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Abstract

Severe flood events in India highlight the urgent need for efficient flood management and reliable forecasting systems.
One of the biggest obstacles to improving the efficiency of flood monitoring systems is the lack of trustworthy data
during flood events. Over the past ten years, computer vision-based methods have become a promising answer for flood
monitoring due to recent advancements in information technology. In order to effectively interpret image information
and enable meaningful study of flood-affected regions, these approaches mainly rely on robust image segmentation
techniques. It is critical for disaster management, particularly in flood forecasting, where precise waterbody detection
is essential. However, distinguishing water from visually similar elements such as rooftops, land, and various shades of
brown water remains challenging under varying environmental conditions. Traditional methods suffer from
misclassification and over-segmentation, affecting prediction accuracy. To address these limitations, we propose a novel
superpixel-based segmentation method enhanced with an adaptive erosion technique. Superpixel segmentation
effectively groups similar pixels, simplifying image analysis and interpretation, while erosion refines boundaries by
removing irrelevant pixel clusters, improving clarity. The final segmentation output is created by applying RGB
thresholding to identify water pixels, refining the result using binary erosion, then superimposing the refined mask
onto the original colour image. Our method achieves a 1.3% improvement in Jaccard Index, a 3.3% improvement in
Recall, a 72.3% enhancement in Boundary F1 Score, and a twofold reduction in computational runtime compared to
the SLIC superpixel method, making it a robust tool for flood pre- diction applications.

Keywords: Adaptive Erosion, Computer Vision, Flood Forecasting, Image Segmentation, RGB Thresholding,
Superpixel.

Introduction

Floods are becoming a serious problem, causing
loss of life, property damage, and health risks. They
also harm farmland, reducing crop yields and
affecting a country’s economy. Early flood warning
systems can help reduce the risks and losses caused
by flooding (1). To better understand and predict
floods, experts from different fields such as
hydrology, remote sensing, and meteorology are
work together. This teamwork improves flood
forecasting, leading to better preparation and
response to future floods (2).

The necessity of efficient flood management is
shown by recent severe flood incidents in India.
Driven by monsoon rainfall that was 42% over
average, the 2018 Kerala floods impacted 13
districts, displaced over 1.4 million people, and cost
the state's economy more than 26,000 crore.
Similar to this, Cyclone Michaung caused the
December 2023 floods in Tamil Nadu, which
recorded up to 93 cm of rain in just two days and

seriously damaged residential areas, transport and
infrastructure. These occurrences demonstrate the
increasing severity of floods and emphasize the
necessity of effective floodwater detection and
dependable early warning systems.

However, accurately identifying floodwater
remains a major challenge, as water bodies often
share visual similarities with other surfaces such as
rooftops, bare land, and different shades of muddy
or sediment- laden water. These similarities
become more pronounced under changing
environmental conditions, including variations in
lighting, cloud cover, and the presence of vegetation
(3). Traditional remote sensing techniques may
struggle to differentiate floodwater from other
elements, especially in urban areas where buildings
and roads reflect light in ways that can mimic water
surfaces. Although advanced image processing
techniques such as superpixel segmentation,
spectral analysis and deep learning models have
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improved water detection accuracy in flood
mapping, misclassification remains a challenge in
complex environments.

To overcome the challenges of waterbody
misclassification in flood mapping, this study
introduces a novel superpixel-based segmentation
approach combined with an adaptive erosion
technique. Superpixel segmentation efficiently
clusters similar pixels, streamlining image analysis
and interpretation, while adaptive erosion
dynamically fine-tunes boundary refinement by
eliminating irrelevant pixel clusters based on local
im- age properties. Unlike traditional erosion,
which applies a fixed kernel uniformly, adaptive
erosion adjusts its intensity based on pixel
connectivity and local features, effectively
preserving essential structures while removing
noise. This ensures that waterbodies are more
accurately distinguished from visually similar
regions such as rooftops, bare land, turbid water,
wet soil, shadows, and vegetation. By preventing
over-segmentation, adaptive erosion improves the
coherence of superpixel clusters, leading to a more
precise representation of water regions (4).
Furthermore, this method reduces false positives
and computational overhead, enhancing both seg-
mentation accuracy and efficiency, making it
particularly suitable for real-time flood prediction
applications. The proposed research makes several
significant contributions:

Enhanced Segmentation Accuracy
Adaptive erosion improves boundary refinement,
leading to higher Jaccard Index, recall, and
Boundary F1 Score, ensuring precise waterbody
detection.

Reduction of Over-Segmentation

By refining superpixel clusters and eliminating
irrelevant pixel groups, adaptive erosion prevents
over segmentation and enhances segmentation
clarity.

Improved Computational Efficiency
Adaptive erosion significantly reduces processing
time, making it approximately twice as fast as SLIC-
based segmentation, which is crucial for real-time
flood prediction applications.

Adaptation to Environmental
Variability

Unlike traditional methods, adaptive erosion
adjusts its intensity based on pixel connectivity,
effectively  distinguishing waterbodies from
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visually similar regions such as wet soil and
shadows. Accurate detection and segmentation of
floodwater are critical for effective disaster
management and mitigation. Traditional remote
sensing techniques, such as multispectral and
hyperspectral analyses, have been widely
employed to map water bodies using satellite
imagery (4). However, these conventional methods
often face significant challenges in complex urban
and semi-urban environments, where surfaces like
rooftops, roads, and bare land exhibit spectral
characteristics similar to floodwater, leading to
frequent misclassifications.

To address these limitations, several deep learning
approaches have been explored for flood detection.
Table 1 discusses significant studies were
conducted in the literature. For instance, a study
applied a modified U-Net convolutional neural
network (CNN) to satellite images, demonstrating
highly effective performance in accurately
segmenting flood-affected regions. Similarly, an
optimized deep learning model incorporating a
hybrid metaheuristic strategy, combining Harris
Hawks Optimization (HHO) and Shuffled Shepherd
Optimization (SSO), exhibited improved flood
prediction capabilities by enhancing feature
selection and model robustness (5). Despite these
advancements, deep learning models often require
extensive labelled datasets, demand significant
computational resources, and may face challenges
related to the interpretability of their decision-
making processes.

