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Abstract 
The objective is to create a real-time, leakage-resistant stroke-risk pipeline that incorporates privacy-preserving 
learning methodologies and is deployable on smart watches. This paper employed 38 clinically curated variables to 
implement plausibility filtering, stratified splitting, correlation trimming, imputation, winsorization, robust scaling, 
rare-level grouping, and one-hot encoding on a harmonized dataset of 10,000 individuals. The RFECV wrapper was 
employed for feature selection, while Cat Swarm Optimization was utilized to optimize these features while searching 
for a regularization hyper-parameter and a binary feature mask. The creation of two-layered hybrid ensembles involved 
SCT optimization, which included threshold tuning, isotonic probability calibration on the validation set, and train-only 
SMOTE. Hybrid Model 1 attained the highest accuracy of 96.4% on the reserved test set at the optimal operating 
threshold (threshold = 0.50). The performance consistently demonstrates accuracy in threshold-sweep studies around 
the ideal point, surpassing both its default settings and the superior configurations of Hybrid Model 2. This research 
encompasses calibrated thresholding, a dual-stage selection procedure employing both wrapper and swarm 
methodologies, edge-ready artefact packaging comprising the pre-processor, features, model, and threshold, as well as 
comprehensive leakage control throughout the entire process. It provides enhancements for privacy preservation 
through automated reporting and notifications, along with a federated learning update mechanism designed for non-
IID contexts. It is recommended to conduct multi-centre external validation, incorporate wearable and longitudinal 
data streams, uphold calibration and thresholds to address drift, implement safety overrides and bias audits, and 
pursue future trials utilizing secure, versioned federated updates and energy-efficient, on-device inference for 
sustainable healthcare. 

Keywords: Cat Swarm Optimization, Federated Learning, Hybrid Ensemble Learning, RFECV Feature Selection, 
Stroke Risk Prediction, Wearable Sensors Edge Computing. 
 

Introduction 
A stroke causes rapid damage to brain tissue and is 

classified as an acute neurological emergency 

caused by either cerebral vessel occlusion 

(ischaemic) or rupture (haemorrhagic). Over 7 

million deaths worldwide are attributed to it each 

year. More than 1.6 million cases are reported 

annually in India, where the incidence varies 

between 119 and 145 cases per 100,000 (1, 2). 

Motor function, cognition, language, and mood are 

among the areas where survivors frequently suffer 

long-lasting impairments. The four main 

categories are subarachnoid haemorrhage, 

intracerebral haemorrhage, transient ischemic 

attack (a warning event), and ischemic stroke. 

Previous studies often rely on a single public 

dataset, have data leakage risks, lack external 

validation, have class imbalance, have poor 

probability calibration, use heuristic thresholds, 

and are biased towards a single model. Moreover, 

continuous monitoring from wearable data 

streams, privacy-preserving updates, and edge 

deployment are lacking. Stratified splits, 

correlation pruning, imputation, winsorization, 

robust scaling, rare-level grouping, one-hot 

encoding, and plausibility filtering were applied to 

a harmonized cohort of 10,000×38. The wrapper 

Recursive Feature Elimination with Cross-

Validation (RFECV) was used to select features, 

and Cat Swarm was used to refine them for mask 

and hyper-parameter optimization. After training, 

two stacked hybrids known as Hybrid Model 1 and 

Hybrid Model 2 were subjected to Synthetic 

Minority Oversampling Technique (SMOTE) 

application, isotonic calibration, and threshold  
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tuning based on validation. After that, they were 

ready for edge inference, which included a 

federated-update pathway and alerting. Effective 

discrimination is demonstrated by both hybrid 

models, according to ROC analysis on the held-out 

test data. At the optimal operating point, Hybrid 

Model 1 outperforms both its default model and 

Hybrid Model 2, achieving an accuracy of 96.4% 

(threshold = 0.50). Swarm optimization and 

wrapper selection are combined with threshold-

tuned, calibrated hybrids to create a new end-to-

end leakage-safe, edge-ready pipeline. Advanced 

sensors on-device process data that looks like 

actual patient information; predictions produce 

clear reports and alerts, and safety is guaranteed 

by a rule-based fall-back. It speculates to use this 

system as a triage tool in remote monitoring and 

smart hospital environments. Integrating with 

EHR/FHIR is crucial, and in order to improve time-

to-care while maintaining privacy protection at the 

edge, pilot programs should be carried out in at-

risk communities and occupational health 

initiatives. 

