
DDoS attacks (4).

The potential of EML to develop more reliable and
accurate attack detection systems has garnered a
lot of research interest. This method overcomes
the drawbacks of individual algorithms, such as
bias, overfitting, and inadequate generalization of
fresh data. Ensemble learning continuously
outperforms individual models by merging many
classifiers, leading to improved accuracy. To
enhance model performance, a variety of ensemble
algorithm combination techniques, including
bagging, stacking, and boosting, may be set up and
created. It is also crucial to use the capabilities and
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advantages of distinct algorithms in various
contexts. In various settings with varying
dimensionalities, machine learning algorithms
provide a unique collection of features and
operational efficiency. By combining these
accessible capabilities, ensemble learning creates a
system that can accurately detect possible
unknown attacks. Furthermore, enabling the
efficiency advantages of another method might
help prevent the drawbacks of a certain approach.
A benchmark dataset like CIC-DD0S2019, which
includes a variety of characteristics pertaining to
network traffic and intrusion detection, is used to
guarantee a reliable experimental assessment. To
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increase overall prediction accuracy, decrease
computing complexity, and improve detection
performance, the dataset characteristics are
examined, assessed, and processed.

On the other hand, passive attacks include secretly
watching data transfers to get private information
or unencrypted passwords (5-7). These attacks
don't change system resources, yet they are
nonetheless quite dangerous since they break data
privacy without anybody knowing. Figure 1 shows
common threats such as DoS and DDoS attacks,
Man-in-the-Middle attacks, packet sniffing, port
scanning, and ARP spoofing (8-9).

Denial of Service
(DoS) Attack

Men_in_the MiddleAtt
ack

Distributed Denial of
Service (DDoS) Attack

HACKER

Packet Sniffing

Port Scanning

ARP Spoofing

Figure 1: Cyberattack Architecture

Threat Model

Large-scale and varied DDoS attack characteristics seen
in the CIC-DD0S2019 dataset, such as high-rate flooding
assaults, protocol exploitation, and temporally scattered
attack patterns, are now explicitly taken into account by
the Threat Model. Additionally, it
consideration adversaries trying to avoid detection by
imitating legal traffic, which directly drives the
employment of neighborhood-based (KNN), nonlinear
(MLP), and temporal (LSTM) learning processes.
Background

The exponential expansion of digital connections
and the increasing number of smart gadgets have
increased the potential attack surface for hackers.

takes into

Threats, including large-scale DDoS assaults, zero-
day vulnerabilities,
threats (APTs), have therefore become more
complex. Conventional security methods that rely
on rules and signatures work well against known
threats, but they can't keep up with the constantly

and advanced persistent

evolving nature of modern attacks. Machine
learning techniques have gained popularity in
cybersecurity for identifying irregularities and
forecasting dangers because of their data-driven
and flexible nature. However, because of problems
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like excessive fitting, skewed learning, and poor
generalization, relying only on one machine
learning model may be troublesome when
confronted with novel attack patterns. To
overcome these challenges, EML techniques that
integrate many models, such as MLP, KNN, and
LSTM, have been successful. Ensemble techniques
use the advantages of many algorithms to enhance
detection precision, false positive rate, and
network defensive capabilities. Using current
like  CIC-DD0S2019,
researchers can train and evaluate robust hybrid

benchmark  datasets

approaches that change with dynamic cyber

environments, enhancing the adaptability of

critical systems against known and unknown

attacks.

Motivation

a) Modern digital infrastructures, such as cloud
platforms, IoT networks, and business systems,
are seriously threatened by the sharp growth in
sophisticated cyberattacks like DDoS, phishing,
and malware.

b) High false alarm rates and poor generalization

are often the consequence of traditional
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security measures and individual machine

learning models' inability to adjust to changing

attack patterns.
c) Asingle learning model is unable to adequately
represent the temporal interdependence and
static features of network traffic.
Combining complementary
increase detection accuracy and resilience is
made possible by recent developments in
ensemble machine learning.
e) Advanced intrusion detection systems may be
realistically evaluated under a variety of assault
scenarios thanks to benchmark datasets like
CIC-DDo0S2019.
Scalable, precise, and intelligent cybersecurity
frameworks that can function dependably in
fast and diverse
desperately needed.
Problem Statement
Even with state-of-the-art intrusion detection
systems (IDS), it is very challenging to accurately
detect or developing cyber threats.
Traditional IDSs rely on pattern recognition, which
makes them ill-equipped to detect sophisticated
attacks such as zero-day vulnerabilities.
Nevertheless, IDS that build detection models
using particular ML techniques have a lot of flaws,
such as data
standardization. The implementation of these
constraints raises the possibility of false positives,
in which legitimate traffic is incorrectly identified

d) classifiers to

network contexts are

new

bias, over-fitting, and poor

as an attack, and false negatives, in which attacks
are not detected. EML is a practical approach to
increasing the accuracy of attack detection while
overcoming these limitations. When it comes to
NIDS, it's important to study the pros and cons of
different ensemble techniques and algorithm
combinations in terms of comprehensibility,
complexity, and computational power. A machine
learning-based intrusion detection system that
minimizes false positives and false negatives while
precisely recognizing and classifying various DDoS
attack types from high-dimensional and time-
dependent network traffic. The updated definition
also highlights issues with class imbalance, real-
time detection restrictions, and traffic fluctuation.
Research Gap
a) Single classifiers, which are inadequate for
managing intricate and dynamic cyberattack
behaviors, are the basis of the majority of
current intrusion detection research.
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b) Hybrid ensemble frameworks that combine

temporal (LSTM), distance-based (KNN), and

nonlinear (MLP) learning models have not
received much attention.

