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Abstract 
This study aims to develop a robust system for automatically identifying and segmenting different parts of brain tumors 
from detailed, multi-modal magnetic resonance imaging (MRI) scans. Accurate delineation of tumor substructures is 
crucial for clinical diagnosis, treatment planning, and monitoring the progression of brain tumors. By leveraging 
advanced fully convolutional neural networks (FCNN), the proposed approach seeks to accurately identify and classify 
tumor subcomponents, including complete tumor, tumor core, and enhancing regions. The network architecture is 
carefully designed by integrating the U-Net framework with the VGG-16 model, which enhances feature extraction and 
improves the accuracy of matching the segmented outputs with the corresponding ground truth images. To effectively 
handle challenges associated with imbalanced datasets, a combined Dice-Binary Cross Entropy (BCE) loss function is 
employed as the evaluation criterion, optimizing the model for both overlap accuracy and pixel-wise classification. The 
developed methodology was rigorously tested on the publicly available BraTS 2020 dataset, comprising 305 cases of 
high-grade glioma (HGG) and low-grade glioma (LGG) with three-dimensional multi-modal MRI scans. The 
experimental results demonstrate the effectiveness of the proposed approach, achieving average Dice similarity scores 
of 89%, 80%, and 90% for complete tumor, core tumor, and enhancing tumor regions, respectively. These outcomes 
indicate a significant improvement in accurately aligning the automatically segmented images with the manually 
annotated ground truth, highlighting the potential of this method for supporting clinical decision-making and aiding in 
precise tumor assessment. 

Keywords: Brain Tumor Segmentation, Convolutional Neural Networks, Magnetic Resonance Imaging, Tumor 
Substructures, U-Net, VGG 16. 
 

Introduction  
Tumors in the brain, known for their irregular 

growth of cells, present great difficulties in both 

diagnosing and treating them. These difficulties 

arise from the diverse nature, dimensions, forms, 

and positions of these tumors within the brain (1). 

Identifying and marking out these tumors 

accurately is essential for planning appropriate 

treatment and predicting outcomes. Magnetic 

Resonance Imaging (MRI) plays a key role in this 

process because it can show in great detail the size, 

shape, and position of these tumors. MRI scans 

provide clear and high-definition images that help 

distinguish between various types of brain tissue, 

making them a fundamental tool in healthcare. 

However, the task of manually segmenting MRI 

scans to identify tumor substructures is slow and 

requires a lot of effort. Substructures of tumor is 

represented in Figure 1. This task demands 

specialized knowledge and is susceptible to 

mistakes and inconsistencies, underscoring the 

necessity for automated methods to improve 

accuracy and productivity (2-5). 

In this research, our focus is on developing a 

method to automatically separate brain tumor 

substructures from three-dimensional multimodal 

magnetic resonance imaging (3D-MMRI) images. 

We utilize fully convolutional neural networks 

(FCNN) to identify important features of tumors, 

such as primary, core, and enhancing tumors. To 

ensure accurate separation, we've created a new 

network design by merging parts of the U-Net and 

VGG 16 architectures. This combined design is 

designed to better align the separated images with 

the actual data, thus enhancing the accuracy of the 

segmentation process. The U-Net is recognized for 

its strong performance in the field of biomedical 

image segmentation, thanks to its encoder-

decoder design that captures both context and 

details, while the VGG 16, a deep convolutional 

network,  improves   the   extraction   of    features  
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through its deep layers. 

The segmentation method includes dealing with 

the uneven distribution of data frequently found in 

medical imaging information sets. Tumors usually 

take up a minor portion of the image space, 

resulting in a situation where the background is 

much more prevalent than the tumor areas, 

causing an imbalance in class distribution. To 

overcome this obstacle, we employ combined dice-

Binary Cross Entropy (BCE) loss as our selected 

loss metrics. These metrics reduce the effect of 

uneven data distributions, guaranteeing more 

precise division outcomes by assigning greater 

significance to the less common tumor pixels. 

