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Abstract 
This paper introduces a 99.6% accurate Texas Instruments/Massachusetts Institute of Technology (TIMIT) speech 

recognition model and 92.50% accuracy on LibriSpeech dataset speech recognition model, a new benchmark. It applies 

a hybrid model of convolutional neural networks, transformers, and bidirectional Long Short-Term Memory (LSTM) 

layers for efficient speech processing. The uniqueness of the model lies in its feature extraction algorithm that uses Mel-

frequency cepstral coefficients (MFCCs) and their delta coefficients and frame parameters: 25ms frame length, 10ms 

step, and 40ms window with 30ms overlap. It is acoustically extremely interference-resistant and still performs well in 

presence of noise. The proposed system is 96.0 at -5dB SNR, 22.3% better than the baseline of 73.7%, similar margins 

are reported at 0dB (97.8% vs. 86.1%), 5dB (98.6% vs. 91.5%), and 10dB (99.5% vs. 92.1%). By applying data 

augmentation methods such as time stretching (0.8-1.2), pitch shifting (±3 steps), and room reverberation to generalize. 

The main observation here is this method discards old frame parameters which refers to the removing previous 

extracted features from the earlier audio frames to ensure that the VAD decision is rely on the most recent speech 

information and shows impressive improvements, making architectural improvements the cause of the gains. The 

model also exhibits robustness in non-speech hit rate at low SNRs, 92.0% compared to the baseline of 61.2% at -5dB. 

This work greatly enhances noise-robust speech recognition technology for difficult acoustic environments where 

traditional systems deteriorate. 

Keywords: Acoustic-Phonetic Models, Deep Learning in Speech Processing, Signal-to-Noise Ratio (SNR), TIMIT 

Corpus, Voice Activity Detection (VAD). 
 

Introduction
Speech recognition technology progressed from 

trial systems to dependable solutions in various 

applications over the past decade. Although there 

is progress, being able to perform high in the 

presence of adverse acoustic environments 

remains a problem. This paper is concerned with 

the requirement for noise-robust speech 

recognition systems with performance in extreme 

interference (1). The Texas Instruments/ 

Massachusetts Institute of Technology (TIMIT) 

database and LibriSpeech database was the 

benchmark for speech recognition performance 

evaluation for many years, with standard examples 

for comparison on a reasonable basis (2). Although 

fine performance in previous works with clean 

audio, accuracy reduces drastically with increased 

noise levels (3). This paper is concerned with 

developing a model that performs accurately in a 

range of signal-to-noise ratios (SNR), from clean to 

-5dB. Breakthroughs in deep learning paved the 

way for novel speech processing applications. 

Transformer models are ideally suited to capturing 

long-range relationships in sequential data (4), 

and convolutional neural networks are ideally 

suited to capturing local patterns of sound. The 

proposed method employs a hybrid Conformer 

model, with strengths of both methods, as in some 

schemes in speech emotion recognition systems 

(2). Feature extraction is still required in speech 

recognition pipelines, with traditional methods 

employing Mel-frequency cepstral coefficients 

(MFCCs) effective in many applications (5). The 

contribution brings together delta and delta-delta 

coefficients with frame parameters to produce a 

dense representation of static and dynamic speech 

information. The contribution extends previous  
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work on phonetic analysis in continuous speech to 

detect voice pathology (6). Data augmentation is 

beneficial to model generalization in audio tasks. 

Augmentation    and   filtration    enhance   acoustic 

analysis in noisy conditions (7). We suggest 

methods such as time stretching, pitch shifting, and 

room reverberation simulation to enhance 

robustness of the model to acoustic variation. 

Speech recognition quality in noisy conditions is 

tackled by a range of methods. An automatic 

bioacoustic noise reduction algorithm based on 

deep feature loss networks was presented (8), and 

passive acoustic data processing techniques in 

harsh environments were suggested (9). The 

contribution exhibits strong performance for 

different SNR values without any explicit noise 

reduction preprocessing. Self-supervised learning 

acquires representations from unsupervised data 

effectively (10). The contribution uses supervised 

learning mainly, but we use architectural features 

for effective representation learning, similar to 

self- supervised Bayesian methods (11). Attention 

mechanisms concentrate computational resources 

on the most important input parts. Adaptive 

attention span transformers exhibit tremendous 

voice activity detection improvement over 

conventional methods (1). The proposed approach 

employs a multi-head attention mechanism to 

attend to useful speech features and disregard 

nuisance information. Recent surveys (12, 13) 

emphasize the pluralism of machine learning (ML) 

approaches to speech emotion recognition and 

ecoacoustics. These are utilized as background to 

speech and audio processing understanding. The 

proposed work contributes to this by introducing 

a new architecture that outperforms the state of 

the art on a top benchmark. Robust speech 

recognition has many applications. Vocal search 

assistants to audio archive content searches were 

investigated (14, 15), and audio-based lung 

disease diagnosis was illustrated (16). The 

proposed contribution improves performance of 

such applications by dramatically enhancing 

recognition accuracy in adverse acoustic 

conditions. This paper presents the novel speech 

recognition approach using the TIMIT corpus, 

detailing architectural advances, feature 

extraction, and experimental results that 

demonstrate exceptional performance under a 

range of noise conditions. With the same frame 

parameters as prior work and large accuracy 

improvements, the proposed work demonstrates 

that architectural innovation, not parameter 

tuning, is the reason for progress, establishing a 

new benchmark for noise-robust speech 

recognition systems (17). 

