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Abstract 
This study develops a two-dimensional nonlinear dynamical model to analyze the interaction between carbon 
emissions and renewable energy adoption in the context of Sustainable Development Goal 13 (Climate Action). The 
model is formulated as a system of coupled differential equations in which carbon emissions grow with economic 
activity but are mitigated through renewable energy deployment, while renewable adoption follows logistic growth 
constrained by infrastructural limits and is inhibited by high emission levels. The nonlinear interaction terms capture 
feedback mechanisms and saturation effects that are commonly observed in real-world energy–climate systems but are 
not adequately represented by linear models. Analytical investigation identifies three equilibrium points: an unstable 
trivial equilibrium corresponding to an unsustainable baseline, a stable zero-emission equilibrium associated with 
complete renewable energy adoption, and an intermediate saddle-type equilibrium representing partial stabilization 
of emissions. Stability analysis shows that long-term sustainability is achievable only when the efficiency of renewable 
energy in reducing emissions exceeds the intrinsic emission growth rate. Numerical simulations using representative 
parameter values illustrate how insufficient policy intervention can trap the system in unstable intermediate regimes, 
whereas sustained support for renewable expansion can steer the dynamics toward a low-emission equilibrium. The 
results highlight the importance of nonlinear feedbacks, threshold behavior, and policy consistency in emission–energy 
transitions. The proposed framework provides qualitative insights into climate–energy dynamics and supports the 
need for coordinated policy measures, technological advancement, and long-term commitment to achieve stable 
decarbonization pathways. 
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Introduction  
The Sustainable Development Goals (SDGs) are a 

set of 17 global objectives adopted by the United 

Nations in 2015 as part of the 2030 Agenda for 

Sustainable Development. These goals aim to 

address pressing global challenges, including 

poverty, inequality, environmental degradation, 

climate change, and economic growth, ensuring a 

sustainable future for all. Each goal focuses on a 

specific aspect of development, such as SDG 1 (No 

Poverty), SDG 3 (Good Health and Well-Being), 

SDG 7 (Affordable and Clean Energy), and SDG 13 

(Climate Action). The SDGs are interconnected, 

meaning progress in one area often supports 

progress in another. For example, investments in 

clean energy (SDG 7) help reduce carbon 

emissions, directly contributing to climate action 

(SDG 13). Achieving these goals requires global 

collaboration between governments, businesses, 

scientists, and communities. Countries implement 

policies, technological innovations, and awareness 

programs to drive progress toward these 

objectives. By focusing on sustainability, equity, 

and economic resilience, the SDGs provide a 

comprehensive framework for fostering long-term 

global prosperity while preserving natural 

resources for future generations. 

Numerous studies have examined the Sustainable 

Development Goals (SDGs) from diverse 

perspectives, emphasizing their multidimensional 

nature and global relevance. Past research 

proposed strategies to strengthen the moral 

appeal of the SDGs and enhance their societal 

acceptance (1). Health-related dimensions of 

sustainable development have been extensively 

analyzed, with particular focus on reproductive 

and child health, disease control, environmental  
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health, and universal health coverage under SDG 3 

(2). Approaches for prioritizing and decision-

making among SDG targets have also been 

explored to address trade-offs and policy 

complexity (3, 4). The role of SDGs in violence 

prevention has been examined through the 

synthesis of global health and prevention 

frameworks, highlighting institutional and policy 

linkages (5). It was found that cross-sectoral and 

societal interlinkages play a critical role in SDG 

implementation, with several recommendations 

proposed to strengthen these connections (6). The 

ecological impacts of human activity and their 

influence on the SDG formulation process have also 

been investigated (7). 

Efforts to align business practices and investment 

strategies with the SDGs have been discussed, 

highlighting the growing role of the private sector 

in sustainable development (8). Dynamical 

systems approaches have been applied to analyze 

conflicts and synergies among SDGs, identifying 

renewable energy and health programs as key 

drivers of development (9). Case-based analyses 

have demonstrated that the SDGs provide 

pathways toward equitable growth and long-term 

sustainability (10). The contribution of 

information and communication technologies to 

advancing SDG objectives has been examined, 

emphasizing their role in monitoring, governance, 

and service delivery (11). Reviews of national 

implementation experiences across multiple 

countries have provided insights into institutional 

capacities and policy effectiveness (12). In 

addition, the contribution of microbial 

applications, control strategies, and education to 

achieving SDG targets has been explored (13). 

Further studies have analyzed the interactions 

among the first six SDGs, showing that climate 

change can act both as a challenge and a supporting 

factor for broader SDG achievement (14). The 

importance of interdisciplinary collaboration and 

integrated climate policies has been emphasized as 

essential for effective sustainability transitions 

(15). The involvement of faith-based organizations 

in advancing SDG objectives has also been 

discussed within global development initiatives 

(16). The alignment between circular economy 

practices and SDG goals has been investigated, 

highlighting resource efficiency and waste 

reduction strategies (17). Structural equation 

modeling has been employed to assess the 

interdependent influence of economic, social, and 

environmental pillars on sustainable development 

outcomes (18). It has been observed that SDG 

progress is often self-reinforcing, although weaker 

correlations persist for SDGs 13 and 17 (19). While 

environmental SDGs have shown measurable 

progress, their direct impact on biodiversity has 

been found to be limited and more closely linked to 

socioeconomic advancement (20). The effects of 

the COVID-19 pandemic on SDG implementation 

and sectoral performance have also been 

examined, revealing that widespread disruptions 

may hinder progress and underscoring the need 

for sustained and coordinated recovery efforts 

(21). 