Superpixel-based segmentation has emerged as a
promising
Superpixels group pixels with similar properties
into compact clusters, thereby reducing noise and
enhancing object boundary representation (6).

alternative for flood detection.

Among various approaches, the Simple Linear
Iterative Clustering (SLIC) algorithm has gained
popularity due to its computational efficiency and
simplicity (7). SLIC leverages both color similarity
and spatial proximity, using a 5D feature space
(color and pixel coordinates) for superpixel
generation. However, in heterogeneous urban
flood scenes, SLIC frequently suffers from over-
segmentation, leading to fragmented waterbody
regions and increased false positives (8).

While SLIC effectively segments homogeneous
regions, it often suffers from over-segmentation in
heterogeneous environments like urban flood
scenes, leading to fragmented waterbody regions
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and increased false positives (8, 9). To overcome
this limitation, several enhanced variants of SLIC
have been proposed. For instance, an edge-based
SLIC (ESLIC) algorithm was developed to improve
boundary adherence and preserve weak edges in
high-resolution remote sensing images, thereby
enhancing segmentation accuracy in flood-prone
areas.

Moreover, watershed-based segmentation
techniques have also been integrated with
superpixel approaches to mitigate over-

segmentation issues (10). An enhanced watershed
algorithm combining pre-processing and post-
processing procedures has proven effective in
accurately delineating cultivated land and
waterbody boundaries from high-resolution
images (11). However, traditional
techniques applied for boundary refinement often
utilize a fixed structuring element, which may
cause the loss of critical waterbody details in noisy
or visually complex regions. Recent advancements
have introduced adaptive erosion and
segmentation strategies that dynamically adjust
parameters based on local image properties (12).

erosion
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These adaptive methods refine segmentation
boundaries by considering pixel connectivity and
contextual features,
structures while effectively eliminating noise.
Despite these developments, challenges remain in
accurately distinguishing floodwater from visually
similar surfaces under varying environmental
conditions, such as lighting variations, cloud
shadows, and vegetation presence.

From the literature review, it is observed that most
of the existing flood detection techniques rely on
machine learning and deep learning models, which
require a large amount of labeled data and time-
consuming training processes. Additionally, these
methods often face difficulties in accurately
capturing the boundaries of flooded regions. To
address these challenges, this study proposes a
superpixel-based image segmentation approach
with adaptive erosion for effective waterbody
detection in flood-affected regions. The proposed
method performs pixel-level analysis, enabling
better representation and clear identification of
water regions without the need for any training or
large labeled datasets.

preserving  essential

Table 1: Existing Methods for Waterbody Segmentation in Flood Detection

Technique Strengths Limitations Research Gap References
Traditional Remote  Large area coverage, stan- Misclassification in urban Needs robust methods for “4)
Sensing dard approach regions due to spectral sim-  heterogeneous environments
ilarity with non-water sur-
faces
Deep Learning High accuracy (e.g., IoU up Requires large Efficient & explainable 13)
annotated
Models to 67.35%) datasets, computationally models for flood detection
expensive, less interpretable
Superpixel Seg- Preserves object boundaries, Over-segmentation in Adaptive parameter tuning 5)
heterogeneous
mentation reduces noise regions for complex environments
Enhanced SLIC Better edge adherence, im-  Sensitive to noise, fixed Dynamic segmentation for (14)
parameters
Variants proved boundary detection may miss fine details diverse flood scenarios
Enhanced SLIC Better edge adherence, im-  Sensitive to noise, fixed Dynamic segmentation for 15)
Variants proved boundary detection parameters may miss fine de- diverse flood scenarios
tails
Hybrid Segmentation High accuracy (e.g., Dice May be dependent on image Robust methods adaptable (16)

characteristics such as lighting to varying image conditions

Techniques score up to 98.68%)

conditions
Methodology
Over-Segmentation Challenges in
Waterbody Detection

Pixel-level image segmentation remains a highly
challenging task due to the complex distribution
and orientation of pixels in an RGB image. The
intensity values of pixels are not unique to specific
surface types, which often leads to ambiguity in
distinguishing between classes. For example,

water regions, rooftops, and land surfaces may
share similar pixel intensity values, making direct
classification at the pixel level prone to errors (17).
This issue is particularly critical in flood detection,
where accurate separation of inundated areas
from non-flooded regions is essential. Superpixel-
based segmentation provides an effective
alternative by grouping pixels into perceptually
meaningful clusters
Unlike

based on homogeneity

criteria. raw pixel-level approaches,
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superpixels aggregate local information and
preserve object boundaries, resulting in a more
structured and interpretable representation of the
image  (18). This facilitates  improved
discrimination between visually similar classes
and reduces the noise associated with pixel-wise
analysis.

One of the primary challenges of the proposed
water area segmentation technique is over-
segmentation, which arises due to the similarity in
pixel values between water and other regions,
such as the sky (19). The segmentation algorithm
is entirely pixel-focused, and its reliance on
predefined RGB value ranges often results in
misclassification. Specifically, the sky region

exhibits RGB values of [255, 255, 255], which

£
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closely resemble the accumulated pixel ranges in
the proposed method is represented in Figure 1.
This similarity leads to incorrect segmentation,
affecting not only the sky area but also elements
such as rooftops and land regions (20). During
segmentation, pixels that satisfy the predefined
criteria are classified as water regions and
typically visualized in white. Although this
facilitates easier identification, it also increases
the risk of false positives, particularly when non-
water surfaces exhibit spectral similarity or
textural patterns comparable to flooded areas.
Such spectral confusion often results in
misclassification, reducing the overall accuracy of
waterbody delineation.