Speech recognition technology has seen 

unprecedented growth in recent years with 

advances in deep learning, feature extraction, and 

noise robustness. This survey is cantered on major 

advances with an emphasis on noise-robust speech 

recognition methods with the TIMIT corpus. 

Deep Learning Architectures for 

Speech Recognition 
Deep learning revolutionized speech recognition 

to deliver greater accuracy. Initial work employed 

deep neural networks (DNNs) and convolutional 

neural networks (CNNs) to surpass conventional 

hidden Markov models (HMMs) and Gaussian 

mixture models (GMMs) (1). Wavelet feature 

extraction with HMMs was investigated for 

Antarctic blue whale sound classification, 

demonstrating conventional methods' 

applicability in some contexts (17). Principal 

components-based HMMs demonstrated 

encouraging results for automated whale 

vocalization detection in marine bioacoustics 

(18). Recurrent neural networks (RNNs), most 

notably long short-term memory (LSTM) 

networks, dominated the treatment of temporal 

dependencies in speech recognition. Bidirectional 

LSTMs improved performance using past and 

future context. Similar methods were employed 

for speaking activity localization without prior 

knowledge, demonstrating the applicability of 

such architectures in extracting informative 

speech segments from audio (19). Attention 

mechanisms' emergence was a pivotal 

development in speech recognition. An adaptive 

attention span transformer-optimized voice 

activity detection system significantly improved 

over conventional methods. The present study 

demonstrated how attention models could 

selectively attend to important speech 

components, excluding irrelevant noise, which is 

essential in noisy environments. Transformer 

models, which were originally created for natural 

language processing, have been extensively 

applied to speech recognition (1). These models 

are based on attention mechanisms, removing 

recursive connections for improved parallel 

processing. Experimental comparison of speaker 
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diarization methods, including transformers, was 

done for conversational telephone speech 

recordings (20). Hybrid models that have been 

mixing various kinds of models have been 

promising. Conformer models combining 

convolutional and transformer components have 

produced state-of-the-art performance in speech 

recognition tasks. A comprehensive review of 

transfer and self-supervised learning methods in 

hybrid architectures exposed their advantages 

and limitations in different domains. 

Feature extraction is essential in voice 

recognition, where discriminative ability, 

tolerance to noise, and computational cost are 

compromised. Mel-frequency cepstral coefficients 

(MFCCs) are the foundation of most systems, 

efficiently extracting relevant speech features. 

MFCCs are superior to pre-trained convolutional 

neural networks under noisy conditions to 

distinguish between gibbon calls, suggesting their 

adaptability even in adverse conditions. Delta and 

delta-delta coefficients are added to static MFCCs 

to give a richer speech dynamics description. 

Phonetic processing of continuous voice was 

employed to improve automatic detection of voice 

pathology, and the contribution of both static and 

dynamic features was emphasized. Spectral 

representations, especially mel spectrograms, 

convey more frequency and temporal information 

than cepstral coefficients. Short-time acoustic 

indices were applied with neural networks to 

monitor urban-natural surroundings, suggesting 

the potential of time-frequency representations in 

sound analysis. Wavelet-based features allow 

specialized speech analysis, accurately classifying 

Antarctic blue whale sounds. This technique 

captures multi-resolution data useful for signals 

with different time scales. End-to-end approaches 

have been researched in the last few years, 

including a self-supervised Bayesian learning 

approach to acoustic emissions that outperforms 

hand-engineered features on some tasks. Self-

supervised learning was used to cluster wireless 

spectrum activity, demonstrating the utility of 

representation learning in signal processing. 

Noise Robustness Strategies Speech recognition 

under noisy conditions remains an issue. Different 

strategies, such as front-end noise reduction and 

model-based ones, have been suggested. Data 

augmentation works well for noise robustness, as 

seen from its effect on industrial machine 

abnormality detection under noisy conditions. 

Methods like time stretching, pitch shifting, and 

injection of noise at different SNR levels create 

varied training samples for noise-invariant 

learning. Noise robustness domain-specific 

architectures also have been promising. A 

bioacoustics noise reduction algorithm via a deep 

feature loss network enhanced signal quality 

under difficult conditions. This approach uses 

deep neural networks for sophisticated mappings 

of noisy and clean signals. Multi-task learning for 

speech recognition and noise classification has 

been helpful under noisy conditions. A safety-

oriented sound event detection framework 

demonstrates how optimizing related tasks can 

make systems more robust (21). Attention 

mechanisms make noise-robust speech 

recognition possible by allowing models to pay 

attention to relevant speech components and 

disregard noise interference. This was shown in 

an adaptive attention span transformer for voice 

activity detection, which greatly improved 

performance under noisy conditions (1). Previous 

studies analyzed self-supervised learning to 

render representations noise-robust. Nonlinear 

independent component analysis facilitated 

unsupervised learning of spontaneous MEG 

signals, demonstrating that self-supervised 

approaches can learn meaningful patterns from 

noisy signals (22). Likewise, self-supervised 

learning classified wireless spectrum activity, 

demonstrating its relevance to signal processing 

under noisy conditions. 

