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Abstract 
The exponential elevation of data-oriented technologies and deep learning models in recent years had a major impact 
on several fields, with image data being one of the primary areas of interest. Using a variety of imaging techniques and 
procedures, medical imaging produces images of the human body to diagnose and treat patients. Medical applications 
such as MRI, CT, ultrasound, X-ray, and PET imaging are used in the medical field. The shortage of medical image data 
is an important challenge owing to privacy issues, regulatory constraints, high cost, and the necessity for specialist 
annotations. In medical imaging, the growth and integrity of deep learning (DL) algorithms are hindered by low-quality 
images, limited access to diverse datasets, and a lack of longitudinal data. Augmentation techniques improve training 
data by introducing modifications not found in the original dataset. This bigger dataset reduces overfitting, enhances 
model generalization, and increases accuracy and dependability in practical applications. Within the scope of 
augmentation, the following techniques, such as geometric transformation, neural style transfer, adversarial training, 
data augmentation by GANs, and pixel-level transformation, are the most notable techniques. In medical imaging, the 
enhancement of the model's robustness may be attributed to pixel-level transformations, which include brightness 
modification, alteration of contrast, noise introduction, blurring, grayscale conversion, histogram equalization, gamma 
correction, and saturation. The model’s generalization and robustness are improved by this method. By producing a 
variety of training samples, pixel-level transformations improve performance on unseen data. This paper provides an 
overview of pixel-level transformation-based image augmentation techniques. 

Keywords: Deep Learning, Image Data Augmentation, Medical Image Processing, Over Fitting, Pixel-Level 
Transformation. 
 

Introduction 
Medical imaging techniques are used in medical 

studies, therapeutic interventions, and diagnostic 

imaging (1). Medical imaging allows for the 

generation of images of the inner structure of 

anatomy without the use of invasive methods (2). 

Medical images are used by healthcare 

professional’s four functions including: diagnosis, 

treatment planning, monitoring, and research. 

Medical imaging contains the applications of 

various imaging methods, including image 

classification, to medical images such as X-rays, CT, 

MRI, ethnographies, and ultrasound images (3). 

Medical image recognition is increasing due to 

advances in image processing techniques, 

including analysis and enhancement (4).  Data 

augmentation refers to methods for iteratively 

improving or developing model algorithms using 

unobserved data or hidden variables. It is 

especially important to overcome data sampling 

limitations in image datasets. Image data 

augmentation techniques help create medical 

images for diagnostics in a cost-effective manner, 

and achieve maximum test accuracy without the 

presence of large medical datasets. Image 

augmentation is a useful procedure for growing an 

image set for neural network types that do not 

involve images in addition. Image simulation and 

image synthesis have been studied and gaining 

popularity in the medical imaging community for 

some time (4). Medical Image processing devices 

are used to speed up and improve analysis of 

medical images. Medical imaging has undergone 

significant changes in the modern medical field. It 

is noteworthy that this technology can be used 

before surgery (5). Medical images are used by 

healthcare professional’s four functions including: 

diagnosis, treatment planning, monitoring, and 

research (6). Medical imaging contains the  
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applications of various imaging methods, including 

image classification, to medical images such as X-

rays, CT, MRI, ethnographies, and ultrasound 

images (7). Various medical imaging procedures 

have been implemented over time and these 

methods vary depending on the procedure. 

Processing of medical images is a field of study that 

involves the development and application of 

methods and techniques for classifying and 

decoding medical images. DL models can be helped 

to do better by artificially generating diverse 

models with symmetrical classes in the training 

data set. The DL model works well and accurately 

when the data set is large enough in terms of size 

and quality (8). 

The utilization of data sets in the analysis of 

medical images, such as for detecting and 

classifying abnormalities or diseases, is used to 

train machine learning algorithms (9). It addresses 

two problems for researchers: reducing over 

fitting and generating more data from a given 

amount of data. In addition, comprehensive testing 

of different data augmentation methods, such as 

histogram equalization, random translation, and 

cropping, shows that target finding accuracy can 

be improved, but the minimal effect (10).   