Current ensemble approaches often
concentrate only on accuracy, failing to
adequately analyze temporal attack patterns,
false positives, and false negatives.

d) A lot of research fails to properly assess

ensemble models using current, actual datasets

like CIC-DD0S20109.

In ensemble-based cybersecurity research,

scalability, computing cost, and real-time

deployment issues are often disregarded.

The limits and practical application of

ensemble learning in actual network protection

systems are not well discussed.

Objective

This study's goal is to identify a variety of

cyberthreats by integrating the complementary

capabilities of KNN, LSTM, and MLP in an ensemble
machine learning framework. By lowering false
positives and raising accuracy, recall, and F1-score,
the suggested model seeks to outperform
individual classifiers. Modern benchmark datasets
like CIC-DD0S2019 are used to assess their efficacy
and guarantee dependable performance in current
attack situations. The ensemble is appropriate for
real-time network monitoring and security since it
was created with low-latency prediction in mind.

The system successfully handles changing attack

vectors by combining the sequential learning

capabilities of LSTM,
abstraction of MLP, and the pattern recognition of

KNN. In order to offer scalable and reliable

cybersecurity defense, the paper also provides a

practical roadmap for incorporating the ensemble

the nonlinear feature

model into intrusion detection systems (IDSs) and
security operations centers (SOCs). Below is the
literature work.

This approach quickly and accurately identified
botnets while using few resources. Negative
aspects include a low recognition rate, high
complexity, and unpredictability. Presented here
was a hybrid technique for selecting characteris-
tics and categorizing cyberattacks. The k-means
clustering technique and the correlation-based
selection of features method were combined to
produce an ideal feature subset. In order to do
classification, the decision tree (J48) was merged
with the stochastic Naive Bayes (NB) method. The
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complexity of its structure, along with its high
false-positive rates, is a drawback (10). A botnet
traffic analyzer called BoTShark was developed
using deep learning. This method got over the
restriction on using encrypted payloads. Another
interesting finding is that there were correlations
between the original and recovered attributes
discovered by every Convolutional Neural
Network (CNN) layer. The Softmax classification
algorithm was used as an indicator to successfully
detect fraudulent traffic (11). Learning techniques
to ensure that people comprehend IoT, as well as
having a comprehensive awareness of various
malware and how to detect them, are the primary
focus of the study (12). Then, with an emphasis on
deep learning approaches, we examined and
evaluated the current status of IDS research in four
main datasets (13).

Numerous studies have focused on cyberattack
predictions using machine learning techniques,
such as ensemble methods. Network traffic
categorization has made substantial
supervised machine learning algorithms. Training
a Network Intrusion Detection System's (NIDS)
rule-based model on a variety of datasets may
result in greater accuracy in classification and
lower false positive rates. On the other hand,
unsupervised machine learning techniques have
been used to evaluate connections and clustering
methods in network data, which might aid in the
identification of previously unidentified attack

use of

patterns. However, the main focus of this study is
on supervised machine learning techniques based
on binary classification (14-15).

A flexible NIDS EML model. Model weights are
dynamically adjustable, and particular model
configurations are also dynamically adjusted.
Multiple decision trees, k-NN, DNN, and random
forests are used as base classifiers. Averaging is a
method of adaptive voting. The proposed
architecture achieved an accuracy of 84.2% when
evaluated on the NSL-KDD dataset, while an
adaptive voting mechanism achieved an accuracy
of 85.2%. For improved outcomes, the authors
suggest making the most of feature selection and
preprocessing (16).

In IDSs, machine learning is much more effective
than conventional approaches, especially in light of
the increasing complexity of network threats (17).
System administrators were tasked with manually

searching logs for faults according to Jim
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Anderson's 1980 notion (18). Conversely, cutting-
edge IDS systems are making more and more use
of intelligent automation that makes use of
machine learning methods (19).

This study significantly enhances the capability to
collect real-time network data, which serves as
input for the identification of anomalies algorithm.
The structure and behavior of data flows across
networks have evolved a lot because networking
technology is always becoming better. The
significance of recording network traffic precisely
at the moment of intrusions, particularly during
data exchanges between systems, has increased in
recent years due to advancements within
communication protocols and dissemination
methods. To find bad activity, it's important to
capture network data rapidly and precisely during
these periods of transmission (20).

Machine learning and ensemble techniques for
improving cybersecurity and intrusion detection
systems has been the subject of several studies.
With an emphasis on their flexibility and efficacy in
complex network contexts, recent research offers
a comprehensive review of machine learning-
driven methods for identifying and reducing a
variety of cyberthreats (21). By showing that
integrating many models may greatly lower false
positives and increase detection accuracy, the
improved ensemble defense framework was
presented to increase the adversarial resilience of
intrusion detection systems (22). A hybrid
approach that
cyberattack detection cloud
infrastructures by using both supervised and
unsupervised techniques (23). The use of machine
learning in financial systems has also been studied,
emphasizing

machine learning improves

in computing

its function in maintaining
cybersecurity in digital banking platforms via real-
time threat prediction and mitigation (24). The
combined use of several classifiers surpasses
single-model techniques in terms of accuracy and
resilience by presenting an ensemble framework
identify and classify

successfully. Together, these studies demonstrate

that can cyberattacks

the increasing significance and efficacy of
ensemble and hybrid machine learning
approaches for reliable and expandable

cybersecurity solutions (25).
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Methodology