Several studies have further explored sectoral and 

regional drivers of SDG performance. The 

contribution of the private sector has been 

highlighted through corporate social responsibility 

initiatives, circular economy practices, and 

environmental actions (22). Pandemic-induced 

changes in SDG interdependencies have been 

analyzed, offering insights into evolving global 

development dynamics (23). Regional assess-

ments have revealed spatial disparities in SDG 

performance, with northern regions of Italy 

outperforming southern regions in social and 

economic dimensions despite stronger 

environmental indicators in the latter (24). Post-

pandemic investment trends and financial 

instruments supporting the SDGs have been 

evaluated, identifying challenges related to capital 

mobilization, investment alignment, and 

regulatory constraints (25). Sector-specific 

analyses have demonstrated that solid waste 

management planning can support SDG 

achievement through integrated policy actions 

(26), while studies conducted in China have 

revealed complex synergies and trade-offs 

between water pollution control and SDG 

outcomes, particularly for SDGs 6 and 14 (27). It 

has also been shown that renewable energy 

deployment contributes to emission reduction, 

although economic growth and trade expansion 

may offset environmental gains (28). Broader 

evidence suggests that the SDGs have influenced 

governance structures and political decision-

making, with global trade playing both supportive 

and constraining roles in sustainability progress 

(29, 30). Increasing attention is being given to 

interdisciplinary approaches, including biomimi-
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cry and data-driven knowledge frameworks, as 

effective tools for enhancing SDG understanding 

and implementation (31, 32). 

The primary objective of this study is to develop 

and analyze a two-dimensional nonlinear 

mathematical model that captures the dynamic 

interaction between carbon emissions and 

renewable energy adoption, with a view toward 

informing strategies for climate sustainability and 

achieving Sustainable Development Goal 13 

(Climate Action). By formulating a system of 

differential equations, the study aims to 

understand how renewable energy growth 

influences the reduction of carbon emissions, and 

conversely, how prevailing emission levels can 

hinder the expansion of clean energy technologies. 

Through equilibrium analysis, phase-space 

investigation, and numerical simulations, the 

model seeks to identify long-term behavioral 

patterns of the system, assess the stability of 

potential outcomes, and evaluate the conditions 

under which a sustainable transition is feasible. 

Ultimately, the study provides a theoretical 

foundation for crafting effective environmental 

policies and guiding investment decisions in the 

renewable energy sector. 
 

Methodology 
Model overview and formulation: 
Sustainable Development Goal (SDG) 13 focuses on 

climate action, aiming to mitigate climate change 

by reducing carbon emissions and promoting 

renewable energy adoption. This study presents a 

two-dimensional mathematical model to analyze 

the interaction between carbon emissions (C) and 

renewable energy adoption (R) over time.  

The model takes into account two major variables: 

carbon emissions (C(t)) and adoption of renewable 

energy (R(t)). Carbon emissions (C) are the 

amount of greenhouse gases emitted into the 

atmosphere through industrial processes, 

transportation, and consumption of fossil fuels. 

The variable is in the units of metric tons per 

annum and is one of the most important causes of 

global warming and climate change. Adoption of 

renewable energy (R) refers to the proportion of 

total energy from renewable sources like solar, 

wind, hydro, and bioenergy. An increase in R 

reflects more movement towards a clean energy 

source, contributing directly towards emission 

reductions. Both these variables dependent on 

each other guide the understanding of 

sustainability dynamics in an economy shifting 

from fossil fuels to renewable energy. 

The suggested model relies on a number of central 

assumptions that are representative of real-world 

energy and environmental interactions. First, 

carbon emissions rise naturally as a result of 

industrialization and economic expansion unless 

offset by the take-up of renewable energy. Second, 

an increased proportion of renewable energy 

within the overall energy mix (R) produces less 

emission (C), assuming effective deployment of 

clean energy policy. Third, high emissions of 

carbon can limit the adoption of renewable energy 

because of financial hurdles, regulatory lags, or 

technological constraints. Fourth, renewable 

energy adoption is of the logistic growth type, i.e., 

its growth starts slowly, gains momentum with 

policies and technological improvements, and then 

levels off due to infrastructure and market 

saturation. Finally, external measures like 

government subsidies, carbon tax, and 

environmental awareness campaigns can affect the 

adoption rate and reduction of emissions. These 

assumptions form the basis for developing a 

realistic mathematical model for analyzing the 

dynamics of climate action. 