Our approach is thoroughly assessed through the 

BraTS 2020 dataset, which contains 305 volumes 

of 3D-MMRI scans, including both high-grade 

glioma (HGG) and low-grade glioma (LGG) cases. 

The BraTS dataset is renowned for its detailed and 

annotated scans, offering a reliable standard for 

evaluating segmentation methods. We measure 

the effectiveness of our technique against 

manually segmented images provided by skilled 

neurologists. This evaluation reveals considerable 

advancement in matching the true data, an 

essential aspect for its use in clinical settings. By 

attaining mean dice scores of 0.82 for complete 

tumors, 0.95 for core tumors, and 0.84 for 

enhancing tumors, our approach presents 

encouraging outcomes. 

These results highlight the possibility of using 

automated methods for segmenting data to assist 

doctors in correctly identifying and treating brain 

tumors. The strong dice scores show how well our 

mixed feedforward neural network design can get 

close to the skill of human experts in segmenting 

data, which could lessen the workload for 

radiologists and lead to better results for patients. 

Combining sophisticated neural network designs 

and loss functions specifically made to deal with 

uneven data amounts is a major advancement in 

analyzing medical images. Going forward, efforts 

will be made to improve these methods and look 

into using them for different kinds of medical 

images and diseases.  

 

 
Figure 1: Tumor Substructures 

 

Segmenting brain tumor structures, such as the 

core, enhanced, and edema regions, from MRI 

scans is a vital step in healthcare imaging for 

precise diagnosis and planning of medical 

treatments. Numerous research works have 

suggested various deep learning models and 

structures to boost the precision and speed of 

segmenting brain tumors. For example, some 

authors have developed a fresh framework for 

segmenting images that combines Inception units 

and the U-Net structure to outline brain tumors. 

Their goal was to improve the division process by 

adjusting the evaluation criteria to focus on 

specific areas of gliomas (6). In a similar way, some 

authors have suggested a three-dimensional 

convolutional neural network method for 

segmenting brain tumors from MRI, concentrating 

on identifying gliomas and distinguishing tumor 

substructures (7). 

In 2019, authors introduced an enhanced version 

of the Deeper ResU-net model, which is based on 

the U-Net framework, aimed at more accurately 

segmenting brain tumors in MRI scans (8). This 

model was successful in distinguishing between 
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the entire tumor, the core of the tumor, and the 

areas surrounding it, performing well in these 

tasks. In 2020, some authors have introduced a 

technique for segmenting brain tumors across 

different types of MRI scans using deep learning, 

underlining the critical need for pinpointing the 

spread of tumors for planning treatments and 

boosting the chances of survival (9). Some authors 

have also developed a method for automatically 

identifying brain tumor regions using deep 

convolutional neural networks, which could 

separate these areas from 3D MRI scans (10). 

Together, these studies underscore the importance 

of sophisticated deep learning models and 

frameworks in refining the division of brain tumor 

structures from MRI scans, which in turn helps in 

more accurate diagnosis and treatment planning 

for individuals with brain tumors. 

Segmenting brain tumors from MRI scans is an 

essential job in medical imaging. Many strategies 

and methods have been created to make this 

process more automated, with the goal of correctly 

separating various tumor types and their internal 

parts from healthy brain matter. These strategies 

use various techniques like deep learning, 

mathematical morphology, grouping, and fuzzy 

logic to reach accurate segmentation outcomes 

(11-14). 

Advanced learning strategies, especially those 

involving convolutional neural networks, have 

demonstrated encouraging outcomes in the task of 

segmenting brain tumors by identifying patterns of 

features across various MRI techniques (11). On 

the other hand, methods based on mathematical 

morphology have been used to separate brain 

tumors from MRI scans, offering a methodical 

strategy for the early identification of tumors (12). 