This section describes in detail our methodology
for detecting and classifying DDoS attacks in the
CIC-DD0S2019 dataset. Incorporating LSTM and
EML into a KNN and MLP model is our approach.
The LSTM module enables the analysis of complex
and massive datasets, and the LSTM model
employs a probabilistic strategy that accounts for
the uncertainties and probabilities associated with
network traffic patterns. The first stages include
gathering, cleaning, and preparing the data.
Principal Component Analysis (PCA) is used to
decrease dimensionality after the extraction of
relevant information. We proceeded to build and
train the EML classifier, verify the model, and
evaluate it using pertinent metrics such as F1
Score, recall, accuracy, and precision. Finally, we
save the data from the trained model. Data Fusion
isincluded to assess uncertainty; the LSTM method
integrates features extracted from many data
sources. Findings from the newly trained model
are contrasted with those from the EML model and
other similar models. Finally, we propose an
approach that relies on an EML model to detect
DDoS attacks.

The EDA phase involves tasks such as data
visualization, feature generation, and correlation
assessment to ensure high-quality data for training
models and to understand the dataset. After EDA,
the processed attributes are kept, and a variety of
ML algorithms are used. By running the model
through an accuracy check, we can find out
whether its predictions are satisfactory. If that
doesn't work, the approach follows the usual cycle
of
development by recommending algorithm and
characteristic adjustments the desired
accuracy is reached. As seen in Figure 2, the
research study's procedure includes data
preparation, model building, ensemble learning,

improving  machine learning  model

until

real-time implementation, and clarity integration.
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Cyberattacks, which put users' data security and
privacy at risk, have been on the increase as we
rely more on equipment that is connected to the
internet. To protect networks from unwanted
access, several security measures have been put in
place, including firewalls, IDS, and anti-malware
software. These systems can do anything from
basic rule matching to complex intelligent models.

CIC-DD0S2019 Dataset

An essential starting point for assessing the
efficacy of EML techniques meant to improve
cybersecurity and the defense of networks is the
CIC-DD0S2019 dataset. The data, which was
created by the Canadian Institute for
Cybersecurity, includes more than 50 different
kinds of DDoS assaults that are categorized into
HTTP, UDP, and TCP-based floods, as well as
amplification attacks that closely resemble actual
situations. Robust model training and testing are
made possible by its architecture, which
incorporates both benign and malicious traffic
recorded via realistic testbed settings. The dataset
is suitable for a variety of detection techniques as
it offers packet-level captures (PCAP) files and
flow-based characteristics, including packet
length, length of time, and inter-arrival periods.
CIC-DD0S2019 provides a rich and extremely
dimensional feature space for ensemble learning
models (ELM), such as those that combine KNN,
LSTM, and MLP, allowing them to take advantage
of the advantages of many algorithms at once. It
fills in the gaps left by previous datasets and aids
in the creation of flexible, highly accurate IDS by
recording complex and changing assault patterns.
The assessment of the suggested ensemble
architecture in this research is supported by CIC-
DD0S2019, which guarantees its applicability to
contemporary cyber threat environments and
increases its capacity for proactive network
security and real-time DDoS detection.
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Figure 2: System Architecture

Data Acquisition

The acquisition of varied, high-quality datasets
that capture both benign and harmful network
activities is the basis of the suggested EML
Approaches to Strengthen Cyber Security and
Network Defense. To guarantee accuracy and
applicability, benchmark datasets like CIC-
DD0S2019 were obtained for this work from
respectable cybersecurity research organizations.
These datasets provide a balanced perspective for
model training and assessment by combining
genuine traffic with a variety of contemporary
cyberthreats, such as DDoS, brute-force, botnet,
and reconnaissance assaults. Gathering packet-
level captures (PCAP files) and turning them into
flow-based feature sets with characteristics like
packet size, protocol type, flow length, and inter-
arrival periods were all part of the data-gathering
process. To avoid bias in the learning process, this
preparation step also included addressing missing
values, cleaning and normalizing the data, and
class balancing. The ensemble approach gains from
diverse traffic patterns by combining several
datasets, which helps it generalize well across a

range of scenarios for attacks and network

infrastructures.

Data Pre-Processing

A thorough data pre-processing pipeline was put in
place before model training in order to guarantee
the dependability and effectiveness of the EML
Approaches to Strengthen Cyber Security and
Network Defense. To eliminate duplicate entries,
unnecessary characteristics, and missing records,
raw network traffic data from benchmark datasets
like CIC-DD0S2019 was cleaned. While categorical
data, such as protocol kinds, were converted using
one-hot encoding to make them compatible with
machine learning models, missing values were
handled using imputation or elimination. To
guarantee uniform scaling, which is essential for
algorithms like KNN and MLP that are susceptible
to feature size, continuous features were
normalized or standardized. To eliminate bias
toward majority classes, oversampling Synthetic
Minority Oversampling Technique (SMOTE) and
under-sampling approaches were used to alleviate
class imbalance, a typical problem in cybersecurity

datasets. Following preprocessing, the dataset was
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methodically separated into subsets for testing
(15%), validation (15%), and training 70%. The
testing set offered an objective assessment of the
ensemble's performance, the validation set
adjusted hyperparameters and avoided
ing, and the training set made it easier to learn the
model. The ensemble framework was trained on
clean, balanced, and representative data thanks to
this organized pre-processing and data split-up
technique, which produced more accurate and
broadly applicable cyber threat identification
findings.