A key distinction between the proposed nonlinear 

framework and conventional linear or quasi-linear 

emission–energy models lies in the qualitative 

structure of the system dynamics. Linear models 

generally exhibit a single equilibrium with 

proportional responses to policy interventions, 

implying gradual and predictable transitions. In 

contrast, the nonlinear interaction terms in the 

present model give rise to multiple equilibria, 

including unstable and saddle-type states, as well 

as threshold-dependent transitions. These 

features reflect saturation effects, feedback loops, 

and structural inertia that are widely observed in 

real energy systems but cannot be captured within 

linear formulations.  

From a climate sustainability perspective, these 

qualitative differences are critical. The existence of 

an unstable intermediate equilibrium implies that 

partial decarbonization efforts may lead to 

temporary stabilization rather than long-term 

sustainability. Small parameter changes or policy 

reversals can shift the system toward either a high-

emission or a low-emission trajectory, highlighting 

the presence of tipping points in the transition 
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process. By explicitly representing these nonlinear 

behaviors, the model provides insight into why 

sustained and coordinated policy interventions are 

necessary to avoid climate lock-in and to achieve 

stable low-carbon outcomes. 

 

Mathematical Formulation: 

The model is described using the following system of differential equations: 

,

(1 ) .

dC
C RC

dt

dR
R R CR

dt

 

 


= − 


= − −
                              [1] 

The proposed mathematical model consists of two 

differential equations [1] that describe the 

interaction between carbon emissions (C) and 

renewable energy adoption (R) over time. Each 

term in these equations represents a specific 

environmental or economic process. 
 

Change in carbon emissions: 

.
dC

C RC
dt

 = −
                                                              [2] 

Equation [2] describes how carbon emissions 

evolve over time. The term dC/dt  represents the 

rate of change of carbon emissions over time, 

where a positive value indicates an increase in 

emissions and a negative value signifies a decline. 

The component αC describes the natural growth of 

carbon emissions driven by industrial and 

economic activities, with α denoting the intrinsic 

emission growth rate in the absence of renewable 

energy interventions. The term −βRC accounts for 

the reduction in carbon emissions resulting from 

renewable energy adoption, where β measures the 

effectiveness of renewable technologies in 

mitigating emissions. This reduction increases 

with higher levels of renewable energy 

penetration, implying that greater adoption of 

renewables leads to a stronger suppressing effect 

on carbon emissions.  
 

Change in renewable energy adoption: 

(1 ) .
dR

R R CR
dt

 = − −
                                                  [3] 

Equation [3] describes the dynamics of renewable 

energy adoption. The term dR/dt  denotes the rate 

of change of renewable energy adoption over time, 

where a positive value corresponds to increasing 

adoption and a negative value indicates a decline. 

The expression γR(1−R) represents the logistic 

growth of renewable energy adoption, in which γ 

defines the maximum potential growth rate 

influenced by factors such as policy support, 

investment, and technological advancement. The 

factor (1−R) ensures that growth slows as 

renewable adoption approaches full penetration, 

reflecting practical constraints including 

infrastructure limitations, grid capacity, and 

market saturation. The term −δCR captures the 

inhibitory effect of high carbon emissions on 

renewable energy adoption, where δ quantifies the 

strength of this negative influence. Elevated 

emission levels can hinder renewable expansion 

due to economic and political barriers, including 

persistent dependence on fossil fuels, insufficient 

investment, and resistance or misinformation 

surrounding clean energy alternatives.  

The model indicates that higher values of the 

renewable efficiency parameter β lead to a more 

rapid decline in carbon emissions, reflecting the 

stronger mitigating effect of renewable energy 

deployment. An increase in the renewable growth 

rate parameter γ accelerates the adoption of clean 

energy technologies, thereby supporting a faster 

transition toward a sustainable energy system. In 

contrast, larger values of the inhibition parameter 

δ imply that elevated carbon emission levels 

substantially hinder renewable energy adoption, 

making the transition to a low-carbon economy 

more difficult. 

This model helps in designing policies that 

enhance renewable energy growth, reduce 

emissions, and achieve climate sustainability goals. 

Unlike linear or quasi-linear emission–energy 

models, which assume proportional and 

independent responses, the present nonlinear 
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formulation captures essential feedback 

mechanisms inherent in real-world climate–

energy systems. The bilinear interaction terms 

represent the fact that renewable energy 

deployment reduces emissions more effectively 

when both renewable capacity and emission 

intensity are high, while elevated emissions can 

simultaneously inhibit renewable expansion 

through economic, technological, and policy 

inertia. Furthermore, the logistic growth structure 

for renewable adoption reflects saturation effects 

arising from infrastructure limits, grid capacity, 

and market penetration, which linear models fail 

to capture. These nonlinearities give rise to 

multiple equilibria and threshold-dependent 

behavior, enabling the identification of unstable 

intermediate states and tipping points between 

sustainable and unsustainable regimes. As a result, 

the nonlinear framework provides a more realistic 

and policy-relevant representation of emission–

energy dynamics than linear approximations. 