[14,20,18] [3,15,11] [6,23,13]
[44,60,47] [14,34,2] [1,11,0]
[5,20,13] [24,53,1] [0,255,0]

Figure 1: Image with Different Pixel Value Orientation

These inaccuracies impact the overall reliability of
the method, making it necessary to refine the pixel
strategy to minimize
segmentation and improve the
between water bodies and non-water regions in
aerial images. Figure 2 illustrates this issue,
expected
segmentation mask, and an over-segmented
output. The over-segmented regions arise due to
pixel intensity similarities between water and
other elements in the scene. Figure 2 (A) is the
input, showing a body of brown, muddy water

classification over-

distinction

showing an input image, an

surrounded by trees and a bright sky with clouds.
Figure 2 (B) shows the ideal segmentation mask,
where the water is perfectly isolated in white

against a black background. However, the output
of the segmentation algorithm, shown in Figure 2
(C), reveals a critical failure: the algorithm has
misclassified a large portion of the bright sky and
clouds as water. This happens because the pixel
intensity values of the bright, foamy parts of the
brown water are very similar to those of the
clouds. A simple, color-based
method fails to distinguish between these visually
similar but contextually different regions. This
misclassification leads to an over-segmented

output, which would result in a highly inaccurate

segmentation

estimation of the flooded area, making the method
unreliable for flood forecasting.
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Figure 2: (A) Input Images (B) Expected Segmentation Mask (C) Segmentation Mask with Over
Segmented Output

Proposed Adaptive Erosion-Based

Segmentation

Adaptive erosion refines the segmentation
process by dynamically adjusting the erosion
kernel based on local image properties. Unlike
traditional fixed-kernel erosion, this method
adapts to pixel intensity variations and texture
differences, effectively distinguishing water
regions from visually similar non-water areas. The
adaptive erosion approach reduces noise and false
positives while preserving meaningful water
structures.

In image segmentation, erosion is a morphological

technique that reduces noise and sharpens object
boundaries. Erosion creates smoother, more
compact areas by eliminating tiny imperfections
and weak connections along object edges by the
iterative application of a structuring element.
Because it helps remove extraneous details while
maintaining the essential structure of significant
objects like water bodies, this technique is
especially useful when precise boundary
delineation is needed (21, 22).

In morphological image processing, erosion is
formally defined using set theory. Let A denote the
input binary image and B the structuring element.
The erosion of A by B is given in Equation [1].

AOB ={z|(B) A} [1]

Where (B)z denotes the translation of B by vector z over the image domain.

The input image and the erosion-related
structural element are shown in Figure 3. Unlike
fixed-kernel erosion, the suggested adaptive
erosion approach dynamically modifies the kernel
size based on local picture features. This adaptive
selection is ideal for complex flood images because
it effectively suppresses heterogeneous noise
while maintaining waterbody features.

Although a number of adaptive morphological
techniques have been investigated for picture
segmentation, including adaptive dilation,
opening-closing processes, and multi-scale
morphology, these approaches
concentrate on region expansion or necessitate
careful scale selection, which frequently increases
computational complexity. Adaptive erosion, on
the other hand, deliberately shrinks ambiguous
regions based on local image properties in order

mostly

to directly target border refinement and noise
suppression. Because of this, it is especially useful
for floodwater segmentation, where the main
difficulty is eliminating spectrally similar non-
water areas (such the sky and bright surfaces)
while maintaining actual water boundaries.

Different kernel sizes suchas 3 x 3,5 x 5, and 7 x
7 were experimented to study their impact on
segmentation performance. The 3 x 3 kernel
performed fine-grained erosion, preserving edges
and small waterbody regions effectively while
removing minor noise. The 5 x 5 kernel offered
moderate erosion, suitable for removing larger
noise but sometimes smaller
waterbody shapes. In contrast, the 7 x 7 kernel
caused aggressive erosion, useful for eliminating
large noise but often leading to the loss of essential

narrow water regions.

impacting
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(A)

(B)

Figure 3: (A) Input Image (B) 3x3 Structuring Element (Kernel)

Adaptive Kernel Selection Strategy

The adaptive erosion strategy is explicitly defined
as an image-statistics-based approach, rather than
a purely heuristic or manually tuned method.
Kernel size selection is guided by quantitative
measurements extracted from local image regions.

Mathematical Formalization of the Adaptive
Kernel Selection Strategy

Let I denote the input grayscale image and ()
represent a local Superpixel region. For each
region, three statistical descriptors are computed,
Local Intensity Variance

Equation [2] represents the Local intensity
variance

1
05 = yDicall; — uf2 )? [2]

where p() is the mean intensity and N is the number of pixels in the region.

Noise Indicator

Noise level is approximated using local variance,
where higher variance indicates stronger noise
presence.

Texture Complexity

Texture strength is implicitly captured by intensity

variance, with higher values corresponding to
more heterogeneous regions.

Kernel Selection Rule

Based on the computed variance o2 the
structuring element size K is selected as equation

(3],

3x3, if05<T;
K ={5x5, if05<T, [3]
7x7, if 65> T,

where T1 and Tz are empirically determined thresholds derived from training data statistics.

The experimental analysis validates that these
statistically guided kernel choices yield optimal
segmentation performance, with the 3x3 kernel
achieving the highest average Dice score under
low-noise conditions.

Figure 4 represents the change after erosion
applied on the image. In this context, the key
distinction is that areas other than the water

become darker. As a result, the potential for
excessive segmentation (breaking down the image
into too many small segments) is reduced. Erosion
refines images by reducing the influence of random
pixels or noise. This noise reduction enhances the
accuracy of identifying the image’s significant
elements, as it removes distractions and isolates
the key features.
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(A)

(B)

Figure 4: (A) Input Image for Segmentation (B) Eroded Image

In the context of water area detection,
segmentation techniques are employed to identify
the regions of interest, which in this case are the
water areas. It is apparent that water areas are
distributed across various parts of the images,
often interspersed with less significant features. In
order to emphasize the water areas and minimize
the influence of other features, erosion is employed
as a pre-processing technique. By applying
erosion, the surrounding areas are gradually
reduced, while the water areas remain relatively
unchanged (23, 24). This process enhances the
accuracy of superpixel generation and subsequently
improves the segmentation outcomes. Figure 5
depicts improvement before and after the
application of erosion technique. By applying
adaptive erosion, the surrounding areas are
gradually reduced adaptively based on contextual
features, ensuring water areas remain relatively
unchanged while minimizing over segmentation.
Excessive fragmentation is seen in Figure 5 (A),
which shows superpixel segmentation prior to
erosion. Over segmented superpixels are visible in
the corresponding magnified image. On the other
hand, Figure 5 (B) superpixel
segmentation outcome following the application of

shows the

adaptive erosion, exhibiting enhanced region
consistency. By displaying accurately segmented
superpixels with clearly defined borders, the
magnified view and further validates the efficacy of
the suggested method. This method enhances the

accuracy of superpixel generation, leading to more
precise segmentation compared to
superpixel methods.

