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Abstract 
Severe flood events in India highlight the urgent need for efficient flood management and reliable forecasting systems. 
One of the biggest obstacles to improving the efficiency of flood monitoring systems is the lack of trustworthy data 
during flood events. Over the past ten years, computer vision-based methods have become a promising answer for flood 
monitoring due to recent advancements in information technology. In order to effectively interpret image information 
and enable meaningful study of flood-affected regions, these approaches mainly rely on robust image segmentation 
techniques. It is critical for disaster management, particularly in flood forecasting, where precise waterbody detection 
is essential. However, distinguishing water from visually similar elements such as rooftops, land, and various shades of 
brown water remains challenging under varying environmental conditions. Traditional methods suffer from 
misclassification and over-segmentation, affecting prediction accuracy. To address these limitations, we propose a novel 
superpixel-based segmentation method enhanced with an adaptive erosion technique. Superpixel segmentation 
effectively groups similar pixels, simplifying image analysis and interpretation, while erosion refines boundaries by 
removing irrelevant pixel clusters, improving clarity. The final segmentation output is created by applying RGB 
thresholding to identify water pixels, refining the result using binary erosion, then superimposing the refined mask 
onto the original colour image. Our method achieves a 1.3% improvement in Jaccard Index, a 3.3% improvement in 
Recall, a 72.3% enhancement in Boundary F1 Score, and a twofold reduction in computational runtime compared to 
the SLIC superpixel method, making it a robust tool for flood pre- diction applications. 

Keywords: Adaptive Erosion, Computer Vision, Flood Forecasting, Image Segmentation, RGB Thresholding, 
Superpixel. 
 

Introduction  
Floods are becoming a serious problem, causing 

loss of life, property damage, and health risks. They 

also harm farmland, reducing crop yields and 

affecting a country’s economy. Early flood warning 

systems can help reduce the risks and losses caused 

by flooding (1). To better understand and predict 

floods, experts from different fields such as 

hydrology, remote sensing, and meteorology are 

work together. This teamwork improves flood 

forecasting, leading to better preparation and 

response to future floods (2). 

The necessity of efficient flood management is 

shown by recent severe flood incidents in India. 

Driven by monsoon rainfall that was 42% over 

average, the 2018 Kerala floods impacted 13 

districts, displaced over 1.4 million people, and cost 

the state's economy more than ₹26,000 crore. 

Similar to this, Cyclone Michaung caused the 

December 2023 floods in Tamil Nadu, which 

recorded up to 93 cm of rain in just two days and 

seriously damaged residential areas, transport and 

infrastructure. These occurrences demonstrate the 

increasing severity of floods and emphasize the 

necessity of effective floodwater detection and 

dependable early warning systems. 

However, accurately identifying floodwater 

remains a major challenge, as water bodies often 

share visual similarities with other surfaces such as 

rooftops, bare land, and different shades of muddy 

or sediment- laden water. These similarities 

become more pronounced under changing 

environmental conditions, including variations in 

lighting, cloud cover, and the presence of vegetation 

(3). Traditional remote sensing techniques may 

struggle to differentiate floodwater from other 

elements, especially in urban areas where buildings 

and roads reflect light in ways that can mimic water 

surfaces. Although advanced image processing 

techniques such as superpixel segmentation, 

spectral analysis and  deep learning  models have  
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improved water detection accuracy in flood 

mapping, misclassification remains a challenge in 

complex environments.     

To overcome the challenges of waterbody 

misclassification in flood mapping, this study 

introduces a novel superpixel-based segmentation 

approach combined with an adaptive erosion 

technique. Superpixel segmentation efficiently 

clusters similar pixels, streamlining image analysis 

and interpretation, while adaptive erosion 

dynamically fine-tunes boundary refinement by 

eliminating irrelevant pixel clusters based on local 

im- age properties. Unlike traditional erosion, 

which applies a fixed kernel uniformly, adaptive 

erosion adjusts its intensity based on pixel 

connectivity and local features, effectively 

preserving essential structures while removing 

noise. This ensures that waterbodies are more 

accurately distinguished from visually similar 

regions such as rooftops, bare land, turbid water, 

wet soil, shadows, and vegetation. By preventing 

over-segmentation, adaptive erosion improves the 

coherence of superpixel clusters, leading to a more 

precise representation of water regions (4). 

Furthermore, this method reduces false positives 

and computational overhead, enhancing both seg- 

mentation accuracy and efficiency, making it 

particularly suitable for real-time flood prediction 

applications. The proposed research makes several 

significant contributions: 

Enhanced Segmentation Accuracy  
Adaptive erosion improves boundary refinement, 

leading to higher Jaccard Index, recall, and 

Boundary F1 Score, ensuring precise waterbody 

detection. 

Reduction of Over-Segmentation  
By refining superpixel clusters and eliminating 

irrelevant pixel groups, adaptive erosion prevents 

over segmentation and enhances segmentation 

clarity. 

Improved Computational Efficiency  
Adaptive erosion significantly reduces processing 

time, making it approximately twice as fast as SLIC-

based segmentation, which is crucial for real-time 

flood prediction applications. 

Adaptation to Environmental 

Variability  
Unlike traditional methods, adaptive erosion 

adjusts its intensity based on pixel connectivity, 

effectively distinguishing waterbodies from 

visually similar regions such as wet soil and 

shadows. Accurate detection and segmentation of 

floodwater are critical for effective disaster 

management and mitigation. Traditional remote 

sensing techniques, such as multispectral and 

hyperspectral analyses, have been widely 

employed to map water bodies using satellite 

imagery (4). However, these conventional methods 

often face significant challenges in complex urban 

and semi-urban environments, where surfaces like 

rooftops, roads, and bare land exhibit spectral 

characteristics similar to floodwater, leading to 

frequent misclassifications. 

To address these limitations, several deep learning 

approaches have been explored for flood detection. 

Table 1 discusses significant studies were 

conducted in the literature. For instance, a study 

applied a modified U-Net convolutional neural 

network (CNN) to satellite images, demonstrating 

highly effective performance in accurately 

segmenting flood-affected regions. Similarly, an 

optimized deep learning model incorporating a 

hybrid metaheuristic strategy, combining Harris 

Hawks Optimization (HHO) and Shuffled Shepherd     

Optimization (SSO), exhibited improved flood 

prediction capabilities by enhancing feature 

selection and model robustness (5). Despite these 

advancements, deep learning models often require 

extensive labelled datasets, demand significant 

computational resources, and may face challenges 

related to the interpretability of their decision-

making processes. 