 

Equilibrium points: 

The equilibrium points are the solution of the equations dC/dt = 0 and dR/dt = 0, i.e., 

( )

 

0,

(1 ) 0.

C R

R R C

 

 

− = 


− − =                                                     [4] 

The solution of the equations [4] yields three equilibrium points represented by 

0 1 2(0,0), (0,1) and 1 ,E E E
  

  

  
−  

                                                                  
provided α < β.  
 

The trivial equilibrium E0 corresponds to a baseline 

with no carbon emissions and no renewable 

energy adoption; an unrealistic state that is 

unstable, as any slight industrial or policy activity 

would push the system away from this point. The 

sustainable equilibrium E1 represents an ideal 

outcome where carbon emissions are entirely 

eliminated and renewable energy has been fully 

adopted. This point is stable only if the rate at 

which renewables reduce emissions (β) exceeds 

the natural growth rate of emissions (α), indicating 

the need for highly effective clean energy policies 

and technologies. Finally, the internal equilibrium 

E2 reflects a mixed state where both carbon 

emissions and renewables coexist in balance. This 

point exists when renewable adoption is effective 

enough to counter emission growth but not strong 

enough to drive emissions to zero. However, it is a 

saddle point, meaning it is stable in some directions 

but unstable in others, indicating that while the 

system may temporarily stabilize here, any 

deviation can lead it either toward sustainability or 

back into high-emission scenarios, depending on 

policy or economic shifts. 

Stability of Equilibrium Points: 

To analyze the stability of the equilibrium points, 

we compute the Jacobian matrix and evaluate its 

eigenvalues at each equilibrium. The nature of the 

eigenvalues determines whether the equilibrium is 

stable or unstable. The Jacobian matrix is given by 
 

f f

C R
J

g g

C R

  
  

=  
  

                                                                                     [6] 

( ) ( ), ; , (1 ) .f C R C RC g C R R R CR   = − = − −
 

On computing the first order partial derivatives of the functions f(C, R) and g(C, R) and then substitute them 

into expression [6], we have 

.
(1 2 )

R C
J

R R C

  

  

− − 
=  

− − −                                                                 [7] 
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Stability of E0: 

Substituting C = 0 and R = 0 in Jacobian matrix [7], we get 

0

0
.

0
EJ





 
=  
                                                                 [8] 

The eigenvalues of J(E0) are λ1 = α and λ2 = γ.  Since both α and γ are positive real numbers, both eigenvalues 

are positive.  

This implies that the equilibrium point E0 is a 

source and hence unstable, meaning that small 

perturbations will cause the system to move away  

from this state. It represents a scenario with no 

emissions and no renewable energy is unrealistic 

and unstable in real-world settings. 
 

Stability of E1: 

On Substituting C = 0 and R = 1 in Jacobian matrix [7], we get 

1

0
.EJ

 

 

− 
=  

− −                                                          [9] 

The eigenvalues of J(E1) are λ1 = α – β and λ2 = –γ. 

As all α, β, γ ∈ R+ and α < β, therefore λ1 < 0 and λ2 

< 0 indicating that this point is locally stable if the 

efficiency of renewable technologies in reducing 

emissions (β) is greater than the natural growth 

rate of emissions (α). When this condition is 

satisfied, small disturbances (like temporary 

policy shifts or minor emission events) will decay 

over time, and the system will return to this 

equilibrium. The negative eigenvalues at this point 

confirm its asymptotic stability, making it a viable 

long-term target for climate and energy policy. 

However, reaching and maintaining this state 

requires significant investment in clean energy 

infrastructure, public support, and strong 

regulatory frameworks to keep α < β. 
 

Stability of E2: 

Plugging C = γ/δ (1 – α/β) and R = α/β into Jacobian matrix [7], we then have 

2

0 1

.EJ

 

 

 

 

  −
−  

  =
 − −
 
                                                 [10] 

The necessary and sufficient condition for an equilibrium point to be stable is Trace(J) < 0 and det(J) > 0, 

where  

Trace( ) ,

det( ) 1 .

J

J











= − 




  = − −                                                                   [11] 

As all α, β, γ ∈ R+ and α < β, therefore Trace(J) < 0 

and det(J) < 0, i.e., the stability conditions do not 

satisfied and hence this point is a saddle point, 

characterized by one positive and one negative 

eigenvalue. As a result, the system is only partially 

stable: it can remain in this state along certain 

directions but will diverge if perturbed in others. 

In practice, this implies that the system may 

temporarily settle into a stable coexistence of 

renewables and fossil fuels, but external shocks 

(like economic changes or policy reversals) can 

push it either toward sustainability or back toward 

emission growth. This instability makes the 

internal equilibrium a transitional or precarious 

state, highlighting the importance of continuous 

intervention to move the system toward full 

sustainability. 

Phase portrait analysis:  
Phase portrait, Figure 1, illustrates the dynamic 

relationship between carbon emissions (C) and 

renewable energy uptake (R) by graphing the 

direction and size of change throughout the state 

space. Three equilibria are indicated: E0, E1 and E2, 
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where E2 is an interior equilibrium denoting 

coexistence between emissions and renewables. 

