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Abstract 
The estimation of parameters of Photovoltaic (PV) cells is a highly complex and critical task, especially concerning 
reliable prediction and precise modelling of performance, for these parameters are non-linear in nature. While these 
issues have been resolved using metaheuristic optimization algorithms for a long time, the algorithms have been 
diminishing in effectiveness due to changing variables and their unpredictability in results. To address these 
inadequacies, the present machine learning–driven framework for PV parameter estimation focuses on both accuracy 
and robustness. With machine learning being the canter of this approach, results are evident in faster convergence, 
lower estimation errors, and stable performance under varying temperature and irradiation conditions. In comparison 
to the other optimization methods and hybrid techniques, the Machine Learning framework produces parameter values 
which are experimentally smoother, and demonstrably more resilient under diverse conditions. This helps support 
machine learning as a significant breakthrough in the solar PV parameter extraction, enhancing the prediction and 
modelling of system behaviour for real-world energy scenarios. 
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Introduction 
Accurate modelling of photovoltaic (PV) cells is 

crucial for reliable performance analysis, system 

design, and optimal energy extraction in solar 

power applications. PV modules exhibit highly 

nonlinear current–voltage (I–V) characteristics 

that are strongly influenced by environmental 

factors such as irradiance and temperature, 

making precise estimation of model parameters 

essential. Conventional analytical and numerical 

methods often rely on simplifying assumptions or 

iterative solvers, which may result in limited 

accuracy, slow convergence, and poor 

generalization under varying operating conditions. 

To overcome these limitations, optimization-based 

techniques have been widely explored however; 

their computational complexity and sensitivity to 

tuning parameters restrict their real-time 

applicability. Recently, machine learning–based 

approaches have emerged as an effective 

alternative, offering the capability to learn complex 

nonlinear relationships directly from data without 

explicit mathematical inversion. Motivated by 

these advancements, this study investigates a data-

driven machine learning framework for PV 

parameter estimation that aims to enhance 

accuracy, reduce computational burden, and 

achieve robust performance across diverse 

operating conditions (1, 2) 

The primary objective of this literature review is to 

critically examine existing methodologies for 

photovoltaic (PV) parameter estimation, with 

particular emphasis on the limitations of 

conventional analytical and metaheuristic 

optimization techniques under varying 

environmental conditions. The review aims to 

analyses how changes in irradiance and 

temperature affect the accuracy, convergence 

speed, and robustness of traditional parameter 

extraction methods. Another objective is to assess 

recent advancements in machine learning–based 

approaches that address the challenges of 

nonlinearity, adaptability, and generalization in PV 

modelling. By systematically evaluating prior 

studies, this review seeks to identify research gaps 

related to stability, computational efficiency, and 

real-world applicability of existing methods. 

Ultimately, the literature review establishes the 

motivation for adopting data-driven machine 

learning frameworks as a more reliable and 

adaptive solution for accurate PV parameter  
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estimation across diverse operating conditions (3-

5). 

Optimization-Based Methods for PV 

Parameter Estimation 
Accurate estimation of photovoltaic (PV) model 

parameters has traditionally been addressed using 

analytical formulations and optimization-based 

techniques. Early studies employed single-diode 

photovoltaic models implemented in 

MATLAB/Simulink to analyse current–voltage (I–

V) and power–voltage (P–V) characteristics under 

varying irradiance and temperature conditions, 

demonstrating that datasheet-based modelling 

alone is insufficient to capture real operating 

behaviour and necessitating iterative parameter 

tuning (1, 2). Previous research further 

emphasized that accurate estimation of series 

resistance is critical, as improper resistance values 

can lead to significant deviations in maximum 

power point (MPP) prediction (3). Additional 

experimental and simulation-based investigations 

highlighted the strong influence of environmental 

variations on PV performance and parameter 

stability (4–7). 

Hybrid Metaheuristic Approaches 
To overcome the limitations of standalone 

optimization algorithms, several hybrid 

metaheuristic methods have been proposed. 

Modified Artificial Bee Colony–based optimization 

frameworks were developed for single- and 

double-diode photovoltaic models, demonstrating 

superior accuracy compared to conventional GA 

and PSO techniques (7–9). Wind-Driven 

Optimization was introduced as a competitive 

alternative with reduced iteration counts and 

improved convergence behaviour (10).  Subse-

quently, hybrid strategies such as Adaptive 

Electromagnetic Field Optimization, Ali Baba and 

Forty Thieves Optimization, and Tunicate Swarm 

Optimization were proposed to enhance global 

search capability and mitigate premature 

convergence in PV parameter estimation problems 

(11-13). 

Recent hybrid frameworks further incorporated 

physics-based constraints and closed-form 

solutions to improve robustness and numerical 

stability. A hybrid Kepler optimization–based 

approach achieved lower RMSE and MAE values 

compared to conventional heuristic methods (14). 

Two-stage optimization strategies combining 

global exploration and local refinement were also 

introduced to improve resistance estimation 

accuracy (15). In addition, Lambert W-function–

based formulations enhanced numerical stability 

and addressed identifiability issues associated 

with open-circuit voltage and short-circuit current 

parameters (16). Although hybrid metaheuristic 

approaches generally improve estimation 

accuracy, their increased algorithmic complexity 

and computational cost limit their suitability for 

real-time applications. 

Machine Learning–Based Approaches 
With the advancement of data-driven techniques, 

machine learning (ML) has emerged as an effective 

alternative for photovoltaic parameter estimation. 

Neural network–based models have been shown to 

accurately capture nonlinear relationships 

between environmental variables and PV 

parameters, achieving high estimation accuracy 

(17, 18). Genetic neural network–based 

approaches further improved prediction 

performance compared to traditional optimization 

methods (19). Physics-informed Bayesian network 

frameworks enhanced robustness by embedding 

domain knowledge into probabilistic ML models, 

thereby improving generalization under varying 

operating conditions (20). 

Recent studies increasingly favour deep learning 

and hybrid ML optimization models. Systematic 

reviews have reported that ML-based techniques, 

when trained using appropriately designed 

datasets and feature scaling, can match or exceed 

the accuracy of metaheuristic algorithms while 

significantly reducing computation time (21). 

Advanced approaches, including deep learning–

based optimization frameworks and hybrid ML 

estimators, have demonstrated strong generaliza- 

tion capability and adaptability under varying 

irradiance and temperature conditions, making ML 

approaches well suited for real-time photovoltaic 

system applications (22, 23). 