Feature Selection for Forward

Selection

This study used Forward Selection on the CIC-
DD0S2019 dataset to systematically determine the
most important network traffic variables for the
EML framework. All of the more than 80 flow-
based parameters included in the CIC-DD0oS2019
dataset, including packet size, flow duration,
protocol flags, and inter-arrival delays, might be
overwhelming for model training when used in
their entirety. When using Forward Selection, the
ensemble model is trained on each characteristic,
such as packet size, flow time, or protocol type,
independently; this is done starting with no
features. Here, the CIC-DD0S2019 dataset is used.
To begin, we provide the feature (accuracy, F1-
score, etc.) that has the greatest impact on

overfitt-

enhancing detection performance. The process
then iteratively continues, this time adding to the
subset the characteristics that provide the highest
performance increase following each other's
evaluation alongside the previously selected
features. This approach continues until either the
number of features reaches a certain limit or
adding additional features no longer improves the
model significantly. Since only the most important
and useful properties from CIC-DD0S2019 are
selected, noise is decreased without compromising
critical indicators for detecting DDoS attacks.
Feature Scaling

To provide consistent input for the ensemble
framework, the CIC-DD0S2019 dataset employs
feature scaling to normalize numerical parameters
such as packet size, flow duration, and byte counts.
Because algorithms like KNN and MLP are very
sensitive to changes in feature magnitudes,
standardization, which involves converting data to
have zero mean and unit variance, and Min-Max
normalization, which involves scaling values

1505
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between 0 and 1, were used. Because this
preprocessing step ensures that no single feature
dominates the learning process due to its size, the
ensemble of KNN, LSTM, and MLP can train more
effectively, achieve faster convergence, and deliver
balanced, high-accuracy detection of DDoS attacks.
Data Classification

Data the proposed EML
framework makes use of a combination of KNN,
Multi-Layer Perceptron (MLP), and LSTM models,
all of which have their distinct analytical
capabilities. By classifying network traffic
according to the distance between a new data point

classification in

and its closest neighbors in the feature space, KNN,
acting as a lazy learner, helps identify known
attack patterns in static data. By analyzing the
normalized and selected data over several hidden
layers, MLP, a deep feed-forward neural network,
captures complex, non-linear connections between
malicious and benign traffic characteristics.
Meanwhile, LSTM, a kind of recurrent neural
(RNN), sequential
dependencies in network flow data, making it
possible to identify time-dependent attack
fingerprints like evolving DDoS patterns. To
improve the accuracy and reliability of classifying
network traffic as either legal or malicious, the

network can simulate

ensemble framework combines the predictions of
various classifiers. This is achieved by merging
LSTM's temporal learning capabilities with KNN's
pattern recognition and MLP's feature abstraction.
Overall, cybersecurity is enhanced, false positives
are reduced, and detection accuracy is increased
by this cooperative technique.

K-Nearest Neighbors (KNN)

To detect hostile and benign traffic patterns in the
CIC-DD0S2019 dataset, the K-Nearest Neighbors
(KNN) method is used as a baseline classifier inside
the suggested Machine Learning Approaches to
Strengthen Cyber Security and Network Defense.
Using parameters like packet size, flow time, and
byte count, KNN compares a new network flow to
its k closest neighbors in the training data to
classify it, as shown in Table 1. KNN is a distance-
based, non-parametric technique. In CIC-
DD0S2019, KNN was able to identify several types
of DDoS attacks, such as UDP floods, SYN floods,
and amplification assaults, by using metrics like
Euclidean distance to identify commonalities in
traffic flow. Due to KNN's lack of data distribution
assumptions, it can adapt well to this dataset's
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diversified and high-dimensional feature space. To
avoid computational inefficiencies and bias caused
by features with wider

numerical ranges,

Table 1: KNN Pseudocode

Vol 7 | Issue 1

preprocessing procedures like feature scaling and
dimensionality reduction were essential.

Step 1: Load the Dataset
Import the CIC-DD0S2019 dataset.

Step 2: Pre-process Data
Handle missing values (remove or impute).
Encode categorical features (e.g., protocol type — one-hot enco
Apply feature scaling (Min-Max or Standardization).

Step 3: Choose Parameters
Select k (number of neighbors, k=5).

Step 4: Training Phase (Lazy Learning)
Step 5: Classification Phase (For each test sample)

b. Sort distances in ascending order.
c. Select the k nearest neighbors.

e. Assign the majority label to the test sample.
Step 6: Evaluation
Compare predicted labels with actual labels.
Compute performance metrics: Accuracy, Precision, Recall, F1-

Load flow-based features (packet size, flow duration, protocol flags) and labels (benign or DDoS attack types).

ding).

Split the dataset into a training set (70%) and a testing set (30%).

Choose a distance metric (Euclidean, Manhattan, or Minkowski).
Store all training data points and their labels in memory (KNN does not “train” in the traditional sense).

a. Calculate the distance between the test sample and all training samples.

d. Count the labels of these k neighbors (benign vs. attack types).

score.

Multi-Layer Perceptron (MLP)

To classify network traffic from the CIC-DD0S2019
dataset, the proposed Machine Learning
Approaches to Strengthen Cyber Security and
Network Defense mainly depend on the MLP for
learning complex, non-linear connections between
benign and malicious flows. The dataset's diverse
properties, such as packet length, flow duration,
and inter-arrival periods, are entered in the MLP's
input layer, shown in Table 2. To find deeper
patterns that could point to DDoS attacks, many

Table 2: MLP Pseudocode

hidden layers use weighted transformations and
non-linear activation functions, such as ReLU. The
MLP weights during
training via backpropagation, lowering the
classification error, with optimizers such as Adam.
After training, the network can accurately identify
freshly arriving traffic records as either benign,
UDP flood, or SYN flood. Because of the high
dimensionality of the data it contains, CIC-
DD0S2019 required preprocessing techniques,
including feature scaling and forward selection, to
improve convergence and reduce overfitting.

continuously modifies

Step 1: Load the Dataset
Import the CIC-DD0S2019 dataset.