Superpixel-based segmentation has emerged as a 

promising alternative for flood detection. 

Superpixels group pixels with similar properties 

into compact clusters, thereby reducing noise and 

enhancing object boundary representation (6). 

Among various approaches, the Simple Linear 

Iterative Clustering (SLIC) algorithm has gained 

popularity due to its computational efficiency and 

simplicity (7). SLIC leverages both color similarity 

and spatial proximity, using a 5D feature space 

(color and pixel coordinates) for superpixel 

generation. However, in heterogeneous urban 

flood scenes, SLIC frequently suffers from over-

segmentation, leading to fragmented waterbody 

regions and increased false positives (8). 

While SLIC effectively segments homogeneous 

regions, it often suffers from over-segmentation in 

heterogeneous environments like urban flood 

scenes, leading to fragmented waterbody regions 
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and increased false positives (8, 9). To overcome 

this limitation, several enhanced variants of SLIC 

have been proposed. For instance, an edge-based 

SLIC (ESLIC) algorithm was developed to improve 

boundary adherence and preserve weak edges in 

high-resolution remote sensing images, thereby 

enhancing segmentation accuracy in flood-prone 

areas. 

Moreover, watershed-based segmentation 

techniques have also been integrated with 

superpixel approaches to mitigate over-

segmentation issues (10). An enhanced watershed 

algorithm combining pre-processing and post-

processing procedures has proven effective in 

accurately delineating cultivated land and 

waterbody boundaries from high-resolution 

images (11). However, traditional erosion 

techniques applied for boundary refinement often 

utilize a fixed structuring element, which may 

cause the loss of critical waterbody details in noisy 

or visually complex regions. Recent advancements 

have introduced adaptive erosion and 

segmentation strategies that dynamically adjust 

parameters based on local image properties (12). 

These adaptive methods refine segmentation 

boundaries by considering pixel connectivity and 

contextual features, preserving essential 

structures while effectively eliminating noise. 

Despite these developments, challenges remain in 

accurately distinguishing floodwater from visually 

similar surfaces under varying environmental 

conditions, such as lighting variations, cloud 

shadows, and vegetation presence. 

From the literature review, it is observed that most 

of the existing flood detection techniques rely on 

machine learning and deep learning models, which 

require a large amount of labeled data and time-

consuming training processes. Additionally, these 

methods often face difficulties in accurately 

capturing the boundaries of flooded regions. To 

address these challenges, this study proposes a 

superpixel-based image segmentation approach 

with adaptive erosion for effective waterbody 

detection in flood-affected regions. The proposed 

method performs pixel-level analysis, enabling 

better representation and clear identification of 

water regions without the need for any training or 

large labeled datasets. 
 

Table 1: Existing Methods for Waterbody Segmentation in Flood Detection 
Technique Strengths Limitations Research Gap References 

Traditional Remote Large area coverage, stan- Misclassification in urban Needs robust methods for (4) 

Sensing dard approach regions due to spectral sim- heterogeneous environments  

  ilarity with non-water sur-   

  faces   

Deep Learning High accuracy (e.g., IoU up Requires l a r g e  

a n n o t a t e d  

Efficient & explainable (13) 

Models to 67.35%) datasets, computationally models for flood detection  

  expensive, less interpretable   

Superpixel Seg- Preserves object boundaries, Over-segmentation in 

heterogeneous 

Adaptive parameter tuning (5) 

mentation reduces noise    regions for complex environments  

Enhanced SLIC Better edge adherence, im- Sensitive to noise, fixed 

p a rameters 

Dynamic segmentation for (14) 

Variants proved boundary detection may miss fine details diverse flood scenarios  

Enhanced SLIC Better edge adherence, im- Sensitive to noise, fixed  Dynamic segmentation for (15) 

Variants proved boundary detection parameters may miss fine de- diverse flood scenarios  

  tails   

Hybrid Segmentation High accuracy (e.g., Dice May be dependent on image Robust methods adaptable (16) 

Techniques score up to 98.68%) characteristics such as lighting to varying image conditions  

  conditions   

 

Methodology 
Over-Segmentation Challenges in 

Waterbody Detection 
Pixel-level image segmentation remains a highly 

challenging task due to the complex distribution 

and orientation of pixels in an RGB image. The 

intensity values of pixels are not unique to specific 

surface types, which often leads to ambiguity in 

distinguishing between classes. For example, 

water regions, rooftops, and land surfaces may 

share similar pixel intensity values, making direct 

classification at the pixel level prone to errors (17). 

This issue is particularly critical in flood detection, 

where accurate separation of inundated areas 

from non-flooded regions is essential. Superpixel-

based segmentation provides an effective 

alternative by grouping pixels into perceptually 

meaningful clusters based on homogeneity 

criteria. Unlike raw pixel-level approaches, 
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superpixels aggregate local information and 

preserve object boundaries, resulting in a more 

structured and interpretable representation of the 

image (18). This facilitates improved 

discrimination between visually similar classes 

and reduces the noise associated with pixel-wise 

analysis. 

One of the primary challenges of the proposed 

water area segmentation technique is over-

segmentation, which arises due to the similarity in 

pixel values between water and other regions, 

such as the sky (19). The segmentation algorithm 

is entirely pixel-focused, and its reliance on 

predefined RGB value ranges often results in 

misclassification. Specifically, the sky region 

exhibits RGB values of [255, 255, 255], which 

closely resemble the accumulated pixel ranges in 

the proposed method is represented in Figure 1. 

This similarity leads to incorrect segmentation, 

affecting not only the sky area but also elements 

such as rooftops and land regions (20). During 

segmentation, pixels that satisfy the predefined 

criteria are classified as water regions and 

typically visualized in white. Although this 

facilitates easier identification, it also increases 

the risk of false positives, particularly when non-

water surfaces exhibit spectral similarity or 

textural patterns comparable to flooded areas. 

Such spectral confusion often results in 

misclassification, reducing the overall accuracy of 

waterbody delineation. 

 

 
Figure 1: Image with Different Pixel Value Orientation 

 

These inaccuracies impact the overall reliability of 

the method, making it necessary to refine the pixel 

classification strategy to minimize over-

segmentation and improve the distinction 

between water bodies and non-water regions in 

aerial images. Figure 2 illustrates this issue, 

showing an input image, an expected 

segmentation mask, and an over-segmented 

output. The over-segmented regions arise due to 

pixel intensity similarities between water and 

other elements in the scene. Figure 2 (A) is the 

input, showing a body of brown, muddy water 

surrounded by trees and a bright sky with clouds. 