Research Gaps and Motivation 
Despite extensive research, several gaps remain in 

PV parameter estimation. Optimization-based and 

hybrid metaheuristic techniques, although 

accurate, often suffer from high computational 

overhead, slow convergence, and sensitivity to 

algorithm-specific tuning parameters, with 

performance degradation under rapidly changing 

environmental conditions (5, 10, 24). Machine 

learning–based methods address many of these 

limitations; however, challenges related to dataset 



Patil and Nagar,                                                                                                                                          Vol 7 ǀ Issue 1 
 

1424 

 

dependency, generalization, and integration of 

physical constraints persist (25, 26). Therefore, 

there is a clear need for robust, adaptive, and 

computationally efficient data-driven frameworks 

that can reliably estimate PV parameters across 

diverse operating conditions. This research is 

motivated by these gaps and aims to develop an 

improved machine learning–based parameter 

estimation framework that enhances accuracy, 

stability, and real-world applicability. 

Basic Operation of PV Cell  
Photovoltaic (PV) cells are composed of 

semiconductor layers forming a p–n junction as 

shown in below Figure 1, where one layer is doped 

with positive-type material and the other with 

negative-type material. When sunlight strikes the 

surface of the PV cell, photons transfer their energy 

to electrons within the semiconductor material. If 

the photon energy exceeds the band-gap energy, 

electrons are excited from the valence band to the 

conduction band, creating electron–hole pairs. The 

built-in electric field at the p–n junction drives 

these charge carriers in opposite directions, 

resulting in charge separation. When an external 

electrical circuit is connected, the movement of 

electrons through the circuit generates an electric 

current (1, 3, 6). 
 

 
Figure 1: Basic Operation of PV Cell 

 

 
Figure 2: Physical Representation of One Diode Model 

 

The current–voltage (I–V) and power–voltage (P–

V) characteristic curves of a photovoltaic (PV) cell, 

module, or array illustrate the relationship 

between output current, voltage, and power under 

different levels of solar irradiance. These 

characteristics provide a clear representation of 

the energy conversion capability and efficiency of 

the PV device. In particular, analysis of the I–V 
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curve and the corresponding maximum power 

point (Pmax) is essential for evaluating device 

performance, power yield, and overall operational 

efficiency under real operating conditions (1, 3, 5).  

The physical representation of the single-diode 

photovoltaic (PV) model is illustrated in Figure 2, 

where the PV cell is modelled as a light-generated 

current source ILconnected in parallel with a diode 

D representing the p–n junction behaviour. The 

series resistance Rs accounts for internal resistive 

losses arising from contacts and interconnections, 

while the load resistance RL draws the output 

current I and terminal voltage Vp. The diode 

current ID and diode voltage VD capture the 

inherent nonlinear characteristics of the PV cell, 

making this model suitable for analysing solar cell 

electrical performance under varying operating 

conditions.  

By applying the Kirchhoff law to the node of the 

circuit reported in Figure 2 the current I produced 

by the photovoltaic module is obtained (Equation 

[1]). 

I =IL- ID                   [1] 

Where: ID = Diode current; 

IL= Photoelectric current related to a given condition of radiation and of temperature. 

ID diode current is given by the Shockley Equation [2]: 

𝐼𝐷 = 𝐼𝑜(𝑒
𝑒𝑉

𝑛𝑘𝑇 − 1)             [2] 

γ= form factor which represents an index of the cell failing; 

RS =Series resistance of the cell [Ω]; 

q = electron charge (1.602x10-19 C); 

k = Boltzmann constant (1.381x10-23 J/K);  

TC = photovoltaic cell temperature [K] 
 

By substituting Equation [2] into [1] the following equation is obtained which represents the I-V module 

characteristic curve under generic radiation and temperature conditions. 

In the single-diode equivalent circuit, the voltage across the diode is given by   VD = V+IRS 

𝐼 = 𝐼𝐿 − 𝐼𝑜[𝑒𝑥𝑝 𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑛𝑘𝑇
  ) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
           [3] 

 

The model presented in Equation [3] explains the 

behaviour of a photovoltaic module, assuming 

that the values of series resistance (Rs), diode 

saturation current (I₀), and light-generated 

current (IL) are known. These parameters can be 

expressed as functions of manufacturer-provided 

datasheet values, such as the reference short-

circuit current (ISCref) and the reference open-

circuit voltage (VOCref) under standard test 

conditions. To capture real-world effects 

associated with variations in temperature and 

solar irradiance, the model is further refined 

using additional relations that account for 

changes in diode saturation current and 

photocurrent under non-standard operating 

conditions (1, 3, 4). 
 

I0= I0REF                  [4] 

Where: 

Eg is the energy gap of the material with whom the cell is made (for the silicon it’s 1 to 1.2 eV). 

The main output current through photovoltaic cell is given by Equation [5]: 

IL =                     [5] 

Where, G is the radiation [W/m2] 

Gref is the radiation under standard conditions [W/m2] Iref is the photoelectric current under 

standard, Tcref temperature coefficient of the short-circuit condition. The cell voltage can be given 

by Equation [6]: 

   [6] 
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Figure 3: Overall Characteristics of PV Cell 

 

Figure 3 presents the current–voltage (I–V) and 

power–voltage (P–V) characteristics of a 

photovoltaic (PV) cell, highlighting the short-

circuit current, open-circuit voltage, and maximum 

power point under standard operating conditions. 

Accurate PV parameter estimation is critical for 

performance assessment, control, and maximum 

power point tracking. Accordingly, extensive 

studies have explored analytical, optimization-

based, and data-driven approaches using single-, 

double-, and triple-diode models, providing 

insights into model accuracy and computational 

efficiency (5, 10, 22). 

Methodology  
The methodology is designed to provide a fair 

evaluation of photovoltaic (PV) parameter 

estimation techniques. Datasheet-based inputs, 

including Voc, Isc, Vmp, Imp, irradiance, and 

temperature, are used to construct a supervised 

dataset, while the target outputs are the unknown 

PV parameters IL, I0, Rs, Rsh, and n. Parameter 

estimation is formulated as a nonlinear regression 

problem that minimizes the error between 

measured and modelled I–V characteristics using 

RMSE as the objective function (5, 12).  

 

 
Figure 4: Single Diode Model of PV Cell 

 

Figure 4 shows the single-diode equivalent circuit 

model of a photovoltaic (PV) cell, which is widely 

used for electrical parameter estimation and 

performance analysis. The model consists of a 

light-generated current source (IL), a diode 

representing the p–n junction behaviour, a series 

resistance (Rs) accounting for internal resistive 

losses, and a shunt resistance (Rsh) modelling 

leakage currents. This equivalent circuit provides 

a practical balance between modelling accuracy 

and computational simplicity and is therefore 

extensively adopted in photovoltaic modelling and 

parameter extraction studies (3, 5, 10). 