Superpixel Refinement Using RGB
Threshold

In this proposed work, an empirical thresholding
technique based on data is employed to determine
the RGB threshold ranges needed for superpixel
refining. The thresholds are determined by
examining several flood-affected photos that show

normal

various muddy-water appearances under different
lighting and environmental conditions, as opposed
to depending on arbitrary or image-specific
intuition.

Four RGB variants Narrow, Medium, Proposed, and
Wide—were defined in order to assess the impact
of colour thresholds on floodwater segmentation.
While Medium (R: 80-180, G: 70-160, B: 40-140)
permits moderate lighting and sediment changes,
Narrow (R: 90-170, G: 80-150, B: 50-120) targets
darker brown water, minimizing false positives
but running the risk of under-segmentation. The
proposed threshold (R: 70-200, G: 71-188, B: 30-
180) balances recall and precision while capturing
a variety of muddy water appearances. Although it
can tolerate high brightness and turbidity, wide (R:
60-220, G: 60-200, B: 20-200) may over segment
non-water areas. This process makes it possible to
systematically assess segmentation robustness in a
variety of flood scenarios.
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Superpixels Before Erosion
(A)
Oversegmented
Superpixel
Superpixels After Erosion
(B) .
Correctly
Segmented
Superpixel

Figure 5: Comparison of Normal Superpixel Segmentation and Adaptive Erosion-Enhanced Superpixel
Segmentation: (A) Superpixel Segmentation before Erosion and Enlarged View Highlighting Over
segmented Superpixels, (B) Superpixel Segmentation after Applying Adaptive Erosion, and Enlarged
View Showing Correctly Segmented Superpixels

Table 2 presents the analysis of randomly selected
image samples evaluated using different threshold
variants. Based on the segmentation accuracy, the
pixel value ranges yielding the highest
performance were identified and selected as the
proposed RGB threshold values. The flood images
dataset was employed to pick the image samples
used in this analysis, which ranged from 1.jpg to
10.jpg, to reflect a variety of statistical and visual
aspects of floodwater scenarios. RGB-based
floodwater segmentation is frequently impacted

by fluctuations in illumination, silt concentration,
turbidity, backdrop complexity, and local variance,
all of which are captured in these images. The
chosen images serve as typical test cases for
assessing the behaviour of various RGB threshold
variants in diverse real-world conditions rather
than as isolated visual examples. This method of
selection guarantees that the recommended
threshold ranges are not skewed towards a
particular image or lighting scenario and are
instead based on data-driven observations.

Table 2. Dice Similarity Coefficient (DSC) Comparison for Different RGB Threshold Variants

Image Sample Kernel Size Local Variance Threshold Type Dice Score
1.jpg 5 0.019514 Narrow 0.4866
1.jpg 5 0.019514 Medium 0.8325
1.jpg 5 0.019514 Proposed 0.9530
1jpg 5 0.019514 Wide 0.9530
3.jpg 7 0.074995 Narrow 0.8342
3.jpg 7 0.074995 Medium 0.8955
3.jpg 7 0.074995 Proposed 0.9004
3.jpg 7 0.074995 Wide 0.8810
9.jpg 7 0.026758 Narrow 0.6965
9.jpg 7 0.026758 Medium 0.7932
9.jpg 7 0.026758 Proposed 0.8998
9.jpg 7 0.026758 Wide 0.9187
Proposed Algorithm square- shaped” kernel” and has a set number of

Algorithm 1 explains the water area detection with
erosion as preprocessing. It works by starting with
input image and creating an empty image (R) that
is the same size as input image. It uses a 3x3

iterations (in this case, 6). For each pixel in input
image, the kernel’s center is placed on that pixel.
The algorithm checks if all the white pixels in the
kernel overlap with white pixels in A. If they do, the
corresponding pixel in R is set to white. Otherwise,
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it's left as is. After processing all the pixels in A, the
resulting image R is saved. After generating the
output image, the image is processed to create
superpixels. The algorithm calculates the average
color value (RGB) for each superpixel. If the
average RGB values meet specific thresholds, the
pixel intensities in the red channel (R) are changed
to white (RGB: 255, 255, 255). For superpixels that
do not meet the thresholds, the original pixel
intensities are kept. This step refines the
segmentation by modifying pixel values based on

Vol 7 | Issue 1

their average color within the superpixels.

The proposed method first identifies potential
water pixels in the color image using RGB
thresholding. Binary erosion is used to remove
small noisy areas and refine borders once this RGB
map has been converted to a binary image. Finally,
the eroded and corrected binary map is
superimposed back onto the original color image
to complete the transition from grayscale/binary
processing to a acceptable color
segmentation output.

visually

Algorithm 1 Superpixel-Based Image Segmentation with Adaptive Erosion for Waterbody Detection (with

Adaptive Kernel Size Selection)

Input: Input Image A
Output: Refined Segmented Output Image R
1 Read the input image A

2 Initialize an empty output image R of the same size as A
3 Select Structuring Element S (Kernel Size) based on image characteristics:
Fine noise removal — 3 x 3 Kernel Moderate noise removal — 5 x 5 Kernel Large noise removal - 7 x 7

Kernel

4 Set the number of erosion iterations N = 6
5 Adaptive Erosion Process:

for each pixel (%, y) in image A do

6 if R(x,y) <200, G(x,y) < 200, and B(x, y) < 200 then
7 Place the center of selected S at (x, y) if All corresponding pixels under S are white then
8 Set pixel (%, y) in R to white (255, 255, 255)

9 Repeat erosion process for N iterations

10 Superpixel Segmentation:

Apply SLIC superpixel segmentation on image R
11 Generate superpixels S1,S2,S3,..., Sn

12 Compute the average RGB values for each superpixel Si
13 Adaptive Superpixel Refinement: for each superpixel Si do
14 if 70 < mean(R) < 200, 71 < mean(G) < 188, and 30 < mean(B) < 180 then

15 Set all pixels in Si to white (255, 255, 255)
16 else
17 Retain original pixel values

18 Output the final refined segmented image R

Results and Discussion

To evaluate the effectiveness of the proposed
water area segmentation techniques, a series of
experiments were conducted using randomly
selected flood-affected images from Kerala. The
proposed methodology utilizes four key
components for accurate waterbody detection: the
original input image, corresponding ground truth
image, superpixel generated image, and the final
segmentation mask. This framework helps in
effectively distinguishing water regions from

shadows and other background elements present
in the images.