Extract labels (y) (benign, UDP flood, SYN flood, etc.).
Step 2: Data Pre-processing
Handle missing values (impute or remove).
Encode categorical features (e.g., protocol type — one-hot enco

Step 3: Initialize MLP Architecture

Add Hidden Layers (1-3 layers, with ReLU activation).
Add Output Layer:

Step 5: Set Training Parameters
Loss function: Cross-Entropy Loss (for multi-class tasks).
Optimizer: Adam (adaptive learning).
Define the number of epochs and batch size.
Step 6: Training Phase
For each epoch:

b. Compute the prediction error (loss).
c. Perform backpropagation to update weights usi

Step 7: Validation Phase

Step 8: Testing Phase

Extract features (X) such as packet size, flow duration, and byte counts.

ding).

Scale features using Min-Max normalization or Standardization.
Split the dataset into a Training set (70%), Validation set (15%), and Testing set (15%).

Define Input Layer: Number of neurons = number of selected features.

Softmax activation (for multi-class attack classification)
Sigmoid activation (if binary classification: benign vs. attack).

a. Feed training data through the network (forward pass).

ng gradients.

d. Adjust weights with the optimizer to minimize loss.

After each epoch, evaluate the model on the validation set to monitor overfitting and adjust hyperparameters if needed.
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Run the trained MLP on unseen test data.
Generate predicted labels.
Step 9: Performance Evaluation
Compute metrics: Accuracy, Precision, Recall, F1-Score.
Analyze the confusion matrix to identify misclassifications.

Long Short-Term Memory (LSTM)

The LSTM network is used in the proposed
Machine Learning Approaches to Strengthen Cyber
Security and Network Defense to capture the
temporal and sequential patterns found in the CIC-
DDo0S2019 dataset, which comprises flow-based
records of both malicious and benign traffic. In
contrast to conventional feed-forward networks,
LSTM is a specific kind of RNN that is very
successful in analyzing time-series network traffic
data because it is designed to manage long-term
dependencies and solve the vanishing gradient
issue shown in Table 3. In the LSTM, memory cells
use input, output, and forget gates to selectively

Table 3: LSTM Pseudocode

keep or delete information based on features
including packet arrival timings, flow lengths, and
inter-packet intervals. Through this method, the
model may discover patterns that static models
would miss by learning how DDoS attack behaviors
change over time. The LSTM provides rich
contextual knowledge into attack evolution by
classifying traffic flow sequences by categories
such as benign, SYN flood, or UDP flood when
applied to CIC-DD0S2019. When included in the
ensemble, LSTM has strong temporal learning
capabilities that enhance the
recognition of KNN and the non-linear feature
abstraction of MLP, resulting in a comprehensive
and flexible cybersecurity defensive model.

instance-based

Step 1: Load the Dataset
Import the CIC-DD0S2019 dataset.

Extract labels (y) (benign, UDP flood, SYN flood, etc.).
Step 2: Pre-processing
Handle missing or inconsistent values.
Encode categorical data (protocol types — one-hot encoding).
Apply feature scaling (Min-Max or Standardization).

Extract features (X) such as packet size, flow duration, and inter-arrival times.

Reshape the feature data into a 3D format: (samples, timesteps, features) for LSTM input.
Split the dataset into training (70%), validation (15%), and testing (15%) sets.
Step 3: Build an LSTM Model
Define Input Layer: matching the shape of (timesteps, features).
Add one or more LSTM layers with memory cells (64 or 128 units).
Optionally include Dropout layers to prevent overfitting.
Add a Dense (Fully Connected) layer for classification.
Use Softmax activation for multi-class classification or Sigmoid for binary classification.
Step 4: Compile Model
Set loss function:
Categorical Cross-Entropy for multi-class
Binary Cross-Entropy for binary classification
Choose optimizer: Adam (common choice for LSTM).
Define evaluation metrics (accuracy, precision, recall).
Step 5: Train Model
For each epoch:
a. Feed training sequences into the LSTM (forward pass).
b. Calculate the loss and generate gradients (backpropagation through time).
c. Update weights using the optimizer.
d. Validate on the validation set to track performance and prevent overfitting.
Step 6: Test Model
Use the testing set for unseen traffic data.
Generate predictions (benign or attack class labels).
Step 7: Evaluate Performance
Compute metrics: Accuracy, Precision, Recall, F1-Score.
Analyze the confusion matrix to identify misclassifications.

Basic Forecasts According to preliminary estimates, the system

A first assessment of the effectiveness and
suitability of the suggested EML Approaches to
Strengthen Cyber Security and Network Defense is

will be able to successfully adjust to a variety of
DDoS assault patterns and changing threat
landscapes thanks to the combination of instance-

given via basic predictions. Using classifiers like
KNN, MLP, and LSTM on the CIC-DD0S2019
dataset, the ensemble should minimize false
positives and achieve high detection accuracy.

based learning KNN, deep feature extraction MLP,
and temporal sequence modeling LSTM. The
predictions also point to increased preparedness
for real-time intrusion detection applications, less
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computing cost via optimal feature selection, and
better generalization across various network
settings. These projections provide a solid
performance baseline, but they will be verified by
thorough testing and comparison with current
cybersecurity models.