Both the nature of the data set and the structure of 

the sample are important factors in selecting data 

augmentation. Various types of tests are 

performed to determine the model structure and 

the appropriate data augmentation for a particular 

data set (11). Data augmentation provides a 

solution by providing the model with different 

views of an image, which makes the model more 

general and allows it to extricate additional data 

from the original data set. The second problem is 

related to labelling; meaning that each sample in 

the original data set has a label augmenting the 

model preserves the original model size and 

assigns it to the augmented model (12). Generating 

new training cases through formal data 

augmentation involves transforming already 

existing data while maintaining the consistency 

and accuracy of the original labels. Models help to 

identify and innovate patterns, features, and 

structures in different situations (13). Data 

augmentation is a broad-range regularization 

technique for the purpose of enhancing the 

efficiency of a model. In other terms, the training 

data meets both the necessity of sufficient variety 

and size, and it can be accomplished through data 

augmentation. Pixel-Level transformation is the 

one of the techniques of data augmentation; it will 

modify the individual pixel values of an image 

without change image spatial structure. The input 

image is the only thing that is altered by pixel-level 

transforms; masks, bounding boxes, and key points 

remain unaltered.  

Pixel-level transformation (or) transformations, 

are image sharpening, Image blurring, Histogram 

equalization, Noise addition, and Color 

manipulation. Each of these servers a unique 

purpose in enhancing and diversifying dataset. Its 

approach aims to create new models by making 

pixel-wise changes to the entire content of the 

image. These methods are commonly based on the 

MixUp like image structure modes and its 

derivatives such as Sample Pairing, AdaMixUp, 

mWh, and SmoothMix.  

Typically, they blend the contents of two or more 

samples of image together. This is attained by 

accomplishing pixel-wise blending, typically by 

weighting and averaging the intensities of chosen 

images to generate synthetic images. These 

techniques can apply different photometric 

changes to the content of pixel. Pixel-level 

augmentation techniques are very useful for 

confronting adversarial attacks. Due to this 

characteristic, many works have proposed the use 

of pixel- and region-scale methods to improve both 

adversarial strength and accuracy of 

generalization. Noisy Mixup and Random Pixels 

are two techniques found to be more reliable types 

in pixel-level data augmentation techniques (14).  

Convolutional neural network architecture was 

introduced in past study, which incorporates 

image data augmentation techniques to enhance 

biomedical image segmentation performance (14). 

The viewpoint issue was to be partially resolved by 

rotation and flipping; the lighting change was to be 

addressed by brightness, and the background and 

scaling problems were to be addressed by 

cropping and zooming. Most data augmentation 

strategies can generate numerous synthetic 

images based on existing samples, offering a quick 

and convenient solution (15).  
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Figure 1: Types of Pixel-Level Transformation Techniques 

 

Methodology 
As shown in Figure 1, the four categories of image 

augmentation techniques that involve pixel level 

transformations include: sharpening, blurring, 

adding noise, equalizing histograms, and 

manipulating colour. Transformation methods 

may be applied at the pixel level to create 

additional examples of images through pixel 

intensity modification to provide models with 

greater diversity and greater robustness. Pixel-

level image blending and domain-based data 

adaptation method perform better than the 

traditional method (16). Image sharpening has 

been introduced to enhance image contrast and 

brightness. Unsharp masking is used to sharpen 

the image and improve contrast. Add a contrast to 

the original intensity to make it easier to 

distinguish the foreground and background and 

enhance the edges of the image. Image sharpening 

methods are divided into two types: spatial 

domain and frequency domain methods (17).  

Image blurring is an image processing function 

that allows applying a filter to the whole image 

(18). Different types of blur measurements are 

proposed to control and measure the effect of 

images. In 1997, one of the assessments was 

developed to improve image super-resolution 

methods and their blurring method was later used 

as a quality measure (18). The intensity of original 

image values is mapped to create an approximately 

equal distribution in the resulting histogram with 

histogram equalization. This suffers from the 

problem of not properly preserving local details as 

the image is manipulated globally (19). Over-

enhancement of the image is a common result of 

equalization, leading to a visual data and intensity 

scale of loss (20).  

Random variations in image intensity are called 

noise addition. In different methods noise can be 

added into an image. During the acquisition 

process, noise is produced in the transmission 

channel or sensor while an image is being created. 

This is used to make DL models more robust to 

various types of noise and to increase the training 

data set commonly required in applications of 

medical. Specific augmentation techniques, such as 

rotating, flipping, and adding various types of noise 

to data samples, can be manually scaled. Previous 

studies have revealed that color-based 

transformations are more effective than geometric 

transformation (21). Color jittering is a method 

that either uses random color manipulation or set 

color adjustment. 