Applications and Evaluation Methodologies 

Speech technology has been used across various 

domains with varying requirements. Voice 

assistants are one domain, with efforts ongoing 

for their usability. A vocal assistant was 

developed for music store inquiries, showing the 

potential of speech interfaces in expert 

information seeking. Speech processing 

applications rose in healthcare, with systems 

being developed for diagnosis and monitoring. 

Approaches to detect lung disease from audio 

analysis and machine learning were promising 

for acoustic biomarkers of respiratory health. 

Accuracy and privacy improvement in depression 

detection using speech-focused on performance 

and ethical considerations in mental health (23). 

Ecological monitoring is another growing 

application for audio technology. Approaches for 
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processing passive acoustic data were useful in 

identifying songs in western black-crested 

gibbons. A review of machine learning 

approaches to ecoacoustics showed the range of 

approaches in ecological applications. Evaluation 

approaches of speech recognition systems are 

evolving, with an emphasis on performance 

across diverse acoustic conditions. The classic 

measures of word error rate and phoneme error 

rate are commonly reported across a range of 

SNR conditions to assess robustness in the 

system. Optimal 2D audio feature estimation was 

explained for lightweight mosquito species 

detection, with an emphasis on testing in multiple 

environments (24). 

This paper presented substantial progress in 

deep learning for TIMIT based speech 

recognition. The technology is evolving very fast, 

with hybrid models and improved feature 

extraction and noise robustness methods 

improving system performance across diverse 

acoustic conditions. The effort integrates these 

developments and adds new elements and 

training protocols to attain state-of-the-art 

performance on this benchmark. Table 1 

summarizes the related work in the voice activity 

detection field. 

 

Table 1: Summary of Related Work in Voice Activity Detection 

 

The effort integrates these developments and adds 

new elements and training protocols to attain 

state- of-the-art performance on this benchmark. 

Table 1 summarizes the related work in the voice 

activity detection field. 
 

Methodology 
Dataset Acquisition and Preparation 
TIMIT Dataset Overview 

The TIMIT Acoustic-Phonetic Continuous Speech 

Corpus forms the foundation of the speech 

recognition. The corpus contains 6,300 sentences 

from 630 speakers from eight major dialect areas of 

provide full phonetic context coverage needed for 

extensive model testing (26). 

Audio Data Visualization and Analysis 

To gain a better understanding of TIMIT dataset 

audio features, we employed a visualization 

technique for audio waveforms, as presented in 

Figure 1. The technique is efficient with errors by 

not including unreadable files when dealing with 

large datasets. The technique chooses audio files 

at random for visualization, reflecting inherent 

variations in speech signals with controlled 

parameters (28, 29). 

 

 
Figure 1: TIMIT Audio Waveform Visualization 

 

Description Research Gap Reference No. 

Ravi et al. (2024) Suggested approaches to eliminating 

speaker identity from speech for enhancing depression 

detection and privacy. 

Previous work overlooked speaker feature privacy threats; this 

paper provides privacy-preserving alternatives. 

 

(23) 

Zhao et al. (2024) survey of recent TL and SSL techniques, 

their applications, and performance in deep learning between 

2020-2023. 

Insufficient knowledge on when to use TL or SSL and why their 

performance differs from task to task. 

 

(4) 

Rahdar et al. (2024) suggested a cost-effective Wi-Fi-based 

human activity recognition technique using autoencoders 

and fine-tuning methods with sparse data, based on features 

such as MFCC. 

Previous studies tend to make intensive use of large datasets; 

this work tackles the difficulty using pretrained autoencoders to 

achieve high accuracy with much less data. 

 

 

(25) 

Alwashmi et al. (2024) examines how audio-visual training 

through virtual reality strengthens learning results and 

brain functioning changes using fMRI. 

This study fills the knowledge gap concerning the absence of 

evidence for multisensory VR training to translate to neural and 

behavioral learning gains across tasks 

 

 

(26) 

Alwahedi et al. machine learning methods for security in IoT, 

including generative AI and big language models. 

Lacks existing research that integrates ML, IoT challenges, and 

generative AI into one framework. 

 

(27) 
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The grid visualization framework arranges 

waveforms in a 2×5 format to enable researchers 

to inspect several audio signals at the same time 

and detect patterns or anomalies. Each waveform 

figure plots time-varying amplitude with sample 

index as the x-axis and amplitude values as the y-

axis. This relative visual inspection forms the basis 

of further clustering and higher-level signal 

processing methods. 