 
Figure 1: Phase Portrait of the Carbon-Renewable System 

 

The point E0 is a no-emission and no-renewable-

infrastructure system, an unattainable and 

unstable steady state, as any small shock would 

cause emission growth or renewable penetration. 

The point E1 is a complete decarbonization system 

with full renewable penetration. In situations 

where the efficiency of renewables (β) is larger 

than the natural rate of emission growth (α), this is 

a stable steady state, pulling in surrounding 

trajectories. The internal balance, positioned at 

intermediate levels of C and R, is a hybrid state 

with the presence of emissions and renewables in 

equilibrium. Its stability is parameter value-

dependent especially δ and β, and it can be an 

intermediate regime on the way to sustainability. 

The vector field illustrates how system paths bend 

towards or away from these equilibria, providing 

intuitive insights into how parameter adjustment 

and policy intervention can deflect environmental 

paths. This analysis contributes directly to SDG 13 

by projecting stable end states and mapping the 

dynamical paths by which they can be attained. 

Bifurcation analysis of key system 

parameters: 
Bifurcation analysis is a powerful tool in dynamical 

systems for understanding how qualitative system 

behavior changes as a parameter crosses critical 

thresholds. In the context of this carbon 

emissions–renewable adoption model, 

bifurcations indicate tipping points between 

sustainable and unsustainable trajectories. 

Identifying and interpreting these bifurcations 

provides actionable insights for designing policies 

in line with SDG 13: Climate Action. 

Bifurcation with Respect to α (emission 

growth rate): 

The emission growth rate α determines how 

aggressively carbon emissions rise in the absence 

of renewables. Bifurcation analysis shows that as α 

increases, the system can move from a state where 

emissions are manageable to one where they 

dominate system dynamics, even under moderate 

renewable pressure, Figure 2A. This shift can 

suppress R through the δ term, reinforcing a high-

emission steady state. A critical α exists beyond 

which renewables must grow at an unrealistically 

high rate to restore balance. Therefore, targeting α 

through industrial decarbonization, improved 

efficiency, and carbon pricing is as crucial as 

boosting renewables. 

Bifurcation with respect to β (efficiency of 

renewables): 

The parameter β governs how effectively 

renewable energy suppresses carbon emissions. 

Bifurcation analysis, Figure 2B, shows that the 

system undergoes a transcritical bifurcation 

around the threshold 𝛽 = 𝛼. When 𝛽 < 𝛼, the natural 

growth of emissions dominates, and the system 

stabilizes in a high-emission regime. However, 

when 𝛽 > 𝛼, renewables become potent enough to 

drive carbon emissions downward. This 
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bifurcation separates a regime of unsustainable 

growth from one of controlled emissions, 

emphasizing that incremental improvements in 

renewable efficiency can lead to system-wide 

transitions in environmental behavior. 

Bifurcation with respect to γ (renewable 

growth rate): 

The parameter γ controls the intrinsic rate at 

which renewable adoption progresses under ideal 

conditions. A bifurcation, Figure 2C, is observed 

where increasing γ transitions the system from a 

stagnant renewable scenario to rapid 

decarbonization. When γ is low, even high β values 

may not prevent emissions from growing, as 

renewables are too slow to scale. Beyond a critical 

γ, however, renewables can outpace emission 

growth and push the system toward a low-carbon 

equilibrium. This highlights how enabling 

infrastructure, technology, and financing 

mechanisms (which affect γ) are essential levers 

for ensuring sustainable trajectories. 

Bifurcation with respect to δ (inhibitory effect 

of emissions on renewables): 

δ captures the negative feedback loop where high 

carbon emissions suppress the growth of 

renewables, Figure 2D. Bifurcation analysis reveals 

a fold or saddle-node-like bifurcation: at low δ, the 

system can recover through renewable expansion; 

but as δ increases past a tipping point, emissions 

strongly hinder renewable adoption, leading to 

stagnation or collapse of clean energy growth. This 

demonstrates the destabilizing nature of systemic 

inertia, where economic and political dependence 

on fossil fuels blocks progress. Policy responses 

such as misinformation correction, divestment, 

and regulatory reform are critical to reducing δ 

and unlocking clean energy transitions. 

 

 
Figure 2: Parameter-Dependent Behavior of the Carbon Emission–Renewable Energy System. (A) 

Variation of Renewable Energy Adoption with the Emission Growth Rate Α. (B) Effect of Renewable 

Efficiency Β on Renewable Adoption, Indicating the Critical Threshold. (C) Influence of the Renewable 

Growth Rate Γ on Carbon Emissions. (D) Effect 0f the Emission-Induced Inhibition Parameter Δ on Carbon 

Emissions 
 

Policy Relevance and SDG 13 

Alignment: 
Understanding the bifurcation structure of this 

system provides guidance for achieving SDG 13. 

The analysis indicates that increasing the 

renewable efficiency parameter β and the 

renewable growth rate γ can help steer the system 

toward low-emission equilibria, while effective 

control of the emission growth rate α and the 
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emission-induced inhibition parameter δ is 

necessary to prevent the system from becoming 

locked into high-emission trajectories. 

