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Abstract

This paper introduces a 99.6% accurate Texas Instruments/Massachusetts Institute of Technology (TIMIT) speech
recognition model and 92.50% accuracy on LibriSpeech dataset speech recognition model, a new benchmark. It applies
a hybrid model of convolutional neural networks, transformers, and bidirectional Long Short-Term Memory (LSTM)
layers for efficient speech processing. The uniqueness of the model lies in its feature extraction algorithm that uses Mel-
frequency cepstral coefficients (MFCCs) and their delta coefficients and frame parameters: 25ms frame length, 10ms
step, and 40ms window with 30ms overlap. It is acoustically extremely interference-resistant and still performs well in
presence of noise. The proposed system is 96.0 at -5dB SNR, 22.3% better than the baseline of 73.7%, similar margins
are reported at 0dB (97.8% vs. 86.1%), 5dB (98.6% vs. 91.5%), and 10dB (99.5% vs. 92.1%). By applying data
augmentation methods such as time stretching (0.8-1.2), pitch shifting (+3 steps), and room reverberation to generalize.
The main observation here is this method discards old frame parameters which refers to the removing previous
extracted features from the earlier audio frames to ensure that the VAD decision is rely on the most recent speech
information and shows impressive improvements, making architectural improvements the cause of the gains. The
model also exhibits robustness in non-speech hit rate at low SNRs, 92.0% compared to the baseline of 61.2% at -5dB.
This work greatly enhances noise-robust speech recognition technology for difficult acoustic environments where
traditional systems deteriorate.

Keywords: Acoustic-Phonetic Models, Deep Learning in Speech Processing, Signal-to-Noise Ratio (SNR), TIMIT
Corpus, Voice Activity Detection (VAD).

Introduction

Speech recognition technology progressed from
trial systems to dependable solutions in various
applications over the past decade. Although there
is progress, being able to perform high in the
presence of adverse acoustic environments
remains a problem. This paper is concerned with
the requirement for noise-robust speech
recognition systems with performance in extreme
interference (1). The Texas Instruments/
Massachusetts Institute of Technology (TIMIT)
database and LibriSpeech database was the
benchmark for speech recognition performance
evaluation for many years, with standard examples
for comparison on a reasonable basis (2). Although
fine performance in previous works with clean
audio, accuracy reduces drastically with increased
noise levels (3). This paper is concerned with
developing a model that performs accurately in a

range of signal-to-noise ratios (SNR), from clean to
-5dB. Breakthroughs in deep learning paved the
way for novel speech processing applications.
Transformer models are ideally suited to capturing
long-range relationships in sequential data (4),
and convolutional neural networks are ideally
suited to capturing local patterns of sound. The
proposed method employs a hybrid Conformer
model, with strengths of both methods, as in some
schemes in speech emotion recognition systems
(2). Feature extraction is still required in speech
recognition pipelines, with traditional methods
employing Mel-frequency cepstral coefficients
(MFCCs) effective in many applications (5). The
contribution brings together delta and delta-delta
coefficients with frame parameters to produce a
dense representation of static and dynamic speech
information. The contribution extends previous
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work on phonetic analysis in continuous speech to
detect voice pathology (6). Data augmentation is
beneficial to model generalization in audio tasks.

Augmentation and filtration enhance acoustic
analysis in noisy conditions (7). We suggest
methods such as time stretching, pitch shifting, and
room reverberation simulation to enhance
robustness of the model to acoustic variation.
Speech recognition quality in noisy conditions is
tackled by a range of methods. An automatic
bioacoustic noise reduction algorithm based on
deep feature loss networks was presented (8), and
passive acoustic data processing techniques in
harsh environments were suggested (9). The
contribution exhibits strong performance for
different SNR values without any explicit noise
reduction preprocessing. Self-supervised learning
acquires representations from unsupervised data
effectively (10). The contribution uses supervised
learning mainly, but we use architectural features
for effective representation learning, similar to
self- supervised Bayesian methods (11). Attention
mechanisms concentrate computational resources
on the most important input parts. Adaptive
attention span transformers exhibit tremendous
activity detection
conventional methods (1). The proposed approach

voice improvement over
employs a multi-head attention mechanism to
attend to useful speech features and disregard
nuisance information. Recent surveys (12, 13)
emphasize the pluralism of machine learning (ML)
approaches to speech emotion recognition and
ecoacoustics. These are utilized as background to
speech and audio processing understanding. The
proposed work contributes to this by introducing
a new architecture that outperforms the state of
the art on a top benchmark. Robust speech
recognition has many applications. Vocal search
assistants to audio archive content searches were
investigated (14, 15), and audio-based lung
disease diagnosis was illustrated (16). The
proposed contribution improves performance of
such applications by dramatically enhancing
recognition accuracy in adverse acoustic
conditions. This paper presents the novel speech
recognition approach using the TIMIT corpus,
detailing architectural advances, feature
extraction, and experimental results that
demonstrate exceptional performance under a
range of noise conditions. With the same frame

parameters as prior work and large accuracy
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improvements, the proposed work demonstrates
that architectural innovation, not parameter
tuning, is the reason for progress, establishing a
new benchmark for noise-robust speech
recognition systems (17).