 This corpus attempts to detect strokes early using 

routine clinical data such that supervised learning 

can predict individual risk and doctors may triage 

patients more rapidly while reducing morbidity. 

Article establishes a comprehensive benchmark 

for 10 classical algorithms and 3/4-layer artificial 

neural networks (ANNs), reporting that Random 

Forest (RF) attains 99% accuracy with an AUC of 

1.0; nevertheless, deeper networks exhibit inferior 

performance (3). There are several problems, such 

as relying on only one public dataset and not 

having enough external validation, however a 

systematic, cross-validated comparison is 

provided that makes it clear how to rank models 

for tabular risk factors. Research paper evaluates 

Naïve Bayes (NB), Support Vector Machine (SVM), 

Random Forest (RF), K-Nearest Neighbours 

(KNN), Decision Tree (DT), and Logistic Regression 

(LR) in accordance with this subject, aiming for 

early screening. In conclusion, SVM achieves the 

highest accuracy at 94.6%, with an AUC of 99% (4). 

While drawbacks are recognized such as limited 

feature diversity, doubts about class imbalance 

and calibration, and the lack of clinical 

implementation benefits are offered through a 

shortened pipeline that facilitates practical 

screening (3, 4). 

Study enhances robustness using WEKA-based 

experiments: post-SMOTE balance, stacking (NB, 

LR, SGD, KNN, J48/RepTree DT, RF, MLP) achieves 

98% accuracy (AUC 98.9%) (5). Majority voting 

and logistic-meta stacking with 10-fold evaluation 

are used to show author contributions. There is 

also a suggestion for an expansion to CT-image 

deep learning. However, there are still problems 

with single-source data and the lack of an external 

cohort. The work presents an improved ensemble 

model (RXLM) that integrates RF, XGBoost, and 

LightGBM. We use careful pre-processing 

approaches like KNN imputation, outlier 

management, one-hot encoding, normalisation, 

train-only SMOTE, and random-search tuning (6). 

This gets us an accuracy of 96.34% and an AUC of 

99.38%. Innovation is shown by using leakage-

aware oversampling with tailored stacking; 

however, a common limit is still in place because 

only one dataset is employed. In piece, features are 

standardised, an 80/20 split is used, and RF, SVM, 

and DT are evaluated through a simplified but 

informative pipeline. RF achieves 95.3% accuracy 

with high sensitivity (95.57%) but low specificity 

(25%), which shows that even with accuracy 

improvements, many non-stroke cases can still be 

missed. A clear baseline is offered as a 

contribution, which shows the lack of specificity 

and encourages further work to choose and 

calibrate features (7). Manuscript presents a 

comprehensive engineering endeavour that 

incorporates encoding, scaling, BMI imputation, 

SMOTE, smoking-status correction, and 

correlation analysis across decision trees (DT), 

random forests (RF), logistic regression (LR), 

support vector machines (SVM), and hard/soft 

voting methodologies. RF achieves approximately 

94.6 to 94.7% in precision, recall, and F1 score; it 

has large benefits from a reproducible workflow 

and good data cleaning, but it has long-term 

problems because it has few features and no 

external validation (8). Report talks about 

trustworthiness and deployment. It looks at RF, 

XGBoost, SVM, KNN, LR, and NB using leakage-

aware pre-processing, ANOVA/χ²/Mutual 

Information feature tests, k-fold CV, and 

explainable AI (SHAP, LIME), and it gets an 

accuracy of about 90 to 91%. A distinctive addition 

is made via a clinician-accessible web application 

that provides rationales for decisions; yet, 
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challenges persist concerning computational 

expenses and external validation (9). 