Medical Image Augmentation using 

Pixel -Level Transformation 
Pixel-level transformations in medical image 

augmentation are used to maximize the robustness 

and variety of training data sets for machine 

learning models. Pixel-level transformation 

includes the following techniques for data 

augmentation: image sharpening, blurring, 

histogram equalization, noise addition, and color 

manipulation. This method is verified on a dataset 

of medical images and at the same time has less 

data context (22).  

A digital image is an image represented digitally in 

a group of pixels, or more specifically, a 

combination of pixels. Each pixel in an image and 

device documents a group of numbers that 

summarize some of the attributes of this pixel, the 

intense color of the light, and its brightness (23). 
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These transformations preserve the underlying 

patterns and properties of the data while making 

minor changes. One significant way to augment 

data is to incorporate noise into both input and 

output data. Noise models are a very important 

part of image processing. It is an unnecessary 

signal used to destroy the original image quality. 

The image was distorted by some noises such as 

gaussian noise, salt and pepper noise, 

quantization, speckle noise, rayleigh noise, poisson 

noise, brown noise, and very basic noise.  

The various Pixel-level transformation techniques 

applied on the following medical image modalities 

like MRI, CT and X-ray images are explained in the 

following section. Color manipulation can be 

applied to image augmentation such that it 

purposefully manipulates the color and, therefore, 

transforms its color characteristics to generate 

more variations for machine learning models to 

generalize. Because the models are learning from a 

wider spectrum of situations with the use of 

several lightings and different color intentions, 

they are rendered more resistant to real-world 

variations. 

Dataset  
The datasets used in this research cover a variety 

of medical imaging modalities and are openly 

accessible on Kaggle. The Alzheimer's Disease 

dataset has 1,279 MRI images. There are 5,863 

JPEG-format X-ray images in the Chest x-ray 

Images (Pneumonia) dataset, the Knee x-ray 

Osteoporosis dataset includes knee radiographs 

and clinical variables for easy osteoporosis 

screening. 

Image Sharpening 
Image Sharpening is a pixel-level transformation 

that increases the contrast between pixel at an 

image’s edges more pronounced. Image 

sharpening is an important imaging enhancement 

technique used in every field that requires 

understanding and analyzing images. Sharpness is 

the primary factor affecting image quality. 

Sharpness should be adjusted to the optimal value 

to improve image quality. Sharpening is essential 

for processing most digital images and then 

emphasizing them with texture and detail (17). 

 

 
Figure 2: Image Augmentation Using Sharpening Techniques on MRI Slices: (A) Original Image and 

 (B) Sharpened Augmented Images 
 

Figure 2 depicts the application of sharpening 

techniques for data augmentation on an MRI slice 

image. The sharpening process uses five unique 

kernels; each designed with unique internal 

settings to enhance specific features and edges in 

the original image. These kernels range from light 

sharpening, subtle detail enhancement, strong 

sharpening to clearly emphasize edges, and 

extreme custom sharpening for high-end 

enhancement for precision to custom sharpness. 

These augmented images demonstrate how 

different types of sharpening can enhance image 

features, making them suitable for training medical 

analysis and DL models. 
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Figure 3: Image Augmentation using Sharpening Techniques on CT Images: (A) Original Image and 

 (B) Sharped Augmented Images 
 

Figure 3 illustrates the application of sharpening 

techniques for data augmentation, CT scan image. 

The sharpening process uses five types of kernels; 

each designed with unique internal structures to 

emphasize specific features and edges in the 

original image. Kernels range from mild 

sharpening, which uses reduced intensity 

corrections to maintain subtle enhancements, to 

strong sharpening, which introduces more 

pronounced edge emphasis. Other variations 

include a slight high-end enhancement and custom 

sharpening with reduced intensity for refined 

results. These augmented images demonstrate 

how various sharpening modification can enhance 

image features and its suitable for applications 

such as medical image analysis and DL model 

training. 

 

 
Figure 4: Image Augmentation using Sharpening Techniques on X-ray Images: (A) Original Image and  

(B) Sharped Augmented Images 
 

Figure 4 illustrates sharpening techniques for data 

amplification in X-ray images. Five different 

kernels with different configurations improve the 

image's edges and features. 

Image Blurring 
Object or camera device movement during 

shooting, improper focus, noise, and other effects 

of the camera matrix can blur the image. Data 

augmentation is the method of supplementing data 

sets with similar data created from the information 

in a data set. This often involves applying bluring 

and other transformations to existing images (18).  