Signal Quality Assessment 

The proposed grid table displays waveforms in a 

2×5 interface for simultaneous inspection of audio 

signals by researchers and the identification of 

patterns or anomalies. Every plot displays 

amplitude over time, sample index on the x-axis, 

and amplitude on the y-axis. Visual inspection 

allows clustering and advanced signal processing 

methods. One of the most important parts of the 

proposed methodology is signal quality estimation 

through Signal-to-Noise Ratio (SNR) and 

dimensionality reduction through Principal 

Component Analysis (PCA). We process 

subdirectories for dialect areas in TIMIT 

iteratively, loading and normalizing a WAV file. In 

exploratory analysis, we divide each audio sample 

into halves, using the first half as the primary 

signal and the second half as noise. The SNR is 

computed through the conventional formula 

(Equation [1]). 

 

SNR = 10 × log₁₀ (P_signal / P_noise) dB             [1]  (7, 9) 
 

Where P_signal and P_noise are the signal and noise powers respectively, determined as: 
 

P_signal = (1/N_s) × Σ|x_s[n]|²  [2] 

P_noise = (1/N_n) × Σ|x_n[n]|²  [3] 
 

These equations (Equation [2, 3]) calculate the average power of the signal and noise, where x_s[n] and x_n 

[n] are the samples of the signal and noise, respectively, and N_s and N_n are the number of samples for 

both. It estimates the power by taking the time average of the squares of the magnitudes of the samples. 
 

Traditional Audio Processing Methods 
Conventional Approach Limitations 

Classical audio processing is uniform in treating 

every audio file in the same manner without 

distinguishing between speech and non-speech 

regions. It relies excessively on PCA for extraction 

of features and computes SNR by simple division, 

as indicated in Figure 2. This process, although 

easy to implement, has critical limitations to 

speech recognition.  

Audio Normalization Process 

A processing pipeline starts with loading the 

audio file and then normalization, which changes 

signal intensity. It scales the audio signals to an 

interval, typically -1 to 1, through the formula 

(Equation [4]):
 

x_normalized = (x - μ) / σ  [4] 
 

Where x is the original audio signal, μ is the mean of the signal calculated as: 
 

μ = (1/N) × Σ_{n=0}^{N-1} x[n]                [5]  (24) 
 

And σ is the standard deviation that is computed as: 
 

σ = √[(1/N) × Σ_{n=0}^{N-1} (x[n] - μ)²]               [6]            (11, 24, 30) 
 

This equation (Equation [5, 6]) defines the standard deviation, which is a measure of the dispersion of data 

about its mean value. 
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Figure 2: Comparison of Traditional and Advanced Audio Processing Methodologies 
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Figure 3: Advanced Voice-Centric Processing Architecture 
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Limitations of Signal Segmentation 

After normalization, regular protocols split the 

audio signal into two arbitrary halves. The first is 

labeled as 'signal,' and the second as 'noise.' This 

may be shown as: 
 

 

Signal = x[0:N/2] 

Noise = x[ foodsoup:N] 
 

 

Challenges in PCA Feature Extraction 

PCA is then applied to the entire audio signal follo

wing segmentation. Although it compresses the da

ta dimensions effectively without losing the varia

nce, its application to the entire signal without isol

ating voiced and unvoiced segments poses 

serious problems. The transform can 

be represented as Equation [7]. 
 

Y = XW      [7] 
 

Y is the projected data matrix, X is the original audio signal matrix, and W is the eigenvector matrix of the 

covariance matrix of X. The covariance matrix C can be expressed as Equation [8]: 
 

C = (1/N) X^T X  [8]    (11) 
 

The above equation [8] defines correlation matrix computed from the data matrix X, encapsulating the 

variances of the features and the relationships among them. 

Eigenvectors W and eigenvalues λ are obtained by solving Equation [9]. 
 

CW = λW             [9]   (1) 
 

The above equation [9] defines the matrix W of 

eigenvectors represents the PCA itself, whose 

corresponding eigenvalues λ represent the amount 

of captured variance along each principal 

direction. 

Advanced Voice-centric Processing 

Methods 
Enhanced Approach Overview 

To overcome the shortcomings of conventional 

audio processing, we proposed an Advanced Voice-

Centric Processing method, improving speech 

analysis. It employs Voice Activity Detection (VAD) 

to identify voiced and unvoiced audio segments, as 

depicted in Figure 3. Speech feature-focused, it 

significantly enhances speech feature extraction 

accuracy and SNR estimation in speech-dominant 

data. 

VAD-Integrated Audio Normalization 

The proposed method starts with a loading and 

normalization of audio files to -1 to 1 signal 

amplitude through the same mathematical 

operation (Equation [10]). 
 

x_normalized = (x - μ) / σ  [10] (3, 11, 23) 
 

The most critical innovation follows normalization, utilizing the WebRTC VAD algorithm to accurately find 

voiced segments. It divides the sound into small frames and inspects energy to detect speech in each frame. 

The VAD formula measures frame energy using the formula (Equation [11]): 
 

E_f = (1/N) × ∑_{n=0}^{N-1} x[n]²  [11] (1, 2, 24) 
 

The average energy of a signal is computed in the above equation by taking the mean of the squared signal 

samples over N points. 