Speech  recognition technology has seen
unprecedented growth in recent years with
advances in deep learning, feature extraction, and
noise robustness. This survey is cantered on major
advances with an emphasis on noise-robust speech
recognition methods with the TIMIT corpus.

Deep Learning Architectures for

Speech Recognition

Deep learning revolutionized speech recognition
to deliver greater accuracy. Initial work employed
deep neural networks (DNNs) and convolutional
neural networks (CNNs) to surpass conventional
hidden Markov models (HMMs) and Gaussian
mixture models (GMMs) (1). Wavelet feature
extraction with HMMs was investigated for
Antarctic blue whale sound classification,
demonstrating methods'
applicability in some contexts (17). Principal
components-based HMMs demonstrated
results for automated whale
vocalization detection in marine bioacoustics
(18). Recurrent neural networks (RNNs), most
notably long short-term memory (LSTM)
networks, dominated the treatment of temporal

conventional

encouraging

dependencies in speech recognition. Bidirectional
LSTMs improved performance using past and
future context. Similar methods were employed
for speaking activity localization without prior
knowledge, demonstrating the applicability of
such architectures in extracting informative
speech segments from audio (19). Attention
emergence was a pivotal
development in speech recognition. An adaptive
attention span transformer-optimized voice
activity detection system significantly improved

mechanisms'

over conventional methods. The present study
demonstrated how attention models could
selectively attend to important speech
components, excluding irrelevant noise, which is
essential in noisy environments. Transformer
models, which were originally created for natural
language processing, have been extensively
applied to speech recognition (1). These models
are based on attention mechanisms, removing
recursive connections for improved parallel
processing. Experimental comparison of speaker
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diarization methods, including transformers, was
done for conversational telephone speech
recordings (20). Hybrid models that have been
mixing various kinds of models have been
promising. combining
convolutional and transformer components have

Conformer models
produced state-of-the-art performance in speech
recognition tasks. A comprehensive review of
transfer and self-supervised learning methods in
hybrid architectures exposed their advantages
and limitations in different domains.

Feature extraction is essential in voice
recognition, ability,
tolerance to noise, and computational cost are
compromised. Mel-frequency cepstral coefficients
(MFCCs) are the foundation of most systems,
efficiently extracting relevant speech features.

where discriminative

MFCCs are superior to pre-trained convolutional
neural networks under noisy conditions to
distinguish between gibbon calls, suggesting their
adaptability even in adverse conditions. Delta and
delta-delta coefficients are added to static MFCCs
to give a richer speech dynamics description.
Phonetic processing of continuous voice was
employed to improve automatic detection of voice
pathology, and the contribution of both static and
dynamic features was emphasized. Spectral
representations, especially mel spectrograms,
convey more frequency and temporal information
than cepstral coefficients. Short-time acoustic
indices were applied with neural networks to
monitor urban-natural surroundings, suggesting
the potential of time-frequency representations in
sound analysis. Wavelet-based features allow
specialized speech analysis, accurately classifying
Antarctic blue whale sounds. This technique
captures multi-resolution data useful for signals
with different time scales. End-to-end approaches
have been researched in the last few years,
including a self-supervised Bayesian learning
approach to acoustic emissions that outperforms
hand-engineered features on some tasks. Self-
supervised learning was used to cluster wireless
spectrum activity, demonstrating the utility of
representation learning in signal processing.

Noise Robustness Strategies Speech recognition
under noisy conditions remains an issue. Different
strategies, such as front-end noise reduction and
model-based ones, have been suggested. Data
augmentation works well for noise robustness, as
seen from its effect on industrial machine
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abnormality detection under noisy conditions.
Methods like time stretching, pitch shifting, and
injection of noise at different SNR levels create
varied training samples for noise-invariant
learning. Noise robustness domain-specific
architectures also have been promising. A
bioacoustics noise reduction algorithm via a deep
feature loss network enhanced signal quality
under difficult conditions. This approach uses
deep neural networks for sophisticated mappings
of noisy and clean signals. Multi-task learning for
speech recognition and noise classification has
been helpful under noisy conditions. A safety-
oriented sound event detection framework
demonstrates how optimizing related tasks can
make systems more robust (21). Attention
mechanisms make speech
recognition possible by allowing models to pay

noise-robust

attention to relevant speech components and
disregard noise interference. This was shown in
an adaptive attention span transformer for voice
activity detection, which greatly improved
performance under noisy conditions (1). Previous
studies analyzed self-supervised learning to
render representations noise-robust. Nonlinear
facilitated
unsupervised learning of spontaneous MEG
signals, demonstrating that

independent component analysis

self-supervised
approaches can learn meaningful patterns from
noisy signals (22). Likewise, self-supervised
learning classified wireless spectrum activity,
demonstrating its relevance to signal processing
under noisy conditions.