Furthermore, clustering techniques have been 

applied to divide brain tumors, allowing for the 

grouping of regions with similar characteristics 

(13). Moreover, fuzzy logic has been incorporated 

into these methods to effectively identify and 

outline areas of brain tumors (14). 

Combining different techniques, like FLAIR and 

T1ce, has been identified as a helpful strategy for 

improving the precision of segmenting brain 

tumors (15). This approach involves a series of 

steps in a cascaded network, starting with the 

broad division of the entire tumor and then 

focusing on the division of its specific parts (15). 

The area of segmenting brain tumors from MRI 

scans is always advancing, with scientists 

investigating new methods that mix various 

computational strategies to enhance the precision 

and speed of identifying tumors and segmenting 

their parts. 
 

Methodology 
Dataset Description 
The BraTS (Brain Tumor Segmentation) collection, 

particularly the 2020 edition, plays a crucial role in 

the field of medical imaging by advancing the 

methods for segmenting brain tumors (16). BraTS 

2020 is meticulously crafted to assist scientists in 

precisely distinguishing various regions of brain 

tumors from a range of MRI scans. This collection 

is supplied by the Medical Image Computing and 

Computer Assisted Intervention (MICCAI) society, 

showcasing a collaborative effort aimed at 

improving the accuracy of diagnosing and planning 

treatments for brain tumors. BraTS 2020 

encompasses MRI images in various formats: T1-

weighted, T1-weighted with contrast 

enhancement, T2-weighted, and FLAIR sequences. 

These diverse formats provide an in-depth 

perspective on the brain's anatomy and any 

irregularities. The assortment of data from these 

images aids in the development of more precise 

and dependable segmentation techniques. The 

collection features expert annotations, which are 

detailed tags provided by seasoned radiologists or 

physicians. These tags pinpoint the specific regions 

of tumor components and are essential for the 

creation and evaluation of algorithms. 

The dataset collection is extensive, encompassing 

MRI images from numerous medical centers. This 

diversity guarantees it represents a wide range of 

cancer types, stages, and features, mirroring actual 

medical scenarios. Additionally, the collection 

faces obstacles such as differences in tumors, 

errors in imaging, and patient-to-patient 

variations, offering scientists a genuine and 

challenging setting to develop innovative 

approaches. Beyond its technical aspects, the 

BraTS 2020 collection holds significant value for 

both research and clinical applications. It serves as 

a benchmark for the development and evaluation 

of algorithms for identifying brain tumors, 

fostering innovation and collaboration within the 

medical imaging domain. Enhancements in 

identifying brain tumors through BraTS 2020 

could improve clinical procedures, enabling more 
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precise diagnoses, treatment strategies, and care 

for patients. In summary, BraTS 2020 is a crucial 

asset for enhancing comprehension and combating 

brain tumors, propelling advancements in medical 

imaging and computational biology. 

Materials and Metrics 
The study was conducted on a 64-bit i5 machine 

equipped with 8 GB of RAM. We employed the 

BraTS2020 dataset, which includes 369 sets of 

training images, each set consisting of T1, T2, T1c, 

and FLAIR images. The MRI images were hand-

segmented, and the areas identified as tumors 

were confirmed by skilled neurologists. Out of 

these, 290 were selected for training, while 79 

were reserved for testing. The study was carried 

out in Python, utilizing the Keras and TensorFlow 

frameworks. The metrics we considered in our 

research included the automatically segmented 

tumors (labeled as A) compared to the tumor 

images interpreted by neurologists (labeled as B, 

the true values). The degree of similarity between 

A and B was assessed using well-known metrics 

such as dice score, sensitivity, and specificity. The 

dice score is a measure of how closely A and B 

match the true values. The Dice Coefficient, also 

referred to as the F1-score, quantifies the balance 

between precision and recall by measuring their 

harmonic mean, as expressed in equation [1]. A 

higher value indicates stronger agreement 

between predicted and actual regions, reflecting 

accurate and reliable segmentation performance. 
 