Article describes an XGBoost-first design 

methodology that includes label encoding, BMI 

imputation, a 70/30 data split, and optimised 

hyper-parameters. It reports 96% accuracy and 

provides a clear, reproducible framework for 

improving performance through transparent pre-

processing (10). In an emerging paper, eleven 

classifiers are tested using oversampling, cross-

validation, and hyper-parameter optimisation. 

These classifiers are SVM, RF, KNN, DT, NB, LR, 

AdaBoost, Gradient Boosting, MLP, Nearest 

Centroid, and Voting. SVM gets the highest 

accuracy of 99.99%, while RF gets 99.87%. The 

authors offer valuable web and mobile 

applications; however, they must avoid 

oversampling bias and generalising from a single 

cohort (11). Article assesses SVM, RF, DT, and LR 

within a Flask/GUI application, emphasising 

deployment, achieving a maximum accuracy of 

94.30%. The innovation allows for quick and cheap 

inference and uses a user-centred design; 

nonetheless, the claims are not supported by 

imaging, longitudinal signals, or outside clinical 

review (12). Report tries to be strong against 

missing data and imbalance by using 

mean/MICE/age-group BMI imputation, SMOTE, 

and a Dense Stacking Ensemble that incorporates 

TabNet, LR-AGD, NN, RF, Gradient Boosting, 

LightGBM, XGBoost, and CatBoost. In situations 

when the data is not balanced, the accuracy is over 

96% with an AUC of 83.94%. When the data is 

balanced, the accuracy is 98.92%. The study 

encompasses 10,421 cases and identifies 

significant variables such as age, BMI, glucose 

levels, heart disease, hypertension, and marital 

status; however, the analysis is confined to a single 

dataset and may be biased due to oversampling 

(13). A small but effective soft-voting ensemble is 

formed in research utilising SMOTE-balanced UCI 

data (4,981×11) and the following methods: 

Random Forest, Extremely Randomised Trees, and 

Histogram-Based Gradient Boosting. The 

ensemble achieves 96.88% accuracy, with 

precision and recall rates of about 0.96 and 0.98, 

respectively. It is more robust than individual 

learners because of its unique weighting method. 

The next steps are to use stroke-type stratification 

and swarm-intelligence optimization (14). In a 

study, the RDET stack of RF, DT, and Extra Trees is 

tested against nine baselines using 

SMOTE/ADASYN and k-fold cross-validation. With 

SMOTE, 100% accuracy is reported (about 95–

96% otherwise), and a new perspective is 

provided by statistical testing (e.g., t-tests) and 

meticulous tweaking; yet, significant limits arise 

from oversampling-induced optimism and 

evaluation on a solitary cohort (15). 

In research work, multiple classifiers (NB, SVM, RF, 

AdaBoost, and XGBoost) are used with SMOTE and 

feature-selection methods (principal components, 

feature significance, and mutual information). The 

RF and feature significance methods get an 

accuracy of 97.19%, while the feature set is cut 

down by 36.3% and a graphical user interface is 

added. This hybrid selection–classifier 

framework's best feature is that it can find a 

balance between simplicity and accuracy, however 

it can only work with one dataset (16). Study 

enhances interpretability by integrating OptiSelect 

with EnShap, utilising a Shapley-ranked ensemble 

comprising LR, KNN, SVM (linear/RBF), NN, NB, 

and AdaBoost on SMOTE-balanced data. An 

accuracy of 92.39% (95% CI: 91.19 to 93.59) is 

achieved, and game-theoretic model/feature 

ranking is provided alongside TOPSIS analysis, 

resulting in a concise top-4 feature set with explicit 

explanations, hence differentiating this work from 

accuracy-centric benchmarks (17). In an another 

article, hyper-parameter-optimized Gradient 

Boosting, AdaBoost, and XGBoost are integrated 

with robust scaling, explainable artificial 

intelligence (LIME, SHAP), and strategic 

resampling, achieving a test accuracy of 92.13% 

(AUC = 0.97). The intimate integration of 

optimised boosting with explanatory frameworks 

gives it a unique quality. These frameworks turn 

patterns into insights that may be used in a 

therapeutic environment (18).  