The VAD algorithm discriminates between speech and non-speech frames using spectral analysis based on 

this discriminant function (Equation [12]):
 

D(f) = log[P_s(f)/P_n(f)]   [12] (7) 
 

P_s(f) represents speech power spectral density, and P_n(f) represents noise power spectral density. The 

speech detection rule is: 

Speech occurs if: Σ_f D(f) > T. T is a calibrated adaptive threshold. 
 

Voiced Frame Preservation Strategy 

We store voiced frames of the VAD process in 

individual WAV files. This serves the purpose of 

traceability, allowing verification of the accuracy of 

the VAD and correct identification of speech 

frames for analysis. The process of selection can be 

formulated mathematically as Equation [13]: 

 



1709 

Parshotam and Sharma,                                                                                                                               Vol 7 ǀ Issue 1 

 

 

x_v = {x[n] : E_f > T}    [13]        (1) 
 

Focused PCA Feature Extraction 

The proposed approach applies PCA to well-

separated voiced frames with dominant speech 

content only. The PCA transform can be written as: 

Y = XW This conversion is reserved for voiced data 

currently, with Y being the converted voiced data 

matrix, X being the original voiced audio signals, 

and W being the eigenvector matrix of X's 

covariance. 

Improved SNR Evaluation 

The high-level SNR estimation employs recognized 

voice segments through VAD. In contrast to 

arbitrary partitioning, SNR contrasts the energy of 

voiced segments with unvoiced segment or noise 

energy (Equation [14]).

 

SNR = 10 × log₁₀(P_voiced / P_unvoiced) dB [14] (1) 
 

Where P_voiced and P_unvoiced are computed as: 
 

P_voiced = (1/N_v) × Σ|x_v[n]|²  [15] 

P_unvoiced = (1/N_u) × Σ|x_u[n]|² [16] 
 

These above equations (Equation [15] and [16]) provide the average power for voiced and unvoiced speech 

segments. Here, x_v[n] and x_u[n] are the samples of voiced and unvoiced speech, respectively. Similarly, 

N_v and N_u are the total number of voiced and unvoiced speech samples. Power here is obtained as the 

average of squared magnitudes over the segment length. 
 

Results 
The proposed state-of-the-art speech recognition 

model performed very well on different metrics 

and conditions. Performance outcomes show 

considerable improvement over the past models, 

particularly in noisy conditions. This part provides 

a complete analysis of model performance in terms 

of accuracy, noise resilience, and comparison with 

baseline approaches. 

Model Performance Metrics 
Overall Accuracy Results 

The CNN-BiLSTM model with attention achieved 

99.6% accuracy on clean speech in the test set of 

TIMIT. Table 2 shows the performance of the 

proposed model on various evaluation criteria. 

 

Table 2: Overall Performance Metrics of the CNN-BiLSTM Model on Clean Speech 
Metric Value (%) Improvement over Baseline 

(%) 

Accuracy 99.6 +7.8 

Precision 99.5 +8.2 

Recall 99.4 +7.6 

F1 Score 99.4 +7.9 

Specificity 99.7 +9.1 

Error Rate 0.4 -7.8 
 

The results show outstanding performance in all 

measures of evaluation. The model attained very 

close-to-perfect accuracy (99.6%) and high 

precision (99.5%) and recall (99.4%), revealing 

well-balanced performance on all phoneme 

classes. The significant gains over baseline 

approaches (7.8% gain in accuracy) establish the 

strength of these architectural advancements, 

especially through the combination of attention 

mechanisms with bidirectional LSTM layers. 

Figure 4 plots indicate the Seq2Seq and 

Transformer model's performance. Seq2Seq has 

higher accuracy and less loss while the 

Transformer has poor validation performance and 

overfits. 

And when applied on the LibriSpeech dataset also 

it shows the great results when compared with 

previous research work (31). 

Table 3 shows the performance of the proposed 

model on accuracy and precision evaluation 

criteria. 
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Table 3: Overall Performance Metrics of the CNN-BiLSTM Model on TIMIT Dataset and LibriSpeech Data Set 

for Clean Speech 

Metric Value (%) TIMIT dataset Value (%) LibriSpeech 

dataset 

Accuracy 99.6 92.50 

Precision 99.5 96.80 
 

 

 
Figure 4: Training and Validation (A) Model Accuracy and (B) Model Loss Curves 

 

Noise Robustness Analysis 

One of the most important issues in the proposed 

evaluation was the performance of the model with 

different levels of noise. We evaluated it in a 

controlled setting with speech signals at all Signal-

to-Noise Ratios (SNRs) from clean to -5dB SNR 

(32). 

Performance Across SNR Levels 

Table 4 shows the overall performance metrics of 

this model at various levels of SNR on TIMIT 

dataset and Figure 5 shows the health performance 

metrics of this model at various levels of SNR, 

exhibiting a remarkable degree of robustness to 

acoustic interference.  

Table 5 shows the overall performance metrics of 

this model at various levels of SNR on LibriSpeech 

dataset. 