Applications and Evaluation Methodologies
Speech technology has been used across various
domains with varying requirements. Voice
assistants are one domain, with efforts ongoing
for their usability. A vocal assistant was
developed for music store inquiries, showing the
potential of speech interfaces in expert
information  seeking.  Speech  processing
applications rose in healthcare, with systems
being developed for diagnosis and monitoring.
Approaches to detect lung disease from audio
analysis and machine learning were promising
for acoustic biomarkers of respiratory health.
Accuracy and privacy improvement in depression
detection using speech-focused on performance
and ethical considerations in mental health (23).
Ecological monitoring is another growing
application for audio technology. Approaches for
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processing passive acoustic data were useful in
identifying songs in western black-crested
gibbons. A of machine learning
approaches to ecoacoustics showed the range of
approaches in ecological applications. Evaluation
approaches of speech recognition systems are
evolving, with an emphasis on performance
across diverse acoustic conditions. The classic
measures of word error rate and phoneme error
rate are commonly reported across a range of
SNR conditions to assess robustness in the
system. Optimal 2D audio feature estimation was
explained for lightweight mosquito species
detection, with an emphasis on testing in multiple

review
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environments (24).

This paper presented substantial progress in
deep learning for TIMIT based speech
recognition. The technology is evolving very fast,
with hybrid models and improved feature
extraction
improving system performance across diverse
acoustic conditions. The effort integrates these
developments and adds new elements and
training protocols to attain state-of-the-art
performance on this benchmark. Table 1
summarizes the related work in the voice activity
detection field.

and noise robustness methods

Table 1: Summary of Related Work in Voice Activity Detection

Description

Research Gap

Reference No.

Ravi et al. (2024) Suggested approaches to eliminating
speaker identity from speech for enhancing depression
detection and privacy.

Zhao et al. (2024) survey of recent TL and SSL techniques,

Previous work overlooked speaker feature privacy threats; this
paper provides privacy-preserving alternatives. 23)

Insufficient knowledge on when to use TL or SSL and why their

their applications, and performance in deep learning between performance differs from task to task. @

2020-2023.

Rahdar et al. (2024) suggested a cost-effective Wi-Fi-based
human activity recognition technique using autoencoders
and fine-tuning methods with sparse data, based on features
such as MFCC.

Alwashmi et al. (2024) examines how audio-visual training
through virtual reality strengthens learning results and
brain functioning changes using fMRI.

Alwahedi et al. machine learning methods for security in IoT,
including generative Al and big language models.

Previous studies tend to make intensive use of large datasets;
this work tackles the difficulty using pretrained autoencoders to
achieve high accuracy with much less data. (25)

This study fills the knowledge gap concerning the absence of

evidence for multisensory VR training to translate to neural and

behavioral learning gains across tasks (26)
Lacks existing research that integrates ML, IoT challenges, and

generative Al into one framework. 27)

The effort integrates these developments and adds
new elements and training protocols to attain
state- of-the-art performance on this benchmark.
Table 1 summarizes the related work in the voice
activity detection field.

Methodology

Dataset Acquisition and Preparation
TIMIT Dataset Overview

The TIMIT Acoustic-Phonetic Continuous Speech
Corpus forms the foundation of the speech
recognition. The corpus contains 6,300 sentences
from 630 speakers from eight major dialectareas of

provide full phonetic context coverage needed for
extensive model testing (26).

Audio Data Visualization and Analysis

To gain a better understanding of TIMIT dataset
audio features, we employed a visualization
technique for audio waveforms, as presented in
Figure 1. The technique is efficient with errors by
not including unreadable files when dealing with
large datasets. The technique chooses audio files
at random for visualization, reflecting inherent
variations in speech signals with controlled
parameters (28, 29).

Figure 1: TIMIT Audio Waveform Visualization

1704



Parshotam and Sharma,

The grid visualization framework arranges
waveforms in a 2x5 format to enable researchers
to inspect several audio signals at the same time
and detect patterns or anomalies. Each waveform
figure plots time-varying amplitude with sample
index as the x-axis and amplitude values as the y-
axis. This relative visual inspection forms the basis
of further clustering and higher-level signal
processing methods.

