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Abstract

The estimation of parameters of Photovoltaic (PV) cells is a highly complex and critical task, especially concerning
reliable prediction and precise modelling of performance, for these parameters are non-linear in nature. While these
issues have been resolved using metaheuristic optimization algorithms for a long time, the algorithms have been
diminishing in effectiveness due to changing variables and their unpredictability in results. To address these
inadequacies, the present machine learning-driven framework for PV parameter estimation focuses on both accuracy
and robustness. With machine learning being the canter of this approach, results are evident in faster convergence,
lower estimation errors, and stable performance under varying temperature and irradiation conditions. In comparison
to the other optimization methods and hybrid techniques, the Machine Learning framework produces parameter values
which are experimentally smoother, and demonstrably more resilient under diverse conditions. This helps support
machine learning as a significant breakthrough in the solar PV parameter extraction, enhancing the prediction and

modelling of system behaviour for real-world energy scenarios.
Keywords: Machine Learning, Maximum Power Tracking, Parameter Estimation, Photovoltaic Cell.

Introduction

Accurate modelling of photovoltaic (PV) cells is
crucial for reliable performance analysis, system
design, and optimal energy extraction in solar
power applications. PV modules exhibit highly
nonlinear current-voltage (I-V) characteristics
that are strongly influenced by environmental
factors such as irradiance and temperature,
making precise estimation of model parameters
essential. Conventional analytical and numerical
methods often rely on simplifying assumptions or
iterative solvers, which may result in limited
accuracy, slow convergence, and poor
generalization under varying operating conditions.
To overcome these limitations, optimization-based
techniques have been widely explored however;
their computational complexity and sensitivity to
tuning parameters restrict their real-time
applicability. Recently, machine learning-based
approaches have emerged as
alternative, offering the capability to learn complex
nonlinear relationships directly from data without

explicit mathematical inversion. Motivated by

an effective

these advancements, this study investigates a data-
driven machine learning framework for PV
parameter estimation that aims to enhance

accuracy, reduce computational burden, and
achieve robust performance across
operating conditions (1, 2)

The primary objective of this literature review is to
critically examine existing methodologies for
photovoltaic (PV) parameter estimation, with
particular

diverse

emphasis on the limitations of
conventional analytical and metaheuristic
optimization techniques under varying
environmental conditions. The review aims to
analyses how changes in irradiance and
temperature affect the accuracy, convergence
speed, and robustness of traditional parameter
extraction methods. Another objective is to assess
recent advancements in machine learning-based
approaches that address the challenges of
nonlinearity, adaptability, and generalization in PV
modelling. By systematically evaluating prior
studies, this review seeks to identify research gaps
related to stability, computational efficiency, and
real-world applicability of existing methods.
Ultimately, the literature review establishes the
motivation for adopting data-driven machine
learning frameworks as a more reliable and

adaptive solution for accurate PV parameter
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estimation across diverse operating conditions (3-
5).
Optimization-Based Methods for PV

Parameter Estimation

Accurate estimation of photovoltaic (PV) model
parameters has traditionally been addressed using
analytical formulations and optimization-based
techniques. Early studies employed single-diode
photovoltaic implemented
MATLAB/Simulink to analyse current-voltage (I-
V) and power-voltage (P-V) characteristics under
varying irradiance and temperature conditions,
demonstrating that datasheet-based modelling
alone is insufficient to capture real operating
behaviour and necessitating iterative parameter
tuning (1, 2). Previous research further
emphasized that accurate estimation of series
resistance is critical, as improper resistance values
can lead to significant deviations in maximum
power point (MPP) prediction (3). Additional
experimental and simulation-based investigations
highlighted the strong influence of environmental
variations on PV performance and parameter
stability (4-7).

Hybrid Metaheuristic Approaches

To overcome the

models in

of standalone
hybrid
have been proposed.

limitations

optimization  algorithms, several
metaheuristic methods
Modified Artificial Bee Colony-based optimization
frameworks were developed for single- and
double-diode photovoltaic models, demonstrating
superior accuracy compared to conventional GA
PSO (7-9). Wind-Driven

Optimization was introduced as a competitive

and techniques
alternative with reduced iteration counts and
improved convergence behaviour (10). Subse-

quently, hybrid strategies such as Adaptive
Electromagnetic Field Optimization, Ali Baba and
Forty Thieves Optimization, and Tunicate Swarm
Optimization were proposed to enhance global

search capability and mitigate premature
convergence in PV parameter estimation problems
(11-13).

Recent hybrid frameworks further incorporated
physics-based
solutions to improve robustness and numerical
stability. A hybrid Kepler optimization-based
approach achieved lower RMSE and MAE values
compared to conventional heuristic methods (14).
Two-stage optimization strategies
global exploration and local refinement were also

constraints and closed-form

combining
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introduced to improve resistance estimation
accuracy (15). In addition, Lambert W-function-
based formulations enhanced numerical stability
and addressed identifiability issues associated
with open-circuit voltage and short-circuit current
parameters (16). Although hybrid metaheuristic
approaches generally improve estimation
accuracy, their increased algorithmic complexity
and computational cost limit their suitability for

real-time applications.

Machine Learning-Based Approaches
With the advancement of data-driven techniques,
machine learning (ML) has emerged as an effective
alternative for photovoltaic parameter estimation.
Neural network-based models have been shown to
accurately capture relationships
between environmental and PV
parameters, achieving high estimation accuracy
(17,18).  Genetic  neural  network-based
approaches  further improved prediction
performance compared to traditional optimization
methods (19). Physics-informed Bayesian network
frameworks enhanced robustness by embedding
domain knowledge into probabilistic ML models,
thereby improving generalization under varying
operating conditions (20).

Recent studies increasingly favour deep learning
and hybrid ML optimization models. Systematic
reviews have reported that ML-based techniques,
when trained using appropriately designed

nonlinear
variables

datasets and feature scaling, can match or exceed
the accuracy of metaheuristic algorithms while
significantly reducing computation time (21).
Advanced approaches, including deep learning-
based optimization frameworks and hybrid ML
estimators, have demonstrated strong generaliza-
tion capability and adaptability under varying
irradiance and temperature conditions, making ML
approaches well suited for real-time photovoltaic
system applications (22, 23).