Ensemble Learning Model (ELM)

An ELM combines the advantages of KNN, MLP, and
LSTM in the suggested EMLApproaches to
Strengthen Cyber Security and Network Defense to
categorize network traffic in the CIC-DD0S2019
dataset more accurately and robustly than any one
model could show in Table 4. A unique capacity is
contributed by each base learner: LSTM captures
temporal correlations in sequential traffic flows,
MLP intricate,
interactions, and KNN provides robust instance-

recovers non-linear feature

Table 4: ELM Pseudocode
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based detection of static attack signatures. A voting
system or weighted average technique is used to
aggregate their separate forecasts, resulting in a
single categorization output for both benign and
malevolent classes, including amplification
assaults, UDP floods, and SYN floods. While
enhancing their combined capabilities, this hybrid
technique lessens the drawbacks of individual
models, such as LSTM's computational expense or
KNN's sensitivity to high-dimensional data. The
ensemble strong detection
performance, enhanced generalization across a
variety of DDoS attack types, and reduced false-
positive rates by using the rich flow-based
properties of CIC-DDoS2019. This makes it a
potent and scalable solution for contemporary
network protection.

model delivers

Step 1: Load the Dataset
Import the CIC-DD0S2019 dataset.
Extract features (X) (packet size, flow duration, byte counts).
Extract labels (y) (benign, UDP flood, SYN flood, etc.).

Step 2: Data Pre-processing
Handle missing values (impute or remove).
Encode categorical features (protocol type — one-hot encoding).
Apply feature scaling (Min-Max or Standardization).

Step 3: Initialize Base Classifiers
Define the KNN model with the chosen k value and distance metric.
Define an MLP model with input, hidden, and output layers.
Define an LSTM model with a time-series input structure.
Step 4: Train Base Models
For each model:

b. Train MLP with forward pass and backpropagation.

Step 5: Generate Predictions (Validation and Test Sets)
Feed validation/test samples into KNN, MLP, and LSTM.
Collect each model’s predictions for every sample.

Step 6: Combine Predictions (Ensemble Step)

Generate final class label (benign or attack category).
Step 7: Evaluate Ensemble Model

Compare ensemble predictions with true labels.

Compute metrics: Accuracy, Precision, Recall, F1-Score.

Analyze the confusion matrix to assess misclassification patterns.
Step 8: Output Results

Report final detection performance.

Highlight the ensemble’s improvement over individual models.

Optionally perform feature selection (Forward Selection) to remove irrelevant features.
Split data into Training (70%), Validation (15%), and Testing (15%) sets.

a. Train KNN using the training set (store data for distance calculation).

c. Train LSTM with sequential data (using backpropagation through time).

Apply majority voting (for classification) or weighted voting (if accuracy weights are assigned to models).

Performance Metrics
In the classification trials,
performance of our models using many critical
metrics:

we evaluate the

In order to quantify the efficacy of machine
learning models, indicators of assessment are
essential. F1 Score, recall, accuracy, and precision
are some of the most common evaluation metrics
used in model classifications.

Accuracy

Equation [1] the accuracy in
cybersecurity, which refers to the completeness of
a detection system, such as an intrusion detection

describes

or malware classification tool. It displays the
frequency with which the model separates harmful
from secure network traffic. A high accuracy score,
for example, would mean that the system is
correctly classifying most incoming data as either
safe or dangerous in the framework of smart
homeowner network monitoring. However, if the
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dataset is uneven, accuracy may be misleading in
real-world cybersecurity scenarios. For instance, if

Vol 7 | Issue 1

percentage represents an attack, the system may
seem correct, yet overlook significant dangers.

the majority of traffic is routine and just a small

| ~ TP + TN
Couracy =rpb Y TN + FP + FN

(1]

Where TP is the True Positive, correctly predicted the positive cases, TN is the True Negative, correctly
predicted the negative cases, FP is the False Positive, incorrectly predicted the positive cases, and FN is the

False Negative, incorrectly predicted the negative cases.

Precision

Equation [2] describes detecting something as
malicious, and cybersecurity precision measures
how reliable the system's alerts are. When a very
precise system warns of a potentially harmful file,
email, or connection, it is likely correct; such
notifications are very rare from such a system. This

Precision =

Recall

Equation [3] describes the Recall in cybersecurity,
which refers to a system's ability to recognize real
threats. For example, a high-recall DDoS attack
detection appliance efficiently detects most of the
malicious traffic trying to overload the network. On
the other hand, a low recall rate suggests that the

Recall =

F1-Score

A cybersecurity simulation's efficacy may be fairly
evaluated using the F1-Score, which combines
accuracy and recall into one score. Unfortunately,
cybersecurity teams frequently face the difficult
choice between tuning their systems for high
accuracy and designing them for high recall. The
former may miss some attacks to avoid
unnecessary warnings, while the latter may detect

TP + FP

is especially important in domains where a large
volume of false positives may overwhelm security
teams or cause users to ignore alerts, such as
phishing detection, intrusion detection, and spam
filters. By making sure that cybersecurity experts
are confident in the signals that they receive, high
accuracy lowers the time wasted on innocent
behavior that is falsely categorized as attacks.

TP 2]

infrastructure is missing a large number of genuine
threats, thus leaving the network vulnerable. It is
important for security-sensitive applications like
fraud prevention or malware detection because,
even if the system is accurate most of the time,
failing to identify an attack might have disastrous
consequences.

TP
TP+ FN

(3]

every possible danger but generate an elevated
number of false alarms. Equation [4] describes the
F1-Score shines in scenarios where detecting
threats and avoiding unnecessary false positives
are of equal importance, such as anomaly
surveillance in smart homes or intrusion detection.
Theoretically sound and practically applicable to
real-world protection, it helps ensure that the

entire structure is well-designed.