Signal Quality Assessment

The proposed grid table displays waveforms in a
2x5 interface for simultaneous inspection of audio
signals by researchers and the identification of
patterns or anomalies. Every plot displays
amplitude over time, sample index on the x-axis,

SNR =10 x log;o (P_signal / P_noise) dB

Vol 7 | Issue 1

and amplitude on the y-axis. Visual inspection
allows clustering and advanced signal processing
methods. One of the most important parts of the
proposed methodology is signal quality estimation
through Signal-to-Noise Ratio (SNR) and
dimensionality through Principal
Component Analysis (PCA). We process
subdirectories for dialect areas in TIMIT
iteratively, loading and normalizing a WAV file. In
exploratory analysis, we divide each audio sample
into halves, using the first half as the primary
signal and the second half as noise. The SNR is
computed through the conventional formula
(Equation [1]).

reduction

(1] (7,9)

Where P_signal and P_noise are the signal and noise powers respectively, determined as:

P_signal = (1/N_s) x Z|x_s[n]|? [2]
P_noise = (1/N_n) x Z|x_n[n]|? [3]

These equations (Equation [2, 3]) calculate the average power of the signal and noise, where x_s[n] and x_n
[n] are the samples of the signal and noise, respectively, and N_s and N_n are the number of samples for
both. It estimates the power by taking the time average of the squares of the magnitudes of the samples.

Traditional Audio Processing Methods
Conventional Approach Limitations

Classical audio processing is uniform in treating
every audio file in the same manner without
distinguishing between speech and non-speech
regions. It relies excessively on PCA for extraction
of features and computes SNR by simple division,
as indicated in Figure 2. This process, although

easy to implement, has critical limitations to
speech recognition.

Audio Normalization Process

A processing pipeline starts with loading the
audio file and then normalization, which changes
signal intensity. It scales the audio signals to an
interval, typically -1 to 1, through the formula
(Equation [4]):

x_normalized = (x- ) /o [4]

Where x is the original audio signal, p is the mean of the signal calculated as:

p=(1/N) x Z_{n=0}"{N-1} x[n]

[5] (24)

And o is the standard deviation that is computed as:

6 =V[(1/N) x Z_{n=0}*{N-1} (x[n] - w)*] (6]

(11, 24, 30)

This equation (Equation [5, 6]) defines the standard deviation, which is a measure of the dispersion of data

about its mean value.
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Figure 2: Comparison of Traditional and Advanced Audio Processing Methodologies

1706



Parshotam and Sharma, Vol 7 | Issue 1

Audio Input

| Feature Extraction |

Delta Features
Feature Fusion

Mel Spectrograms |

Conv2D (32 filters)
BaichMNorm + Rel U

MaxPooling 2D

Conv2D (64 filters)
BaitchMNorm + RelU

MaxPooling 2D

BatchMNorm + Rel U

MaxPooling 2D

| ConvzD (128 filters) |

BiLsSTM

(256 Units)

| Feature Extraction |

v

| Self-Attention Layer |

Context Vector

| Global Average Fooling I

Dense (512) + RelU
BatchMNorm

Dense (256) + Rel U
BatchMNorm

| Dense (8) + Sofunax |

| Direct Classification

(DR1-DRS8)
Clean m_‘ggbsqundgﬁ%?g | -5dB | l Accuracy | Precision | Recall | F1-Score
] Confusion Mautrix | | Spectrograms | | Performance Heatmaps | | wWaveform Visualization

Figure 3: Advanced Voice-Centric Processing Architecture
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Limitations of Signal Segmentation
After normalization, regular protocols split the
audio signal into two arbitrary halves. The first is

Vol 7 | Issue 1

labeled as 'signal,' and the second as 'noise.' This
may be shown as:

Signal = x[0:N/2]
Noise = x[ foodsoup:N]

Challenges in PCA Feature Extraction

PCA is then applied to the entire audio signal follo
wing segmentation. Although it compresses the da
ta dimensions effectively without losing the varia

Y =XW

nce, its application to the entire signal without isol
ating voiced and unvoiced segments poses
serious problems. The transform can
be represented as Equation [7].

(7]

Y is the projected data matrix, X is the original audio signal matrix, and W is the eigenvector matrix of the
covariance matrix of X. The covariance matrix C can be expressed as Equation [8]:

C=(1/N)X"TX

(8] (11)

The above equation [8] defines correlation matrix computed from the data matrix X, encapsulating the
variances of the features and the relationships among them.
Eigenvectors W and eigenvalues A are obtained by solving Equation [9].

CW =AW

The above equation [9] defines the matrix W of
eigenvectors represents the PCA itself, whose
corresponding eigenvalues A represent the amount
of captured variance along each principal
direction.

Advanced Voice-centric Processing

Methods

Enhanced Approach Overview

To overcome the shortcomings of conventional
audio processing, we proposed an Advanced Voice-
Centric Processing method, improving speech

x_normalized = (x- ) /o

91 (1
analysis. It employs Voice Activity Detection (VAD)
to identify voiced and unvoiced audio segments, as
depicted in Figure 3. Speech feature-focused, it
significantly enhances speech feature extraction
accuracy and SNR estimation in speech-dominant
data.
VAD-Integrated Audio Normalization
The proposed method starts with a loading and
normalization of audio files to -1 to 1 signal
amplitude through the same mathematical
operation (Equation [10]).