Figure 5 showcases the effects of different blurring 

techniques applied to MRI slices. The first output 

image applies a Gaussian blur with a 5×5 kernel to 

the original image, effectively reducing G and 

smoothing details. The second output image scales 

the image by 1.5X before using the same Gaussian 

blur pixels to see the effect of resolution changes. 

The third image repeats the Gaussian blur without 

any changes for the baseline comparison. The 

fourth image uses a stronger Gaussian blur with a 

5×15 kernel, which results in more pronounced 

smoothing. The final output image uses a median 
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blur with a kernal size of 5, which effectively 

decrease noise while preserving edges. These 

techniques are used to analyze the impact of 

various types of blur and Kernal scales on image 

quality.  

 

 
Figure 5: Image Augmentation using Blurring Techniques on MRI Slices: (A) Original Image and  

(B) Blurred Augmented Images 

 
Figure 6:  Image Augmentation using Blurring Techniques on CT images: (A) Original Image and 

 (B) Blurred Augmented Images 
 

Figure 6 illustrates the image augmentation of CT 

images using the blurring techniques. This image 

consists of two sections: Part (A) original image 

and (B) blurred augmented images. These blurring 

techniques include Gaussian and Medium blurs 

that introduce varying degrees of softness and 

noise reduction to images. Part (B) blurred 

augmented images shows a gradual loss of fine 

details, which is useful for training DL models to 

improve robustness against image distortions. 

This augmentation technique is essential in 

medical image analysis to enhance model 

generalization and performance in real-world 

scenarios. 
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Figure 7: Image Augmentation using Blurring Techniques on X-ray images: (A) Original Image and  
(B) Blurred Augmented Images 

 

Figure 7 illustrates the effects of various blurring 

techniques applied to an X-ray image. The (A) 

represents the original X-ray image. Blurred Image 

1 and Blurred Image 3 show the application of 

Gaussian blur with a moderate kernel size, leading 

to noticeable smoothing of the image. Blurred 

Image 2 applies Gaussian blur after scaling the 

image, which results in a slightly different 

smoothing effect due to the increased image 

resolution. Blurred Image 4 uses a larger Gaussian 

kernel, resulting in a stronger blur that 

significantly reduces image details. Finally, Blurred 

Image 5 demonstrates the application of median 

blur, effectively reducing noise while preserving 

edge structures. 

Histogram Equalization 
One of the image techniques that increases 

contrast through histogram equalization is to 

modify the distribution of pixel values. It became a 

widely used technique for contrast development 

because this technique is simple and useful (24). 

The purpose of this method is to obtain a uniformly 

distributed histogram using the overall density 

function of the input image, and it attempts to 

modify the spatial histogram of an image to more 

closely match the uniform distribution (25). 

Basically, histogram equalization is used to 

improve contrast.  

 

 
Figure 8: Image augmentation Using Histogram Equalization Techniques on MRI slices: (A) Original 

Image and (B) Histogram-Equalized Augmented Images 
 

Figure 8 illustrates applied in Histogram 

Equalization Techniques applied in MRI Slices. The 

first output is created using basic histogram 

equalization, enhancing global contrast. The 

second uses CLAHE (Contrast Limited Adaptive 

Histogram Equalization) with a clipLimit of 3.0 and 
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tileGridSize of [8, 8] for local contrast 

enhancement. The third applies CLAHE with a 

higher clipLimit of 10.0 for more aggressive 

contrast enhancement. The fourth uses a larger 

tileGridSize of [16, 16] for smoother adjustments, 

and the fifth employs a smaller tileGridSize of [4, 4] 

for finer local detail enhancement. These 

techniques improve the robustness of medical 

image analysis through diverse contrast 

adjustments. 
 

 
Figure 9:  Image Augmentation Using Histogram Equalization Techniques on CT Images: (A) Original 

Image and (B) Histogram-Equalized Augmented Images 
 

Figure 9 illustrates histogram equalization 

techniques applied to CT images. The first 

augmented image is created using basic histogram 

equalization, enhancing global contrast. The 

second uses CLAHE with a clipLimit of 3.0 and 

tileGridSize of [8, 8] for local contrast 

enhancement. The third applies CLAHE with a 

higher clipLimit of 10.0 for more aggressive 

contrast enhancement. The fourth uses a larger 

tileGridSize of [14, 14] for smoother adjustments, 

and the fifth employs a smaller tileGridSize of [5, 5] 

for finer local detail enhancement. 
 