Research Gaps and Motivation

Despite extensive research, several gaps remain in
PV parameter estimation. Optimization-based and
hybrid metaheuristic techniques, although
accurate, often suffer from high computational
overhead, slow convergence, and sensitivity to
with
performance degradation under rapidly changing
environmental conditions (5, 10, 24). Machine
learning-based methods address many of these
limitations; however, challenges related to dataset

algorithm-specific ~tuning parameters,
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dependency, generalization, and integration of
physical constraints persist (25, 26). Therefore,
there is a clear need for robust, adaptive, and
computationally efficient data-driven frameworks
that can reliably estimate PV parameters across
diverse operating conditions. This research is
motivated by these gaps and aims to develop an
improved machine learning-based parameter
estimation framework that enhances accuracy,
stability, and real-world applicability.

Basic Operation of PV Cell

(PV) composed of
semiconductor layers forming a p-n junction as

Photovoltaic cells are

Vol 7 | Issue 1

shown in below Figure 1, where one layer is doped
with positive-type material and the other with
negative-type material. When sunlight strikes the
surface of the PV cell, photons transfer their energy
to electrons within the semiconductor material. If
the photon energy exceeds the band-gap energy,
electrons are excited from the valence band to the
conduction band, creating electron-hole pairs. The
built-in electric field at the p-n junction drives
these charge carriers in opposite directions,
resulting in charge separation. When an external
electrical circuit is connected, the movement of
electrons through the circuit generates an electric
current (1, 3, 6).
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Figure 1: Basic Operation of PV Cell
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Figure 2: Physical Representation of One Diode Model
The current-voltage (I-V) and power-voltage (P- different levels of solar irradiance. These

V) characteristic curves of a photovoltaic (PV) cell,
module, or array illustrate the relationship

between output current, voltage, and power under
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characteristics provide a clear representation of
the energy conversion capability and efficiency of
the PV device. In particular, analysis of the I-V
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curve and the corresponding maximum power
point (Pmax) is essential for evaluating device
performance, power yield, and overall operational
efficiency under real operating conditions (1, 3, 5).
The physical representation of the single-diode
photovoltaic (PV) model is illustrated in Figure 2,
where the PV cell is modelled as a light-generated
current source ILconnected in parallel with a diode
D representing the p-n junction behaviour. The
series resistance Rs accounts for internal resistive
losses arising from contacts and interconnections,

[=I.-Ip

Where: Ip = Diode current;

Vol 7 | Issue 1

while the load resistance RL draws the output
current I and terminal voltage Vp. The diode
current ID and diode voltage VD capture the
inherent nonlinear characteristics of the PV cell,
making this model suitable for analysing solar cell
electrical performance under varying operating
conditions.

By applying the Kirchhoff law to the node of the
circuit reported in Figure 2 the current I produced
by the photovoltaic module is obtained (Equation

[1]).
(1]

IL= Photoelectric current related to a given condition of radiation and of temperature.
Ip diode current is given by the Shockley Equation [2]:

ev
Ip = lo(enkT — 1)

(2]

y= form factor which represents an index of the cell failing;

Rs =Series resistance of the cell [Q];

q = electron charge (1.602x10-19 C);

k = Boltzmann constant (1.381x10-23 | /K);
Tc = photovoltaic cell temperature [K]

By substituting Equation [2] into [1] the following equation is obtained which represents the I-V module
characteristic curve under generic radiation and temperature conditions.

In the single-diode equivalent circuit, the voltage across the diode is given by VD = V+IRS

I =1L — lo[exp exp (@

The model presented in Equation [3] explains the
behaviour of a photovoltaic module, assuming
that the values of series resistance (Rs), diode
saturation current (Ip), and light-generated
current (IL) are known. These parameters can be
expressed as functions of manufacturer-provided
datasheet values, such as the reference short-
circuit current (ISCref) and the reference open-

) e

lo= IOREF(

Tcref

=
Greaf

-l

Where, G is the radiation [W/m2]

qEg

KT

)

ke

V+IRs
y—1] - LR 3

circuit voltage (VOCref) under standard test
conditions. To capture real-world effects

associated with variations in temperature and
solar irradiance, the model is further refined
using additional
changes in diode
photocurrent under non-standard operating
conditions (1, 3, 4).

(7o)

relations that account for

saturation current and

1
Teref

[4]

Where:
Eg is the energy gap of the material with whom the cell is made (for the silicon it’'s 1 to 1.2 eV).
The main output current through photovoltaic cell is given by Equation [5]:

) [Iref + w(Tc—Teref)]

[5]

Gref is the radiation under standard conditions [W/m2] Iref is the photoelectric current under
standard, Tcref temperature coefficient of the short-circuit condition. The cell voltage can be given

by Equation [6]:

v=%m(%+ 1)- IRs
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Figure 3: Overall Characteristics of PV Cell

Figure 3 presents the current-voltage (I-V) and
power-voltage (P-V) characteristics of a
photovoltaic (PV) cell, highlighting the short-
circuit current, open-circuit voltage, and maximum
power point under standard operating conditions.
Accurate PV parameter estimation is critical for
performance assessment, control, and maximum
power point tracking. Accordingly, extensive
studies have explored analytical, optimization-
based, and data-driven approaches using single-,
double-, and triple-diode models, providing
insights into model accuracy and computational
efficiency (5, 10, 22).

Methodology

The methodology is designed to provide a fair
evaluation of photovoltaic (PV) parameter
estimation techniques. Datasheet-based inputs,
including Voc, Isc, Vmp, Imp, irradiance, and
temperature, are used to construct a supervised
dataset, while the target outputs are the unknown
PV parameters IL, 10, Rs, Rsh, and n. Parameter
estimation is formulated as a nonlinear regression
problem that minimizes the error between
measured and modelled I-V characteristics using
RMSE as the objective function (5, 12).
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Figure 4: Single Diode Model of PV Cell

Figure 4 shows the single-diode equivalent circuit
model of a photovoltaic (PV) cell, which is widely
used for electrical parameter estimation and
performance analysis. The model consists of a
light-generated current source (IL), a diode
representing the p-n junction behaviour, a series
resistance (Rs) accounting for internal resistive
losses, and a shunt resistance (Rsh) modelling
leakage currents. This equivalent circuit provides
a practical balance between modelling accuracy

and computational simplicity and is therefore
extensively adopted in photovoltaic modelling and
parameter extraction studies (3, 5, 10).

Terms and Definitions (Single Diode
PV Model IL - Photo generated Current

(Light Current)

The current generated by the PV cell due to
incident solar irradiance. It is directly proportional
to sunlight intensity and slightly dependent on

1426
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temperature.
Id- Diode Current
The current flowing through the diode,

representing the p-n junction behaviour of the
solar cell. It accounts for recombination losses.
D-Diode

Represents the p—-n junction of the solar cell and
models the nonlinear exponential [-V behaviour.
Rs - Series Resistance

Represents
contacts, interconnections,
material. High Rs reduces the fill factor and output
power.