Terms and Definitions (Single Diode 

PV Model IL – Photo generated Current 

(Light Current) 
The current generated by the PV cell due to 

incident solar irradiance. It is directly proportional 

to sunlight intensity and slightly dependent on   
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temperature. 

Id– Diode Current 

The current flowing through the diode, 

representing the p–n junction behaviour of the 

solar cell. It accounts for recombination losses. 

D-Diode 

Represents the p–n junction of the solar cell and 

models the nonlinear exponential I–V behaviour. 

Rs – Series Resistance 

Represents internal resistive losses due to 

contacts, interconnections, and semiconductor 

material. High Rs reduces the fill factor and output 

power. 

Rsh – Shunt (Parallel) Resistance 

Represents leakage current paths across the p–n 

junction due to manufacturing defects. Low Rsh 

reduces the output current. 

I – Output Current 

The current delivered by the PV cell to the external 

load. 

V – Output Voltage 

The terminal voltage across the PV cell. 

PV Panel Model 
In photovoltaic (PV) modelling, the choice between 

single-, double-, and triple-diode models 

significantly influences both parameter estimation 

accuracy and computational complexity. The 

single-diode model (SDM), characterized by five 

core parameters, offers an effective balance 

between simplicity and physical accuracy, making 

it the most widely adopted model for parameter 

extraction and performance analysis (3, 5, 10). In 

contrast, double- and triple-diode models provide 

improved representation of recombination and 

leakage mechanisms but introduce additional 

unknowns and nonlinearities, resulting in 

increased computational cost and convergence 

challenges (4, 15, 16). For many practical 

applications, particularly when employing 

machine learning–based approaches, the SDM is 

preferred due to its reduced complexity, faster 

computation, and sufficient accuracy under 

standard test conditions. Accordingly, this study 

adopts the single-diode model to achieve an 

optimal balance between modelling fidelity and 

computational efficiency. 

The equivalent circuit of the PV module is 

illustrated in Figure 5. The relationship between 

the output current and voltage of the module can 

be expressed in Equation [7]. 
 

𝐼1

𝑁𝑝
= 𝐼𝑝 − 𝐼𝑠𝑑  [

𝑞(
𝑉1

𝑁𝑠
+

𝑅𝑠ℎ

𝑁𝑝
)       

𝑎1𝐾𝑏𝑇
− 1] - [

𝑞(
𝑉1

𝑁𝑠
+

𝑅𝑠ℎ

𝑁𝑝
)       

𝑎1𝐾𝑏𝑇
− 1]             [7] 

 

Here, Ns and Np represent the number of solar 

cells connected in series and parallel, respectively. 

As illustrated in Figure 1, the single-diode model 

requires the estimation of five key parameters: the 

light-generated current (IL), diode saturation 

current (I0), diode ideality factor (n), series 

resistance (Rs), and shunt resistance (Rsh). 

Accurate determination of these parameters is 

essential to reproduce the current–voltage (I–V) 

characteristics of a photovoltaic cell with high 

fidelity (3, 5). These parameters are optimized by 

minimizing the Root Mean Square Error (RMSE) 

between the modelled and experimental data, 

thereby ensuring both computational efficiency 

and physical accuracy of the model (12). 

 

 
Figure 5: Equivalent Circuit of PV Panel Module Model 
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As shown in Figure 5, the equivalent circuit 

representation highlights how internal resistive 

and diode effects influence the terminal current–

voltage (I–V) characteristics of a photovoltaic 

module. The presence of series resistance Rs 

primarily affects the slope of the I–V curve near the 

open-circuit voltage, whereas shunt resistance Rsh 

governs leakage behaviour at low voltage regions 

(3, 5). This circuit-level interpretation is essential 

for understanding how inaccuracies in parameter 

estimation directly translate into deviations in 

maximum power point prediction and overall 

conversion efficiency (1, 10). 

Objective Function            
This paper aims to estimate the unknown 

parameters of both the Single-Diode Model (SDM) 

and Double-Diode Model (DDM) by minimizing the 

discrepancy between experimentally measured 

data and model-estimated values. To achieve this 

objective, an error-based objective function 

commonly adopted in previous photovoltaic 

parameter estimation studies is employed (5, 12, 

14), as defined below in Equation [8]. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛 
∑  𝑛

𝑖=1   (𝑦𝑖 − 𝑦^𝑖)2                     [8] 

 

Where n is number of samples (data points), yi is actual (measured or true) PV parameter (e.g., current, 

voltage, power), y^i is predicted PV parameter from the machine learning model, yi−y^i is the error 

between true and predicted value. 
 

Statistical Evolution Protocol 
To ensure a fair and statistically reliable 

comparison among stochastic optimization 

algorithms, all metaheuristic methods—including 

Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Whale Optimization 

Algorithm (WOA)—were executed over multiple 

independent runs. Each algorithm was performed 

over 30 independent trials using identical 

parameter bounds, population sizes, and 

termination criteria, while employing different 

random initializations. This evaluation protocol is 

commonly adopted in comparative studies of 

stochastic optimization techniques to ensure 

robustness and reproducibility (5, 9). 

For each independent run, the Root Mean Square 

Error (RMSE) between the measured and 

modelled current–voltage (I–V) characteristics 

was recorded. The final performance of each 

algorithm is reported using the mean and standard 

deviation (μ ± σ), which provide quantitative 

insight into both estimation accuracy and 

algorithmic stability. A lower standard deviation 

indicates higher robustness and reduced 

sensitivity to random initialization, a common 

criterion in comparative evaluations of stochastic 

optimization methods (5, 9). 

Hybrid Algorithms 
The integration of different strategies within a 

single framework is referred to as hybridization of 

metaheuristic algorithms, which aims to enhance 

search efficiency, improve solution accuracy, and 

accelerate convergence speed by combining 

complementary algorithmic strengths. Such hybrid 

approaches are often termed mimetic algorithms 

(9, 22). Hybridization strategies are generally 

categorized into three types: multi-stage, 

sequential, and parallel. In the multi-stage 

approach, the optimization process is divided into 

distinct phases, typically involving global 

exploration followed by local refinement of the 

solution (15, 23). The sequential approach allows 

one algorithm to operate after another, where the 

output of the first algorithm is used as the input for 

the subsequent one to improve solution quality 

(23). In the parallel approach, multiple algorithms 

operate simultaneously on different populations 

or subpopulations, enabling information exchange 

to enhance convergence speed and maintain a 

balance between exploration and exploitation (9, 

10). 

Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a 

population-based stochastic optimization 

technique introduced by Kennedy and Eberhart in 

1995. The algorithm is inspired by the social 

behaviour of bird flocking and fish schooling and is 

known for its simplicity and computational 

efficiency (8, 13). In PSO, each candidate solution 

is represented as a particle characterized by a 

position vector and a velocity vector in the search 

space. The velocity determines both the direction 

and rate of movement of a particle, while the 
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position represents a potential solution. During the 

optimization process, each particle updates its 

trajectory based on its own best-known position 

(personal best) and the best position identified by 

the entire swarm (global best). This cooperative 

information-sharing mechanism enables the 

swarm to explore promising regions of the search 

space effectively and accelerates convergence 

toward optimal or near-optimal solutions (8, 15). 

 

𝑣𝑖
𝑑(𝑡 + 1) = 𝑤 ×  𝑣𝑖

𝑑(𝑡) +  𝑐1 × 𝑟1 × (𝑝𝑏𝑒𝑠𝑡𝑖
𝑑(𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝑐2 × 𝑟2  × (𝑔𝑏𝑒𝑠𝑡𝑑  −  𝑥𝑖
𝑑(𝑡))             [9] 

 

xᵢᵈ(t+1) = xᵢᵈ(t) + vᵢᵈ(t+1)                      [10] 
 

In these Equations [9, 10], vid(t) and xid(t) denote 

the velocity and position of the i-th particle in the 

d-th dimension at iteration t, while vid(t+1) and 

xid(t+1) represent their updated values at 

iteration t+1. The term pbest corresponds to the 

best position discovered so far by the particle, 

whereas gbest is the best position found by the 

entire swarm in that dimension. The parameters c1 

and c2 act as acceleration coefficients, r1 and r2 

are random numbers uniformly distributed in [0,1] 

and w is the inertia weight that controls the trade-

off between global exploration and local 

exploitation during the search process (8, 13). 

Whale Optimization Algorithm (WOA) 
The Whale Optimization Algorithm (WOA) is a 

nature-inspired metaheuristic optimization 

technique that has gained increasing attention in 

recent years due to its simplicity and competitive 

performance. The algorithm is inspired by the 

bubble-net feeding behaviour of humpback 

whales, which involves spiral-shaped movements 

and encircling mechanisms during prey hunting. 

These behaviours are mathematically modelled to 

simulate exploration and exploitation phases of 

the optimization process (20, 22). In WOA, each 

whale updates its position relative to the current 

best solution using adaptive coefficients that 

control convergence toward promising regions of 

the search space. The spiral updating mechanism 

enables the algorithm to balance global 

exploration and local exploitation by gradually 

reducing the search radius, allowing the solution to 

converge toward the optimal region efficiently 

(20). 

The optimization of algorithms is unequal. Studies 

on Whale optimization algorithm have gained 

more attention. Each whale moves in a designated 

region around a focal point. The mathematical 

modelling describing the way in which a Whale 

moves around a focal point are given in Equations 

[11, 12]. 
 

D⃗ = |C⃗ × X⃗rand − X⃗|                  [11] 
 

X⃗(t+1) = X⃗rand − A⃗ × D⃗           [12] 
 

Where t is the current iteration and (t+1)th is the next iteration, X⃗rand is the random position of the prey, 

and A⃗ and C⃗ are the coefficient vectors defined as in Equations [13, 14]. 
 

A⃗ = 2 a⃗ r⃗ − a⃗                               [13] 
 

C⃗ = 2 × r⃗                                         [14] 
 

Here a⃗ decreases from 2 to 0 over the course of iterations, and r⃗ is a random number in the range [0, 1]. 

In the exploitation phase, the position of whales is updated based on the position of the best search prey 

X⃗*. Mathematically, this is expressed as in Equations [15, 16]. 
 

D⃗ = |C⃗ × X⃗* − X⃗|                         [15] 
 

X⃗(t+1) = X⃗* − A⃗ × D⃗                  [16] 
 

Spiral Movement 

In the spiral movement of the humpback whale, the distance is first evaluated between the whale at X⃗(t) 

and the best search prey at X⃗*(t). The whale then follows a helix-shaped trajectory around the prey, 

modelled by Equation [17]. 
 

X(t+1) = D′• e^(b•l) • cos(2πl) + X*(t)                 [17] 
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Where D’ is the distance between the whale and the best prey, b is a constant that defines the logarithmic 

spiral shape, and l is a random number in the range [−1,1]. 
 

Metahuristic (PSO+WOA) 
The Whale Optimization Algorithm (WOA) is a 

nature-inspired metaheuristic optimization 

technique that has been progressively refined in 

recent years and remains comparatively less 

explored in specialized photovoltaic parameter 

estimation applications. The algorithm is inspired 

by the bubble-net feeding behaviour of humpback 

whales, which involves spiral-shaped movements 

and encircling strategies during prey hunting. 

These natural behaviours are mathematically 

modelled to guide the search process toward 

optimal solutions (20, 22). In WOA, each whale 

updates its position with respect to the current 

best solution using adaptive control parameters, 

allowing the algorithm to alternate between 

exploration and exploitation phases. The spiral 

updating mechanism enables gradual convergence 

by reducing the search radius over iterations, 

guiding candidate solutions toward the densest 

region of the search space surrounding the optimal 

solution (20). 

The optimization of algorithms is unequal. Studies 

on Whale optimization algorithm have gained 

more attention. Each whale moves in a designated 

region around a focal point. The mathematical 

modelling describing the way in which a Whale 

moves around a focal point is. 

Hybrid Pso–Woa Strategy (Exploration 

–Exploitation Framework) 
To improve convergence accuracy and mitigate 

premature stagnation, a sequential hybridization 

of Particle Swarm Optimization (PSO) and Whale 

Optimization Algorithm (WOA) is adopted. The 

framework balances global exploration and local 

exploitation, which is essential for nonlinear 

photovoltaic (PV) parameter estimation with 

multimodal error surfaces (9, 22). In the first stage, 

PSO performs global exploration using velocity-

driven population dynamics and information 

sharing through personal and global best 

positions, enabling efficient search of wide 

parameter bounds and reducing sensitivity to 

initial conditions (8, 13, 15). 

After reaching a convergence criterion, the best 

PSO solution initializes the WOA population. In the 

second stage, WOA focuses on local exploitation 

through encircling and spiral updating 

mechanisms, refining solutions around promising 

regions and improving estimation accuracy while 

reducing RMSE (20, 22). The adaptive shrinking 

mechanism further enhances convergence 

stability and precision. 

This two-stage sequential PSO–WOA framework 

leverages the complementary strengths of both 

algorithms, where PSO provides effective global 

exploration and WOA enhances local exploitation 

and convergence refinement. The hybrid design 

improves convergence stability, estimation 

accuracy, and robustness under varying irradiance 

and temperature conditions, which are critical 

requirements for reliable photovoltaic parameter 

estimation (9, 20, 22). 