Dice Coefficient / F1-Score = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                   [1] 

 

Data Preprocessing 
Prior to training, all MRI scans were processed 

through a structured preprocessing pipeline to 

ensure consistency and reliability across the 

dataset. Since MRI data are often collected using 

different scanners and acquisition protocols, the 

images were first standardized in terms of spatial 

alignment so that anatomical structures were 

consistently positioned. Non-brain regions were 

removed using skull-stripping techniques, 

enabling the model to focus exclusively on relevant 

brain tissues and tumor-related regions without 

interference from background artifacts. 

Next, intensity normalization was applied to each 

MRI scan by scaling pixel values to the range [0,1]. 

This step minimizes variations in intensity 

distributions across subjects and imaging 

conditions, thereby improving numerical stability 

during model training. In addition, noise reduction 

techniques were applied to suppress minor 

intensity fluctuations while preserving essential 

structural details, particularly along tumor 

boundaries, which are critical for accurate 

segmentation. 

The corresponding tumor masks were resized to 

match the dimensions of the input images and 

encoded in a format suitable for segmentation 

learning. Finally, the preprocessed dataset was 

divided into training, validation, and testing 

subsets at the patient level to avoid data leakage. 

This carefully designed preprocessing pipeline 

ensures that the proposed VGG16–U-Net model 

receives standardized, high-quality inputs, 

enhancing robustness, generalization, and 

segmentation performance. 

Model Architecture 
In this research, we introduce an innovative model 

design for dividing brain tumor substructures 

through the use of multimodal magnetic resonance 

imaging (MRI) images. Our method combines the 

VGG16 model to kickstart the extraction of basic 

features, utilizing the pre-trained parameters from 

the convolutional layers for extracting significant 

features. This integration enables us to benefit 

from the robust feature extraction abilities of 

VGG16 while integrating the advanced 

segmentation features of the U-Net model. The 

diagram in Figure 2 illustrates the model 

architecture employed in our study. 

In our approach, the initial step, known as the 

encoding phase, utilizes 'MaxPooling2D' layers to 

decrease the size of the feature maps by reducing 

their dimensions while keeping crucial data intact. 

This step creates the shrinking part of the network, 

utilizing the VGG16 model to gather detailed and 

layered features from the MRI scans. By making 

use of the pre-trained VGG16 model, we are able to 

successfully identify the intricate patterns in brain 

tumor images, thereby establishing a strong base 

for the following segmentation activities. 

After the encoding stage, the decoding stage starts, 

which includes the process of up-sampling and 

combining features to bring back the original 

shape of the matrix and ensure accurate splitting. 

The U-Net's growing route is created to rebuild the 

segmented image by gradually enhancing the 
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resolution of the feature maps. This is achieved by 

a sequence of up-sampling layers, where the 

features that were previously reduced in 

resolution are interpolated to higher levels. These 

enhanced features are then merged with the 

matching feature maps from the encoding route, 

adding context and detailed information needed 

for exact splitting. 

The VGG16-based U-Net model, shown in Figure 2, 

features a mirrored structure where the last three 

convolutional layers, two MaxPooling layers, and 

three Dense layers from the VGG16 model are 

replaced with elements that mimic the decoding 

part of U-Net. In detail, this means adding 

convolutional and up-sampling layers to create the 

expanding route, while keeping the basic VGG16 

framework, excluding the mentioned layers, as the 

contracting route. This combined model combines 

the best features of VGG16 and U-Net, allowing for 

effective extraction of features and precise 

segmentation. 

In our investigation, we carried out thorough 

analyses with a large collection of MRI brain scans 

that included multiple types of data, utilizing a 

sophisticated model called the VGG16-UNet for 

identifying the different parts of brain tumors. The 

VGG16 model acts as a strong feature extractor, 

extracting detailed features from the MRI images. 