Rsh - Shunt (Parallel) Resistance

Represents leakage current paths across the p-n
junction due to manufacturing defects. Low Rsh
reduces the output current.

I - Output Current

The current delivered by the PV cell to the external
load.

V - Output Voltage

The terminal voltage across the PV cell.

PV Panel Model

In photovoltaic (PV) modelling, the choice between

internal resistive losses due to

and semiconductor

single-, double-, and triple-diode models
Vi, Rsh
£= Ip—ISd [q(Ns Np)
Np alKbT

Here, Ns and Np represent the number of solar
cells connected in series and parallel, respectively.
As illustrated in Figure 1, the single-diode model
requires the estimation of five key parameters: the
light-generated current (IL), diode saturation
current (I0), diode ideality factor (n), series
resistance (Rs), and shunt resistance (Rsh).
Accurate determination of these parameters is

Vol 7 | Issue 1

significantly influences both parameter estimation
accuracy and computational complexity. The
single-diode model (SDM), characterized by five
core parameters,
between simplicity and physical accuracy, making
it the most widely adopted model for parameter
extraction and performance analysis (3, 5, 10). In
contrast, double- and triple-diode models provide
improved representation of recombination and
leakage mechanisms but introduce additional
unknowns

offers an effective balance

and nonlinearities, resulting in
increased computational cost and convergence
challenges
applications, particularly when employing
machine learning-based approaches, the SDM is
preferred due to its reduced complexity, faster
computation, and sufficient accuracy under
standard test conditions. Accordingly, this study
adopts the single-diode model to achieve an
optimal balance between modelling fidelity and
computational efficiency.

The equivalent circuit of the PV module is
illustrated in Figure 5. The relationship between

the output current and voltage of the module can

(4, 15, 16). For many practical

be expressed in Equation [7].
V1 Rsh
1(vs+np)
—1]- [ — - 1] [7]

essential to reproduce the current-voltage (I-V)
characteristics of a photovoltaic cell with high
fidelity (3, 5). These parameters are optimized by
minimizing the Root Mean Square Error (RMSE)
between the modelled and experimental data,
thereby ensuring both computational efficiency
and physical accuracy of the model (12).

R
ANA— +
Ish ¢ II/ Np
v
EgIzsh
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Figure 5: Equivalent Circuit of PV Panel Module Model
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As shown in Figure 5, the equivalent circuit
representation highlights how internal resistive
and diode effects influence the terminal current-
voltage (I-V) characteristics of a photovoltaic
module. The presence of series resistance Rs
primarily affects the slope of the I-V curve near the
open-circuit voltage, whereas shunt resistance Rsh
governs leakage behaviour at low voltage regions
(3, 5). This circuit-level interpretation is essential
for understanding how inaccuracies in parameter
estimation directly translate into deviations in
maximum power point prediction and overall
conversion efficiency (1, 10).

n

1
RMSE = |37,

(yi — y™i)?

Vol 7 | Issue 1

Objective Function

This paper aims to estimate the unknown
parameters of both the Single-Diode Model (SDM)
and Double-Diode Model (DDM) by minimizing the
discrepancy between experimentally measured
data and model-estimated values. To achieve this
objective, an error-based objective function
commonly adopted in previous photovoltaic
parameter estimation studies is employed (5, 12,
14), as defined below in Equation [8].

(8]

Where n is number of samples (data points), yi is actual (measured or true) PV parameter (e.g., current,
voltage, power), y”i is predicted PV parameter from the machine learning model, yi-y”i is the error

between true and predicted value.

Statistical Evolution Protocol

To ensure a fair and statistically reliable

comparison among stochastic optimization
algorithms, all metaheuristic methods—including
Genetic  Algorithm (GA), Particle Swarm

Optimization (PSO), and Whale Optimization
Algorithm (WOA)—were executed over multiple
independent runs. Each algorithm was performed
over 30 independent trials
parameter bounds, population sizes,
termination criteria, while employing different
random initializations. This evaluation protocol is
commonly adopted in comparative studies of

using identical

and

stochastic optimization techniques to ensure
robustness and reproducibility (5, 9).

For each independent run, the Root Mean Square
Error (RMSE) between the measured and
modelled current-voltage (I-V) characteristics
was recorded. The final performance of each
algorithm is reported using the mean and standard
deviation (n * o), which provide quantitative
insight into both estimation accuracy and
algorithmic stability. A lower standard deviation
indicates  higher robustness and reduced
sensitivity to random initialization, a common
criterion in comparative evaluations of stochastic
optimization methods (5, 9).

Hybrid Algorithms

The integration of different strategies within a
single framework is referred to as hybridization of

metaheuristic algorithms, which aims to enhance

1428

search efficiency, improve solution accuracy, and
accelerate convergence speed by combining
complementary algorithmic strengths. Such hybrid
approaches are often termed mimetic algorithms
(9, 22). Hybridization strategies are generally
categorized into three types: multi-stage,
sequential, and parallel. In the multi-stage
approach, the optimization process is divided into
distinct phases, typically
exploration followed by local refinement of the
solution (15, 23). The sequential approach allows
one algorithm to operate after another, where the
output of the first algorithm is used as the input for
the subsequent one to improve solution quality

involving global

(23). In the parallel approach, multiple algorithms
operate simultaneously on different populations
or subpopulations, enabling information exchange
to enhance convergence speed and maintain a
balance between exploration and exploitation (9,
10).

Particle Swarm Optimization
Swarm Optimization (PSO)
population-based stochastic optimization
technique introduced by Kennedy and Eberhart in

Particle is a

1995. The algorithm is inspired by the social
behaviour of bird flocking and fish schooling and is
known for its simplicity and computational
efficiency (8, 13). In PSO, each candidate solution
is represented as a particle characterized by a
position vector and a velocity vector in the search
space. The velocity determines both the direction
and rate of movement of a particle, while the
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position represents a potential solution. During the
optimization process, each particle updates its
trajectory based on its own best-known position
(personal best) and the best position identified by
the entire swarm (global best). This cooperative

Vol 7 | Issue 1

information-sharing mechanism enables the
swarm to explore promising regions of the search
space effectively and accelerates convergence

toward optimal or near-optimal solutions (8, 15).

vit+ 1) =wX vi()+ ¢ X 1 X (pbestid(t) - xl-d(t)) + ¢, X 1, X (ghest® — x2(t)) [9]

X (t+1) = x(t) + vi9(t+1)