Figure 2 (B) shows the ideal segmentation mask, 

where the water is perfectly isolated in white 

against a black background. However, the output 

of the segmentation algorithm, shown in Figure 2 

(C), reveals a critical failure: the algorithm has 

misclassified a large portion of the bright sky and 

clouds as water. This happens because the pixel 

intensity values of the bright, foamy parts of the 

brown water are very similar to those of the 

clouds. A simple, color-based segmentation 

method fails to distinguish between these visually 

similar but contextually different regions. This 

misclassification leads to an over-segmented 

output, which would result in a highly inaccurate 

estimation of the flooded area, making the method 

unreliable for flood forecasting. 

 



Jyothish et al.,                                                                                                                      Vol 7 ǀ Issue 1 
 

1393  

 
Figure 2: (A) Input Images (B) Expected Segmentation Mask (C) Segmentation Mask with Over 

Segmented Output 
 

Proposed Adaptive Erosion-Based 

Segmentation 
Adaptive erosion refines the segmentation 

process by dynamically adjusting the erosion 

kernel based on local image properties. Unlike 

traditional fixed-kernel erosion, this method 

adapts to pixel intensity variations and texture 

differences, effectively distinguishing water 

regions from visually similar non-water areas. The 

adaptive erosion approach reduces noise and false 

positives while preserving meaningful water 

structures. 

In image segmentation, erosion is a morphological 

technique that reduces noise and sharpens object 

boundaries. Erosion creates smoother, more 

compact areas by eliminating tiny imperfections 

and weak connections along object edges by the 

iterative application of a structuring element. 

Because it helps remove extraneous details while 

maintaining the essential structure of significant 

objects like water bodies, this technique is 

especially useful when precise boundary 

delineation is needed (21, 22). 

In morphological image processing, erosion is 

formally defined using set theory. Let A denote the 

input binary image and B the structuring element. 

The erosion of A by B is given in Equation [1]. 
 

A ⊖ B = {z | (B)z ⊆ A}             [1] 
 

Where (B)z denotes the translation of B by vector z over the image domain. 
 

The input image and the erosion-related 

structural element are shown in Figure 3. Unlike 

fixed-kernel erosion, the suggested adaptive 

erosion approach dynamically modifies the kernel 

size based on local picture features. This adaptive 

selection is ideal for complex flood images because 

it effectively suppresses heterogeneous noise 

while maintaining waterbody features. 

Although a number of adaptive morphological 

techniques have been investigated for picture 

segmentation, including adaptive dilation, 

opening-closing processes, and multi-scale 

morphology, these approaches mostly 

concentrate on region expansion or necessitate 

careful scale selection, which frequently increases 

computational complexity. Adaptive erosion, on 

the other hand, deliberately shrinks ambiguous 

regions based on local image properties in order 

to directly target border refinement and noise 

suppression. Because of this, it is especially useful 

for floodwater segmentation, where the main 

difficulty is eliminating spectrally similar non-

water areas (such the sky and bright surfaces) 

while maintaining actual water boundaries. 

Different kernel sizes such as 3 × 3, 5 × 5, and 7 × 

7 were experimented to study their impact on 

segmentation performance. The 3 × 3 kernel 

performed fine-grained erosion, preserving edges 

and small waterbody regions effectively while 

removing minor noise. The 5 × 5 kernel offered 

moderate erosion, suitable for removing larger 

noise but sometimes impacting smaller 

waterbody shapes. In contrast, the 7 × 7 kernel 

caused aggressive erosion, useful for eliminating 

large noise but often leading to the loss of essential 

narrow water regions. 
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Figure 3: (A) Input Image (B) 3x3 Structuring Element (Kernel) 

 

Adaptive Kernel Selection Strategy 
The adaptive erosion strategy is explicitly defined 

as an image-statistics-based approach, rather than 

a purely heuristic or manually tuned method. 

Kernel size selection is guided by quantitative 

measurements extracted from local image regions. 

 

Mathematical Formalization of the Adaptive 

Kernel Selection Strategy 

Let I denote the input grayscale image and Ω 

represent a local Superpixel region. For each 

region, three statistical descriptors are computed, 

Local Intensity Variance  

Equation [2] represents the Local intensity 

variance 

 

                                                   𝜎Ω
2 = ∑ (𝐼𝑖 − 𝜇𝛺 )2

𝑖∈Ω𝑁

1
                              [2] 

where μΩ  is the mean intensity and N is the number of pixels in the region. 
 

Noise Indicator 

Noise level is approximated using local variance, 

where higher variance indicates stronger noise 

presence. 

Texture Complexity 

Texture strength is implicitly captured by intensity 

variance, with higher values corresponding to 

more heterogeneous regions. 

Kernel Selection Rule 

Based on the computed variance σΩ2, the 

structuring element size K is selected as equation 

[3], 

                                                            𝑲 = {

𝟑𝒙𝟑,   𝒊𝒇 𝜎𝛺
2 < 𝑇1

𝟓𝒙𝟓,   𝒊𝒇 𝜎𝛺
2 ≤ 𝑇2

𝟕𝒙𝟕,   𝒊𝒇 𝜎𝛺
2 > 𝑇2

                                                 [3] 

 

where T1 and T2 are empirically determined thresholds derived from training data statistics.  
 

The experimental analysis validates that these 

statistically guided kernel choices yield optimal 

segmentation performance, with the 3×3 kernel 

achieving the highest average Dice score under 

low-noise conditions. 

Figure 4 represents the change after erosion 

applied on the image. In this context, the key 

distinction is that areas other than the water 

become darker. As a result, the potential for 

excessive segmentation (breaking down the image 

into too many small segments) is reduced. Erosion 

refines images by reducing the influence of random 

pixels or noise. This noise reduction enhances the 

accuracy of identifying the image’s significant 

elements, as it removes distractions and isolates 

the key features. 
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Figure 4: (A) Input Image for Segmentation (B) Eroded Image  

 

In the context of water area detection, 

segmentation techniques are employed to identify 

the regions of interest, which in this case are the 

water areas. It is apparent that water areas are 

distributed across various parts of the images, 

often interspersed with less significant features. In 

order to emphasize the water areas and minimize 

the influence of other features, erosion is employed 

as a pre-processing technique. By applying 

erosion, the surrounding areas are gradually 

reduced, while the water areas remain relatively 

unchanged (23, 24). This process enhances the 

accuracy of superpixel generation and subsequently 

improves the segmentation outcomes. Figure 5 

depicts improvement before and after the 

application of erosion technique. By applying 

adaptive erosion, the surrounding areas are 

gradually reduced adaptively based on contextual 

features, ensuring water areas remain relatively 

unchanged while minimizing over segmentation. 