 

 
Figure 10:  Image Augmentation using Histogram Equalization Techniques on X-ray Images: (A) Original 

Image and (B) Histogram-Equalized Augmented Images 
 

Figure 10 shows image augmentation using 

histogram equalization techniques in X-ray 

images. The first augmented image is created using 

basic histogram equalization, enhancing global 

contrast. The second uses CLAHE with a clipLimit 

of 2.5 and tileGridSize of [8, 8] for local contrast 

enhancement. The third applies CLAHE with a 

higher clipLimit of 8.0 for more aggressive contrast 

enhancement. The fourth uses a larger tileGridSize 

of [14, 14] for smoother adjustments, and the fifth 

employs a smaller tileGridSize of [5, 5] for finer 

local detail enhancement. 

Noise Addition 
Noise is a variation in brightness that can ruin part 

of an image. The unwanted signal in noise degrades 

the image quality by changing the pixel value (26). 
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Noise is the deliberate manipulation of pixels to 

change their potential meaning. When compared 

to human comprehension, this type of 

imperfection can be especially annoying to 

machines. Noise level is a very important 

dimension in many image applications, such as 

image segmentation, super resolution, and other 

applications (27). Gaussian noise is the most 

common type of noise encountered in imaging. Salt 

and pepper noise during transmission can easily 

corrupt digital images, resulting in a significant 

decrease in their visual quality (28). 
 

 
Figure 11:  Image Augmentation Using Noise Addition on MRI Slices: (A) Original Image and 

 (B) Noise Augmented Images 
 

Figure 11 demonstrates the addition of various 

noise types to an MRI grayscale image to simulate 

real-world imperfections. Gaussian noise (σ=25) 

was introduced in Figure 1, leading to a grainy 

effect. Salt and pepper noise (P=0.02) was applied 

in Image 2, scattering white and black pixels 

randomly. Image 3 includes speckle noise, 

generated by adding pixel-dependent random 

values. Poisson noise with a rate parameter of 30 

was incorporated in Image 4, causing random 

intensity variations. Finally, Image 5 features local 

noise, created by adding random uniform noise 

with a range of [0, 50]. These augmentations 

diversify the dataset, enhancing model robustness 

for noise-affected real-world applications. 

 

 

 
Figure 12: Image Augmentation Using Noise Addition on CT image: (A) Original Image and  

(B) Noise Augmented Images 
 

Figure 12 showcases the application of five 

different noise types to a grayscale medical image 

with reduced noise intensities to maintain image 

quality. To generated image (B), a subtle grain 

effect was achieved by inserting Gaussian noise 

with a mean of 0 and reduced standard deviation 

(σ=15). Salt and pepper noise was introduced by 

introducing scattered white and black pixels, thus 

creating Image 2. Speckle noise, applied with a 

reduced standard deviation (σ=0.1), generated 



Raju and Kalavathi,                                                                                                                                            Vol 7 ǀ Issue 1 

1761 
 

Image 3, exhibiting fine variations. Poisson noise, 

implemented with a reduced rate parameter 

(λ=20), led to Image 4, which shows minimal 

intensity irregularities. Finally, local uniform 

noise, sampled from a narrower range ([0,20]), 

was applied to produce an Image 5 with soft 

intensity variations. 

 

 
Figure 13: Image Augmentation Using Noise Addition on X-Ray Image: (A) Original Image and 

 (B) Noise Augmented Images 
 

Figure 13 illustrates the procedure of applying five 

various noise types to a grayscale x-ray image for 

augmentation. The image had a grainy appearance 

due to the addition of Gaussian noise, which had a 

mean of 0 and an increased standard deviation 

(SD) (29) (𝜎= 25). Next, salt and pepper noise were 

applied with an increased probability (P = 0.06), 

generating an image that contains randomly 

scattered white and black pixels. Speckle noise, 

characterized by multiplicative noise patterns, was 

added with an increased standard deviation 

(σ=0.2) to generate Image. Poisson noise, 

implemented with a higher rate parameter (λ=40), 

created Image, exhibiting irregular intensity 

variations. Finally, uniform local noise, sampled 

from a broader range ([0,40]), generated an image 

showing soft variations in pixel intensities. These 

images are valuable for training robust DL models 

by simulating real-world noise in medical imaging 

datasets. 

Color Manipulation 
In pixel-level transformation augmentation, color 

manipulation includes brightness, contrast, 

saturation, hue, and the color channels. These 

involve simulating different lighting, changing 

colors, or simulating different camera settings, 

which can help improve generalization of DL 

models by creating diverse conditions in images. 