2 * Precision * Recall

F1 — Score =

(4]

Precision + Recall

Result Prediction

The proposed ensemble model, which integrates
KNN, MLP, and LSTM, is expected to outperform
the individual models in terms of classification
accuracy on the CIC-DD0oS2019 dataset by
leveraging their distinct strengths. By combining

the instance-based recognition of KNN with the
deep feature abstraction of MLP and the temporal
sequence learning of LSTM, we anticipate that the
ensemble will enhance the detection of different
forms of DDoS attacks and decrease false positives.
With the use of Forward Selection and feature
scaling, a more effective model may converge
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faster and generalize better to unexpected
network data. Overall, the anticipated results
demonstrate that the ensemble framework will
provide a reliable cybersecurity system that can
adapt to the network's demands and resist
emerging and evolving threats. All three models
are beneficial to the ensemble, but LSTM is
expected to be the most significant contribution,
boosting the total detection capabilities and
guaranteeing that the framework can more
accurately adjust to contemporary, dependent on
time security threats.

Table 5: Experimental Configuration List

Vol 7 | Issue 1

Scalability

The proposed ensemble approach is meant to be
scalable to edge, fog, and cloud layers, among other
multi-layer network topologies. While the LSTM
model may be run at higher layers (fog/cloud) to
examine temporal traffic patterns, lightweight
components like KNN and MLP can be deployed at
edge or fog nodes for quick initial identification.
The system can manage growing network capacity
and traffic thanks this
implementation without experiencing appreciable
performance deterioration.

volume to tiered

Component Configuration

Processor (CPU) Intel Core i7.5 GHZ

Graphics Card (GPU) NVIDIA 2GB

RAM 32GB DDR4

IDE Jupyter Notebook

Software Anaconda Python

Libraries Scikit-learn, Keras, TensorFlow, Pandas, Numpy, Matplotlib

Results and Discussion

The experience assessment was conducted on a
personal computer that met the specifications
given in Table 5, above.

A thorough analysis of computational cost has
been included, emphasizing the trade-off between
higher processing overhead and better detection
performance. The complementary characteristics
of KNN, LSTM, and MLP greatly minimize false
positives and false negatives, even if ensemble
learning needs more computing than single
models, owing to simultaneous training and
inference. According to the article, layer-wise
deployment and model optimization may reduce
the additional cost, which
warranted for security-critical applications.

computational is
Label distribution and frequency in the CIC-
DD0S2019 dataset highlight the
comprehensive data cleaning and preprocessing
before model training. At first, the dataset included
both harmless and malicious traffic, with the
former comprising 40.43%, the latter 35.06%, UDP
15.23%, MSSQL 7.22%, and minor amounts of
LDAP, NetBIOS, and UDPLag. The data was
prepared by removing duplicate and malformed
items and handling missing values consistently.
Methods like resampling and class balancing were

need for

investigated to make sure those rare attack types,
which only contribute tiny percentages (e.g.,

1510

UDPLag at 0.05%), shown in Figure 3 (A) and (B),
did not affect model learning. To make features like
packet size and flow time more similar, we
standardized or normalized the feature values.
These helped algorithms like KNN and MLP
perform better. Also
compatibility were categorical variables, such as
protocol kinds. The ensemble learning framework
was able to effectively categorize a wide variety of

included for model

attack types with little bias towards popular
categories like SYN and benign traffic because of
this preparation workflow, which made sure the
dataset, was balanced, clean, and training-ready.

Figure 4 illustrates the distribution of flow time for
both attacker and benign network traffic using
logarithmic boxplots. The flow durations for attack
traffic exhibit a very varied distribution, with flows
ranging from ephemeral to exceedingly prolong. A
multitude of elevated outliers and a comparatively
extended median flow time for assaults signify
ongoing attack activities, which is characteristic of
distributed denial of service (DDoS), brute-force,
or slow-rate attacks. The distribution of benign
traffic is more concentrated and has a reduced
interquartile range, indicating that the flow
duration is more stable and foreseeable. In
comparison to attack traffic, benign flows have
fewer and less dispersed long-duration outliers.
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The graph indicates that attack flows exhibit more crucial attribute for distinguishing malicious traffic
variability and a broader range of durations, a from legitimate network activity.

Syn - 40.43%
Benign - 35.06%
UDP - 15.23%
MSSQL - 7.22%
LDAP - 1.61%
NetBIOS - 0.41%
UDPLag - 0.05%
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Figure 6: Performance Metrics
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Figure 7: Performance Metrics

Figure 5 displays the distribution of mean packet
lengths in the CIC-DD0S2019 dataset, broken
down by attack categories and protocols. Although
there is a great deal of variance in packet lengths
between attack types, protocols 6 (TCP) and 17
(UDP) predominate in the sample. While SYN
attacks (under TCP) have more concentrated but
higher mean packet lengths, benign traffic under
TCP exhibits a broad range of packet durations
with numerous outliers. The mean packet length is
more constant for UDP-based attacks, such as UDP
flood, although there is notable variance for MSSQL
and LDAP under UDP. Minimal change is seen in
Protocol 0, despite its low use. This visualization
shows how the ensemble classification model may
use the mean of packet length to distinguish
between various types of attacks and regular
traffic.

Figures 6 and 7 present a comparative
performance analysis of four models, ELM, LSTM,

KNN, and MLP Classifier, based on several
evaluation metrics for cyberattack detection using
the CIC-DD0S2019 dataset. Among all models, EML
consistently achieves the highest scores, with
Accuracy (0.9925), Precision (0.9927), Recall
(0.9925), and an impressive F1 Score (0.9923),
demonstrating its ability to effectively combine the
strengths of the individual classifiers. It also leads
in ROC AUC (0.9917) and Cross Validation (CV)
Score (0.9936), reflecting superior generalization
and robust detection capability across different
traffic scenarios.