 

 

Table 4: Performance Metrics Across Different SNR Levels on TIMIT Dataset 

SNR Level Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Clean 99.6 99.5 99.4 99.4 

10 dB 98.5 98.4 98.5 98.4 

5 dB 97.3 97.2 97.3 97.2 

0 dB 94.8 94.6 94.8 94.7 

-5 dB 89.7 89.5 89.7 89.6 
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Figure 5: Performance Metrics Across SNR Levels 

 

Table 5: Performance Metrics Across Different SNR Levels on LibriSpeech Dataset 
SNR Level Accuracy (%) Precision (%) 

Clean 92.50 96.80 

10 dB 91.5 95.3 

5 dB 99.2 94.2 

0 dB 89.7 89.5 

-5 dB 89.1 89.2 
 

The outcome demonstrates the robustness of the 

model under noise, with an extremely high 

accuracy of more than 89% even at the difficult -

5dB SNR, where the speech is hardly intelligible. 

Although the performance worsens with 

increasing noise levels, the degradation is less 

abrupt than in previous techniques (33). The 

robustness is due to the following reasons: 

a) Large-scale data augmentation training, noise 

injection at multiple SNR levels 

b) The attention mechanism emphasizes areas of 

most informative signals. 

c) Bidirectional LSTMs learn temporal context for 

noise-contaminated frame disambiguation. 

d) Improved feature extraction using MFCC with 

delta and delta-delta coefficients. 

Comparison with Previous Methods 

To put the results into perspective, we 

benchmarked the proposed model's performance 

against past state-of-the-art methods at varying 

SNR levels on TIMIT dataset and LibriSpeech 

dataset also. The comparative study is listed in 

Table 6 and Figure 6 below and emphasizes the 

impressive gains realized using the proposed 

approach.  

 

Table 6: Performance Comparison with Previous State-of-the-Art Approaches 
 

SNR Level 

 

Previous Work (%) 

Proposed Model 

using TIMIT Dataset (%) 

Proposed Model 

using LibriSpeech 

Dataset (%) 

Clean 91.8 99.6 92.50 

10 dB 92.12 98.5 91.5 

5 dB 91.48 97.3 99.2 

0 dB 86.09 94.8 89.7 

-5 dB 73.74 89.7 89.1 

Average 85.85 95.1 92.4 
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Figure 6: Radar Chart Comparison of Model Performance Across Metrics 

 

 

The research does have some interesting findings 

that the proposed method performs better than 

current methods at all SNR points, with 

improvements of 5.82% to 15.96%. The 

performance gap increases when the SNR is lower, 

emphasizing the better noise resistance of the 

proposed model. Improvement is greatest at -5dB 

SNR (15.96% gain), where previous approaches 

fail. The proposed model achieves a 7.8% 

improvement in clean speech, i.e., increased 

phoneme discrimination. 

 

 

These results are important because they show 

that the proposed method can be effective when 

other methods are not working. An average of 

9.25% improvement over SNR levels is a notable 

improvement in speech recognition noise-robust. 

Detailed SNR Analysis 

To obtain a better understanding of the noise 

robustness of the model, we performed a thorough 

analysis of performance versus various types of 

noise and speech properties, shows a breakdown 

of accuracy by SNR level and phoneme category 

(Figure 7). 
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Figure 7: Heatmap of Accuracy by Snr Level and Phoneme Category 

 
 

The heatmap identifies important trends that the 

vowels and semivowels demonstrate the highest 

accuracy at all levels of SNR because of the higher 

energy content. Stop consonants ('p', 't', 'k', etc.) 

decrease most in terms of accuracy with 

decreasing SNR, particularly at -5dB. Fricatives are 

highly recognizable at low SNRs because of their 

unique spectral features. Nasals exhibit moderate 

degradation, with more than 85% correct at 0dB 

SNR. 

This finding implies that enhancing stop consonant 

detection in noise may maximize overall 

performance. 

Speech vs. Non-Speech Detection Performance 

We also evaluated the model on speech/non-

speech separation, which is useful for real-world 

applications. Table 7 shows the detection accuracy 

of speech/non-speech under various SNR settings 

and Figure 8 represents the waveform at different 

SNR values. 
 

 

Table 7: Speech vs. Non-Speech Detection Performance 

SNR Level Speech Hit Rate (%) Non-speech Hit Rate 

(%) 

Overall Accuracy 

(%) 

Clean 99.80 99.50 99.70 

10 dB 99.80 99.00 99.50 

5 dB 99.50 97.00 98.60 

0 dB 99.30 95.00 97.80 

-5 dB 98.90 92.00 96.00 
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Figure 8: Waveform Comparison at Different SNR Levels (A) Original Speech Waveform, (B) Noisy Speech 

Waveform at (SNR=-5dB), (C) at SNR=-0dB, (D) at SNR=5dB, (E) at SNR=10dB 
 

The model works superbly in differentiating non-

speech from speech even in heavy noise. It gets a 

98.90% speech hit and 92.00% non-speech hit at -

5dB SNR, and 96.00% overall accuracy. This 

surpasses conventional Voice Activity Detection 

(VAD) algorithms that do poorly below 0dB SNR, 

Figure 9 shows the confusion matrix at different 

SNR levels. 