  

 
Figure 14: Image Augmentation Using Color Manipulation on MRI Slices: (A) Original Image and 

 (B) Color-Manipulated Images 
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Figure 14 illustrates the outcomes of various color 

manipulation techniques applied to MRI images. 

The original is shown in the first image, 

unmodified MRI Slice. The first manipulated 

original image enhances brightness, improving the 

overall luminance. The second image reduces 

brightness, resulting in a darker appearance. The 

third manipulated image adjusts contrast, making 

light and dark areas more distinguishable. The 

fourth image shifts the hue by converting the 

image to HSV color space and altering the hue, 

introducing a color shift. Finally, the fifth image 

eliminates all color information by     converting the 

MRI scan to grayscale and converting it to the RGB 

color space for consistency. These changes are 

very useful for MRI data sets, which helps to build 

robust DL models for clinical image prospect 

analysis.  
 

 
Figure 15: Image Augmentation Using Color Manipulation on CT image: (A) Original Image and 

 (B) Color-Manipulated Images 
 

Figure 15 shows images illustrating the effects of 

color manipulation techniques. The first image is 

the original unaltered CT image. The first 

manipulated image brightens by increasing the 

brightness by a fixed value. The second image 

darkens by decreasing the brightness by a fixed 

value. The third image corrects the contrast by 

measuring pixel intensities, emphasizing the 

differences between light and dark areas. The 

fourth manipulation changes the hue by 

converting to the HSV color space, changing the 

color values, and introducing a color shift. Finally, 

the fifth image is converted to grayscale, removing 

color information and returning to RGB for 

consistency. These changes are valuable for 

increasing the quality of medical image datasets or 

improving visual analysis. 

 

 
Figure 16: Image Augmentation Using Color Manipulation on X-Ray Images: (A) Original Image and  

(B) Color-Manipulated Images 
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Figure 16 shows images illustrating the effects of 

color manipulation techniques. The original image 

is the first image. The X-ray image is an unaltered 

image that serves as the base reference. The five 

subsequent images show the different types of 

color manipulation changes applied to the original 

image. These manipulated images show significant 

changes in brightness, variation, and intensity, 

each highlighting different visual features of x-

rays. Such transformations are used to enhance 

specific features, improve visibility, or create 

augmented data sets for tasks such as medical 

image analysis or training machine learning 

models. This approach ensures better adaptability 

of the models to alternative in image conditions. 
 

Results and Discussion 
Along with Metrices used for the 

Evaluation of Image Augmentation 

Techniques 
Evaluation metrics are significant for assessing the 

function and efficiency of DL models. Metrics 

provide a standard method for computing and 

evaluating models or techniques in areas such as 

image processing and machine learning. They 

provide a quantitative basis for comparing the 

performance of different models. These metrics 

are required for measuring the success of a model 

through indicators such as precision, accuracy, and 

recall. Test accuracy, weighted F1 score, multi-

class sensitivity, and multi-class specificity are 

metrics used to evaluate a DL model. 

The quality of an image can be assessed using the 

peak-to-noise ratio (PSNR) and the structural 

similarity index measurement (SSIM) (30). They 

provide numbers indicating the differences 

between an original image and the augmented 

images (31). Such quantification is essential for 

developers and researchers to evaluate the 

efficiency of various image augmentation 

algorithms. For these reasons mentioned above, 

we choose for both metrics, such as SSIM and 

PSNR, for evaluating the image augmentation 

techniques (32). The PSNR is a measure of the 

relationship between the maximum potential 

force, the force represented by the original frame 

(Equation [1]), and the effect of noise distortion on 

the accuracy of that representation given by the 

compressed frame (33). 

 

PSNR = 10.𝑙𝑜𝑔10 
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
              [1] 

where, 

MAX - The maximum possible pixel value of the image.  

MSE - The mean square error between the input and augmented image. 
 

SSIM is a measure that assesses the structural 

similarity between two images (33).  Three factors 

are used to measure how similar images are: 

brightness, contrast, and structure (34). SSIM is a 

full-reference image quality rating index with a 

range [0, 1] (35). The value will be larger when the 

image distortion is less (Equation [2]) (36). 

 

SSIM(a,b) = (2μa μb + M1)(2σab + M2) /( 𝜇𝑎  
2 + 𝜇𝑏  

2 + M1 ) (𝜎𝑎 
2 + 𝜎𝑏  

2 + M2)               [2] 
 

where, 

𝜎𝑎  
2 and 𝜎𝑏  

2 - variances of the images a and b. 