Policy interventions must aim not only to improve 

individual parameter values but also to avoid 

parameter combinations that trap the system in 

unsustainable states. Bifurcation analysis thus 

enables strategic, science-driven climate planning 

with measurable targets and risk thresholds. 

The bifurcation summary (Table 1) provides a 

consolidated overview of the system’s sensitivity 

to four critical parameters: α (intrinsic carbon 

emission growth), β (renewable efficiency), γ 

(renewable growth rate), and δ (hindrance of 

renewables by emissions). Each parameter 

exhibits distinct bifurcation behavior, signifying 

thresholds where small changes can lead to major 

shifts in system dynamics. For instance, a 

transcritical bifurcation arises when β exceeds α, 

enabling a transition from high- to low-emission 

equilibrium. Similarly, saddle-node-like behavior 

is observed with δ, where excessive suppression of 

renewables by emissions can trap the system in a 

persistent high-carbon state. Table 1 also links 

each bifurcation to practical policy levers, 

emphasizing how strategic interventions such as 

enhancing renewable efficiency, increasing 

investment in clean energy, reducing fossil fuel 

dependency, and regulating emissions can shift the 

system toward sustainable trajectories. As a 

decision-making tool, this table aligns model 

insights with SDG 13 targets by clarifying how and 

where interventions can avert climate tipping 

points. 
 

Table 1: Bifurcation Summary 
Parameter Critical Behavior Policy Leverage 

α (Emission growth) 
Beyond threshold, emissions overwhelm renewable 

mitigation. 

Implement emission caps, pricing, and cleaner 

industrial processes. 

β (Efficiency) 
Transcritical bifurcation at β = α. Higher β reduces 

emissions rapidly. 

Improve renewable efficiency, technology, and grid 

integration. 

γ (Growth rate) 
Threshold above which renewable adoption dominates 

emissions. 
Invest in infrastructure, innovation, and subsidies. 

δ (Hindrance) 
Saddle-node-like bifurcation. High δ suppresses R 

irreversibly. 

Reduce fossil fuel dependence, misinformation, and 

regulatory barriers. 
 

Results 
This section presents numerical simulations of the 

two-dimensional model governing carbon 

emissions (C) and renewable energy adoption (R) 

over time. The objective is to visualize how 

different parameter values particularly those with 

real-world relevance, affect system dynamics. 

These simulations complement the mathematical 

analysis and provide a policy-relevant basis for 

achieving SDG 13 targets. 

To ensure that the numerical simulations reflect 

plausible real-world behavior, the model 

parameters were selected within ranges reported 

in empirical studies and policy assessments, Table 

2. The intrinsic emission growth rate (α) is chosen 

to reflect observed global emission growth rates in 

recent decades, typically on the order of a few 

percent per year under business-as-usual 

scenarios. The renewable efficiency parameter (β) 

represents the ability of clean energy deployment 

to offset emissions and is consistent with 

mitigation estimates reported in energy transition 

studies. The renewable adoption rate (γ) 

corresponds to growth rates observed in regions 

with strong policy support and investment in clean 

energy infrastructure, while the inhibition 

parameter (δ) captures documented structural and 

economic barriers that slow renewable adoption in 

carbon-intensive economies. Although precise 

calibration is beyond the scope of this conceptual 

model, the adopted parameter ranges ensure 

dynamical behavior that is consistent with realistic 

energy–emission trajectories and policy-relevant 

constraints. 

 

Table 2: Realistic Parameter Values for Simulation 
Parameter Value Description Source 

α (Emission Growth Rate) 0.03 Emission growth rate (~3% per year) Global Carbon Budget (2023) 

β (Renewable Efficiency) 0.10 Efficiency of renewables in reducing emissions Literature estimates 

γ (Renewable Growth Rate) 0.15 Maximum renewable growth rate under policy support Literature estimates 

δ (Emission Hindrance) 0.05 Hindrance from emissions to renewables Assumed weak feedback 

C(0) (Initial Emissions) 36.8 Global CO₂ emissions in 2023 (Gt CO₂/year) Global Carbon Project 

R(0) (Initial Renewables) 0.30 Global renewable energy share (~30%) Our World in Data 
 

The simulation (Figure 3) illustrates the temporal 

dynamics of carbon emissions (C) and renewable 

energy adoption (R) over a 100-year period. 

Initially, carbon emissions are high, while 
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renewable energy adoption is modest. Over time, 

as renewable technologies are adopted (R 

increases), they start to effectively reduce carbon 

emissions due to the mitigating effect captured by 

the term (−βRC) in the model. This results in a 

gradual decline in carbon emissions. Meanwhile, 

the growth of renewable energy follows a logistic 

curve: it accelerates in the beginning but then 

slows down as it approaches saturation, and as 

emissions negatively affect growth (−δCR). 

Eventually, both variables stabilize, representing a 

possible long-term equilibrium where carbon 

emissions are significantly reduced and renewable 

energy reaches near-maximum sustainable 

adoption.  