Comparison with Base Paper 

Table 8 presents a detailed comparison of the 

speech/non-speech detection performance 

against the base paper results. 
 

 
Figure 9: Confusion Matrices at Different SNR Levels (A) at SNR=-5dB, (B) at SNR=0dB, (C) at SNR=5dB, 

(D) at SNR=10dB 
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Table 8: Detailed Comparison with Base Paper Results 

SNR Level Metric Base Paper (%) Proposed Model (%) Improvement (%) 

-5 dB Speech Hit Rate 93.91 98.90 +4.99 

-5 dB Non-speech Hit 

Rate 

61.20 92.00 +30.80 

-5 dB Overall Accuracy 73.74 96.00 +22.26 

0 dB Speech Hit Rate 91.41 99.30 +7.89 

0 dB Non-speech Hit 

Rate 

82.79 95.00 +12.21 

0 dB Overall Accuracy 86.09 97.80 +11.71 

5 dB Speech Hit Rate 89.97 99.50 +9.53 

5 dB Non-speech Hit 

Rate 

92.42 97.00 +4.58 

5 dB Overall Accuracy 91.48 98.60 +7.12 

10 dB Speech Hit Rate 89.15 99.80 +10.65 

10 dB Non-speech Hit Rate 93.97 99.00 +5.03 

10 dB Overall Accuracy 92.12 99.50 +7.38 
 

The comparison provides a series of unexpected 

conclusions that the significant enhancement is 

Non-speech Hit Rate at -5dB SNR, which enhances 

by 30.80% compared to the baseline. Overall 

accuracy improves dramatically at all levels of SNR, 

with the best improvement at -5dB with a 22.26% 

increase. Speech Hit Rate is greater than 98.90% at 

all SNR levels, indicating high sensitivity. On 10dB 

SNR, the proposed model is much better than the 

base paper.  

These findings are important as they verify the 

superiority of the proposed method in situations 

where others do not succeed. The outstanding 

30.80% Non-speech Hit Rate improvement at -5dB 

SNR validates the potential of the model in 

reducing false positives when noise is present. 

Frame Size Analysis 

To determine the effect of frame parameters on 

model performance, we performed experiments 

using different frame sizes with the same model 

structure. The results of this experiment are 

reported in Table 9. 
 

Table 9: Impact of Frame Parameters on Model Performance 

Frame Length 

(ms) 

Frame Step 

(ms) 

Moving Window 

(ms) 

Overlap (ms) Accuracy (%) 

25 10 40 30 99.6 

20 10 40 30 99.1 

30 10 40 30 99.3 

25 5 40 35 99.2 

25 15 40 25 98.8 
 

The best frame configuration is 25ms with a step of 

10ms, having a 40ms window and 30ms overlap, 

with 99.6% accuracy. This is identical to the 

baseline paper's parameter, assuring performance 

gains are due to architectural enhancements, not 

tuning. 

Frame length changes (20ms or 30ms) decreased 

performance (0.3-0.5% loss of accuracy). Larger 

effects were observed with frame step changes, 

especially at 15ms, for a 0.8% loss of accuracy. This 

indicates that accurate frame step size is important 

for best performance. 

Computational Efficiency Analysis 

Authors contrasted the proposed model's runtime 

with accuracy metrics to determine usability in 

real use. Figure 10 compares model size and power 

consumption across architectures. 

The CNN-BiLSTM with attention has 99.6% 

accuracy, 8.6MB size, and 15ms inference time per 

second of audio on a regular GPU. That's a great 

balance between performance and efficiency. It 

runs audio in real-time with under 50ms latency, 

so it is acceptable for real-world applications as 

shown in the Table 10. 
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Figure 10: Accuracy vs. Model Size for Different Architectures 

 

Table 10: Shows In-Depth Computational Statistics for Varying Model Settings 
Model Parameters (millions) Size (MB) Inference Time (ms/sec) Accuracy (%) 

LSTM 2.3 3.1 8 95.2 

CNN-LSTM 4.8 5.3 12 97.8 

CNN-BiLSTM 7.9 8.6 15 99.6 

Transformer 9.2 10.1 18 98.9 
 

The CNN-BiLSTM model works best with similar 

computational needs and also the model works 

best on the LibriSpeech dataset also and achieve 

the accuracy of 92.50%. The Transformer model is 

accurate (98.9%) but requires more parameters 

and longer inference time. The basic LSTM is most 

cost-effective but has tremendous loss in terms of 

accuracy. This shows that the CNN-BiLSTM 

architecture provides a good trade-off between 

cost and performance (34, 35). 

Ablation Studies 

In order to quantify the contribution of each 

component to the overall performance, we 

performed ablation studies by gradually removing 

or substituting important elements of the model. 

The results of the experiments are shown in Table 

11. 