Performance Evaluation Metrics

Dice similarity coefficient

To assess the accuracy of image segmentation in
more depth, the Dice similarity coefficient (DSC) is
employed. This coefficient quantifies the extent to
which the segmented image aligns with the
original (ground truth) image in terms of spatial
overlap. Equation [4] is employed to determine
the precision of image segmentation.
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2|AN B|
lAl + |B|

D(A,B) =

Jaccard Index (Intersection over Union (IoU)

The Jaccard Index measures the similarity between
the predicted segmentation and the ground truth.
Itis defined as the ratio of the intersection over the

__lansB

J(A,B) = |A U B|

A higher Jaccard Index value indicates better
segmentation overlap between the predicted
output and the ground truth.

Precision

TP
TP + FP

Precision =

High precision indicates that the model produces
fewer false positives and is effective at avoiding
over-segmentation.

Recall

Recall measures the ability of the model to

Recall =

Boundary F1 Score (BF Score)

The Boundary F1 Score evaluates the accuracy of
the predicted object boundaries. It is the harmonic
mean of boundary precision (Pb) and boundary
recall (Rb). This metric is especially useful for
image segmentation tasks where edge accuracy is
important.

Runtime

Runtime reflects the computational efficiency of
the algorithm and is measured in seconds. Lower
runtime values indicate better performance and
make the method more suitable for real-time or
large-scale applications.

Input Image Quality Analysis

The proposed method is implemented on ten
sample images, which were collected from various
sources rather than from a single standardized
dataset. Instead of using high-quality images,
moderately clear images were deliberately chosen
to reflect realistic and challenging conditions

TP + FN

Vol 7 | Issue 1

[4]

union of the predicted (A) and actual (B) segments.
Equation [5] mathematically represents Jaccard
Index as:

[5]

Precision represents the proportion of correctly
predicted positive pixels among all pixels
predicted as positive. Equation [6] shows the
precision calculation.

(6]

correctly identify all relevant positive pixels. A
high recall value indicates the model can capture
most of the actual target regions with minimal
misses. Equation [7] represents the recall.

[7]

commonly encountered in flood situations. The
method operates at the pixel level, analyzing
features such as intensity
composition, resolution, and edge quality. This
paper focuses on segmenting waterbodies from
images with relatively low  resolution,
demonstrating the model’'s effectiveness in
resource-constrained scenarios. Instead of giving
priority to visual quality, the ten input images
(1.jpg-10.jpg) were chosen to capture
representative  variability in flood-affected
imagery. The photos represent genuine situations
found in flood monitoring scenarios and range in
resolution, edge complexity, and visual clarity. By

values, color

avoiding bias towards ideal images, this choice
makes it possible to test the suggested
segmentation technique in real-world scenarios
that are difficult. Table 3 presents the resolution,
edge complexity, and visual quality of the selected
input images.

Table 3. Input Image Quality Analysis Based on Resolution, Edge Complexity, and Visual Quality

Image Sample Resolution (WxH) Edge Complexity Visual Quality [1-5]
1jpg 395x650 3.04 1
2.jpg 512x770 3.57 3
3.jpg 512x683 3.42 3
4.jpg 512x683 5.65 3
5.pg 512x768 2.67 2
6.jpg 512x764 2.58 2
7.pg 384x512 5.05 3
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8.jpg 384x512
9.jpg 384x512
10.jpg 384x512

Vol 7 | Issue 1

6.66 3
1.99 2
3.16 2

To quantitatively evaluate the quality of these
inputs, a visual quality metric was employed. This
metric ranges from 1 to 5, where 1 denotes poor
visual clarity and 5 indicates excellent image
quality. Among the ten images, half belong to the
low-resolution category, while the other half are
considered high-resolution. In real-time flood
monitoring scenarios, it is common to encounter
noisy and low-resolution imagery due to
limitations in acquisition devices or transmission
conditions. The proposed algorithm not only
performs segmentation but also successfully
extracts meaningful pixel-level features from such
images, highlighting its robustness.

The diversity in edge complexity and visual quality
across the dataset ensures a thorough evaluation
of the model’s generalization capability. As shown
in Table 3, image resolutions range from 384x512
to 512x770, representing a balanced mix of low-
and high-resolution cases. Edge complexity,
computed using gradient-based analysis, varies
significantly—from 1.99 in smoother regions to
6.66 in highly textured or cluttered areas
providing an ideal test bed for assessing
segmentation accuracy under varying visual
conditions.

Performance Enhancement via

Adaptive Erosion Strategy

Metric-Based Validation of Segmentation
Accuracy and Boundary Delineation

To assess the effectiveness of the proposed
Adaptive Erosion method in Table 4 compared to

the original SLIC output, we conducted a statistical
evaluation using three key segmentation metrics:
Over-Segmentation Rate (OSR), Hausdorff
Distance, and Boundary F1 Score. The mean and
standard deviation were computed for each
metric, and the percentage change was calculated
to highlight relative performance improvements.
The Over-Segmentation Rate (OSR) of Adaptive
Erosion (0.7574 + 0.1462) is nearly identical to
that of the SLIC original (0.7550 = 0.1494), with
only a slight increase of 0.32%. This negligible
variation indicates that Adaptive Erosion
preserves the segmentation balance without
introducing additional over-segmentation. In
contrast, the Hausdorff Distance—where lower
significant
improvement with Adaptive Erosion, reducing
from 325.83 # 131.45 (SLIC) to 216.37 + 94.01,
marking a 33.6% decrease. This substantial
reduction demonstrates that the segmented
boundaries produced by Adaptive Erosion more
closely align with the ground truth, preserving the
true shape of waterbodies more effectively.

values are desirable—shows a

Furthermore, the Boundary F1 Score, a crucial
metric for assessing the accuracy of edge
detection, improved from 0.0519 + 0.0170 (SLIC)
to 0.0695 + 0.0207 (Adaptive Erosion), reflecting
a 33.9% increase. This higher F1 score indicates a
notable enhancement in boundary alignment,
with fewer false positives and false negatives,
leading to more precise and reliable segmentation
results.