σab - difference between images a and b. 

These metrics offer different perspectives on 

image quality: PSNR focuses on pixel-level errors, 

while SSIM provides a more holistic view of 

structural similarities. 
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Table 1: SSIM and PSNR Results of Pixel-Level Transformation Augmentation 

 

Table 1 displays the values of SSIM and PSNR with 

sample figures after applying pixel-level 

transformation augmentation. The SSIM and PSNR 

are critical metrics of evaluation that are utilized to 

assess image quality when tested to pixel-level 

transformation methodologies. When applied to 

pixel-level transformations, such as color 

manipulation, noise addition, histogram 

equalization, image sharpening, and blurring, 

these metrics aid in measuring the 

transformations' efficacy while maintaining their 

visual integrity. The combined use of PSNR and 

SSIM ensures a robust analysis of image quality, 

balancing both mathematical accuracy and human 

visual perception. 

 

Method Original Image Augmented Image PSNR Value SSIM Value 

Sharpening 

  

15.99 dB 

 

0.6252 

 

Blurring 

  

29.55 dB 

 

0.9498 

 

Histogram 

Equalization  

  

22.90 dB 

 

0.8779 

 

Noise Addition 

  

20.44 dB 

 

0.1621 

 

Color 

Manipulation 

  

14.66 dB 

 

0.4691 
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Figure 17: PSNR and SSIM Values for Various Augmentation Methods 

 

The PSNR and SSIM are used to quantitatively 

evaluate a variety of augmented medical images 

produced by different methods of augmentation is 

depicted in Figure 17. The histogram equalization 

produced the highest PSNR and SSIM 

measurements, which means that it preserved the 

structure of the image best, generated better-

quality images, while adding noise through 

augmentation yielded comparatively lower SSIM 

measurements indicating distortion of the 

structure of the image due to the added noise. 

The mean square error (MSE) of the difference 

between the expected and actual values in 

regression analysis or image comparison is 

referred to as the mean. It quantifies the proximity 

of predicted values to actual values, offering a 

straightforward method to assess a model's 

functioning or the fidelity of generated images. 

The MSE is determined by aggregating the 

squared intensity difference of the pixels of the 

distorted and reference image pixels and the 

corresponding PSNR (Equation [3]). 
 

MSE = 1/N ∑  𝑁
𝑥=1 (ax - 𝑎̂x)2      [3] 

 

Where, 

N - number of observations, ax  - actual value, 𝑎̂𝑥 - predicted value. 
 

 
Figure 18: Representation of Mean Square Error Values 

 

Figure 18 displays the corresponding MSEs for 

different blurred figures, indicating the pixel-level 

distortion related to augmentation. The greater the 

image structure preservation, the lower the MSE. It 

solely the MSE task. Histogram equalization is one 

of the highly efficient image enhancement 

technologies. One type of spatial method is 

histogram equalization. It uses different contrasts 

in the image histogram to process the image. This 

increases local brightness. Increasing local 

contrast does not affect the contrast of the entire 

image. Two methods are commonly used, such as 

histogram equalization and profiling (37).  
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Figure 19: Equalized Histogram for CT and X-Ray Images for Original Image and CLAHE Technique 
 

The original and CLAHE-processed versions of the 

same long-standing medical imaging study as well 

as histograms of their respective pixel intensity 

values were shown in Figure 19. Histogram 

equalization resulted in greater contrast 

distribution among the different pixel intensity 

levels than the results of the CLAHE processing. 

This indicates that contrast limited adaptive 

histogram equalization increases the visibility of 

anatomical structures in the images. 

Subjective image quality assessment is a 

commonly used method of averaging opinion 

scores, which requires assigning perceived quality 

scores to image tests. The purpose of this test to 

evaluate subjective image quality, and Evaluators 

should assign perceived quality scores to test 

images (38).  

Mean Square Error is a widely accepted indicator 

of media quality, but it is often applied without 

adequate consideration of its scope or limitations 

despite its clear benefits (Equation [4]). 
 

MOS = 
∑  𝑁

𝑖=1 𝑆𝑖

𝑁
   [4] 

 Where, 

Si  is the score given by the ith observer. 

N is the total number of observers. 
 

 
Figure 20: Representation of Mean Opinion Score Values with Sample Images 

 

Figure 20 illustrates chest X-ray images evaluated 

using the Mean Opinion Score (MOS) methodology. 