 

Table 11: Ablation Study Results 
Model Configuration Accuracy (%) Change (%) 

Full CNN-BiLSTM with Attention (baseline) 99.6 0.0 

Without Attention Mechanism 98.2 -1.4 

Without Bidirectional LSTM (using 

unidirectional) 

97.8 -1.8 

Without Residual Connections 98.9 -0.7 

Without Delta and Delta-Delta Features 97.5 -2.1 

Without Data Augmentation 96.8 -2.8 
 

The ablation results present the noteworthy 

findings that the data augmentation has a 

significant impact on model performance; 

disabling it results in a 2.8% accuracy drop. The 

delta and delta-delta features are the next 

strongest, and removing them reduces accuracy by 

2.1%. Bidirectionality of LSTM layer adds 1.8% to 

overall accuracy. The attention mechanism 

improves accuracy by 1.4%, demonstrating its 

central role in focusing attention on the important 
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parts of the speech signal. Residual connections 

contribute a negligible 0.7% towards accuracy. 

These findings verify that all components of the 

proposed design are essential in performance as a 

whole, specifically data augmentation and feature 

extraction. 

Comparison with Prior Work 

The model is contrasted with other methods as 

shown in Figure 11 (A) power consumption, (B) 

model size, (C) latency and (D) accuracy (12). The 

Table 12 indicates the proposed method performs 

better in all levels of SNR with reasonable power 

consumption and size. 

 

 
Figure 11: Comparison of (A) Power Consumption, (B) Model Size (KB), (C) Latency (ms), (D) Accuracy 

for Different Models (%) 
 

Table 12: Comparison with Prior Work  
Power 

(μW) 

Size (KB) SNR -5dB (%) SNR 0dB (%) SNR 5dB (%) SNR 10dB (%) Reference No. 

0.89 12.4 75.3 81.6 86.4 92.5 (1) 

25.1 26.0 85.9 90.6 93.8 95.5 (2) 

1.4 15.8 82.7 87.9 91.2 94.6 (3) 

2022 2.3 18.2 88.0 92.4 95.1 (4) 

2023 3.6 24.5 87.5 93.1 96.2 (5) 

2024 1.2 14.3 90.3 94.5 97.0 (6) 

2025 1.8 16.7 92.1 95.3 97.5 Proposed 

Model 
 

Discussion 
This paper introduces an innovation in noise-

robust speech recognition with a CNN-BiLSTM 

model and attention. Experiments on the TIMIT 

corpus demonstrate superior performance in 

heterogeneous acoustic conditions, including 

state-of-the-art clean speech recognition at 99.6%, 

a 7.8% gain over previous work and also 

experiments on the LibriSpeech dataset and 

achieve the 92.50%, a 4.91% gain over previous 

work. It sets the record for noise robustness at 

89.7% accuracy at -5dB SNR, a 15.96% gain over 

baselines. The model also gains from improved 

speech/non-speech discrimination, with a 30.80% 

gain in non-speech hit rate at -5dB SNR. 



1718 

Parshotam and Sharma,                                                                                                                               Vol 7 ǀ Issue 1 

 

 

Performance is well-balanced across phoneme 

classes, with accuracy at or above 98% for 35 out 

of 39 classes. Implementation is cost-effective, 

with an 8.6MB model size and 15ms processing 

time per second of audio for real-time deployment. 

This work proposed a noise-robust CNN–BiLSTM 

architecture with an attention mechanism that 

achieves state-of-the-art performance on the 

TIMIT and LibriSpeech dataset. The model 

achieves 99.6% and 92.50% accuracy on clean 

speech while retaining remarkable robustness 

under extremely noisy conditions, significantly 

outperforming existing approaches as compared 

to the previous research (36). The streamlined 

architecture allows for well-balanced phoneme 

recognition under a low-latency constraint with a 

compact parameter footprint favourable for real-

time deployment. Altogether, the results confirm 

the efficiency of the approach proposed herein and 

provide a strong baseline for further studies in 

noisy speech contexts. 
 

Conclusion 
The architecture innovations, namely the attention 

mechanism and bidirectional LSTM layers, are 

responsible for robust recognition. Ablation 

studies reveal substantial contributions from each 

component, particularly data augmentation and 

delta features. These findings are critical for real-

world deployment of speech recognition in noisy 

conditions such as manufacturing, public places, as 

well as mobile phones. Robustness of the model to 

noise in delivering high accuracy mitigates severe 

constraints of current systems. Future work will be 

on boosting performance for phoneme classes with 

lower accuracy in noisy conditions, particularly 

stop consonants. We aim to examine transfer 

learning for task-specific domains and investigate 

better attention mechanisms to reduce 

computational demands. The proposed research 

significantly benefits noise-robust speech 

recognition, showing that well-designed deep 

learning architectures excel in poor acoustics. The 

proposed CNN-BiLSTM model with attention offers 

a state-of-the-art baseline for noise-robust speech 

recognition and allows for follow-up research in 

this essential field. 
 

Abbreviations 
CNN: Convolutional neural network, LSTM – Long 

Short-Term Memory, MFCCs: Mel-frequency 

cepstral coefficients SNR - Signal-to-Noise Ratio, 

ML: Machine Learning, TIMIT: Texas Instruments/ 

Massachusetts Institute of Technology. 
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