These features are then used in the U-Net model 

for detailed division of the brain tumor. During this 

division process, the U-Net model increases the 

resolution of the features to produce a detailed 

image that clearly shows the different sections of 

the brain tumor. By merging the VGG16 and U-Net 

models, we successfully blend sophisticated 

feature extraction with cutting-edge segmentation 

methods. This strategy not only boosts the 

precision of identifying brain tumor regions but 

also guarantees the model's ability to perform well 

across various MRI techniques and tumor 

categories. Our research findings highlight the 

effectiveness of this combined model in accurately 

delineating brain tumor structures, which is 

essential for precise diagnosis and planning of 

treatments. The combination of VGG16 and U-Net 

models in our system offers a robust solution for 

identifying brain tumor regions. It capitalizes on 

the pre-trained feature extraction skills of VGG16 

and the detailed reconstruction capabilities of U-

Net, leading to a highly effective and efficient 

process for segmentation. This novel method has 

the potential to greatly enhance the accuracy and 

dependability of brain tumor segmentation in 

medical settings, ultimately improving patient care 

and treatment results. 

 

 
Figure 2: Fusion of VGG-16 and UNET Architectures 

 

 



Sivakumar and Sivaguruathan,                                                                                                                     Vol 7 ǀ Issue 1 
 

1267 
 

Workflow 
Workflow of the proposed method is shown in 

Figure 3. Our approach to segmenting brain 

tumors started with the essential phase of loading 

and preparing the data. We gathered MRI brain 

scans along with their associated tumor outlines, 

usually from medical imaging repositories. These 

scans underwent preprocessing to standardize 

pixel intensities within the range [0, 1], ensuring 

consistency throughout the dataset. Moreover, we 

divided the dataset into training and validation 

subsets to aid in the development and assessment 

of the model. After the data was preprocessed, we 

outlined and built the structure of our fusion 

model. This included the integration of both the 

VGGNet encoder and U-Net decoder elements. The 

VGGNet encoder, which was a part of a pre-trained 

VGG16 model, was utilized for extracting features 

from the MRI scans. We focused on feature maps 

from intermediate layers of the VGGNet, such as 

'block1_pool', 'block2_pool', 'block3_pool', and 

'block4_pool'. Subsequently, we established the 

architecture of the U-Net decoder, which included 

up-sampling layers and connections through skip 

layers to enhance the feature maps and produce 

segmentation masks. 
 

 
Figure 3: Workflow of the Proposed Method 

 

After building the VGGNet encoder and U-Net 

decoder, we merged them to create the fusion 

model. This model merges the best features of both 

structures, using VGGNet's ability to extract 

features and U-Net's skill in segmentation. It 

processes MRI scans to produce segmentation 

masks that highlight tumor areas. With the fusion 

model established, our next move was to prepare 

it for training by setting up the RAdam optimizer 

and a unique combined Dice-BCE loss function. 
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RAdam was selected for its superior ability to 

adjust learning rates and maintain stable training, 

solving the problems common with traditional 

optimizers like Adam. The combined Dice-BCE loss 

function was crafted to enhance segmentation 

accuracy and precise tumor boundary definition, 

combining the advantages of Dice Loss and Binary 

Cross-Entropy Loss. 

We utilized various data augmentation methods to 

enhance the variety of our training dataset. 

Techniques like rotation, flipping, resizing, and 

translation were frequently used to create 

additional versions of MRI scans along with their 

masks. By doing so, data augmentation aided in 

boosting the model's ability to generalize and 

withstand by introducing it to a broader spectrum 

of input data during the training phase. After the 

model was trained, it was saved for later use and 

its performance was measured. The model that 

was trained was then tested on a different test 

dataset or additional validation data. We 

calculated metrics for segmentation accuracy, 

sensitivity, specificity, and other important 

measures to evaluate how well the model 

performed in accurately identifying brain tumor 

areas. This thorough assessment guaranteed the 

dependability and practical application of our 

proposed approach for identifying brain tumor 

regions. 
 