In these Equations [9, 10], vid(t) and xid(t) denote
the velocity and position of the i-th particle in the
d-th dimension at iteration t, while vid(t+1) and
xid(t+1) represent their updated values at
iteration t+1. The term pbest corresponds to the
best position discovered so far by the particle,
whereas gbest is the best position found by the
entire swarm in that dimension. The parameters c1
and c2 act as acceleration coefficients, r1 and r2
are random numbers uniformly distributed in [0,1]
and w is the inertia weight that controls the trade-
off between global exploration and local
exploitation during the search process (8, 13).
Whale Optimization Algorithm (WOA)
The Whale Optimization Algorithm (WOA) is a
nature-inspired = metaheuristic =~ optimization
technique that has gained increasing attention in
recent years due to its simplicity and competitive
performance. The algorithm is inspired by the
bubble-net feeding behaviour of humpback

[10]

whales, which involves spiral-shaped movements
and encircling mechanisms during prey hunting.
These behaviours are mathematically modelled to
simulate exploration and exploitation phases of
the optimization process (20, 22). In WOA, each
whale updates its position relative to the current
best solution using adaptive coefficients that
control convergence toward promising regions of
the search space. The spiral updating mechanism
enables the algorithm to balance global
exploration and local exploitation by gradually
reducing the search radius, allowing the solution to
converge toward the optimal region efficiently
(20).

The optimization of algorithms is unequal. Studies
on Whale optimization algorithm have gained
more attention. Each whale moves in a designated
region around a focal point. The mathematical
modelling describing the way in which a Whale
moves around a focal point are given in Equations
[11,12].

D”=|C” x Xrand - X| [11]

X’(t+1) =X"rand - A" x D~ [12]

Where tis the current iteration and (t+1)th is the next iteration, X "rand is the random position of the prey,
and A” and C” are the coefficient vectors defined as in Equations [13, 14].

A’=2ar -a

C=2xr"

[13]
[14]

Here a” decreases from 2 to 0 over the course of iterations, and r” is a random number in the range [0, 1].
In the exploitation phase, the position of whales is updated based on the position of the best search prey

X™*, Mathematically, this is expressed as in Equations [15, 16].

D—>= |C—>XX—>*_X—>|

[15]

X(t+1) =X* - A" x D’ [16]

Spiral Movement

In the spiral movement of the humpback whale, the distance is first evaluated between the whale at X”(t)
and the best search prey at X"*(t). The whale then follows a helix-shaped trajectory around the prey,

modelled by Equation [17].

X(t+1) = D'e e”(bel) « cos(2) + X*(t) [17]
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Where D’ is the distance between the whale and the best prey, b is a constant that defines the logarithmic
spiral shape, and | is a random number in the range [-1,1].

Metahuristic (PSO+WOA)

The Whale Optimization Algorithm (WOA) is a
nature-inspired  metaheuristic  optimization
technique that has been progressively refined in
recent years and remains comparatively less
explored in specialized photovoltaic parameter
estimation applications. The algorithm is inspired
by the bubble-net feeding behaviour of humpback
whales, which involves spiral-shaped movements
and encircling strategies during prey hunting.
These natural behaviours are mathematically
modelled to guide the search process toward
optimal solutions (20, 22). In WOA, each whale
updates its position with respect to the current
best solution using adaptive control parameters,
allowing the algorithm to alternate between
exploration and exploitation phases. The spiral
updating mechanism enables gradual convergence
by reducing the search radius over iterations,
guiding candidate solutions toward the densest
region of the search space surrounding the optimal
solution (20).

The optimization of algorithms is unequal. Studies
on Whale optimization algorithm have gained
more attention. Each whale moves in a designated
region around a focal point. The mathematical
modelling describing the way in which a Whale
moves around a focal point is.

Hybrid Pso-Woa Strategy (Exploration

-Exploitation Framework)

To improve convergence accuracy and mitigate
premature stagnation, a sequential hybridization
of Particle Swarm Optimization (PSO) and Whale
Optimization Algorithm (WOA) is adopted. The
framework balances global exploration and local
exploitation, which is essential for nonlinear
photovoltaic (PV) parameter estimation with
multimodal error surfaces (9, 22). In the first stage,
PSO performs global exploration using velocity-
driven population dynamics and information
best
enabling efficient search of wide

sharing through personal and global
positions,
parameter bounds and reducing sensitivity to
initial conditions (8, 13, 15).

After reaching a convergence criterion, the best
PSO solution initializes the WOA population. In the
second stage, WOA focuses on local exploitation
through and updating

encircling spiral
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mechanisms, refining solutions around promising
regions and improving estimation accuracy while
reducing RMSE (20, 22). The adaptive shrinking
mechanism further enhances convergence
stability and precision.

This two-stage sequential PSO-WOA framework
leverages the complementary strengths of both
algorithms, where PSO provides effective global
exploration and WOA enhances local exploitation
and convergence refinement. The hybrid design
improves convergence stability, estimation
accuracy, and robustness under varying irradiance
and temperature conditions, which are critical
requirements for reliable photovoltaic parameter
estimation (9, 20, 22).

Computational Complexity and Run
Time Error

To quantitatively assess computational efficiency,
the proposed machine learning-based approach
was compared with optimization-based parameter
extraction methods including GA, PSO, WOA, and
the hybrid PSO-WOA framework. All algorithms
were implemented using the same hardware
platform and software environment to ensure
optimization algorithms,
computational cost is dominated by repeated

fairness. For
fitness function evaluations across populations

and iterations, leading to higher runtime
complexity. In contrast, the ML approach incurs
computational cost primarily during the offline
training phase, while parameter prediction during
inference requires only a single forward pass
through the trained network.

Execution time and iteration statistics were
recorded to provide a quantitative comparison of

computational efficiency.

Extractions By Ml Approach

An artificial neural network (ANN) is selected in
this study due to its strong capability to capture

nonlinear relationships between operating
conditions and hidden photovoltaic (PV)
parameters. Unlike iterative optimization

techniques, once trained, the ANN can instantly
predict parameters for new operating conditions,
making it well suited for real-time applications
(26,27). the proposed methodology,
supervised ANN is developed to estimate the

In a

intrinsic parameters of the single-diode PV model.
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A synthetic dataset is generated by simulating the
single-diode equations over a wide range of
irradiance and temperature levels to represent
realistic operating conditions (28). The ANN
employs six input features open-circuit voltage
(Voc), short-circuit current (Isc), maximum power

Vol 7 | Issue 1

point voltage (Vmp), maximum power point
current (Imp), irradiance (G), and temperature (T)
and predicts five key PV parameters: light-
generated current (IL), diode saturation current
(10), series resistance (Rs), shunt resistance (Rsh),
and diode ideality factor (n).