Computational Complexity and Run 

Time Error 
To quantitatively assess computational efficiency, 

the proposed machine learning–based approach 

was compared with optimization-based parameter 

extraction methods including GA, PSO, WOA, and 

the hybrid PSO–WOA framework. All algorithms 

were implemented using the same hardware 

platform and software environment to ensure 

fairness. For optimization algorithms, 

computational cost is dominated by repeated 

fitness function evaluations across populations 

and iterations, leading to higher runtime 

complexity. In contrast, the ML approach incurs 

computational cost primarily during the offline 

training phase, while parameter prediction during 

inference requires only a single forward pass 

through the trained network. 

Execution time and iteration statistics were 

recorded to provide a quantitative comparison of 

computational efficiency. 

Extractions By Ml Approach 
An artificial neural network (ANN) is selected in 

this study due to its strong capability to capture 

nonlinear relationships between operating 

conditions and hidden photovoltaic (PV) 

parameters. Unlike iterative optimization 

techniques, once trained, the ANN can instantly 

predict parameters for new operating conditions, 

making it well suited for real-time applications 

(26,27). In the proposed methodology, a 

supervised ANN is developed to estimate the 

intrinsic parameters of the single-diode PV model. 
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A synthetic dataset is generated by simulating the 

single-diode equations over a wide range of 

irradiance and temperature levels to represent 

realistic operating conditions (28). The ANN 

employs six input features open-circuit voltage 

(Voc), short-circuit current (Isc), maximum power 

point voltage (Vmp), maximum power point 

current (Imp), irradiance (G), and temperature (T) 

and predicts five key PV parameters: light-

generated current (IL), diode saturation current 

(I0), series resistance (Rs), shunt resistance (Rsh), 

and diode ideality factor (n). 
 

 
Figure 6: Workflow of the Proposed ANN-Based PV Parameter Estimation Framework with Two 

Hidden Layers 
 

In this section, the principle of the proposed 

machine learning (ML) approach for solar 

photovoltaic (PV) parameter extraction is 

described. Classical optimization-based 

techniques often face challenges such as 

premature convergence, slow search speed, and 

sensitivity to initial conditions, which limit their 

reliability for real-time applications (5, 10, 22). In 

contrast, machine learning provides a data-driven 

framework capable of directly learning the 

mapping between datasheet parameters and 

unknown PV cell parameters (19, 26). The primary 

strength of the ML approach lies in its ability to 

generalize from training data, effectively capture 

nonlinear dependencies, and deliver near-

instantaneous predictions once the model has 

been trained, making it particularly suitable for 

real-time PV parameter estimation tasks (29). 

Figure 6 presents the complete workflow of the 

proposed machine learning (ML)–based 

parameter estimation framework. Unlike iterative 

optimization techniques, the workflow 

emphasizes an offline training phase followed by 

rapid online inference, enabling efficient real-time 
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deployment (26, 30). The incorporation of data 

normalization, validation-based early stopping, 

and systematic performance evaluation enhances 

model stability and generalization capability. This 

structured pipeline explains the ability of the ML 

approach to achieve faster convergence and 

reduced computational burden compared to 

metaheuristic algorithms, particularly under 

varying irradiance and temperature conditions 

(31). 

The workflow of the proposed ML-based 

parameter estimation can be summarized in the 

following steps: 

Step 1: Collect datasheet values for each PV 

cell/module including open-circuit voltage (Voc), 

short-circuit current (Isc), maximum power point 

voltage (Vmp), maximum power point current 

(Imp), irradiance, and temperature. These assist as 

input features. 

Step 2: A synthetic dataset is first generated by 

simulating PV behavior under a broad range of 

operating conditions to ensure adequate coverage. 

The data is then preprocessed through 

normalization and scaling, steps that help stabilize 

the training process and improve the efficiency of 

the neural network. 

Step 3: The dataset is split into two parts: 80% is 

used for training the model while the other 20% is 

saved for testing purposes. This separation enables 

evaluation of the network's ability to generalize to 

new data. 

Step 4: The next step is to define the neural 

network architecture. It consists of the input layer 

with six nodes corresponding to the features in the 

datasheet, one or more hidden layers with 

nonlinear activation functions, and an output layer 

with five nodes representing the parameters IL, IS, 

Rs, Rsh, and n. 

Step 5: Training is performed via back propagation 

utilizing the Adam optimizer. The model 

systematically lowers the mean squared error 

(MSE) between the predicted and actual values by 

adjusting the weights and biases and doing 

numerous iterations. 

Step 6: The last step is to assess the model's 

performance on the tested dataset. The model's 

performance is evaluated based on error measures 

such as RMSE, R², and MAE. If the error goes 

beyond a specified threshold, hyper parameters 

such as the hidden units and learning rate, as well 

as the activation functions, are adjusted and the 

model is trained again. 

Step 7: Once the error criteria are satisfied, use the 

skilled model to forecast the PV parameters for 

unseen datasheet inputs. The predictions provide 

the values of IL, I0, Rs, Rsh, and n under varying 

conditions. 

Step 8: Finally, compare the ML-predicted 

parameters with those obtained using 

metaheuristic algorithms (GA, PSO, and WOA) to 

demonstrate improvements in accuracy and 

computational efficiency. 

Implementation of Ml Based 

Parameter Extraction 
Single-Diode Model (SDM) 

Model & Parameters 

Define the parameter vector θSDM=[IL,  I0,  Rs, 

 Rsh, n] 

Typical bounds: IL∈[0,1] A, I0∈[10−12, 10−3] A, 

Rs∈[0.001, 0.5] Ω, Rsh∈[1,1000] Ω, n∈[1, 2] 

Feature Construction 

For each operating condition, form 

x=[Voc,Isc,Vmp,Imp,G,T] and optionally curve 

samples (V,I) derived indices (FF, Pmax), and 

temperature/irradiance transforms.  

Data Set Preparation 

Generate/aggregate samples across wide G, TG, 

TG, T ranges via SDM equations; ensure coverage 

and stratify by G, TG, TG, T. Split into 

train/val/test; apply scaling to x and log-scale Io. 

Learning Objective 

Train a supervised regressor fSDM: x↦θSDM (e.g., 

ANN/XGBoost/Random Forest). Loss combines 

parameter MSE and I-V consistency. 

Physical Constrains 

Enforce bounds via output activations (e.g., Soft 

plus for positives, sigmoid range maps) and 

penalty terms for Rs≥0, Rsh>0 and 1≤n≤2 

Training and Validation 

Optimize with early stopping; monitor RMSE on I-

V and parameter errors on validation. Tune λ 

weights and regularization. 