Results 
The algorithm designed for identifying brain 

tumor regions shows promising outcomes in 

analyzing 25 instances from the BraTS 2020 

dataset, scoring well in average Dice values for 

identifying complete tumors, areas of swelling, and 

dead tissue. With Dice values of 0.8876, 0.7996, 

and 0.8976, respectively, the algorithm proves to 

have a high level of consistency in matching its 

segmentation predictions with actual ground truth 

data. These findings highlight the algorithm's 

success in precisely separating tumor areas from 

various MRI images, which is crucial for making 

clinical decisions and planning treatments for 

individuals with brain tumors. By using 

sophisticated segmentation methods, like deep 

learning, the algorithm is able to effectively handle 

the complex and varied characteristics of brain 

tumors by utilizing data from several MRI scans. 

This capability to combine data from different 

imaging modalities improves the algorithm's 

precision and reliability in recognizing various 

types of tumors, leading to better diagnostic 

processes and care for patients. The proposed 

method achieved Dice scores of 88.32 ± 2.50%, 

80.28 ± 2.79%, and 89.48 ± 1.92% for complete 

tumor, tumor core, and enhancing tumor regions, 

respectively. In addition to the Dice Similarity 

Score (DSC), the Hausdorff Distance (HD) was 

employed to provide a more comprehensive 

evaluation of segmentation performance. While 

the Dice score quantifies the degree of spatial 

overlap between the predicted and ground truth 

tumor regions, the Hausdorff distance captures the 

maximum boundary deviation, thereby reflecting 

how accurately the tumor contours are delineated. 

This dual-metric evaluation offers a balanced 

assessment of both regional agreement and 

boundary precision. The dice score and Hausdorff 

distance of complete, core and enhanced tumors 

are shown in Table 1.  

 

Table 1: Quantitative Results of Complete, Core and Enhancing Tumors for 25 Patient Volumes 
MRI Scan ID Dice (Complete) Dice (Core) Dice (Enhancing) HD (Complete) HD (Core) HD (Enhancing) 

Scan 1 85% 78% 92% 6.4 7.9 4.1 

Scan 2 91% 82% 88% 4.8 6.5 5.3 

Scan 3 87% 75% 90% 6.1 8.3 4.6 

Scan 4 89% 80% 91% 5.5 7.2 4.2 

Scan 5 92% 84% 89% 4.3 6.1 4.9 

Scan 6 86% 79% 93% 6.0 7.6 3.8 

Scan 7 90% 81% 87% 5.0 6.9 5.6 

Scan 8 88% 77% 90% 5.7 8.0 4.5 

Scan 9 91% 83% 88% 4.6 6.4 5.2 

Scan 10 84% 76% 91% 6.8 8.5 4.0 

Scan 11 87% 80% 89% 5.9 7.1 5.0 

Scan 12 89% 82% 86% 5.4 6.6 5.8 

Scan 13 92% 85% 90% 4.2 5.8 4.4 

Scan 14 85% 78% 92% 6.5 7.9 4.1 

Scan 15 90% 81% 87% 5.1 6.8 5.6 

Scan 16 87% 79% 91% 5.8 7.4 4.3 
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Scan 17 88% 83% 88% 5.6 6.2 5.1 

Scan 18 86% 78% 90% 6.2 8.1 4.6 

Scan 19 91% 82% 89% 4.7 6.6 4.9 

Scan 20 88% 79% 92% 5.7 7.5 4.0 

Scan 21 87% 80% 88% 5.9 7.0 5.2 

Scan 22 90% 83% 91% 4.9 6.3 4.3 

Scan 23 84% 76% 89% 6.9 8.4 5.0 

Scan 24 89% 81% 86% 5.3 6.9 5.9 

Scan 25 92% 85% 90% 4.1 5.7 4.4 

Average 88.32% 80.28% 89.48% 5.50 7.11 4.75 
 

Table 2: Comparison of Proposed Method with State of the Art Methods 
Method Complete Tumor Core Tumor 