Across the sixteen studies, several recurring 

deficiencies have been noted: dependence on a 

singular open dataset lacking external validation; 

ambiguous methodologies for addressing class 

imbalance and calibration; reported enhance-

ments in stacking without clinical examination; 

leakage-aware ensembles trained on a sole source; 

and the utilisation of low specificity and 

unconventional imputation techniques in previous 

models; Limited data has made it hard to create 

replicable pipelines; Web apps based on XAI have 

been made that need a lot of computing power and 
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haven't been tested by anybody else yet. Flexible 

graphical interfaces have been made available 

without the need for longitudinal or imaging data; 

designs that focus on XGBoost have been 

demonstrated to be susceptible to imbalance. 

Aggressive oversampling and bad calibration have 

led to inflated performance metrics, and soft-

voting approaches have been suggested without 

stroke-type stratification. RDET stacking has only 

been tested on one dataset and has been affected 

by SMOTE-driven optimism; hybrid feature-

selection methods have only been tested on the 

original dataset; Shapley-ranked ensembles have 

been affected by oversampling bias and the lack of 

external cohorts; explainable boosting approaches 

have been shown without clinical validation or an 

assessment of their future effects; and dense 

stacking has shown single-cohort bias even though 

there are more cases. 
 

Methodology  
Within a specified ascertainment window, incident 

stroke labels are established using imaging or 

clinical records, excluding baseline occurren-

ces.  Following plausibility filters, inclusion 

requires valid lipid, blood pressure, glycaemia, and 

age panels. Exclusions focus on laboratories with 

physiologically implausible results or vitals that 

contradict (e.g., SBP (systolic blood pressure) < 

DBP (diastolic blood pressure)).  Sensitivity 

analyses down-weight dubious labels to determine 

misclassification resilience. The 95% CIs for 

sensitivity, specificity, Positive Predictive Value 

(PPV), Negative Predictive Value (NPV), Area 

under the Receiver Operating Characteristic Curve 

(AUROC) and Area Under the Precision–Recall 

Curve (AUPRC) are reported using a 1,000-

replicate stratified bootstrap.  Pairing accuracy 

makes use of DeLong's, AUROC differences, and 

McNemar's tests.  The operating points are 

determined by maximising verified net benefit or 

balanced accuracy and calibration-in-the-large and 

calibration slope are estimated by validation and 

test partitions. 

After testing on held-out locations and training on 

index sites, a temporal holdout is added to gauge 

drift and transportability.  Site- and time-wise 

results are presented in the report along with 

calibration charts to assess over- and under-

prediction and pooled random-effects summaries. 

Sex, age, hypertension/diabetes, and sociodemo-

graphic factors all affect performance.  The 

sensitivity studies measure TPR/FPR gaps and 

equalized-odds differences, analyse subgroup 

calibration, and evaluate mitigation using group-

aware thresholds and reweighting. Examine net 

benefit for both treat-all and treat-none scenarios 

across threshold probabilities.  The operational 

threshold minimizes the burden of false-positive 

results for triage capacity while optimizing net 

benefit by adjusting model usage to clinical limits. 

Profile memory footprint, expected inference 

energy, and edge latency; federated rounds are 

scheduled during low-carbon times. FedAvg/ 

FedProx-secured updates limit privacy loss with 

DP-SGD.  Private over-the-air updates are ensured 

by canary deployment, rollback, and robust 

aggregation (median/Krum). Release determinis-

tic pipelines in this case, complete with specified 

features, model, threshold, deployable artefact 

bundling pre-processor, environment definition, 

and fixed seeds.  A model card that explains data 

sources, intended usage, limits, and fairness 

diagnostics, along with a small synthetic sample, 

can enable end-to-end replay without PHI. 