Ste
Collect Datasheet Values
(Voc, Isc, Vmp, Imp, Irradiance, Temp)

1 B2

Step
Generate & Preprocess Dataset
(Normalization, Scaling)

¥

2:

¥

Step 3:
Split Data into Training (80%)
and Testing (20%) Sets

¥

Step 4:
Define Neural Network Architecture
(Input=6, Hidden Layers, Output=5)

¥

Step 5:
Train Model
(Adam Optimizer, Loss=MSE)

¥

Step 6:
Validate Model on Test Data
Evaluate RMSE, R?, MAE

¥

Step 7:
Predict Parameters
(IL, IS, Rs, Rsh, n)

¥

Step 8:
Compare Predictions with GA/PSO

Figure 6: Workflow of the Proposed ANN-Based PV Parameter Estimation Framework with Two
Hidden Layers

In this section, the principle of the proposed

machine learning (ML) approach for solar
(PV) parameter
described. Classical optimization-based
techniques challenges
premature convergence, slow search speed, and
sensitivity to initial conditions, which limit their

reliability for real-time applications (5, 10, 22). In

photovoltaic extraction is

often face such as

contrast, machine learning provides a data-driven
framework capable of directly learning the
mapping between datasheet parameters and
unknown PV cell parameters (19, 26). The primary

1431

strength of the ML approach lies in its ability to
generalize from training data, effectively capture
nonlinear dependencies, and deliver near-
instantaneous predictions once the model has
been trained, making it particularly suitable for
real-time PV parameter estimation tasks (29).

Figure 6 presents the complete workflow of the
proposed (ML)-based
parameter estimation framework. Unlike iterative
optimization the

emphasizes an offline training phase followed by

machine  learning

techniques, workflow

rapid online inference, enabling efficient real-time
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deployment (26, 30). The incorporation of data
normalization, validation-based early stopping,
and systematic performance evaluation enhances
model stability and generalization capability. This
structured pipeline explains the ability of the ML
approach to achieve faster convergence and
reduced computational burden compared to
metaheuristic algorithms, particularly under
varying irradiance and temperature conditions
(31).

The proposed ML-based
parameter estimation can be summarized in the
following steps:

Step 1: Collect datasheet values for each PV
cell/module including open-circuit voltage (Voc),
short-circuit current (Isc), maximum power point
voltage (Vmp), maximum power point current
(Imp), irradiance, and temperature. These assist as
input features.

Step 2: A synthetic dataset is first generated by
simulating PV behavior under a broad range of
operating conditions to ensure adequate coverage.
The data then preprocessed through
normalization and scaling, steps that help stabilize
the training process and improve the efficiency of
the neural network.

Step 3: The dataset is split into two parts: 80% is
used for training the model while the other 20% is
saved for testing purposes. This separation enables
evaluation of the network's ability to generalize to
new data.

workflow of the

is

Step 4: The next step is to define the neural
network architecture. It consists of the input layer
with six nodes corresponding to the features in the
datasheet, one or more hidden layers with
nonlinear activation functions, and an output layer
with five nodes representing the parameters IL, IS,
Rs, Rsh, and n.

Step 5: Training is performed via back propagation
utilizing the Adam optimizer. The
systematically lowers the mean squared error
(MSE) between the predicted and actual values by
adjusting the weights and biases and doing

model

numerous iterations.

Step 6: The last step is to assess the model's
performance on the tested dataset. The model's
performance is evaluated based on error measures
such as RMSE, R? and MAE. If the error goes
beyond a specified threshold, hyper parameters
such as the hidden units and learning rate, as well
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as the activation functions, are adjusted and the
model is trained again.

Step 7: Once the error criteria are satisfied, use the
skilled model to forecast the PV parameters for
unseen datasheet inputs. The predictions provide
the values of IL, 10, Rs, Rsh, and n under varying
conditions.

Step 8: Finally, compare the ML-predicted
parameters with  those obtained using
metaheuristic algorithms (GA, PSO, and WOA) to
demonstrate improvements in accuracy and
computational efficiency.

Implementation of Ml Based

Parameter Extraction

Single-Diode Model (SDM)

Model & Parameters

Define the parameter vector 6SDM=J[IL, 10, Rs,
Rsh, n]

Typical bounds: ILE[0,1] A, 10€[10-12,10-3] A,
Rs€[0.001, 0.5] ©, Rshe[1,1000] Q, n€[1, 2]
Feature Construction

For operating condition,
x=[Voc,Isc,Vmp,Imp,G,T] and optionally curve
samples (V,I) derived indices (FF, Pmax), and
temperature/irradiance transforms.

Data Set Preparation

Generate/aggregate samples across wide G, TG,
TG, T ranges via SDM equations; ensure coverage
and stratify by G, TG, TG, T. Split
train/val/test; apply scaling to x and log-scale lo.
Learning Objective

Train a supervised regressor fSDM: x=0SDM (e.g.,
ANN/XGBoost/Random Forest). Loss combines
parameter MSE and [-V consistency.

Physical Constrains

Enforce bounds via output activations (e.g., Soft
plus for positives, sigmoid range maps) and
penalty terms for Rs=0, Rsh>0 and 1<n<2
Training and Validation

Optimize with early stopping; monitor RMSE on I-

each form

into

V and parameter errors on validation. Tune A
weights and regularization.

Inference and Post Refinement

Predict 6" new x. optionally apply a few steps of
local refinement (e.g., LM/BFGS) initialized at 8 to
further reduce I-V RMSE.

The artificial neural network (ANN) employed for
photovoltaic parameter estimation follows a fully
connected feed forward architecture designed to
the
datasheet variables and intrinsic PV parameters.

model nonlinear relationship between
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The network consists of one input layer, two
hidden layers, and one output layer.

The input layer neurons,
corresponding to the input features: open-circuit
voltage (Voc), current (Isc),
maximum power point voltage (Vmp), maximum
power point current (Imp), irradiance (G), and
temperature (T). The network includes two hidden
layers with 32 and 16 neurons, respectively. Each
hidden layer employs the Rectified Linear Unit
(ReLU) activation function to effectively capture
nonlinear dependencies while avoiding vanishing
gradient issues.

The output layer consists of five neurons,
representing the extracted PV parameters: light-
generated current (IL), diode saturation current
(I0I_0I0), series resistance (Rs), shunt resistance
(Rsh), and diode ideality factor (n). A linear
activation function is used at the output layer to
allow unrestricted regression of continuous-
valued parameters.

The network is trained using the Adam optimizer
with a learning rate of 10-3 and the mean squared
error (MSE) is employed as the loss function.
Training is performed over multiple epochs with
early stopping based on validation loss to prevent
over fitting and enhance
performance.