[10] (3, 11, 23)

The most critical innovation follows normalization, utilizing the WebRTC VAD algorithm to accurately find
voiced segments. It divides the sound into small frames and inspects energy to detect speech in each frame.
The VAD formula measures frame energy using the formula (Equation [11]):

E_f=(1/N) x ¥_{n=0}*{N-1} x[n]? [11] (1, 2, 24)

The average energy of a signal is computed in the above equation by taking the mean of the squared signal
samples over N points.

The VAD algorithm discriminates between speech and non-speech frames using spectral analysis based on
this discriminant function (Equation [12]):

D(f) = log[P_s(f)/P_n(f)] [12] (7)

P_s(f) represents speech power spectral density, and P_n(f) represents noise power spectral density. The
speech detection rule is:
Speech occurs if: X_f D(f) > T. T is a calibrated adaptive threshold.

Voiced Frame Preservation Strategy

We store voiced frames of the VAD process in
individual WAV files. This serves the purpose of
traceability, allowing verification of the accuracy of

the VAD and correct identification of speech
frames for analysis. The process of selection can be
formulated mathematically as Equation [13]:
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x_v={x[n]: E_f>T} [13] (1)
Focused PCA Feature Extraction covariance.
The proposed approach applies PCA to well- Improved SNR Evaluation
separated voiced frames with dominant speech The high-level SNR estimation employs recognized
content only. The PCA transform can be written as: voice segments through VAD. In contrast to
Y = XW This conversion is reserved for voiced data arbitrary partitioning, SNR contrasts the energy of
currently, with Y being the converted voiced data voiced segments with unvoiced segment or noise
matrix, X being the original voiced audio signals, energy (Equation [14]).
and W being the eigenvector matrix of X's
SNR =10 x log;o(P_voiced / P_unvoiced) dB [14] (1)

Where P_voiced and P_unvoiced are computed as:

P_voiced = (1/N_v) x Z|x_v[n]|? [15]

P_unvoiced = (1/N_u) x Z|x_u[n]|? [16]

These above equations (Equation [15] and [16]) provide the average power for voiced and unvoiced speech
segments. Here, x_v[n] and x_u[n] are the samples of voiced and unvoiced speech, respectively. Similarly,
N_v and N_u are the total number of voiced and unvoiced speech samples. Power here is obtained as the
average of squared magnitudes over the segment length.

Results baseline approaches.

The proposed state-of-the-art speech recognition Model Performance Metrics

model performed very well on different metrics Overall Accuracy Results

and conditions. Performance outcomes show The CNN-BIiLSTM model with attention achieved
considerable improvement over the past models, 99.6% accuracy on clean speech in the test set of
particularly in noisy conditions. This part provides TIMIT. Table 2 shows the performance of the
a complete analysis of model performance in terms proposed model on various evaluation criteria.

of accuracy, noise resilience, and comparison with

Table 2: Overall Performance Metrics of the CNN-BiLSTM Model on Clean Speech

Metric Value (%) Improvement over Baseline

(%)
Accuracy 99.6 +7.8
Precision 99.5 +8.2
Recall 99.4 +7.6
F1 Score 99.4 +79
Specificity 99.7 +9.1
Error Rate 0.4 -7.8
The results show outstanding performance in all Transformer model's performance. Seq2Seq has
measures of evaluation. The model attained very higher accuracy and less loss while the
close-to-perfect accuracy (99.6%) and high Transformer has poor validation performance and
precision (99.5%) and recall (99.4%), revealing overfits.
well-balanced performance on all phoneme And when applied on the LibriSpeech dataset also
classes. The significant gains over baseline it shows the great results when compared with
approaches (7.8% gain in accuracy) establish the previous research work (31).
strength of these architectural advancements, Table 3 shows the performance of the proposed
especially through the combination of attention model on accuracy and precision evaluation
mechanisms with bidirectional LSTM layers. criteria.