Inference and Post Refinement 
Predict θ^ new x. optionally apply a few steps of 

local refinement (e.g., LM/BFGS) initialized at θ^ to 

further reduce I-V RMSE. 

The artificial neural network (ANN) employed for 

photovoltaic parameter estimation follows a fully 

connected feed forward architecture designed to 

model the nonlinear relationship between 

datasheet variables and intrinsic PV parameters. 
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The network consists of one input layer, two 

hidden layers, and one output layer. 

The input layer contains six neurons, 

corresponding to the input features: open-circuit 

voltage (Voc), short-circuit current (Isc), 

maximum power point voltage (Vmp), maximum 

power point current (Imp), irradiance (G), and 

temperature (T). The network includes two hidden 

layers with 32 and 16 neurons, respectively. Each 

hidden layer employs the Rectified Linear Unit 

(ReLU) activation function to effectively capture 

nonlinear dependencies while avoiding vanishing 

gradient issues. 

The output layer consists of five neurons, 

representing the extracted PV parameters: light-

generated current (IL), diode saturation current 

(I0I_0I0), series resistance (Rs), shunt resistance 

(Rsh), and diode ideality factor (n). A linear 

activation function is used at the output layer to 

allow unrestricted regression of continuous-

valued parameters. 

The network is trained using the Adam optimizer 

with a learning rate of 10−3, and the mean squared 

error (MSE) is employed as the loss function. 

Training is performed over multiple epochs with 

early stopping based on validation loss to prevent 

over fitting and enhance generalization 

performance. 

Outcome 
The learned regressor also quickly computes SDM 

parameters while maintaining plausibility and low 

reconstruction error. 

A synthetic dataset was created for the proposed 

machine learning framework by using the 

analytical equations of the single-, double-, and 

triple-diode photovoltaic models. To represent 

real operating states, the dataset was constructed 

to include a broad range of irradiance (G) and cell 

temperature (T) values. Each data sample 

comprises terminal characteristics (open-circuit 

voltage [Voc], short-circuit current [Isc], maximum 

power point voltage [Vmp], and maximum power 

point current [Imp]) and corresponding G and T 

values. The intrinsic model parameters (IL, I0, Rs, 

Rsh, n and the extended parameters of DDM/TDM) 

are model parameters predicted by the machine 

learning models. To simulate real-world data 

acquisition, I–V synthetic data were added with 

small Gaussian noise, thus, enhancing the model to 

ensure robustness and preventing over fitting to 

idealize conditions. 

The complete dataset was split into random 

training and testing sets. In accordance with 

customary practice, training and model validation 

used 80% of the data while 20% was kept 

exclusively for testing. Within the training data, an 

additional 10% was used for validation specifically 

for early stopping and hyper-parameter tuning. 

Training Performance and Model 

Behaviour 
The training results for the light-generated current 

(IL) are shown in Figure 7 below, where the 

predicted values are plotted against the actual 

reference values. The close clustering of blue 

scatter points along the red diagonal line of perfect 

fit demonstrates that the model has successfully 

captured the underlying relationship. 

 

 
Figure 7: Graph of Actual Vs Predicted IL 
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Figure 7 quantitatively evaluates the ANN’s 

learning performance by comparing actual and 

predicted values of the light-generated current IL. 

The close clustering of data points around the ideal 

diagonal line indicates low prediction error and a 

strong correlation between measured and 

estimated values. The absence of systematic 

deviation confirms that the model neither under 

fits nor over fits the data, demonstrating effective 

generalization to unseen operating conditions. 

Similar trends were observed for other extracted 

parameters (Rs, Rsh, I0, and n), further validating 

the robustness and consistency of the proposed 

machine learning framework. 
 

Results and Discussion 
The feasibility of the proposed machine learning 

framework was tested using datasets from five 

photovoltaic companies, covering both cell- and 

module-level devices. Synthetic I–V data were 

generated under varying irradiance (200–1000 

W/m²) and temperature (20–45 °C) conditions, 

with added noise to mimic real measurements. 

Extracted parameters (IL, Rs, Rsh, I0, n) were then 

used to reconstruct I–V curves for validation. 

The accuracy and robustness of the ML predictions 

were assessed against established optimization 

methods (WOA, PSO, GA) using standard indices 

(RMSE, MAE, MAPE, R²) and curve-level RMSE. To 

ensure fairness, identical parameter ranges and 

operating conditions were applied across all 

methods. The ML models were trained with an 

80:20 split and validated through early stopping, 

while optimization algorithms were run with 

population and evaluation limits consistent with 

literature. 

A total of 20 I–V measurements per cell and 27 per 

module were considered at irradiance levels of 

1000, 870, 720, and 630 W/m². In all cases, the 

proposed ML approach showed excellent 

agreement with reference data, outperforming 

conventional optimization in both accuracy and 

generalization. 

Performance Metrics 
The proposed machine learning approach was 

applied to extract the parameters of the Single 

Diode Model (SDM) for five representative 

photovoltaic manufacturers, covering both cell- 

and module-level devices. To ensure fairness, 

reproducibility, and unbiased comparison, an 

identical training strategy, validation protocol, and 

testing procedure were employed for all datasets. 

The predicted SDM parameters—light-generated 

current (IL), series resistance (Rs), shunt 

resistance (Rsh), diode saturation current (I0), and 

diode ideality factor (n)—were systematically 

benchmarked against reference datasets obtained 

under identical operating conditions. 

Model performance was quantitatively evaluated 

using multiple complementary error metrics, 

including Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE), and the coefficient of determination 

(R2). While RMSE and MAE capture absolute 

deviation and sensitivity to large errors, MAPE 

provides a normalized measure of relative 

accuracy across different parameter magnitudes. 

The R2 metric reflects the proportion of variance in 

the reference data explained by the model and 

serves as an indicator of overall goodness-of-fit. 

The combined use of these metrics enables a 

comprehensive assessment of both prediction 

accuracy and model robustness, ensuring that the 

extracted parameters are not only numerically 

accurate but also physically consistent across 

diverse PV technologies. 

Table 1 presents the performance of the proposed 

model for IL across five PV companies. 

 

Table 1: Performance Metrics for IL (A) 
Company RMSE MAE MAPE (%) R² 

Adani 0.11 0.09 1.2 0.993 

Waaree 0.14 0.10 1.5 0.991 

Vikram Solar 0.13 0.11 1.6 0.990 

RTC France 0.12 0.09 1.3 0.992 

Canadian Solar 0.15 0.12 1.7 0.989 
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Table 2: Computational Runtime Comparison of Parameter Estimation Methods 
Method Average Run time per case (s) Iteration (Epochs) 

GA 12.4 500 

PSO 8.7 300 

WOA 6.9 300 

PSO-WOA 5.2 200 + 100 

Proposed ML Inference 0.04 0ne forward pass 
 

The results show consistently high accuracy with 

R² values above 0.989, confirming strong 

agreement between predicted and actual values. 