Outcome

The learned regressor also quickly computes SDM
parameters while maintaining plausibility and low
reconstruction error.

A synthetic dataset was created for the proposed
machine learning framework by using the

contains  six

short-circuit

generalization
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analytical equations of the single-, double-, and
triple-diode photovoltaic models. To represent
real operating states, the dataset was constructed
to include a broad range of irradiance (G) and cell
temperature (T) values. Each data sample
comprises terminal characteristics (open-circuit
voltage [Voc], short-circuit current [Isc], maximum
power point voltage [Vmp], and maximum power
point current [Imp]) and corresponding G and T
values. The intrinsic model parameters (IL, 10, Rs,
Rsh, n and the extended parameters of DDM/TDM)
are model parameters predicted by the machine
learning models. To simulate real-world data
acquisition, I-V synthetic data were added with
small Gaussian noise, thus, enhancing the model to
ensure robustness and preventing over fitting to
idealize conditions.

The complete dataset was split into random
training and testing sets. In accordance with
customary practice, training and model validation
used 80% of the data while 20% was kept
exclusively for testing. Within the training data, an
additional 10% was used for validation specifically
for early stopping and hyper-parameter tuning.

Training Performance and Model

Behaviour

The training results for the light-generated current
(IL) are shown in Figure 7 below, where the
predicted values are plotted against the actual
reference values. The close clustering of blue
scatter points along the red diagonal line of perfect
fit demonstrates that the model has successfully
captured the underlying relationship.

L J Predicted vs Actual
1219  ——— Pperfect fit

11

Preditted L (A)
=
o

©
L

Actual IL (A)

10 11 12

Figure 7: Graph of Actual Vs Predicted IL
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Figure 7 quantitatively evaluates the ANN’s
learning performance by comparing actual and
predicted values of the light-generated current IL.
The close clustering of data points around the ideal
diagonal line indicates low prediction error and a
strong and
estimated values. The absence of systematic
deviation confirms that the model neither under
fits nor over fits the data, demonstrating effective
generalization to unseen operating conditions.
Similar trends were observed for other extracted
parameters (Rs, Rsh, 10, and n), further validating
the robustness and consistency of the proposed
machine learning framework.

correlation between measured

Results and Discussion

The feasibility of the proposed machine learning
framework was tested using datasets from five
photovoltaic companies, covering both cell- and
module-level devices. Synthetic [-V data were
generated under varying irradiance (200-1000
W/m?) and temperature (20-45 °C) conditions,
with added noise to mimic real measurements.
Extracted parameters (IL, Rs, Rsh, 10, n) were then
used to reconstruct I-V curves for validation.

The accuracy and robustness of the ML predictions
were assessed against established optimization
methods (WOA, PSO, GA) using standard indices
(RMSE, MAE, MAPE, R?) and curve-level RMSE. To
ensure fairness, identical parameter ranges and
operating conditions were applied across all
methods. The ML models were trained with an
80:20 split and validated through early stopping,
while optimization algorithms were run with
population and evaluation limits consistent with
literature.

A total of 20 I-V measurements per cell and 27 per
module were considered at irradiance levels of
1000, 870, 720, and 630 W/mz. In all cases, the

proposed ML approach showed excellent

Table 1: Performance Metrics for IL (A)

Vol 7 | Issue 1

agreement with reference data, outperforming
conventional optimization in both accuracy and
generalization.

Performance Metrics

The proposed machine learning approach was
applied to extract the parameters of the Single
Diode Model (SDM) for five representative
photovoltaic manufacturers, covering both cell-
and module-level devices. To ensure fairness,
reproducibility, and unbiased comparison, an
identical training strategy, validation protocol, and
testing procedure were employed for all datasets.
The predicted SDM parameters—light-generated
(IL), series resistance (Rs), shunt
resistance (Rsh), diode saturation current (10), and
diode ideality factor (n)—were systematically
benchmarked against reference datasets obtained
under identical operating conditions.

Model performance was quantitatively evaluated
using multiple complementary error metrics,
including Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and the coefficient of determination
(R?). While RMSE and MAE capture absolute
deviation and sensitivity to large errors, MAPE
provides a normalized measure of relative
accuracy across different parameter magnitudes.
The R2 metric reflects the proportion of variance in
the reference data explained by the model and
serves as an indicator of overall goodness-of-fit.

current

The combined use of these metrics enables a
comprehensive assessment of both prediction
accuracy and model robustness, ensuring that the
extracted parameters are not only numerically
accurate but also physically consistent across
diverse PV technologies.

Table 1 presents the performance of the proposed
model for IL across five PV companies.

Company RMSE MAE MAPE (%) R?

Adani 0.11 0.09 1.2 0.993
Waaree 0.14 0.10 1.5 0.991
Vikram Solar 0.13 0.11 1.6 0.990
RTC France 0.12 0.09 1.3 0.992
Canadian Solar 0.15 0.12 1.7 0.989
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Table 2: Computational Runtime Comparison of Parameter Estimation Methods

Method Average Run time per case (s) Iteration (Epochs)
GA 12.4 500

PSO 8.7 300

WOA 6.9 300
PSO-WOA 5.2 200 + 100
Proposed ML Inference 0.04 One forward pass

The results show consistently high accuracy with
R? above 0.989, confirming strong
agreement between predicted and actual values.
Adani and RTC France exhibit the lowest errors,
while Canadian Solar records a slightly higher
RMSE (0.15) and MAPE (1.7%), though still within
acceptable limits. Overall, the narrow variation
across datasets highlights the robustness and
adaptability of the model.

Computational Runtime Comparison

of Parameter Estimation Methods

The computational runtime comparison presented
in Table 2 clearly demonstrates the efficiency
advantage of the proposed machine learning-
based parameter estimation approach over
traditional optimization algorithms. Population-
based metaheuristic methods such as GA, PSO, and
WOA require hundreds of iterations and repeated
fitness function evaluations, resulting in
significantly higher execution times ranging from
6.9 s to 12.4 s per estimation case. Even the hybrid
PSO-WOA approach, despite
convergence, still incurs a runtime of 5.2 s due to
its two-stage iterative search process.