KNN follows closely with strong performance
(Accuracy: 0.9921, F1 Score: 0.9921), showing that
its instance-based learning contributes well to
detecting attack patterns. LSTM performs slightly
lower (Accuracy: 0.9899), but its temporal
sequence modeling gives it a solid edge in
understanding time-dependent patterns,
maintaining high recall and precision. MLP
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Classifier scores slightly lower across all metrics
(Accuracy: 0.9876, F1 Score: 0.9875), though it still
performs competitively. Overall, the table
highlights that while all models deliver strong

Vol 7 | Issue 1

results, the ensemble approach (EML) provides the
most balanced and reliable performance, making it
the optimal choice for strengthening cybersecurity
and network defense.
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Figure 8: ROC Curve

Figure 8 illustrates the ROC (Receiver Operating
Characteristic) curves for all models, ELM, LSTM,
KNN, and MLP Classifier across multiple attack
classes in the CIC-DD0S2019 dataset. The ROC
curve plots the True Positive Rate (TPR) against
the False Positive Rate (FPR), showcasing each
model’s ability to distinguish between benign and
malicious traffic across different DDoS attack
types. The AUC (Area Under Curve) scores indicate
overall model performance, with values close to
1.0 reflecting near-perfect classification.

The EML model dominates with a consistent AUC
of 0.9918 across all classes, demonstrating
superior and balanced detection for every attack
type. MLP Classifier also performs strongly with an
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AUC of 0.9927, indicating its reliability in
identifying complex patterns. LSTM achieves an
AUC of 0.9837, leveraging its temporal sequence
learning strength but showing slightly lower
discrimination for some classes compared to EML.
KNN, while still effective, scores 0.9713, reflecting
solid but relatively weaker separation capability,
especially for overlapping traffic patterns. The
random guessing line (dashed diagonal) at 0.5
serves as a baseline, and all models significantly
outperform it. Overall, the figure highlights that all
models deliver excellent classification
performance, but the ensemble model achieves the
most consistent and reliable detection across all

DDoS attack categories.
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Figure 9: Accuracy Results

Figure 9 illustrates the accuracy scores of four
models, EML, LSTM, KNN, and MLP Classifier, used
in the learning
cybersecurity and network defense. The plot
shows that the ELM achieves the highest accuracy
at 0.9925, confirming its strength in combining
multiple classifiers to deliver superior detection

ensemble framework for

results. KNN follows closely with an accuracy of
0.9921, demonstrating strong performance due to
its ability to classify based on distance metrics and
neighborhood patterns. LSTM records a slightly
lower accuracy of 0.9899, yet remains competitive,
leveraging its capability to capture sequential
dependencies in traffic data. The MLP Classifier
scores the lowest accuracy at 0.9876, though it still
performs well overall. The plotted accuracy line
indicates only minor fluctuations among the
models, showing that all four approaches are
highly effective, but EML consistently outperforms
the others, validating the benefits of combining
KNN, LSTM, and MLP into a single, more powerful
ensemble framework.

Limitations
a) Data processing in streaming and real-time.
When processing continuous high-speed

network streams, the LSTM model adds extra
latency and memory expense even while it
successfully captures temporal relationships.
b) The research recognizes that reaction time in
real-world deployments, especially in ultra-

low-latency situations, may be impacted by
buffering and sequence-window selection.

c) The experimental evaluation is conducted
using the CIC-DD0S2019 benchmark dataset,
which, although comprehensive, may not fully
capture the diversity and unpredictability of
real-world network environments.

d) The study relies on offline training and testing,
and therefore does not directly address
challenges  associated  with  real-time

deployment, such as concept drift, latency

constraints, and dynamic traffic behavior.

Conclusion

This study presents an ensemble machine learning
architecture using the CIC-DD0S2019 dataset,
combining KNN, LSTM, and MLP to enhance
cybersecurity and network protection by
accurately recognizing and classifying diverse
DDoS attacks. The proposed method achieves
superior performance across important evaluation
metrics, such as accuracy, precision, recall, F1
score, and ROC AUC, by skillfully combining
neighborhood-based pattern recognition,
temporal traffic analysis, and nonlinear decision-
making. It has a maximum detection accuracy of
99.25%. The experimental findings and visual
assessments, such as ROC curves and comparative
performance graphs, reveal that the ensemble
model considerably reduces false positives and
false negatives. This proves that the model can be

used in real-world network security situations and
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that it works well. The proposed architecture
offers a dependable solution for deployment in
modern cloud, IoT, and workplace networks where
adaptive and precise intrusion detection is crucial.
The study is limited by its reliance on an offline
evaluation and benchmark dataset, which fails to
adequately represent evolving attack strategies
and real-time network dynamics. Future research
will focus on real-time deployment, online and
federated learning approaches, cross-dataset
generalization, and computational optimization to
make systems more scalable and adaptable to
emerging cyberthreats.

Abbreviations

DDoS: Distributed Denial-of-Service, ELM:
Ensemble Learning Model, EML: Ensemble
Machine Learning, IDS: Intrusion Detection

System, KNN: K-Nearest Neighbors, LSTM: Long
Short-Term Memory, MLP: Multi-Layer
Perceptron, NIDS: Network Intrusion Detection
System, SOC: Security Operations Center, PCA:
Principal Component Analysis.
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