Excessive fragmentation is seen in Figure 5 (A), 

which shows superpixel segmentation prior to 

erosion. Over segmented superpixels are visible in 

the corresponding magnified image. On the other 

hand, Figure 5 (B) shows the superpixel 

segmentation outcome following the application of 

adaptive erosion, exhibiting enhanced region 

consistency. By displaying accurately segmented 

superpixels with clearly defined borders, the 

magnified view and further validates the efficacy of 

the suggested method. This method enhances the 

accuracy of superpixel generation, leading to more 

precise segmentation compared to normal 

superpixel methods. 

Superpixel Refinement Using RGB 

Threshold 
In this proposed work, an empirical thresholding 

technique based on data is employed to determine 

the RGB threshold ranges needed for superpixel 

refining. The thresholds are determined by 

examining several flood-affected photos that show 

various muddy-water appearances under different 

lighting and environmental conditions, as opposed 

to depending on arbitrary or image-specific 

intuition. 

Four RGB variants Narrow, Medium, Proposed, and 

Wide—were defined in order to assess the impact 

of colour thresholds on floodwater segmentation. 

While Medium (R: 80–180, G: 70–160, B: 40–140) 

permits moderate lighting and sediment changes, 

Narrow (R: 90–170, G: 80–150, B: 50–120) targets 

darker brown water, minimizing false positives 

but running the risk of under-segmentation. The 

proposed threshold (R: 70–200, G: 71–188, B: 30–

180) balances recall and precision while capturing 

a variety of muddy water appearances. Although it 

can tolerate high brightness and turbidity, wide (R: 

60–220, G: 60–200, B: 20–200) may over segment 

non-water areas. This process makes it possible to 

systematically assess segmentation robustness in a 

variety of flood scenarios.  
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Figure 5: Comparison of Normal Superpixel Segmentation and Adaptive Erosion-Enhanced Superpixel 

Segmentation: (A) Superpixel Segmentation before Erosion and Enlarged View Highlighting Over 

segmented Superpixels, (B) Superpixel Segmentation after Applying Adaptive Erosion, and Enlarged 

View Showing Correctly Segmented Superpixels 
 

Table 2 presents the analysis of randomly selected 

image samples evaluated using different threshold 

variants. Based on the segmentation accuracy, the 

pixel value ranges yielding the highest 

performance were identified and selected as the 

proposed RGB threshold values. The flood images 

dataset was employed to pick the image samples 

used in this analysis, which ranged from 1.jpg to 

10.jpg, to reflect a variety of statistical and visual 

aspects of floodwater scenarios. RGB-based 

floodwater segmentation is frequently impacted 

by fluctuations in illumination, silt concentration, 

turbidity, backdrop complexity, and local variance, 

all of which are captured in these images. The 

chosen images serve as typical test cases for 

assessing the behaviour of various RGB threshold 

variants in diverse real-world conditions rather 

than as isolated visual examples. This method of 

selection guarantees that the recommended 

threshold ranges are not skewed towards a 

particular image or lighting scenario and are 

instead based on data-driven observations. 
 

Table 2. Dice Similarity Coefficient (DSC) Comparison for Different RGB Threshold Variants 

Image Sample Kernel Size Local Variance Threshold Type Dice Score 

1.jpg 5 0.019514 Narrow 0.4866 

1.jpg 5 0.019514 Medium 0.8325 

1.jpg 5 0.019514 Proposed 0.9530 

1.jpg 5 0.019514 Wide 0.9530 

3.jpg 7 0.074995 Narrow 0.8342 

3.jpg 7 0.074995 Medium 0.8955 

3.jpg 7 0.074995 Proposed 0.9004 

3.jpg 7 0.074995 Wide 0.8810 

9.jpg 7 0.026758 Narrow 0.6965 

9.jpg 7 0.026758 Medium 0.7932 

9.jpg 7 0.026758 Proposed 0.8998 

9.jpg 7 0.026758 Wide 0.9187 

 

Proposed Algorithm 
Algorithm 1 explains the water area detection with 

erosion as preprocessing. It works by starting with 

input image and creating an empty image (R) that 

is the same size as input image. It uses a 3x3 

square- shaped” kernel” and has a set number of 

iterations (in this case, 6). For each pixel in input 

image, the kernel’s center is placed on that pixel. 

The algorithm checks if all the white pixels in the 

kernel overlap with white pixels in A. If they do, the 

corresponding pixel in R is set to white. Otherwise, 
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it’s left as is. After processing all the pixels in A, the 

resulting image R is saved. After generating the 

output image, the image is processed to create 

superpixels. The algorithm calculates the average 

color value (RGB) for each superpixel. If the 

average RGB values meet specific thresholds, the 

pixel intensities in the red channel (R) are changed 

to white (RGB: 255, 255, 255). For superpixels that 

do not meet the thresholds, the original pixel 

intensities are kept. This step refines the 

segmentation by modifying pixel values based on 

their average color within the superpixels. 

The proposed method first identifies potential 

water pixels in the color image using RGB 

thresholding. Binary erosion is used to remove 

small noisy areas and refine borders once this RGB 

map has been converted to a binary image. Finally, 

the eroded and corrected binary map is 

superimposed back onto the original color image 

to complete the transition from grayscale/binary 

processing to a visually acceptable color 

segmentation output. 
 

Algorithm 1 Superpixel-Based Image Segmentation with Adaptive Erosion for Waterbody Detection (with 

Adaptive Kernel Size Selection) 

Input: Input Image A 

Output: Refined Segmented Output Image R 

1 Read the input image A 

2 Initialize an empty output image R of the same size as A 

3 Select Structuring Element S (Kernel Size) based on image characteristics: 

Fine noise removal → 3 × 3 Kernel Moderate noise removal → 5 × 5 Kernel Large noise removal → 7 × 7 

Kernel 

4 Set the number of erosion iterations N = 6 

5 Adaptive Erosion Process: 

for each pixel (x, y) in image A do 

6 if R(x, y) < 200, G(x, y) < 200, and B(x, y) < 200 then 

7 Place the center of selected S at (x, y) if All corresponding pixels under S are white then 

8  Set pixel (x, y) in R to white (255, 255, 255) 

9 Repeat erosion process for N iterations 

10 Superpixel Segmentation: 

Apply SLIC superpixel segmentation on image R 

11 Generate superpixels S1, S2, S3, . . . , Sn 

12 Compute the average RGB values for each superpixel Si 

13 Adaptive Superpixel Refinement: for each superpixel Si do 

14 if 70 ≤ mean(R) < 200, 71 ≤ mean(G) < 188, and 30 ≤ mean(B) < 180 then 

15  Set all pixels in Si to white (255, 255, 255) 

16 else 

17 Retain original pixel values 

18 Output the final refined segmented image R 
 

Results and Discussion 
To evaluate the effectiveness of the proposed 

water area segmentation techniques, a series of 

experiments were conducted using randomly 

selected flood-affected images from Kerala. The 

proposed methodology utilizes four key 

components for accurate waterbody detection: the 

original input image, corresponding ground truth 

image, superpixel generated image, and the final 

segmentation mask. This framework helps in 

effectively distinguishing water regions from 

shadows and other background elements present 

in the images. 