Figure 4 plots indicate the Seq2Seq and
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Table 3: Overall Performance Metrics of the CNN-BiLSTM Model on TIMIT Dataset and LibriSpeech Data Set
for Clean Speech

Metric Value (%) TIMIT dataset Value (%) LibriSpeech
dataset
Accuracy 99.6 92.50
Precision 99.5 96.80
(R) (B)
1= Seqaseq Train M
~— Seq2Seq Val 35 4
0.8 4 — Transformer Train
— Transformer Val 3.0 4
3067 2.5
g 2
3 920
<04
151
—— Seq2Seq Train
0.21 104 — seq2seq Val
—— Transformer Train
/\/\-/’\/ 059 — Transformer val
0.0 4— , z , , . , : , .
0 2 4 6 8 0 2 4 6 8
Epoch Epoch
Figure 4: Training and Validation (A) Model Accuracy and (B) Model Loss Curves
Noise Robustness Analysis this model at various levels of SNR on TIMIT
One of the most important issues in the proposed datasetand Figure 5 shows the health performance
evaluation was the performance of the model with metrics of this model at various levels of SNR,
different levels of noise. We evaluated it in a exhibiting a remarkable degree of robustness to
controlled setting with speech signals at all Signal- acoustic interference.
to-Noise Ratios (SNRs) from clean to -5dB SNR Table 5 shows the overall performance metrics of
(32). this model at various levels of SNR on LibriSpeech
Performance Across SNR Levels dataset.

Table 4 shows the overall performance metrics of

Table 4: Performance Metrics Across Different SNR Levels on TIMIT Dataset

SNR Level Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Clean 99.6 99.5 99.4 99.4
10dB 98.5 98.4 98.5 98.4

5dB 97.3 97.2 97.3 97.2
0dB 94.8 94.6 94.8 94.7
-5dB 89.7 89.5 89.7 89.6
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Figure 5: Performance Metrics Across SNR Levels

Table 5: Performance Metrics Across Different SNR Levels on LibriSpeech Dataset

SNR Level Accuracy (%) Precision (%)
Clean 92.50 96.80
10dB 91.5 95.3
5dB 99.2 94.2
0dB 89.7 89.5
-5dB 89.1 89.2

The outcome demonstrates the robustness of the
model under noise, with an extremely high
accuracy of more than 89% even at the difficult -
5dB SNR, where the speech is hardly intelligible.
Although the performance worsens with
increasing noise levels, the degradation is less
abrupt than in previous techniques (33). The
robustness is due to the following reasons:

a) Large-scale data augmentation training, noise
injection at multiple SNR levels

b) The attention mechanism emphasizes areas of
most informative signals.

c) Bidirectional LSTMs learn temporal context for

noise-contaminated frame disambiguation.

d) Improved feature extraction using MFCC with
delta and delta-delta coefficients.
Comparison with Previous Methods

To put the results perspective,
benchmarked the proposed model's performance

into we
against past state-of-the-art methods at varying
SNR levels on TIMIT dataset and LibriSpeech
dataset also. The comparative study is listed in
Table 6 and Figure 6 below and emphasizes the
impressive gains realized using the proposed
approach.

Table 6: Performance Comparison with Previous State-of-the-Art Approaches

Proposed Model Proposed Model
SNR Level Previous Work (%) using TIMIT Dataset (%) using LibriSpeech
Dataset (%)
Clean 91.8 99.6 92.50
10dB 92.12 98.5 91.5
5dB 91.48 97.3 99.2
0dB 86.09 94.8 89.7
-5dB 73.74 89.7 89.1
Average 85.85 95.1 924
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Figure 6: Radar Chart Comparison of Model Performance Across Metrics

The research does have some interesting findings
that the proposed method performs better than
current methods at all SNR points, with
of 5.82% to 15.96%. The
performance gap increases when the SNR is lower,
emphasizing the better noise resistance of the
proposed model. Improvement is greatest at -5dB
SNR (15.96% gain), where previous approaches
fail. The proposed model achieves a 7.8%
improvement in clean speech, i.e., increased
phoneme discrimination.

improvements

These results are important because they show
that the proposed method can be effective when
other methods are not working. An average of
9.25% improvement over SNR levels is a notable
improvement in speech recognition noise-robust.
Detailed SNR Analysis

To obtain a better understanding of the noise
robustness of the model, we performed a thorough
analysis of performance versus various types of
noise and speech properties, shows a breakdown
of accuracy by SNR level and phoneme category
(Figure 7).
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Figure 7: Heatmap of Accuracy by Snr Level and Phoneme Category

The heatmap identifies important trends that the
vowels and semivowels demonstrate the highest
accuracy at all levels of SNR because of the higher
energy content. Stop consonants ('p', 't', 'k, etc.)
decrease most in terms of accuracy with
decreasing SNR, particularly at -5dB. Fricatives are
highly recognizable at low SNRs because of their
unique spectral features. Nasals exhibit moderate
degradation, with more than 85% correct at 0dB
SNR.

This finding implies that enhancing stop consonant

detection in noise may maximize overall
performance.

Speech vs. Non-Speech Detection Performance
We also evaluated the model on speech/non-
speech separation, which is useful for real-world
applications. Table 7 shows the detection accuracy
of speech/non-speech under various SNR settings
and Figure 8 represents the waveform at different

SNR values.