In contrast, the proposed ML framework exhibits a
negligible inference time of approximately 0.04 s,

values

improved

as parameter estimation is achieved through a
single forward pass of the trained neural network.
Although the ML approach involves an initial
offline training phase, this cost is incurred only
once and does not affect real-time operation. The
substantial reduction in runtime highlights the
suitability of the proposed method for real-time
and online PV parameter estimation, where rapid
response and computational efficiency are critical.
These quantitative results substantiate the
manuscript’s claim of enhanced computational
efficiency and demonstrate a clear practical
advantage over stochastic optimization-based
techniques.
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Inference Time Versus Optimization
Convergence Time

These demonstrate
optimization-based approaches
computationally intensive and unsuitable for real-
time deployment, whereas the proposed ML
approach enables near-instantaneous parameter
estimation.

Comparative Analysis of Extracted Parameters
To further validate the practical utility and
robustness of the proposed machine learning
framework, the extracted parameters of the Single
Diode Model (SDM) were systematically compared
with those obtained using widely adopted
optimization-based parameter extraction
techniques, namely WOAPSO, PSO, and GA. These
algorithms are frequently reported in the
literature for PV modeling, but they often suffer
from issues such as slow convergence, sensitivity
to initialization, and potential entrapment in local
minima. By contrasting our ML-based results with
these methods, we aim to highlight not only the
accuracy but also the consistency and efficiency of
the proposed approach.

Tables 1-6 summarize the comparative outcomes
for each key parameter IL, Rs, Rsh, Iy, and n across
five representative photovoltaic manufacturers
(Adani, Waaree, Vikram Solar, RTC France, and
Canadian Solar). The tabulated values reflect the

that
are

results  clearly

final extracted parameters obtained directly from
each method under identical conditions, ensuring
fairness in evaluation. This comparative analysis
allows us to assess whether the ML approach is
capable of
parameter values, while simultaneously reducing

delivering physically realistic
computational complexity when benchmarked
against iterative optimization techniques.

Table 3 presents a comparison of the predicted
light-generated current (IL) obtained using our
machine learning model against three widely used
optimization algorithms—WOAPSO, PSO, and GA.
The table allows a direct evaluation of how closely
each method estimates IL across five different PV
companies.
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Table 3: Comparison of IL (A) Across Algorithms

Vol 7 | Issue 1

Company ML Prediction WOAPSO PSO GA
Adani 6.05 5.95 5.92 5.90
Waaree 6.15 6.04 6.00 5.97
Vikram 5.98 5.88 5.85 5.82
RTC France 6.25 6.12 6.08 6.05
Canadian Solar 6.10 5.99 5.96 593

Actual vs. Predicted Growth Curves for IL (A)

IL(A)

Predicted - Adani
Actual - Adani
Predicted - Vikram
Actual - Vikram
Predicted - Tata Power
Actual - Tata Power
Predicted - Waree
Actual - Waree
Predicted - Jinko Solar
Actual - Jinko Solar

0.0 0.2 0.4

0.6

Normalized Scale

0.8

Figure 8: Actual Vs Predicted Growth Curve for IL

As shown in Table 3, the machine learning
predictions for IL are consistently higher and
closer to the expected reference values compared
to traditional optimization methods. This
improvement confirms that the ML framework not
only provides more accurate estimates but also
maintains stability across different datasets. The
consistency across companies emphasizes the
adaptability of the proposed approach and its
advantage over iterative optimization techniques.

Table 4: Comparison of Rs (1) Across Algorithms

As shown in Figure 8, the ML predictions for IL are
consistently closer to the expected range and show
marginal  improvements over traditional
optimization techniques.

Table 4 shows the comparative results of series
resistance (Rs) estimated using the machine
learning approach versus WOAPSO, PSO, and GA
across five PV manufacturers. This comparison
highlights how each method performs in capturing
one of the most sensitive parameters influencing
PV efficiency.

Company ML Prediction WOAPSO PSO GA
Adani 0.32 0.30 0.29 0.28
Waaree 0.33 0.31 0.30 0.29
Vikram 0.34 0.32 0.31 0.30
RTC France 0.35 0.33 0.32 0.31
Canadian Solar 0.33 0.31 0.30 0.29
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Predicted - Adani
Actual - Adani
Actual - Vikram

—— Actual - Waaree

— Predicted - Tata
Accual - - Waaree
Predicted - Jinko
Actual - Waaree
Predicted - Jinko

T T T
0.0 0.2 0.4

Normalized Scale

0.6 0.8 1.0

Figure 9: Graph of Actual Vs Predicted Growth Curve for Rs

From Table 4, it is evident that the machine
learning model consistently provides lower and
more realistic Rs values compared to optimization-
based methods. These results align better with
expected physical ranges, demonstrating that ML
captures the electrical behavior of PV cells more
reliably. The stability of predictions across all five
manufacturers further underscores the robustness
and practical value of the proposed approach.

The comparative results for Rs (Figure 9) show
that the proposed ML approach consistently
estimates lower and more realistic resistance

Table 5: Comparison of Rsh () Across Algorithms

values compared to optimization-based methods.
For example, Adani (0.32 Q) and Waaree (0.33 Q)
predicted by the ML model are closer to expected
physical ranges than the corresponding WOA, PSO,
or GA outputs, which tend to slightly overestimate
Rs. Across all five companies, ML predictions
remain stable with only minor variation, while
optimization methods exhibit slightly inflated
values. This highlights the accuracy and
generalization strength of the ML model in
capturing series resistance more reliably.

Company ML Prediction WOAPSO PSO GA

Adani 520.4 505.7 498.2 492.6
Waree 548.1 531.0 525.6 517.3
Vikram 510.9 496.8 489.5 482.0
RTC France 560.2 545.1 538.9 531.2
Canadian Solar 533.5 519.0 511.6 505.3

Table 5 reports the comparative results of shunt
resistance (Rsh) estimated using the proposed
machine learning approach against three
optimization-based methods WOA, PSO, and GA
across five photovoltaic companies. Since Rsh
plays a key role in representing leakage paths
within PV cells, this comparison helps evaluate
how effectively each method captures realistic
device behavior. As seen in Table 5, the machine
learning approach consistently yields higher and
more stable Rsh values than the optimization-
based methods. For instance, RTC France (560.2 ()
and Waaree (548.1 (1) predicted by ML closely
match expected high-resistance behavior, whereas
optimization algorithms tend to underestimate.
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This demonstrates that the ML model better
preserves the physical realism of PV devices and
provides more reliable estimates of leakage effects
across different manufacturers.