Performance Evaluation Metrics     
Dice similarity coefficient 

To assess the accuracy of image segmentation in 

more depth, the Dice similarity coefficient (DSC) is 

employed. This coefficient quantifies the extent to 

which the segmented image aligns with the 

original (ground truth) image in terms of spatial 

overlap. Equation [4] is employed to determine 

the precision of image segmentation.  
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                              𝐷(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
                          [4] 

 

Jaccard Index (Intersection over Union (IoU) 

The Jaccard Index measures the similarity between 

the predicted segmentation and the ground truth. 

It is defined as the ratio of the intersection over the 

union of the predicted (A) and actual (B) segments. 

Equation [5] mathematically represents Jaccard 

Index as: 

 

                                   𝐽(𝐴, 𝐵)  =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
                           [5] 

 

A higher Jaccard Index value indicates better 

segmentation overlap between the predicted 

output and the ground truth. 

Precision 

Precision represents the proportion of correctly 

predicted positive pixels among all pixels 

predicted as positive. Equation [6] shows the 

precision calculation. 
 

                                                     Precision  =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
               [6] 

 

High precision indicates that the model produces 

fewer false positives and is effective at avoiding 

over-segmentation. 

Recall 

Recall measures the ability of the model to 

correctly identify all relevant positive pixels. A 

high recall value indicates the model can capture 

most of the actual target regions with minimal 

misses. Equation [7] represents the recall. 

                                                   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
             [7] 

 

Boundary F1 Score (BF Score) 

The Boundary F1 Score evaluates the accuracy of 

the predicted object boundaries. It is the harmonic 

mean of boundary precision (Pb) and boundary 

recall (Rb). This metric is especially useful for 

image segmentation tasks where edge accuracy is 

important. 

Runtime 

Runtime reflects the computational efficiency of 

the algorithm and is measured in seconds. Lower 

runtime values indicate better performance and 

make the method more suitable for real-time or 

large-scale applications. 

Input Image Quality Analysis 
The proposed method is implemented on ten 

sample images, which were collected from various 

sources rather than from a single standardized 

dataset. Instead of using high-quality images, 

moderately clear images were deliberately chosen 

to reflect realistic and challenging conditions 

commonly encountered in flood situations. The 

method operates at the pixel level, analyzing 

features such as intensity values, color 

composition, resolution, and edge quality. This 

paper focuses on segmenting waterbodies from 

images with relatively low resolution, 

demonstrating the model’s effectiveness in 

resource-constrained scenarios. Instead of giving 

priority to visual quality, the ten input images 

(1.jpg–10.jpg) were chosen to capture 

representative variability in flood-affected 

imagery. The photos represent genuine situations 

found in flood monitoring scenarios and range in 

resolution, edge complexity, and visual clarity. By 

avoiding bias towards ideal images, this choice 

makes it possible to test the suggested 

segmentation technique in real-world scenarios 

that are difficult. Table 3 presents the resolution, 

edge complexity, and visual quality of the selected 

input images. 
 

Table 3. Input Image Quality Analysis Based on Resolution, Edge Complexity, and Visual Quality 

Image Sample Resolution (W×H) Edge Complexity Visual Quality [1–5] 

1.jpg 395×650 3.04 1 

2.jpg 512×770 3.57 3 

3.jpg 512×683 3.42 3 

4.jpg 512×683 5.65 3 

5.jpg 512×768 2.67 2 

6.jpg 512×764 2.58 2 

7.jpg 384×512 5.05 3 
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To quantitatively evaluate the quality of these 

inputs, a visual quality metric was employed. This 

metric ranges from 1 to 5, where 1 denotes poor 

visual clarity and 5 indicates excellent image 

quality. Among the ten images, half belong to the 

low-resolution category, while the other half are 

considered high-resolution. In real-time flood 

monitoring scenarios, it is common to encounter 

noisy and low-resolution imagery due to 

limitations in acquisition devices or transmission 

conditions. The proposed algorithm not only 

performs segmentation but also successfully 

extracts meaningful pixel-level features from such 

images, highlighting its robustness. 

The diversity in edge complexity and visual quality 

across the dataset ensures a thorough evaluation 

of the model’s generalization capability. As shown 

in Table 3, image resolutions range from 384×512 

to 512×770, representing a balanced mix of low- 

and high-resolution cases. Edge complexity, 

computed using gradient-based analysis, varies 

significantly—from 1.99 in smoother regions to 

6.66 in highly textured or cluttered areas 

providing an ideal test bed for assessing 

segmentation accuracy under varying visual 

conditions. 

Performance Enhancement via 

Adaptive Erosion Strategy 
Metric-Based Validation of Segmentation 

Accuracy and Boundary Delineation 

To assess the effectiveness of the proposed 

Adaptive Erosion method in Table 4 compared to 

the original SLIC output, we conducted a statistical 

evaluation using three key segmentation metrics: 

Over-Segmentation Rate (OSR), Hausdorff 

Distance, and Boundary F1 Score. The mean and 

standard deviation were computed for each 

metric, and the percentage change was calculated 

to highlight relative performance improvements. 

The Over-Segmentation Rate (OSR) of Adaptive 

Erosion (0.7574 ± 0.1462) is nearly identical to 

that of the SLIC original (0.7550 ± 0.1494), with 

only a slight increase of 0.32%. This negligible 

variation indicates that Adaptive Erosion 

preserves the segmentation balance without 

introducing additional over-segmentation. In 

contrast, the Hausdorff Distance—where lower 

values are desirable—shows a significant 

improvement with Adaptive Erosion, reducing 

from 325.83 ± 131.45 (SLIC) to 216.37 ± 94.01, 

marking a 33.6% decrease. This substantial 

reduction demonstrates that the segmented 

boundaries produced by Adaptive Erosion more 

closely align with the ground truth, preserving the 

true shape of waterbodies more effectively. 