 

 
Figure 3: Simulation of Carbon Emissions (C) and Renewable Energy Adoption (R) 

 

Equilibrium Points and Phase Portrait: 

For the aforementioned values of the parameters, 

there are three equilibrium points E0(0, 0), E1(0, 1) 

and E2(2.1, 0.3). The phase-space analysis, Figure 

4, reveals critical insights into the long-term 

dynamics of the carbon emissions–renewable 

energy system. The equilibrium point E0 

represents a state where both carbon emissions 

and renewable energy adoption are zero. In real-

world terms, this corresponds to a scenario with 

no economic activity or energy generation, which 

is neither realistic nor desirable. From a dynamical 

perspective, this point acts as an unstable source, 

meaning that any small increase in emissions or 

renewable adoption will push the system away 

from this state. This instability reflects the 

inherent momentum of industrial and energy 

systems; once activity begins, emissions and 

energy use naturally grow unless actively 

regulated. Thus, E0 serves more as a theoretical 

baseline than a practical target, illustrating that a 

world entirely free of both emissions and energy 

use is not a stable or sustainable scenario under 

current socio-economic conditions. 
 

 
Figure 4: Phase Portrait: Carbon Emissions (C) vs. Renewable Energy Adoption (R)  
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The equilibrium point E1 signifies a highly 

desirable state where carbon emissions have been 

completely eliminated and renewable energy 

accounts for 100% of the energy mix. This point 

represents the ideal outcome of a fully sustainable 

energy transition, with zero environmental harm 

from energy production. Importantly, the system 

identifies this point as a stable sink, meaning that 

trajectories in its vicinity naturally converge to it 

over time suggesting that, under the right 

conditions and momentum, the system can evolve 

toward full sustainability. However, reaching this 

point in reality would require strong, consistent 

policy interventions, technological breakthroughs, 

and global cooperation. Its stability in the model 

provides hope that such a transition is not only 

desirable but also dynamically feasible if 

adequately supported. 

For E2, the equilibrium values C = 2.1 and R = 0.3 

represent a long-term steady state in the modeled 

interaction between carbon emissions and 

renewable energy adoption. Specifically, R = 0.3 

implies that 30% of the total energy share is 

derived from renewable sources; an indication of 

moderate but not complete transition to clean 

energy. Meanwhile, C = 2.1, down from an initial 

high of 36.8, signifies a substantial reduction in 

carbon emissions, reflecting the positive 

environmental impact of increased renewable 

adoption. However, this equilibrium is 

mathematically classified as a saddle point, 

meaning it is unstable along certain directions. In 

practical terms, this suggests that while such a 

state is theoretically attainable, it is fragile and 

susceptible to policy, economic, or technological 

disruptions. Sustaining or advancing beyond this 

state would therefore require consistent efforts 

such as improving renewable efficiency, removing 

barriers to adoption, and maintaining strong 

regulatory frameworks to avoid regression toward 

high-emission scenarios. 

Suggestions 
Based on the insights obtained from the model, 

several policy recommendations can be proposed 

to support climate sustainability. Improving 

renewable efficiency by investing in advanced 

technologies, grid modernization, and energy 

storage can enhance the ability of renewable 

sources to displace carbon-intensive energy 

systems. Accelerating renewable energy adoption 

through subsidies, tax incentives, and streamlined 

regulatory processes can further facilitate a rapid 

transition toward clean energy, while 

strengthening infrastructure helps remove 

bottlenecks that slow deployment. Reducing the 

inhibiting effect of emissions on renewable growth 

requires measures that decouple fossil fuel 

dominance from energy markets, including carbon 

pricing mechanisms, divestment from fossil fuel 

assets, and efforts to counter misinformation that 

hinders clean energy transitions. It is also 

important to avoid emission lock-in by recognizing 

the instability of partial progress and maintaining 

long-term, consistent policy commitments that 

prevent regression toward high-emission 

trajectories. In addition, promoting active 

participation from both public and private sectors 

through inclusive frameworks involving industry, 

government, and civil society can ensure that 

renewable energy initiatives are widely adopted 

and equitably distributed. Collectively, these 

strategies aim to stabilize the energy–emission 

system at a desirable equilibrium and support a 

robust and sustainable pathway toward long-term 

climate goals. 

Recommendations  
Based on the analysis and findings of the 

mathematical model describing the interaction 

between carbon emissions and renewable energy 

adoption, several recommendations can be 

proposed to guide future actions toward achieving 

climate sustainability and advancing SDG 13 

(Climate Action). Strengthening renewable energy 

infrastructure through coordinated investments 

by governments and the private sector can 

improve scalability, reliability, and accessibility, 

with particular emphasis on solar, wind, and hydro 

technologies as well as energy storage systems to 

support grid stability. Implementing effective 

emission control policies, including carbon pricing, 

emissions trading schemes, and fossil fuel taxation, 

can help internalize the environmental costs of 

emissions and accelerate the transition toward 

cleaner energy alternatives. Continued support for 

research and development in energy efficiency, 

smart grids, and next-generation renewable 

technologies is essential to enhance system 

efficiency and reduce technological and economic 

barriers to adoption. Increasing public awareness 

and participation through educational initiatives 

and community-level engagement can further 

strengthen support for renewable energy, while 
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encouraging behavioral change and decentralized 

adoption such as rooftop solar systems. 