Table 4: Statistical Comparison of Segmentation Metrics Between SLIC Original and Adaptive Erosion

SLIC Original
Metri A ive Erosi M + D P h,
etric (Mean # Std Dev) daptive Erosion (Mean # Std Dev) ercentage Change
OSR 0.7550 + 0.1494 0.7574 +0.1462 +0.32% (slightly increased)

325.8278 +131.4516
0.0519 £0.0170

Hausdorff Distance

Boundary F1 Score

216.3736 + 94.0054

-33.6% (significantly reduced)

0.0695 +0.0207 +33.9% (significant improvement)

Based on the evaluation metrics, a key conclusion
is that the adaptive erosion method significantly
enhances boundary extraction, a critical aspect of
accurate segmentation. The substantial reduction
in Hausdorff Distance (-33.6%) and the dramatic
increase in the Boundary F1 Score (+33.9%)
provide strong evidence that our method is highly
effective at precisely delineating the boundaries of
waterbodies. While the Overall Segmentation

Result (OSR)
improvement (+0.32%), this reinforces the fact
that the method's primary benefit lies in its ability
to refine the edges, a crucial capability for
applications like flood mapping where the exact
perimeter is essential for accurate measurement.
Optimization of Structuring Element Size

To identify the optimal kernel size and number of
iterations for morphological processing in the

showed only a marginal
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Adaptive Erosion method, a set of experiments was
conducted. The Dice Similarity Coefficient (DSC)
was used as the primary evaluation metric to
quantify segmentation for each
configuration. Table 5 evaluate the Dice Similarity
Coefficient (DSC) for Different Kernel Sizes. The
3x3 kernel consistently achieved the highest
average DSC of 0.87037, indicating that smaller
kernel sizes preserve more detail and provide

accuracy

Vol 7 | Issue 1

superior segmentation accuracy for the given
dataset. The data strongly suggests that the 3x3
structuring element is the optimal kernel size for
this segmentation task. Using larger kernels leads
to over-erosion, which negatively impacts the
overall segmentation accuracy as measured by the
DSC. This finding justifies the use of smaller, fine-
tuned kernels for adaptive erosion in the proposed
method.

Table 5: Evaluation of Dice Similarity Coefficient (DSC) for Different Kernel Sizes

Image Sample 3x3 5x5 7x7

1jpg 0.95654 0.93869 0.91023
2.jpg 0.95503 0.93425 0.88208
3.jpg 0.91940 0.89878 0.88887
4.jpg 0.77255 0.67336 0.56395
5.jpg 0.88178 0.80470 0.74977
6.jpg 0.92011 0.85557 0.76670
7.jpg 0.71718 0.78056 0.78584
8.jpg 0.86503 0.81432 0.75300
9.jpg 0.87019 0.86949 0.85172
10.jpg 0.84588 0.78933 0.78538
Average 0.87037 0.83591 0.79375

Table 6 presents the adaptive selection of erosion
kernel size based on the computed local intensity
variance of each input image. The variance serves
as a quantitative indicator of brightness variation,
noise level, and texture complexity. Images with
lower variance values require moderate erosion
and are processed using a 5x5 kernel, whereas
images exhibiting higher variance are assigned a
larger 7x7 kernel to effectively suppress noise and
reduce over-segmentation. This table

demonstrates that kernel selection in the

proposed method is guided by image statistics
rather than heuristic or manual tuning, ensuring
adaptive and reproducible  segmentation
behavior.

Table 7 demonstrates that increasing the number
of iterations improves segmentation accuracy up
to a point. The highest DSC value 0.8617 was
observed at 6 iterations, while 9 iterations
resulted in a slight decline. Therefore, 6 iterations
are identified as the optimal choice to balance

accuracy and computational efficiency.

Table 6: Adaptive Kernel Selection Based on Local Intensity Variance

Image Sample Local Variance

Selected Kernel

1.jpg 0.019514
2.jpg 0.057561
3.jpg 0.074995
4.jpg 0.064638
5.jpg 0.036005
6.jpg 0.036147
7.jpg 0.060635
8.jpg 0.059984
9.jpg 0.026758
10.jpg 0.029636

5x5
7x7
7x7
7x7
7x7
7x7
7x7
7x7
7x7
7x7

1400



Jyothish et al.,

Vol 7 | Issue 1

Table 7: Effect of Iteration Count on Dice Similarity Coefficient (DSC)

Iteration Count DSC Score
3 Iterations 0.6756
6 Iterations 0.8617
9 Iterations 0.8473

Qualitative Analysis of Superpixel with

Colorization Technique

For the evaluation of the proposed method, ten
random images with a water area are subjected to
segmentation. This superpixel based method
works by assigning unique colors to pixels in the
image to make analysis easier. Certain ranges of
colorsred, green and blue are chosen by hand, and
pixels that meet specific criteria based on the
average colors of pixels in their area are changed
to white to make them easier to spot. This
approach helps show how strong the colors are in
different parts of an image and makes all the pixel
values in the image the same, which is especially
useful for water area detection.