Furthermore, the Boundary F1 Score, a crucial 

metric for assessing the accuracy of edge 

detection, improved from 0.0519 ± 0.0170 (SLIC) 

to 0.0695 ± 0.0207 (Adaptive Erosion), reflecting 

a 33.9% increase. This higher F1 score indicates a 

notable enhancement in boundary alignment, 

with fewer false positives and false negatives, 

leading to more precise and reliable segmentation 

results.  

 

Table 4: Statistical Comparison of Segmentation Metrics Between SLIC Original and Adaptive Erosion 

Metric 
SLIC Original  

(Mean ± Std Dev) 
Adaptive Erosion (Mean ± Std Dev) Percentage Change 

OSR 0.7550 ± 0.1494 0.7574 ± 0.1462 +0.32% (slightly increased) 

Hausdorff Distance 325.8278 ± 131.4516 216.3736 ± 94.0054 -33.6% (significantly reduced) 

Boundary F1 Score 0.0519 ± 0.0170 0.0695 ± 0.0207 +33.9% (significant improvement) 

 

Based on the evaluation metrics, a key conclusion 

is that the adaptive erosion method significantly 

enhances boundary extraction, a critical aspect of 

accurate segmentation. The substantial reduction 

in Hausdorff Distance (-33.6%) and the dramatic 

increase in the Boundary F1 Score (+33.9%) 

provide strong evidence that our method is highly 

effective at precisely delineating the boundaries of 

waterbodies. While the Overall Segmentation 

Result (OSR) showed only a marginal 

improvement (+0.32%), this reinforces the fact 

that the method's primary benefit lies in its ability 

to refine the edges, a crucial capability for 

applications like flood mapping where the exact 

perimeter is essential for accurate measurement. 

Optimization of Structuring Element Size 

To identify the optimal kernel size and number of 

iterations for morphological processing in the 

8.jpg 384×512 6.66 3 

9.jpg 384×512 1.99 2 

10.jpg 384×512 3.16 2 
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Adaptive Erosion method, a set of experiments was 

conducted. The Dice Similarity Coefficient (DSC) 

was used as the primary evaluation metric to 

quantify segmentation accuracy for each 

configuration.  Table 5 evaluate the Dice Similarity 

Coefficient (DSC) for Different Kernel Sizes. The 

3×3 kernel consistently achieved the highest 

average DSC of 0.87037, indicating that smaller 

kernel sizes preserve more detail and provide 

superior segmentation accuracy for the given 

dataset. The data strongly suggests that the 3x3 

structuring element is the optimal kernel size for 

this segmentation task. Using larger kernels leads 

to over-erosion, which negatively impacts the 

overall segmentation accuracy as measured by the 

DSC. This finding justifies the use of smaller, fine-

tuned kernels for adaptive erosion in the proposed 

method. 
 

Table 5: Evaluation of Dice Similarity Coefficient (DSC) for Different Kernel Sizes 

Image Sample 3×3 5×5 7×7 

1.jpg 0.95654 0.93869 0.91023 

2.jpg 0.95503 0.93425 0.88208 

3.jpg 0.91940 0.89878 0.88887 

4.jpg 0.77255 0.67336 0.56395 

5.jpg 0.88178 0.80470 0.74977 

6.jpg 0.92011 0.85557 0.76670 

7.jpg 0.71718 0.78056 0.78584 

8.jpg 0.86503 0.81432 0.75300 

9.jpg 0.87019 0.86949 0.85172 

10.jpg 0.84588 0.78933 0.78538 

Average 0.87037 0.83591 0.79375 

 

Table 6 presents the adaptive selection of erosion 

kernel size based on the computed local intensity 

variance of each input image. The variance serves 

as a quantitative indicator of brightness variation, 

noise level, and texture complexity. Images with 

lower variance values require moderate erosion 

and are processed using a 5×5 kernel, whereas 

images exhibiting higher variance are assigned a 

larger 7×7 kernel to effectively suppress noise and 

reduce over-segmentation. This table 

demonstrates that kernel selection in the 

proposed method is guided by image statistics 

rather than heuristic or manual tuning, ensuring 

adaptive and reproducible segmentation 

behavior. 

Table 7 demonstrates that increasing the number 

of iterations improves segmentation accuracy up 

to a point. The highest DSC value 0.8617 was 

observed at 6 iterations, while 9 iterations 

resulted in a slight decline. Therefore, 6 iterations 

are identified as the optimal choice to balance 

accuracy and computational efficiency. 
 

Table 6: Adaptive Kernel Selection Based on Local Intensity Variance 

Image Sample Local Variance Selected Kernel 

1.jpg 0.019514 5x5 

2.jpg 0.057561 7x7 

3.jpg 0.074995 7x7 

4.jpg 0.064638 7x7 

5.jpg 0.036005 7x7 

6.jpg 0.036147 7x7 

7.jpg 0.060635 7x7 

8.jpg 0.059984 7x7 

9.jpg 0.026758 7x7 

10.jpg 0.029636 7x7 
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Table 7: Effect of Iteration Count on Dice Similarity Coefficient (DSC) 

Iteration Count DSC Score 

3 Iterations 0.6756 

6 Iterations 0.8617 

9 Iterations 0.8473 

 

Qualitative Analysis of Superpixel with 

Colorization Technique 
For the evaluation of the proposed method, ten 

random images with a water area are subjected to 

segmentation. This superpixel based method 

works by assigning unique colors to pixels in the 

image to make analysis easier. Certain ranges of 

colors red, green and blue are chosen by hand, and 

pixels that meet specific criteria based on the 

average colors of pixels in their area are changed 

to white to make them easier to spot. This 

approach helps show how strong the colors are in 

different parts of an image and makes all the pixel 

values in the image the same, which is especially 

useful for water area detection. 

Random images from Figure 6, labelled (A) to (E), 

were selected for image segmentation. The second 

column displays the corresponding ground truth 

images for comparing the segmentation results. 

The third column shows superpixels created for 

the segmentation process. The fourth column 

presents the final results of the segmentation 

technique applied to the images. Superpixel shows 

the K-means clustering of pixels. In the proposed 

method predefined pixel values are considered for 

water area detection. Pixels that satisfy conditions 

are transformed into white pixels. It provides 

uniqueness in pixel orientation thus, superpixel 

generation will be improving. Visual 

representations of segmentation without the 

erosion technique is shown in Figure 6. 