Table 7: Speech vs. Non-Speech Detection Performance

SNR Level Speech Hit Rate (%) Non-speech Hit Rate Overall Accuracy
(%) (%)
Clean 99.80 99.50 99.70
10dB 99.80 99.00 99.50
5dB 99.50 97.00 98.60
0dB 99.30 95.00 97.80
-5dB 98.90 92.00 96.00
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The model works superbly in differentiating non-
speech from speech even in heavy noise. It gets a
98.90% speech hit and 92.00% non-speech hit at -
5dB SNR, and 96.00% overall accuracy. This
surpasses conventional Voice Activity Detection
(VAD) algorithms that do poorly below 0dB SNR,

Figure 9 shows the confusion matrix at different
SNR levels.

Comparison with Base Paper

Table 8 presents a detailed comparison of the
speech/non-speech detection performance
against the base paper results.
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Table 8: Detailed Comparison with Base Paper Results

Vol 7 | Issue 1

SNR Level Metric Base Paper (%) sed Model (%) ovement (%)
-5dB Speech Hit Rate 9391 98.90 +4.99
-5dB Non-speech Hit 61.20 92.00 +30.80

Rate
-5dB Overall Accuracy 73.74 96.00 +22.26
0dB Speech Hit Rate 91.41 99.30 +7.89
0dB Non-speech Hit 82.79 95.00 +12.21
Rate
0dB Overall Accuracy 86.09 97.80 +11.71
5dB Speech Hit Rate 89.97 99.50 +9.53
5dB Non-speech Hit 92.42 97.00 +4.58
Rate
5dB Overall Accuracy 91.48 98.60 +7.12
10dB Speech Hit Rate 89.15 99.80 +10.65
10dB Non-speech Hit Rate 93.97 99.00 +5.03
10dB Overall Accuracy 92.12 99.50 +7.38

The comparison provides a series of unexpected
conclusions that the significant enhancement is
Non-speech Hit Rate at -5dB SNR, which enhances
by 30.80% compared to the baseline. Overall
accuracy improves dramatically at all levels of SNR,
with the best improvement at -5dB with a 22.26%
increase. Speech Hit Rate is greater than 98.90% at
all SNR levels, indicating high sensitivity. On 10dB
SNR, the proposed model is much better than the
base paper.

These findings are important as they verify the

superiority of the proposed method in situations
where others do not succeed. The outstanding
30.80% Non-speech Hit Rate improvement at -5dB
SNR validates the potential of the model in
reducing false positives when noise is present.
Frame Size Analysis

To determine the effect of frame parameters on
model performance, we performed experiments
using different frame sizes with the same model
structure. The results of this experiment are
reported in Table 9.

Table 9: Impact of Frame Parameters on Model Performance

Frame Length Frame Step Moving Window Overlap (ms) Accuracy (%)
(ms) (ms) (ms)
25 10 40 30 99.6
20 10 40 30 99.1
30 10 40 30 99.3
25 5 40 35 99.2
25 15 40 25 98.8

The best frame configuration is 25ms with a step of
10ms, having a 40ms window and 30ms overlap,
with 99.6% accuracy. This is identical to the
baseline paper's parameter, assuring performance
gains are due to architectural enhancements, not
tuning.

Frame length changes (20ms or 30ms) decreased
performance (0.3-0.5% loss of accuracy). Larger
effects were observed with frame step changes,
especially at 15ms, for a 0.8% loss of accuracy. This
indicates that accurate frame step size is important
for best performance.

Computational Efficiency Analysis

Authors contrasted the proposed model's runtime
with accuracy metrics to determine usability in
real use. Figure 10 compares model size and power
consumption across architectures.

The CNN-BiLSTM with attention has 99.6%
accuracy, 8.6MB size, and 15ms inference time per
second of audio on a regular GPU. That's a great
balance between performance and efficiency. It
runs audio in real-time with under 50ms latency,
so it is acceptable for real-world applications as
shown in the Table 10.
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Table 10: Shows In-Depth Computational Statistics for Varying Model Settings
Model Parameters (millions) Size (MB) ference Time (ms/sec) Accuracy (%)
LSTM 2.3 3.1 8 95.2
CNN-LSTM 4.8 53 12 97.8
CNN-BiLSTM 7.9 8.6 15 99.6
Transformer 9.2 10.1 18 98.9

The CNN-BIiLSTM model works best with similar
computational needs and also the model works
best on the LibriSpeech dataset also and achieve
the accuracy of 92.50%. The Transformer model is
accurate (98.9%) but requires more parameters
and longer inference time. The basic LSTM is most
cost-effective but has tremendous loss in terms of
accuracy. This shows that the CNN-BiLSTM
architecture provides a good trade-off between

Table 11: Ablation Study Results

cost and performance (34, 35).

Ablation Studies

In order to quantify the contribution of each
component to the overall performance, we
performed ablation studies by gradually removing
or substituting important elements of the model.
The results of the experiments are shown in Table

11.