Maintaining long-term and consistent policy 

commitment is crucial, as weakening momentum 

may cause the system to settle into unstable 

equilibria, and abrupt regulatory changes can 

hinder progress toward sustainability. Finally, 

dynamic monitoring and evaluation using real-

time data and system modeling can support 

adaptive policy responses and ensure continued 

alignment with long-term climate objectives. 

By implementing these recommendations, 

policymakers and stakeholders can effectively 

guide the energy-emission system toward a stable, 

low-carbon future, avoiding unstable trajectories 

and reinforcing resilience in climate action efforts. 
 

Discussion 
The results obtained in this study are consistent 

with a growing body of literature emphasizing the 

nonlinear and feedback-driven nature of 

sustainability transitions. Previous system-

dynamics and SDG-oriented studies have 

highlighted that progress toward climate goals is 

rarely linear and is often characterized by 

threshold effects and interaction-driven outcomes 

(9, 14, 15). The identification of multiple equilibria 

in the present model reinforces these findings, 

suggesting that climate–energy systems may 

stabilize in fundamentally different long-term 

states depending on policy strength and 

technological efficiency. 

The stability of the zero-emission equilibrium 

aligns with earlier studies demonstrating that 

sustained renewable energy deployment can, 

under favorable conditions, drive long-term 

decarbonization (8, 15, 28). Conversely, the 

existence of an unstable intermediate equilibrium 

is consistent with prior observations that partial 

transitions may lead to fragile or reversible 

outcomes rather than permanent sustainability (9, 

19). Such intermediate states have been discussed 

in the literature as manifestations of transition 

inertia, where economic and structural 

dependencies delay or obstruct full 

decarbonization (17, 20). 

The threshold behavior observed with respect to 

key parameters is also supported by earlier work 

on SDG interactions and climate tipping points. 

Studies have shown that incremental 

improvements may have limited impact until 

critical thresholds are crossed, after which rapid 

system-wide transitions can occur (6, 14, 29). In 

this context, the bifurcation-like behavior 

identified in the model provides a simplified 

analytical interpretation of such tipping dynamics, 

complementing more complex integrated 

assessment and empirical approaches. 

Overall, the present results support the broader 

consensus that achieving SDG 13 requires 

coordinated interventions rather than isolated 

policy actions. By explicitly incorporating 

nonlinear feedbacks, the model offers a conceptual 

explanation for outcomes reported in previous 

studies and underscores why sustained policy 

commitment, technological innovation, and 

structural change are essential for avoiding long-

term climate lock-in. 

Limitations and Future Research 

Directions 
While the proposed nonlinear model provides 

qualitative insights into the interaction between 

carbon emissions and renewable energy adoption, 

several limitations should be acknowledged. First, 

the model is intentionally low-dimensional and 

conceptual, focusing on aggregate dynamics rather 

than sector-specific or regional variations. As a 

result, it does not explicitly account for differences 

across industries, geographic regions, or energy 

technologies, which may influence transition 

pathways in practice. 

Second, the parameter values used in the 

numerical simulations are representative rather 

than fully calibrated to empirical datasets. 

Although they reflect plausible real-world 

magnitudes, precise estimation and validation 

using historical emission and energy data would 

improve the model’s predictive capability. 

Additionally, the model assumes constant 

parameters over time, whereas real-world policy, 

technological progress, and economic conditions 

evolve dynamically. 

Third, the framework does not include stochastic 

disturbances, time delays, or spatial effects, all of 

which are known to influence climate–energy 

systems. Random shocks such as economic crises, 

technological breakthroughs, or abrupt policy 

changes may alter transition dynamics in ways not 

captured by a deterministic formulation. 

Future research may extend this work by 

incorporating data-driven parameter estimation, 

control variables representing policy 
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interventions, and time-dependent or stochastic 

parameters. Higher-dimensional models including 

additional sustainability indicators, such as 

economic growth or energy demand, could also be 

explored. Furthermore, coupling the present 

framework with empirical data or integrated 

assessment models would enhance its relevance 

for decision-making and long-term climate 

planning.  
 

Conclusion 
This study presents a mathematical framework 

that elucidates the nonlinear co-evolution between 

carbon emissions and renewable energy adoption. 

Through equilibrium and stability analysis, three 

distinct long-term states were identified, with only 

the full renewable adoption and zero-emission 

equilibrium proving stable. The findings indicate 

that natural system dynamics do not inherently 

ensure sustainability without deliberate 

intervention. Sustained policy support, economic 

incentives, and technological innovation are 

essential to guide the system toward a clean 

energy equilibrium. The model offers a theoretical 

foundation for understanding energy–emission 

interactions and provides a basis for developing 

effective climate sustainability strategies. 
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