The MOS value assigned to each X-ray is an 

indicator of how well that X-ray is perceived by the 

viewer, based upon the viewer's subjective 

assessment of its visual appearance. Higher scores 

reflect clearer and higher-quality images than 

those with lower MOS scores. There are slight 

variations in contrast, sharpness, and noise 

between the X-ray images when they are compared 

side by side. This example demonstrates the use of 

the MOS to evaluate the quality of medical imaging, 

showing how MOS indicates the quality of medical 

images. 

A metric used in imaging operations to measure 

the information content of an image is called 

entropy measurement (EM) (27). A complex image 

with a large range of pixel values is indicated by a 

high entropy number, while a more simple, 

homogeneous image is indicated by a low entropy 
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value. The quality or complexity of an image can be 

evaluated using entropy, which can also be used to 

identify the most instructive areas of an image for 

additional processing or analysis (Equation [5]). 
 

H (X) = - Σ (𝑖) log (𝑖)   [5] 

Where, 

X is the grayscale image. 

P(x) – probability of occurrence of value level j. 
 

 
Figure 21: Representation of Entropy measurement values 

 

Figure 21 displays the entropy, or EM of the 

various noise models (Gaussian, Salt-and-Pepper, 

Speckle, and Poisson). The amount of randomness 

or information entropy introduced into the image 

from each type of noise can be assessed using the 

measured entropy value. The Local noise model 

has the most randomised or chaotic appearance, 

and therefore, its entropic value is the highest out 

of all the noise models, whereas the Speckle noise 

model has the lowest entropic value of all five 

types of noise. Normalized Cross-Correlation 

(NCC) is one of the most prevalent evaluation 

metrics in pixel-level transformations, which is 

used to evaluate similarity between two images; 

usually these are images before and after 

transformation (39). NCC measures the 

resemblance of two images based on their pixel 

fervour patterns—useful in evaluating how 

successful transformations like noise addition, 

blurring, or any other augmentations performed in 

data preprocessing are. Gray-level images are 

typically used for traditional NCC-based methods 

(Equation [6])(40). 
 

   

          NCC = 
∑   

𝑎,𝑏 (𝑀(𝑎,𝑏)− 𝑀)(𝑁(𝑎,𝑏)−𝑁)

√∑   
𝑎,𝑏 (𝑀(𝑎,𝑏)−𝑀 )2    √∑   

𝑎,𝑏 (𝑁(𝑎,𝑏)−𝑁 )2
                                              [6]

 

Where, 

M (a, b) and N (a, b) are pixel values of the two images at coordinates (M, N). 

𝑀 and 𝑁 - mean values of the images M and N. 

The numerator computes the cross-covariance, while the denominator normalizes the values, ensuring the 

outputs is within the range [-1,1].
 

 
Figure 22: Representation of Normalized Cross-Correlation Values 

 

In Figure 22, the NCC values of the sharpened 

image throughout all stages were shown. It 

indicates a large portion of the image's essential 

structure has been preserved with the application 

of sharpness and detail enhancements. The 

sharpened figures were evaluated quantitatively 

by using Entropy and Normalised Cross-

Correlation (NCC). The NCC value varies from 0 to 

1, and the higher the NCC value is, the more 

structurally similar it will be to the original figure. 

In this evaluation, NCC values larger than 0.95 are 

defined as highly similar. As observed, the value of 
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NCC was maximum (1.00) for Sharpened Figure 4, 

which implied excellent structural preservation, 

and this was followed by Sharpened Figure 3 

(0.99). Even though Sharpened Image 2 has an NCC 

as high as 0.95, it is relatively low in similarity. The 

entropy analysis confirms this fact, showing 

enhanced information content without excess 

noise amplification. 
 

Conclusion 
This paper analyzes the different image data 

augmentation methods used for augmenting 

medical images. We experimented with every 

pixel-level transformation method available to 

enhance medical images from various imaging 

modalities. From the experimental work, it was 

determined that pixel-level transformation 

techniques may be used as a type of image 

augmentation to improve image information for 

developing applications based on DL. 

Theperformance of image augmentation is 

demonstrated by the calculated PSNR, SSIM, MSE. 

Histogram equalization and NCC metrics. 
 

Abbreviations 
CT: Computed Tomography, DL: Deep Learning, 

MSE: Mean Square Error, PSNR: Peak-To-Noise 

Ratio, SSIM: Structural Similarity Index 

Measurement. 
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