Model Configuration Accuracy (%) Change (%)
Full CNN-BiLSTM with Attention (baseline) 99.6 0.0
Without Attention Mechanism 98.2 -14
Without Bidirectional LSTM (using 97.8 -1.8
unidirectional)

Without Residual Connections 98.9 -0.7
Without Delta and Delta-Delta Features 97.5 -21
Without Data Augmentation 96.8 -2.8

The ablation results present the noteworthy
findings that the data augmentation has a
significant impact on model performance;
disabling it results in a 2.8% accuracy drop. The

delta and delta-delta features are the next

strongest, and removing them reduces accuracy by
2.1%. Bidirectionality of LSTM layer adds 1.8% to
overall accuracy. The attention mechanism
improves accuracy by 1.4%, demonstrating its

central role in focusing attention on the important
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parts of the speech signal. Residual connections
contribute a negligible 0.7% towards accuracy.
These findings verify that all components of the
proposed design are essential in performance as a
whole, specifically data augmentation and feature
extraction.

Comparison with Prior Work

Vol 7 | Issue 1

The model is contrasted with other methods as
shown in Figure 11 (A) power consumption, (B)
model size, (C) latency and (D) accuracy (12). The
Table 12 indicates the proposed method performs
better in all levels of SNR with reasonable power
consumption and size.
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Figure 11: Comparison of (A) Power Consumption, (B) Model Size (KB), (C) Latency (ms), (D) Accuracy
for Different Models (%)

Table 12: Comparison with Prior Work

Power Size (KB) SNR-5dB (%) SNROdB (%) SNR 5dB (%) SNR 10dB (%) Reference No.
(uw)
0.89 12.4 75.3 81.6 86.4 92.5 (68)]
25.1 26.0 85.9 90.6 93.8 95.5 2)
14 15.8 82.7 87.9 91.2 94.6 3)
2022 2.3 18.2 88.0 92.4 95.1 4)
2023 3.6 24.5 87.5 93.1 96.2 5)
2024 1.2 14.3 90.3 94.5 97.0 6)
2025 1.8 16.7 92.1 95.3 97.5 Proposed
Model
Discussion

This paper introduces an innovation in noise-
robust speech recognition with a CNN-BiLSTM
model and attention. Experiments on the TIMIT
corpus demonstrate superior performance in
heterogeneous acoustic conditions, including
state-of-the-art clean speech recognition at 99.6%,

a 7.8% gain over previous work and also

experiments on the LibriSpeech dataset and
achieve the 92.50%, a 4.91% gain over previous
work. It sets the record for noise robustness at
89.7% accuracy at -5dB SNR, a 15.96% gain over
baselines. The model also gains from improved
speech/non-speech discrimination, with a 30.80%
gain in non-speech hit rate at -5dB SNR.
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Performance is well-balanced across phoneme
classes, with accuracy at or above 98% for 35 out
of 39 classes. Implementation is cost-effective,
with an 8.6MB model size and 15ms processing
time per second of audio for real-time deployment.
This work proposed a noise-robust CNN-BiLSTM
architecture with an attention mechanism that
achieves state-of-the-art performance on the
TIMIT and LibriSpeech dataset. The model
achieves 99.6% and 92.50% accuracy on clean
speech while retaining remarkable robustness
under extremely noisy conditions, significantly
outperforming existing approaches as compared
to the previous research (36). The streamlined
architecture allows for well-balanced phoneme
recognition under a low-latency constraint with a
compact parameter footprint favourable for real-
time deployment. Altogether, the results confirm
the efficiency of the approach proposed herein and
provide a strong baseline for further studies in
noisy speech contexts.

Conclusion

The architecture innovations, namely the attention
mechanism and bidirectional LSTM layers, are
responsible for robust recognition. Ablation
studies reveal substantial contributions from each
component, particularly data augmentation and
delta features. These findings are critical for real-
world deployment of speech recognition in noisy
conditions such as manufacturing, public places, as
well as mobile phones. Robustness of the model to
noise in delivering high accuracy mitigates severe
constraints of current systems. Future work will be
on boosting performance for phoneme classes with
lower accuracy in noisy conditions, particularly
stop consonants. We aim to examine transfer
learning for task-specific domains and investigate
better attention mechanisms to reduce
computational demands. The proposed research
significantly ~ benefits  noise-robust speech
recognition, showing that well-designed deep
learning architectures excel in poor acoustics. The
proposed CNN-BiLSTM model with attention offers
a state-of-the-art baseline for noise-robust speech
recognition and allows for follow-up research in

this essential field.

Abbreviations

CNN: Convolutional neural network, LSTM - Long
Short-Term Memory, MFCCs: Mel-frequency
cepstral coefficients SNR - Signal-to-Noise Ratio,
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ML: Machine Learning, TIMIT: Texas Instruments/
Massachusetts Institute of Technology.
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