Random images from Figure 6, labelled (A) to (E),
were selected for image segmentation. The second
column displays the corresponding ground truth
images for comparing the segmentation results.
The third column shows superpixels created for
the segmentation process. The fourth column
presents the final results of the segmentation
technique applied to the images. Superpixel shows
the K-means clustering of pixels. In the proposed
method predefined pixel values are considered for

water area detection. Pixels that satisfy conditions
are transformed into white pixels. It provides
uniqueness in pixel orientation thus, superpixel
generation  will be  improving.  Visual
representations of segmentation without the

erosion technique is shown in Figure 6.
Qualitative Analysis of Enhanced
Segmentation with Adaptive Erosion

Technique

Visual enhanced image
segmentation using erosion technique is shown in
Figure 7. Here input images are show in first
column (A) to (E) are applied for enhanced
segmentation algorithm. Second column shows
ground truth image, next column represents the
eroded image after applying erosion technique.
These images have water areas are more lighter
and region other than water gets darker. Thus, the

representation of

accuracy of superpixel generation will be
improving. Fourth column shows generated
superpixels, compared with third column of
Figure 6 more number of accurate superpixels are
generated. Fifth column shows the segmentation
mask.
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(4)

(B)

(8]

(D)

(E)

Figure 6: (First Column) Test Images (A-E) (Second Column) Ground Truth Images (Third Column)
Generated Superpixels, (Fourth Column) Segmented Output

(A)

(B)

©

(D)

(E)

Figure 7: (First Column) Test Images (A-E) (Second column) Ground Truth Images (Third column)
Generated Superpixel (Fourth column) Segmented Output (Fifth Column) Segmentation Mask

Improvement in Dice Similarity using

Adaptive Erosion-Based Segmentation
The effectiveness of the proposed method was
assessed using the Dice Similarity Coefficient
(DSC), which quantifies the similarity between
two sets. DSC compares the shared elements to the

total elements in both sets and is commonly used
to evaluate image segmentation accuracy. Table 8
presents a comparison before and after applying
an erosion technique. Six images exhibited
significant improvement in DSC values, indicating
enhanced segmentation accuracy. Although
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certain images showed a slight decline in
segmentation accuracy due to complex pixel
structures and varying object boundaries, the
overall performance of the pro- posed adaptive
erosion-based segmentation technique remained
superior. As illustrated in Table 9, the integration
of adaptive erosion significantly improved the
segmentation results. The analysis was carried out
on multiple test images from specific domains, and

Vol 7 | Issue 1

the average performance of the processed images
was evaluated. Table 10 provides a comparative
analysis of the Dice Similarity Coefficient values
between the traditional superpixel based
segmentation and the enhanced adaptive erosion-
based segmentation approach, demonstrating the
effectiveness and improved accuracy of the
proposed method.

Table 8: Quantitative Effectiveness of the Proposed Algorithm

Image Sample

DSC Value of Normal Superpixel

DSC Value of Enhanced Superpixels

1jpg 0.74 0.95

2.jpg 0.85 0.96

3.jpg 0.91 0.88

4.jpg 0.64 0.81

5.jpg 0.93 091

6.jpg 0.94 091

7.jpg 0.87 0.64

8.jpg 0.66 0.86

9.jpg 0.87 0.89

10.jpg 0.86 0.93

Table 9: Quantitative Metrics

Metric Before Erosion After Erosion

OSR 0.21 0.13

Boundary F1-Score 0.76 0.84

Hausdorff Distance 12.8 8.3

EPE 4.2 2.6

Table 10: Quantitative Metrics

Image Segmentation Method Average DSC Value

Superpixel based Segmentation 0.82

Enhanced Superpixel based Segmentation with Erosion Technique 0.87

Benchmarking Against Conventional efficiency. While SLIC shows slightly higher

SLIC-Based Segmentation precision, Adaptive Erosion offers more balanced
) and robust segmentation, making it suitable for

To comprehensively evaluate the proposed

Adaptive Erosion-based superpixel segmentation
method, a comparative study was conducted
against the conventional SLIC-based segmentation
approach. The evaluation focused on five key
performance metrics: Jaccard Index, Precision,
Recall, Boundary F1 Score, and Runtime. These
metrics are essential for understanding both the
accuracy and efficiency of a segmentation method.
The results are summarized in Table 11 below.

Figure 8 compares the performance of the SLIC-
based method and the proposed adaptive erosion-
based segmentation across key metrics. The
Adaptive Erosion model outperforms SLIC in
Jaccard Index, Recall, Boundary F1 Score, Runtime,
and DSC, demonstrating better accuracy and

real-time and remote sensing applications. The
indicate that the proposed model
outperforms the baseline in most of the evaluated
metrics. The Jaccard Index for Adaptive Erosion is
higher than that of SLIC, indicating a more

results

accurate overlap between the segmented output
and truth.  This
demonstrates the enhanced region-wise accuracy
achieved by the proposed method. In terms of
recall, the Adaptive Erosion model also performs

ground improvement

better, capturing a larger proportion of relevant
regions (e.g., water bodies). This is particularly
beneficial in remote sensing applications where
missing true positives can result in significant
errors in analysis or decision-making.
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Table 11: Comparative Performance Metrics between SLIC and Adaptive Erosion-Based Segmentation

Metric SLIC Adaptive Erosion Better Model / Improvement

Jaccard Index 0.7653 0.7751 Adaptive Erosion (+1.3%)

Precision 0.9985 0.9776 SLIC (Higher Precision)

Recall 0.7664 0.7916 Adaptive Erosion (+3.3%)

Boundary F1 Score 0.0347 0.0598 Adaptive Erosion (+72.3%)

Runtime (s) 0.8090 0.4143 Adaptive Erosion (2x Faster)
1

Scores
=
[=)]

o
s

©
o

Jaccard Index Precision

0 II II II

B SLIC m Adaptive Erosion

Recall Boundary F1 Runtime (s)
Score

Metrics

Figure 8: Performance Comparison of SLIC and Adaptive Erosion-Based Segmentation

Although the SLIC model yields slightly higher
precision, this can be attributed to its conservative
nature, which may result in a higher number of
false negatives. In contrast, Adaptive Erosion
achieves a more balanced trade-off between
precision and recall, which is reflected in its
improved Jaccard Index and overall segmentation
quality. One of the most notable improvements is
observed in the Boundary F1 Score, where the
Adaptive Erosion model shows a 72.3% increase
over SLIC. This indicates superior boundary
preservation, making the method highly suitable
for applications requiring accurate delineation of
object edges, such as shoreline extraction or flood
boundary mapping. Additionally, the proposed
method demonstrates superior computational
efficiency, reducing the run- time by nearly half
compared to SLIC. This efficiency makes it more
practical for large-scale image analysis or real-time
processing scenarios.