Qualitative Analysis of Enhanced 

Segmentation with Adaptive Erosion 

Technique 
Visual representation of enhanced image 

segmentation using erosion technique is shown in 

Figure 7. Here input images are show in first 

column (A) to (E) are applied for enhanced 

segmentation algorithm. Second column shows 

ground truth image, next column represents the 

eroded image after applying erosion technique. 

These images have water areas are more lighter 

and region other than water gets darker. Thus, the 

accuracy of superpixel generation will be 

improving. Fourth column shows generated 

superpixels, compared with third column of 

Figure 6 more number of accurate superpixels are 

generated. Fifth column shows the segmentation 

mask. 
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Figure 6: (First Column) Test Images (A–E) (Second Column) Ground Truth Images (Third Column) 

Generated Superpixels, (Fourth Column) Segmented Output 
 

 
Figure 7: (First Column) Test Images (A–E) (Second column) Ground Truth Images (Third column) 

Generated Superpixel (Fourth column) Segmented Output (Fifth Column) Segmentation Mask 
 

Improvement in Dice Similarity using 

Adaptive Erosion-Based Segmentation 
The effectiveness of the proposed method was 

assessed using the Dice Similarity Coefficient 

(DSC), which quantifies the similarity between 

two sets. DSC compares the shared elements to the 

total elements in both sets and is commonly used 

to evaluate image segmentation accuracy. Table 8 

presents a comparison before and after applying 

an erosion technique. Six images exhibited 

significant improvement in DSC values, indicating 

enhanced segmentation accuracy. Although 
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certain images showed a slight decline in 

segmentation accuracy due to complex pixel 

structures and varying object boundaries, the 

overall performance of the pro- posed adaptive 

erosion-based segmentation technique remained 

superior. As illustrated in Table 9, the integration 

of adaptive erosion significantly improved the 

segmentation results. The analysis was carried out 

on multiple test images from specific domains, and 

the average performance of the processed images 

was evaluated. Table 10 provides a comparative 

analysis of the Dice Similarity Coefficient values 

between the traditional superpixel based 

segmentation and the enhanced adaptive erosion-

based segmentation approach, demonstrating the 

effectiveness and improved accuracy of the 

proposed method.  

 

Table 8: Quantitative Effectiveness of the Proposed Algorithm 
Image Sample DSC Value of Normal Superpixel DSC Value of Enhanced Superpixels 

1.jpg 0.74 0.95 

2.jpg 0.85 0.96 

3.jpg 0.91 0.88 

4.jpg 0.64 0.81 

5.jpg 0.93 0.91 

6.jpg 0.94 0.91 

7.jpg 0.87 0.64 

8.jpg 0.66 0.86 

9.jpg 0.87 0.89 

10.jpg 0.86 0.93 

 

Table 9: Quantitative Metrics 

 

Table 10: Quantitative Metrics 

 

Benchmarking Against Conventional 

SLIC-Based Segmentation 
To comprehensively evaluate the proposed 

Adaptive Erosion-based superpixel segmentation 

method, a comparative study was conducted 

against the conventional SLIC-based segmentation 

approach. The evaluation focused on five key 

performance metrics: Jaccard Index, Precision, 

Recall, Boundary F1 Score, and Runtime. These 

metrics are essential for understanding both the 

accuracy and efficiency of a segmentation method. 

The results are summarized in Table 11 below. 

Figure 8 compares the performance of the SLIC-

based method and the proposed adaptive erosion- 

based segmentation across key metrics. The 

Adaptive Erosion model outperforms SLIC in 

Jaccard Index, Recall, Boundary F1 Score, Runtime, 

and DSC, demonstrating better accuracy and 

efficiency. While SLIC shows slightly higher 

precision, Adaptive Erosion offers more balanced 

and robust segmentation, making it suitable for 

real-time and remote sensing applications. The 

results indicate that the proposed model 

outperforms the baseline in most of the evaluated 

metrics. The Jaccard Index for Adaptive Erosion is 

higher than that of SLIC, indicating a more 

accurate overlap between the segmented output 

and ground truth. This improvement 

demonstrates the enhanced region-wise accuracy 

achieved by the proposed method. In terms of 

recall, the Adaptive Erosion model also performs 

better, capturing a larger proportion of relevant 

regions (e.g., water bodies). This is particularly 

beneficial in remote sensing applications where 

missing true positives can result in significant 

errors in analysis or decision-making. 

 

 

 

Metric Before Erosion After Erosion 

OSR 0.21 0.13 

Boundary F1-Score 0.76 0.84 

Hausdorff Distance 12.8 8.3 

EPE 4.2 2.6 

Image Segmentation Method Average DSC Value 

Superpixel based Segmentation 0.82 

Enhanced Superpixel based Segmentation with Erosion Technique 0.87 
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Table 11: Comparative Performance Metrics between SLIC and Adaptive Erosion-Based Segmentation 

Metric SLIC Adaptive Erosion Better Model / Improvement 

Jaccard Index 0.7653 0.7751 Adaptive Erosion (+1.3%) 

Precision 0.9985 0.9776 SLIC (Higher Precision) 

Recall 0.7664 0.7916 Adaptive Erosion (+3.3%) 

Boundary F1 Score 0.0347 0.0598 Adaptive Erosion (+72.3%) 

Runtime (s) 0.8090 0.4143 Adaptive Erosion (2× Faster) 
 

 
Figure 8: Performance Comparison of SLIC and Adaptive Erosion-Based Segmentation 

 

Although the SLIC model yields slightly higher 

precision, this can be attributed to its conservative 

nature, which may result in a higher number of 

false negatives. In contrast, Adaptive Erosion 

achieves a more balanced trade-off between 

precision and recall, which is reflected in its 

improved Jaccard Index and overall segmentation 

quality. One of the most notable improvements is 

observed in the Boundary F1 Score, where the 

Adaptive Erosion model shows a 72.3% increase 

over SLIC. This indicates superior boundary 

preservation, making the method highly suitable 

for applications requiring accurate delineation of 

object edges, such as shoreline extraction or flood 

boundary mapping. Additionally, the proposed 

method demonstrates superior computational 

efficiency, reducing the run- time by nearly half 

compared to SLIC. This efficiency makes it more 

practical for large-scale image analysis or real-time 

processing scenarios. 

Overall, the Adaptive Erosion-based segmentation 

method outperforms SLIC by providing better re- 

sults in terms of Jaccard Index, recall, boundary 

accuracy, and runtime efficiency for superpixel-

based image segmentation in remote sensing 

applications. 