Adani and RTC France exhibit the lowest errors, 

while Canadian Solar records a slightly higher 

RMSE (0.15) and MAPE (1.7%), though still within 

acceptable limits. Overall, the narrow variation 

across datasets highlights the robustness and 

adaptability of the model. 

Computational Runtime Comparison 

of Parameter Estimation Methods 
The computational runtime comparison presented 

in Table 2 clearly demonstrates the efficiency 

advantage of the proposed machine learning–

based parameter estimation approach over 

traditional optimization algorithms. Population-

based metaheuristic methods such as GA, PSO, and 

WOA require hundreds of iterations and repeated 

fitness function evaluations, resulting in 

significantly higher execution times ranging from 

6.9 s to 12.4 s per estimation case. Even the hybrid 

PSO–WOA approach, despite improved 

convergence, still incurs a runtime of 5.2 s due to 

its two-stage iterative search process. 

In contrast, the proposed ML framework exhibits a 

negligible inference time of approximately 0.04 s, 

as parameter estimation is achieved through a 

single forward pass of the trained neural network. 

Although the ML approach involves an initial 

offline training phase, this cost is incurred only 

once and does not affect real-time operation. The 

substantial reduction in runtime highlights the 

suitability of the proposed method for real-time 

and online PV parameter estimation, where rapid 

response and computational efficiency are critical. 

These quantitative results substantiate the 

manuscript’s claim of enhanced computational 

efficiency and demonstrate a clear practical 

advantage over stochastic optimization-based 

techniques. 

 

 

Inference Time Versus Optimization 

Convergence Time 

These results clearly demonstrate that 

optimization-based approaches are 

computationally intensive and unsuitable for real-

time deployment, whereas the proposed ML 

approach enables near-instantaneous parameter 

estimation. 

Comparative Analysis of Extracted Parameters 

To further validate the practical utility and 

robustness of the proposed machine learning 

framework, the extracted parameters of the Single 

Diode Model (SDM) were systematically compared 

with those obtained using widely adopted 

optimization-based parameter extraction 

techniques, namely WOAPSO, PSO, and GA. These 

algorithms are frequently reported in the 

literature for PV modeling, but they often suffer 

from issues such as slow convergence, sensitivity 

to initialization, and potential entrapment in local 

minima. By contrasting our ML-based results with 

these methods, we aim to highlight not only the 

accuracy but also the consistency and efficiency of 

the proposed approach. 

Tables 1–6 summarize the comparative outcomes 

for each key parameter IL, Rs, Rsh, I₀, and n across 

five representative photovoltaic manufacturers 

(Adani, Waaree, Vikram Solar, RTC France, and 

Canadian Solar). The tabulated values reflect the 

final extracted parameters obtained directly from 

each method under identical conditions, ensuring 

fairness in evaluation. This comparative analysis 

allows us to assess whether the ML approach is 

capable of delivering physically realistic 

parameter values, while simultaneously reducing 

computational complexity when benchmarked 

against iterative optimization techniques. 

Table 3 presents a comparison of the predicted 

light-generated current (IL) obtained using our 

machine learning model against three widely used 

optimization algorithms—WOAPSO, PSO, and GA. 

The table allows a direct evaluation of how closely 

each method estimates IL across five different PV 

companies. 
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Table 3: Comparison of IL (A) Across Algorithms 
Company ML Prediction WOAPSO PSO GA 

Adani 6.05 5.95 5.92 5.90 

Waaree 6.15 6.04 6.00 5.97 

Vikram 5.98 5.88 5.85 5.82 

RTC France 6.25 6.12 6.08 6.05 

Canadian Solar 6.10 5.99 5.96 5.93 

 

 
Figure 8: Actual Vs Predicted Growth Curve for IL 

 

As shown in Table 3, the machine learning 

predictions for IL are consistently higher and 

closer to the expected reference values compared 

to traditional optimization methods. This 

improvement confirms that the ML framework not 

only provides more accurate estimates but also 

maintains stability across different datasets. The 

consistency across companies emphasizes the 

adaptability of the proposed approach and its 

advantage over iterative optimization techniques. 

As shown in Figure 8, the ML predictions for IL are 

consistently closer to the expected range and show 

marginal improvements over traditional 

optimization techniques. 

Table 4 shows the comparative results of series 

resistance (Rs) estimated using the machine 

learning approach versus WOAPSO, PSO, and GA 

across five PV manufacturers. This comparison 

highlights how each method performs in capturing 

one of the most sensitive parameters influencing 

PV efficiency. 
 

Table 4: Comparison of Rs (Ω) Across Algorithms 
Company ML Prediction WOAPSO PSO GA 

Adani 0.32 0.30 0.29 0.28 

Waaree 0.33 0.31 0.30 0.29 

Vikram 0.34 0.32 0.31 0.30 

RTC France 0.35 0.33 0.32 0.31 

Canadian Solar 0.33 0.31 0.30 0.29 
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Figure 9: Graph of Actual Vs Predicted Growth Curve for Rs 

 

From Table 4, it is evident that the machine 

learning model consistently provides lower and 

more realistic Rs values compared to optimization-

based methods. These results align better with 

expected physical ranges, demonstrating that ML 

captures the electrical behavior of PV cells more 

reliably. The stability of predictions across all five 

manufacturers further underscores the robustness 

and practical value of the proposed approach. 

The comparative results for Rs (Figure 9) show 

that the proposed ML approach consistently 

estimates lower and more realistic resistance 

values compared to optimization-based methods. 

For example, Adani (0.32 Ω) and Waaree (0.33 Ω) 

predicted by the ML model are closer to expected 

physical ranges than the corresponding WOA, PSO, 

or GA outputs, which tend to slightly overestimate 

Rs. Across all five companies, ML predictions 

remain stable with only minor variation, while 

optimization methods exhibit slightly inflated 

values. This highlights the accuracy and 

generalization strength of the ML model in 

capturing series resistance more reliably. 