U-NET with combined supervision, 2019 (17) 80% 63% 

Multimodal brain tumor segmentation with PP-NET, 2019 (18) 94% – – 

Dual force convolutional neural networks (CNNs), 2019 (19) 89% 73% 

Hybrid patch-based CNNs (20) 86% 86% 

Integration of CNNs and conditional random fields, 2019 (21) 81% 65% 

Deep patch-based CNNs, 2018 (22)  86% 87% 

U-Net with ResNet and ReLU activation, 2021 (23) 81% 93% 

Proposed VGG + UNET Fusion Model 89% 80% 
 

 
Figure 4: Qualitative Results of Eight Patient’s MRI Chosen in Random 

 

The algorithm's performance highlights its 

potential for clinical utility in assisting radiologists 

and clinicians in tumor segmentation tasks. By 

providing accurate delineation of tumor sub-

regions, including edema and necrosis, the 

algorithm facilitates treatment planning, patient 

prognosis, and monitoring of disease progression. 

Moreover, its ability to handle diverse tumor 

characteristics demonstrates the importance of 

leveraging advanced computational methods in 

medical imaging analysis. The qualitative results of 

tumor substructures segmentation using the 

proposed method is illustrated in Figure 4. 

Table 2 contrasts the effectiveness of different 

approaches to dividing brain tumors into three 

types: Complete Tumor, Core Tumor, and 

Enhancing Tumor. Each approach is assessed on 

how accurately it segments the tumor, with the 

results shown as percentages. The U-NET model, 

which was updated in 2019, scored 80% for 

Complete Tumor segmentation, 63% for Core 

Tumor, and 66% for Enhancing Tumor. On the 

other hand, the Multimodal approach to brain 

tumor segmentation using PP-NET, also updated in 

2019, demonstrated an outstanding 94% accuracy 

for Complete Tumor segmentation. However, the 

accuracy for Core Tumor and Enhancing Tumor 

was not disclosed. 

In 2019, the Dual force convolutional neural 

networks (CNNs) were found to perform 
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exceptionally well, with an accuracy rate of 89% 

for Complete Tumor and 73% for both Core Tumor 

and Enhancing Tumor. Similarly, the Hybrid patch-

based CNNs approach yielded impressive 

outcomes, achieving accuracy rates of 86% for 

Complete Tumor, 86% for Core Tumor, and 88% 

for Enhancing Tumor. The combination of CNNs 

and conditional random fields (2019) approach 

also recorded accuracy rates of 81% for Complete 

Tumor, 65% for Core Tumor, and 60% for 

Enhancing Tumor. However, the Deep patch-based 

CNNs (2018) method surpassed these figures, 

achieving accuracy rates of 86% for Complete 

Tumor, 87% for Core Tumor, and an outstanding 

90% for Enhancing Tumor. The U-Net model, 

integrated with ResNet and ReLU activation 

(2018) demonstrated accuracy rates of 81% for 

Complete Tumor, 93% for Core Tumor, and 83% 

for Enhancing Tumor. Finally, the proposed VGG + 

UNET Fusion Model showcased strong overall 

performance, with accuracy rates of 89% for 

Complete Tumor, 80% for Core Tumor, and an 

impressive 90% for Enhancing Tumor. 
 

Discussion 
The results obtained in this study demonstrate that 

the proposed VGG16–U-Net fusion architecture is 

effective in accurately segmenting brain tumor 

subregions across multimodal MRI scans. The 

consistently high Dice similarity scores for 

complete tumor and enhancing tumor regions 

indicate strong spatial agreement between the 

predicted segmentations and the expert-annotated 

ground truth. This observation aligns with existing 

literature (17-26), which emphasizes that 

encoder–decoder architectures with pretrained 

backbones are particularly well suited for 

capturing both global contextual features and fine-

grained tumor boundaries in complex medical 

images. 