 

 

Statistical Validation of Performance 

Improvement 
This section analyses the improvements in the 

proposed adaptive erosion-based method by the 

random fluctuations or not. For the evaluation of 

this method paired sample t-test was performed 

on the Dice Similarity Coefficient values. It is more 

suitable to compare two sets of values to find out if 

they are significantly different from each other. 

Normal and proposed image segmentations are 

evaluated using the same segmentation method 

namely Dice Similarity Coefficient, these two-

method subjected for same set of images. So, t- test 

provide a good model validation. The test was 

performed using DSC scores obtained from 10 

randomly selected flood-affected images. Since 

each image was segmented using both methods, 

the paired t-test was appropriate to determine 

whether the differences in performance were 

statistically significant. Table 12 revealed a p-value 

of 0.0174 and an average improvement of 0.05 in 

DSC. If the p-value is less than 0.05, the difference 

is statistically significant, indicating that the 

improvement is not the result of chance. The 

upgraded technique consistently outperforms the 

baseline, as evidenced by the 95% confidence 

interval for the mean difference, which was 0.011, 

0.089. For flood prediction tasks, the suggested 
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adaptive erosion-based segmentation strategy 

provides a notable and reliable improvement over 

conventional methods for waterbody detection, as 

supported by this statistical validation. 

The comprehensive statistical analysis presented 

here provides strong evidence that the proposed 

adaptive erosion-based method represents a 

significant and reliable advancement for 

waterbody detection in flood prediction. The 

paired sample t-test's (df = 9) p-value of 0.0174, 

being well below the 0.05 threshold, confirms that 

the observed average improvement of 0.05 in the 

Dice Similarity Coefficient is not due to random 

chance but is a statistically significant 

enhancement. Furthermore, the obtained Cohen’s 

d value of 0.78 indicates a moderate-to-large effect 

size, demonstrating that the performance gain of 

the proposed method is not only statistically 

significant but also practically meaningful. This 

quantitative validation, combined with the 

qualitative visual evidence, demonstrates that the 

upgraded technique consistently and accurately 

outperforms conventional segmentation methods, 

making it a robust and trustworthy tool for a wide 

range of flood prediction applications. 

 

Table 12: Statistical Comparison of DSC Values Between Normal and Enhanced Segmentation 

Metric 
Superpixel 

Segmentation 
Adaptive Erosion 

Segmentation 
Mean 

Difference 

 
df p-value 

  
Cohen’s d 

95% 
Confidence 

Interval 

Dice Similarity 
Coefficient 

0.82 (average) 0.87 (average) +0.05 

 

9 

 

0.0174 

  

0.78 (0.011, 0.089) 

 

Comparative Analysis with State-of-

the-Art Methods 
Table 13 presents a comparative analysis of the 

proposed segmentation method against several 

established algorithms, including GS04 (25), NC05 

(26), GCb10ᵇ (27), TP09ᵇ (28), QS09 (2), and the 

widely-used SLIC (18). The comparison is based on 

three key metrics: under-segmentation error, 

boundary recall, and segmentation accuracy. 

Under-segmentation Error reflects the degree to 

which image segments incorrectly merge with 

adjacent regions. A lower value indicates more 

precise boundary adherence. The proposed 

method achieves the lowest under-segmentation 

error of 0.18, outperforming GS04 (25) (0.23), 

NC05 (26) and GCb10ᵇ (26) (0.22 each), TP09ᵇ 

(27) (0.24), QS09 (28) (0.20), and even SLIC (18) 

(0.19). This result highlights the effectiveness of 

the proposed approach in preserving region 

integrity and reducing leakage across boundaries. 

Boundary Recall measures how well the 

segmentation captures actual object boundaries. 

While GS04 (25) and SLIC (25) attain the highest 

recall scores of 0.84 and 0.82 respectively, the 

proposed method also performs strongly with a 

boundary recall of 0.79—surpassing NC05 (23, 24) 

(0.68), GCb10ᵇ (28) (0.70), and TP09ᵇ (27) (0.61). 

This indicates the proposed method's strong edge-

preservation capabilities. 

Segmentation Accuracy, which represents the 

percentage of correctly classified segments 

relative to ground truth, is where the proposed 

method excels. It achieves an accuracy of 87%, 

significantly outperforming SLIC (25) (76.9%), 

NC05 (26) (75.9%), QS09 (28) (75.1%), and other 

classical methods such as GS04 (28) (74.6%), 

GCb10ᵇ (28) (73.2%), and TP09ᵇ (28) (62.0%). 

In summary, the proposed segmentation 

framework demonstrates a balanced and superior 

performance across all three evaluation criteria. 

By minimizing under-segmentation error, 

maintaining high boundary recall, and achieving 

the highest segmentation accuracy, it proves to be 

a robust solution for flood-related waterbody 

detection in satellite imagery.  
 

Table 13: Comparison with Existing Methods 

Metric GS04 (25) NC05 (26) GCb10ᵇ (26) TP09ᵇ (27) QS09 (27) 
SLIC 
(18) 

Proposed Method 

Under-segmentation error 0.23 0.22 0.22 0.24 0.20 0.19 0.18 

Boundary recall 0.84 0.68 0.70 0.61 0.79 0.82 0.79 

Segmentation accuracy 74.6% 75.9% 73.2% 62.0% 75.1% 76.9% 87% 
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Conclusion 
In this study, an adaptive erosion-based superpixel 

segmentation approach was proposed for accurate 

waterbody detection in flood prediction 

applications. The integration of adaptive erosion 

with SLIC-based superpixel segmentation 

effectively addressed the challenges of 

misclassification and over-segmentation, particu- 

larly in complex environments where water 

regions exhibit similar visual characteristics to 

surrounding objects such as rooftops, land, and 

varying water textures. The adaptive erosion 

technique contributed significantly to boundary 

refinement and noise reduction, enhancing the 

clarity and accuracy of segmented regions. 

The experimental evaluation demonstrated the 

superiority of the proposed method over 

conventional SLIC segmentation, achieving notable 

improvements in key performance metrics. 

Specifically, the method attained a 1.3% increase in 

Jaccard Index, a 3.3% enhancement in Recall, a 

substantial 72.3% improvement in Boundary F1 

Score, and a twofold reduction in computational 

runtime. These results highlight the robustness, 

accuracy, and computational efficiency of the 

proposed technique, establishing its potential for 

real-time flood monitoring, waterbody detection, 

and other remote sensing applications in disaster 

management. 
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