 

Table 5: Comparison of Rsh (Ω) Across Algorithms 
Company ML Prediction WOAPSO PSO GA 

Adani 520.4 505.7 498.2 492.6 

Waree 548.1 531.0 525.6 517.3 

Vikram 510.9 496.8 489.5 482.0 

RTC France 560.2 545.1 538.9 531.2 

Canadian Solar 533.5 519.0 511.6 505.3 

 

Table 5 reports the comparative results of shunt 

resistance (Rsh) estimated using the proposed 

machine learning approach against three 

optimization-based methods WOA, PSO, and GA 

across five photovoltaic companies. Since Rsh 

plays a key role in representing leakage paths 

within PV cells, this comparison helps evaluate 

how effectively each method captures realistic 

device behavior. As seen in Table 5, the machine 

learning approach consistently yields higher and 

more stable Rsh values than the optimization-

based methods. For instance, RTC France (560.2 Ω) 

and Waaree (548.1 Ω) predicted by ML closely 

match expected high-resistance behavior, whereas 

optimization algorithms tend to underestimate. 

This demonstrates that the ML model better 

preserves the physical realism of PV devices and 

provides more reliable estimates of leakage effects 

across different manufacturers. 

The results for Rsh indicate from Figure 10 below 

shows that the ML model consistently provides 

higher and more stable shunt resistance values 

compared to WOA, PSO, and GA. For instance, RTC 

France (560.2 Ω) and Waree (548.1 Ω) predicted 

by ML are closer to Expected high-resistance 

behavior, while optimization methods tend to 

underestimate. This demonstrates the model’s 

robustness in preserving the physical realism of PV 

device characteristics. 
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Figure 10: Graph of Actual Vs Predicted Growth Curve for Rsh 

 

Table 6: Comparison of Io (A) Across Algorithms 
Company ML Prediction WOAPSO PSO GA 

Adani 1.85e-6 2.10e-6 2.25e-6 2.40e-6 

Waree 1.92e-6 2.18e-6 2.32e-6 2.48e-6 

Vikram 1.78e-6 2.04e-6 2.19e-6 2.35e-6 

RTC France 1.99e-6 2.25e-6 2.40e-6 2.56e-6 

Canadian Solar 1.87e-6 2.13e-6 2.28e-6 2.43e-6 

 

Table 6 presents a comparison of the reverse 

saturation current (I₀) values estimated by the 

proposed machine learning model and three 

optimization-based algorithms WOA, PSO, and GA 

across five photovoltaic companies. Since I₀ 

directly influences diode losses and overall PV 

performance, its accurate estimation is essential 

for reliable modelling. 

From Table 6, it is clear that the ML approach 

consistently predicts lower and more physically 

realistic I₀ values than optimization methods. For 

example, Adani (1.85×10⁻⁶ A) and Vikram 

(1.78×10⁻⁶ A) predicted by ML remain closer to 

expected ranges, while optimization-based 

methods tend to overestimate. This highlights the 

precision and reliability of the ML framework in 

capturing such sensitive diode parameters and 

reinforces its ability to provide more trustworthy 

inputs for PV performance prediction. 

 

 
Figure 11: Graph of Actual Vs Predicted Growth Curve for I0 

 

As shown in Figure 11, for I₀, the ML model 

consistently predicts lower and more physically 

realistic values than WOAPSO, PSO, and GA. For 

example, Adani (1.85×10⁻⁶ A) and Vikram 

(1.78×10⁻⁶ A) from ML remain closer to expected 

ranges, while optimization-based methods tend to 
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overestimate. This highlights the precision and 

reliability of the ML approach in capturing 

sensitive diode parameters. 

Table 7 provides the predicted diode ideality factor 

(n) using ML, WOAPSO, PSO, and GA across five 

companies. The factor reflects junction quality and 

plays an essential role in shaping the I–V curve. 

From Table 7, ML delivers stable and physically 

consistent values of n, such as 1.29 for RTC France 

and 1.31 for Waaree, which fall well within 

expected ranges. Optimization-based estimates, by 

contrast, tend to be slightly inflated. This 

consistency further validates ML as a more reliable 

predictor of diode junction characteristics. 
 

Table 7: Comparison of n (Ideality Factor) Across Algorithms 
Company ML Prediction WOAPSO PSO GA 

Adani 1.34 1.40 1.42 1.45 

Waree 1.31 1.37 1.39 1.42 

Vikram 1.33 1.39 1.41 1.44 

RTC France 1.29 1.36 1.38 1.41 

Canadian Solar 1.32 1.38 1.40 1.43 

 

 
Figure 12: Graph of Actual Vs Predicted Growth Curve for n 

 

Table 8: Statistical RMSE Comparison (Mean ± Std) Over 30 Runs 
Algorithm Mean Standard Deviation 

GA 0.184 0.012 

PSO 0.132 0.008 

WOA 0.118 0.006 

ML Proposed 0.091 0.003 

 

Figure 12 compares the actual and predicted 

growth curves of the diode ideality factor (n) 

obtained using the proposed machine learning 

approach. The results indicate that the ML model 

consistently yields lower and more stable values of 

n compared to WOAPSO, PSO, and GA. For instance, 

RTC France (1.29) and Waaree (1.31) predicted by 

the ML model lie well within the expected physical 

range for silicon-based photovoltaic cells, whereas 

optimization-based methods tend to slightly 

overestimate the ideality factor. This behavior 

demonstrates the stability, accuracy, and physical 

reliability of the proposed ML-based parameter 

estimation framework. 

The comparative results for the diode ideality 

factor n, as summarized in Table 8, indicate that 

the proposed machine learning (ML) approach 

consistently yields lower and more physically 

realistic values than optimization-based methods. 

The ML-predicted values for RTC France and 

Waree fall within the expected physical range for 

silicon-based PV cells, whereas WOAPSO, PSO, and 

GA tend to slightly overestimate n. The minimal 

variation observed across all manufacturers 

demonstrates the strong stability and 

generalization capability of the ML model in 

accurately capturing diode junction 

characteristics. 
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Conclusion 
Results from this work show that the proposed 

machine learning framework provides improved 

accuracy and greater physical consistency in 

estimating parameters compared to traditional 

optimization algorithms, as indicated by lower 

error metrics and superior coefficient of 

determination values across all datasets. The 

stability of the models obtained for five different 

PV manufacturers under varying irradiance and 

temperature conditions provides further evidence 

of the framework’s robustness and versatility, 

suggesting it can be reliably generalized across 

different conditions in practice. The results 

represent a significant advance as they 

demonstrate that machine learning avoids the 

tedious problems historically associated with 

iterative optimization techniques, such as slow 

convergence, problematic initialization, getting 

trapped in local minima, and it provides rapid and 

scalable extraction of parameters. At the same 

time, the limitations of this work remain clear, 

particularly as the training employed synthetic and 

noisy datasets and not purely field-acquired 

measurements. Future work should validate 

training with experimental I–V curves to improve 

applicability. Still, the results strongly suggest that 

predictive algorithms can complement or, in many 

situations, surpass legacy algorithms, providing a 

basis for new avenues in PV modeling, real-time 

monitoring, and performance assessment. 
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