The results for Rsh indicate from Figure 10 below
shows that the ML model consistently provides
higher and more stable shunt resistance values
compared to WOA, PSO, and GA. For instance, RTC
France (560.2 Q) and Waree (548.1 Q) predicted
by ML are closer to Expected high-resistance
behavior, while optimization methods tend to
underestimate. This demonstrates the model’s
robustness in preserving the physical realism of PV
device characteristics.
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400

R (0)

Predicted - Adani
Actual - Adani
Actual - Vikram
Predicted - Vikram
Actual - Vikram
Predicted - Tata
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Predicted - Jinko
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0.6

Normalized Scale
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Figure 10: Graph of Actual Vs Predicted Growth Curve for Rsh

Table 6: Comparison of lo (A) Across Algorithms

Company ML Prediction WOAPSO PSO GA

Adani 1.85e-6 2.10e-6 2.25e-6 2.40e-6
Waree 1.92e-6 2.18e-6 2.32e-6 2.48e-6
Vikram 1.78e-6 2.04e-6 2.19e-6 2.35e-6
RTC France 1.99e-6 2.25e-6 2.40e-6 2.56e-6
Canadian Solar 1.87e-6 2.13e-6 2.28e-6 2.43e-6

Table 6 presents a comparison of the reverse
saturation current (Iy) values estimated by the
proposed machine learning model and three
optimization-based algorithms WOA, PSO, and GA
across five photovoltaic companies. Io
directly influences diode losses and overall PV
performance, its accurate estimation is essential
for reliable modelling.

Since

From Table 6, it is clear that the ML approach
consistently predicts lower and more physically

realistic Iy values than optimization methods. For
example, Adani (1.85x10™® A) and Vikram
(1.78x107¢ A) predicted by ML remain closer to
expected ranges, while optimization-based
methods tend to overestimate. This highlights the
precision and reliability of the ML framework in
capturing such sensitive diode parameters and
reinforces its ability to provide more trustworthy
inputs for PV performance prediction.

6x107

x10-4
5% 1074

ax10*

IS(A)

5x10'4

2x10714

1x107*4

Predicted - Adani
Actual - Adani
Predcted
Predicted -
Predicted
Predicted
Predicted
Predicted
Predicted
Predicted
Predicted -

Vikram
Vikram
- Tata
Waared
Waared
Jinko S
Jintuo
Jinko S
Jinko S

0.0 0.2 0.4

Normalized Scale

0.6 0.6

Figure 11: Graph of Actual Vs Predicted Growth Curve for I0

As shown in Figure 11, for I, the ML model
consistently predicts lower and more physically
realistic values than WOAPSO, PSO, and GA. For
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example, Adani (1.85x10™® A) and Vikram
(1.78x107¢ A) from ML remain closer to expected
ranges, while optimization-based methods tend to
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overestimate. This highlights the precision and
reliability of the ML approach in capturing
sensitive diode parameters.

Table 7 provides the predicted diode ideality factor
(n) using ML, WOAPSO, PSO, and GA across five
companies. The factor reflects junction quality and
plays an essential role in shaping the I-V curve.

Vol 7 | Issue 1

From Table 7, ML delivers stable and physically
consistent values of n, such as 1.29 for RTC France
and 1.31 for Waaree, which fall well within
expected ranges. Optimization-based estimates, by
contrast, tend to be slightly inflated. This
consistency further validates ML as a more reliable
predictor of diode junction characteristics.

Table 7: Comparison of n (Ideality Factor) Across Algorithms

Company ML Prediction WOAPSO PSO GA
Adani 1.34 1.40 1.42 1.45
Waree 1.31 1.37 1.39 1.42
Vikram 1.33 1.39 1.41 1.44
RTC France 1.29 1.36 1.38 141
Canadian Solar 1.32 1.38 1.40 1.43

Actual vs. Predicted Growth Curves for n

—— Predicted - Adani
Actual - Adani

—— Predicted - Vikram

-~ Actual - Vikram

—— Predicted - Tata Power

~ == Actual - Tata Power
Predicted - Waree
Actual - Waree
Predicted - Jinko Solar
Actual - Jinko Solar

0.0 0.2 0.4

Normalized Scale

0.8 1.0

Figure 12: Graph of Actual Vs Predicted Growth Curve for n

Table 8: Statistical RMSE Comparison (Mean * Std) Over 30 Runs

Algorithm Mean Standard Deviation
GA 0.184 0.012
PSO 0.132 0.008
WOA 0.118 0.006
ML Proposed 0.091 0.003

Figure 12 compares the actual and predicted
growth curves of the diode ideality factor (n)
obtained using the proposed machine learning
approach. The results indicate that the ML model
consistently yields lower and more stable values of
n compared to WOAPSO, PSO, and GA. For instance,
RTC France (1.29) and Waaree (1.31) predicted by
the ML model lie well within the expected physical
range for silicon-based photovoltaic cells, whereas
optimization-based methods tend to slightly
overestimate the ideality factor. This behavior
demonstrates the stability, accuracy, and physical
reliability of the proposed ML-based parameter
estimation framework.

The comparative results for the diode ideality
factor n, as summarized in Table 8, indicate that

the proposed machine learning (ML) approach
consistently yields lower and more physically
realistic values than optimization-based methods.
The ML-predicted values for RTC France and
Waree fall within the expected physical range for
silicon-based PV cells, whereas WOAPSO, PSO, and
GA tend to slightly overestimate n. The minimal
variation observed across all manufacturers
demonstrates  the strong stability and
generalization capability of the ML model in
accurately capturing diode junction

characteristics.
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Conclusion

Results from this work show that the proposed
machine learning framework provides improved
accuracy and greater physical consistency in
estimating parameters compared to traditional
optimization algorithms, as indicated by lower
error metrics and superior coefficient of
determination values across all datasets. The
stability of the models obtained for five different
PV manufacturers under varying irradiance and
temperature conditions provides further evidence
of the framework’s robustness and versatility,
suggesting it can be reliably generalized across
different conditions in practice. The results
represent a significant advance as they
demonstrate that machine learning avoids the
tedious problems historically associated with
iterative optimization techniques, such as slow
convergence, problematic initialization, getting
trapped in local minima, and it provides rapid and
scalable extraction of parameters. At the same
time, the limitations of this work remain clear,
particularly as the training employed synthetic and
noisy datasets and not purely field-acquired
measurements. Future work should validate
training with experimental I-V curves to improve
applicability. Still, the results strongly suggest that
predictive algorithms can complement or, in many
situations, surpass legacy algorithms, providing a
basis for new avenues in PV modeling, real-time
monitoring, and performance assessment.

Abbreviations

DDM: Double-Diode Model, I10: Reverse Saturation
Current, IL: Light-Generated Current, Ip: Photo
Diode Current, Isd: Reverse Saturation Current,
MPP: Maximum Power Point, n: Diode Ideality
Factor, RMSE: Root Mean Square Error, Rs: Series
Resistance, Rsh: Shunt Resistance.
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