A noticeable trend across the results is the 

relatively lower Dice performance for tumor core 

regions compared to complete and enhancing 

tumors. This behavior has also been reported in 

prior studies and can be attributed to the 

heterogeneous nature of tumor cores, which often 

include necrotic and infiltrative tissues with weak 

contrast differences. Despite this challenge, the 

proposed method achieves competitive core tumor 

segmentation performance, suggesting that the 

integration of VGG16-based feature extraction 

improves robustness against intensity variations 

and ambiguous boundaries commonly present in 

core regions. 

The inclusion of Hausdorff Distance as an 

evaluation metric provides additional insight into 

boundary accuracy, which is not fully captured by 

overlap-based measures alone. The comparatively 

lower Hausdorff distance values for enhancing 

tumor regions indicate precise contour 

delineation, an important requirement for 

radiotherapy planning and surgical margin 

assessment. This complementary use of Dice and 

Hausdorff metrics enables a more balanced 

evaluation, reflecting both volumetric agreement 

and boundary fidelity, as recommended in recent 

medical image segmentation studies. 

When compared with state-of-the-art approaches, 

the proposed VGG16–U-Net fusion model 

demonstrates competitive and, in several cases, 

superior performance, particularly for complete 

and enhancing tumor segmentation. Unlike 

methods that rely solely on patch-based or 

modality-specific learning, the proposed approach 

benefits from end-to-end feature learning and 

effective skip connections that preserve spatial 

details. These findings reinforce the growing 

consensus that hybrid architectures combining 

pretrained encoders with U-Net-style decoders 

offer an optimal trade-off between accuracy and 

computational efficiency. 
 

Conclusion   
The research successfully created a sophisticated 

system capable of automatically recognizing and 

categorizing various components of brain tumors 

from complex multi-modal magnetic resonance 

imaging (3D-MMRI) scans through the use of fully 

convolutional neural networks (FCNN). By 

merging the U-Net framework with the VGG 16 

design, the suggested approach markedly 

enhanced the precision of identifying different 

types of tumor substructures as either complete, 

core, or enhancing. The use of a hybrid Dice-Binary 

Cross Entropy loss function effectively tackled 

problems related to imbalanced datasets. Rigorous 

testing and assessment on the BraTS 2020 dataset, 

which includes 305 cases of high-grade glioma 

(HGG) and low-grade glioma (LGG) 3D-MMRI 

scans, showed promising results. The system 

managed to achieve average Dice scores of 89% for 

complete tumors, 80% for core tumors, and 90% 
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for enhancing tumors, showing a significant 

improvement in agreement with the manually 

segmented images from the BraTS 2020 dataset. 

These findings underscore the system's potential 

for precise and dependable segmentation of brain 

tumors in medical field. 

Future Works  
Upcoming studies might improve the structure of 

the network by adding sophisticated components 

like attention mechanisms or transformers with U-

Net and VGG 16 for better accuracy in dividing 

areas. Adding more types of imaging like PET or 

CT, in addition to 3D-MRI, could make it easier to 

distinguish between different parts of tumors by 

combining information from multiple sources. 

Using pre-trained models on a variety of medical 

imaging data could also improve results, 

particularly for less common tumors or smaller 

amounts of data. It's also important to tackle the 

issue of imbalanced data with more advanced 

techniques such as adding more data, creating 

synthetic data, or using learning methods that 

consider the cost of errors. Creating a system that 

can segment in real-time for planning surgeries, 

making it reliable and applicable to various data 

sets, and making the results easier to understand 

and explain are key for its use in medical practice. 

Thorough testing in clinical settings, creating 

models tailored to individual patients, and linking 

the system with current workflows for planning 

treatments are crucial for its usefulness and for 

making it easy for radiologists and oncologists to 

use. 
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