Overall, the Adaptive Erosion-based segmentation
method outperforms SLIC by providing better re-
sults in terms of Jaccard Index, recall, boundary
accuracy, and runtime efficiency for superpixel-
based image segmentation in remote sensing
applications.

Statistical Validation of Performance

Improvement

This section analyses the improvements in the
proposed adaptive erosion-based method by the
random fluctuations or not. For the evaluation of
this method paired sample t-test was performed
on the Dice Similarity Coefficient values. It is more
suitable to compare two sets of values to find out if
they are significantly different from each other.
Normal and proposed image segmentations are
evaluated using the same segmentation method
namely Dice Similarity Coefficient, these two-
method subjected for same set of images. So, t- test
provide a good model validation. The test was
performed using DSC scores obtained from 10
randomly selected flood-affected images. Since
each image was segmented using both methods,
the paired t-test was appropriate to determine
whether the differences in performance were
statistically significant. Table 12 revealed a p-value
of 0.0174 and an average improvement of 0.05 in
DSC. If the p-value is less than 0.05, the difference
is statistically significant, indicating that the
improvement is not the result of chance. The
upgraded technique consistently outperforms the
baseline, as evidenced by the 95% confidence
interval for the mean difference, which was 0.011,
0.089. For flood prediction tasks, the suggested
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adaptive erosion-based segmentation strategy
provides a notable and reliable improvement over
conventional methods for waterbody detection, as
supported by this statistical validation.

The comprehensive statistical analysis presented
here provides strong evidence that the proposed
adaptive erosion-based method represents a
significant and reliable advancement for
waterbody detection in flood prediction. The
paired sample t-test's (df = 9) p-value of 0.0174,
being well below the 0.05 threshold, confirms that
the observed average improvement of 0.05 in the
Dice Similarity Coefficient is not due to random

Vol 7 | Issue 1

chance but 1is a statistically significant
enhancement. Furthermore, the obtained Cohen’s
dvalue of 0.78 indicates a moderate-to-large effect
size, demonstrating that the performance gain of
the proposed method is not only statistically
significant but also practically meaningful. This
quantitative validation, combined with the
qualitative visual evidence, demonstrates that the
upgraded technique consistently and accurately
outperforms conventional segmentation methods,
making it a robust and trustworthy tool for a wide
range of flood prediction applications.

Table 12: Statistical Comparison of DSC Values Between Normal and Enhanced Segmentation

95%

Metric Superpleel Adaptive Erqsnon . Mean df p-value Cohen’s d Confidence
Segmentation Segmentation Difference
Interval
Dice Similarity 0.82 (average) 0.87 (average) +0.05 9 0.0174 0.78 (0.011, 0.089)

Coefficient

Comparative Analysis with State-of-
the-Art Methods

Table 13 presents a comparative analysis of the
proposed segmentation method against several
established algorithms, including GS04 (25), NC05
(26), GCb10® (27), TPO9® (28), QS09 (2), and the
widely-used SLIC (18). The comparison is based on
three key metrics: under-segmentation error,
boundary recall, and segmentation accuracy.
Under-segmentation Error reflects the degree to
which image segments incorrectly merge with
adjacent regions. A lower value indicates more
precise boundary adherence. The proposed
method achieves the lowest under-segmentation
error of 0.18, outperforming GS04 (25) (0.23),
NCO5 (26) and GCb10® (26) (0.22 each), TPO9®
(27) (0.24), QS09 (28) (0.20), and even SLIC (18)
(0.19). This result highlights the effectiveness of
the proposed approach in preserving region
integrity and reducing leakage across boundaries.
Boundary Recall how well the
segmentation captures actual object boundaries.

measures

Table 13: Comparison with Existing Methods

While GS04 (25) and SLIC (25) attain the highest
recall scores of 0.84 and 0.82 respectively, the
proposed method also performs strongly with a
boundary recall of 0.79—surpassing NCO5 (23, 24)
(0.68), GCb10P (28) (0.70), and TP0O9® (27) (0.61).
This indicates the proposed method's strong edge-
preservation capabilities.

Segmentation Accuracy, which represents the
percentage of correctly classified segments
relative to ground truth, is where the proposed
method excels. It achieves an accuracy of 87%,
significantly outperforming SLIC (25) (76.9%),
NCO5 (26) (75.9%), QS09 (28) (75.1%), and other
classical methods such as GS04 (28) (74.6%),
GCb10P (28) (73.2%), and TP09® (28) (62.0%).

In summary, the proposed
framework demonstrates a balanced and superior
performance across all three evaluation criteria.
By minimizing under-segmentation error,
maintaining high boundary recall, and achieving
the highest segmentation accuracy, it proves to be
a robust solution for flood-related waterbody
detection in satellite imagery.

segmentation

SLIC  Proposed Method

Metric GS04 (25) NCO5 (26) GCb10" (26) TP09® (27) QS09 (27) (18)

Under-segmentation error 0.23 0.22 0.22 0.24 0.20 0.19 0.18
Boundary recall 0.84 0.68 0.70 0.61 0.79 0.82 0.79
Segmentation accuracy 74.6% 75.9% 73.2% 62.0% 75.1% 76.9% 87%
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Conclusion

In this study, an adaptive erosion-based superpixel
segmentation approach was proposed for accurate
waterbody detection in flood prediction
applications. The integration of adaptive erosion
with  SLIC-based  superpixel segmentation
effectively addressed the
misclassification and over-segmentation, particu-

challenges  of

larly in complex environments where water
regions exhibit similar visual characteristics to
surrounding objects such as rooftops, land, and
varying water textures. The adaptive erosion
technique contributed significantly to boundary
refinement and noise reduction, enhancing the
clarity and accuracy of segmented regions.

The experimental evaluation demonstrated the
superiority of the proposed method over
conventional SLIC segmentation, achieving notable
in key performance metrics.
Specifically, the method attained a 1.3% increase in

improvements

Jaccard Index, a 3.3% enhancement in Recall, a
substantial 72.3% improvement in Boundary F1
Score, and a twofold reduction in computational
runtime. These results highlight the robustness,
accuracy, and computational efficiency of the
proposed technique, establishing its potential for
real-time flood monitoring, waterbody detection,
and other remote sensing applications in disaster
management.
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