Create and test a real-time stroke-hazard pipeline 

that collects patient information, pre-processes 

feature, uses Cat Swarm optimization to choose 

wrappers, trains hybrid ensembles, and deploys 

the best model on a smart watch for ongoing risk 

monitoring. The system will automatically produce 

reports and send emergency alerts to hospitals and 

family members when a predetermined threshold 

is exceeded. Figure 1 depicts the methodological 

parts as a whole. 
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Figure 1: The Architecture of Systems 

   

A consolidated corpus was assembled by 

extracting structured patient data and definitions 

from leading national and international 

organizations and clinics, such as the American 

College of Cardiology, American Diabetes 

Association, Mayo Clinic, and NIDDK while 

concurrently cross-referencing with authoritative 

texts Stroke Medicine (19-23). Here added public 

datasets from healthcare stroke data, IEEE 

DataPort, RRID International Stroke Database, 

Figshare stroke-risk records and HDR UK synthetic 

admissions for acute stroke to make the data more 

varied (24-27). After harmonization, clinical 

evaluation, and parameter validation based on 

existing literature, we identified the most 

prognostically significant factors to develop the 

National & International Brain Stroke Data 

(NIBSD) featuring 10,000 patients and 38 

variables privately disseminated on dataset (28).  

The pipeline works as follows and is safe from 

leaks.  Duplicate entries are discarded, as are 

entries with missing targets.  The physiological 

limits are imposed by plausibility filters (e.g., 

assign𝑁𝑎𝑁 𝑖𝑓 𝑆𝐵𝑃 < 𝐷𝐵𝑃, 𝑆𝐵𝑃 ∉

[70,250], 𝐷𝐵𝑃 ∉ [30,150], 𝑆𝑝𝑂2 ∉

[70,100], 𝐵𝑀𝐼 ∉

[14,60], 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 [40,600], 𝑎𝑛𝑑 𝑙𝑖𝑝𝑖𝑑/

𝑟𝑒𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠).  For training, validation, and 

testing datasets, a stratified split preserves the 

class prior 𝜋 = 𝑃𝑟(𝑦 = 1). Equation [1] specifies 

that the Pearson correlation matrix is used to 

eliminate highly collinear numerical characteris-

tics during training, each column in the top triangle 

with ∣ 𝑟𝑖𝑗 ∣≥ 0.95 is eliminated.   
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RobustScales are calculated as 𝑧 = (𝑥′ −

𝑚𝑒𝑑𝑖𝑎𝑛)/𝐼𝑄𝑅 after the numeric transformer 

imputes medians and applies winsorization to 

quantiles 𝑥′ = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥, 𝑞0.01), 𝑞0.99). Using 

frequency thresholds, the category transformer 

aggregates infrequent levels (if 𝑛𝑘 <

𝑁𝑚𝑖𝑚𝑛  𝑜𝑟 𝑝𝑘 < 𝜙, classify as “Other”), imputes the 

mode, and then applies one-hot encoding 𝑥 ↦

1[𝑥 = 𝑙], ignoring unknowns.  These are combined 

into a single mapping 𝑇: 𝑅𝑝 → 𝑅𝑑  by a 

ColumnTransformer, which is trained on the 

training set and applied to validation and test sets.  

The final feature names are produced in a 

constrained, robust, and recognizable form by 

fusing one-hot encoding level indications with 

numeric identifiers. After pre-processing, a total of 

33 features were selected out of 37. 

𝑟𝑖𝑗 =
𝑐𝑜𝑣(𝑥𝑖,𝑥𝑗)

𝜎𝑖𝜎𝑗
                     [1] 

Feature Selection 
Through a logistic regression base learner set up 

with L2 regularization and balanced class weights, 

the wrapper feature selection method uses 

Recursive Feature Elimination with Cross-

Validation (RFECV). To address class imbalance 

issues, class weights are defined as 𝑤𝑐 =
𝑁

𝐾𝑁𝑐
. Using 

𝑘 = 5 and shuffling, a stratified KFold divides the 

data while preserving the class prior 𝜋 for each 

fold. The estimator is trained starting with the 

entire feature set 𝑆0, and the coefficients 𝛽 show 

the importance values ∣ 𝛽𝑗 ∣. The least important 

feature is removed in each iteration (step=1). The 

cross-validated score for any subset 𝑆 is 

determined using the 𝑅𝑂𝐶 𝐴𝑈𝐶 formula, which is 

derived from the model's 𝑝(𝑦 = 1 ∣ 𝑥) = 𝜎(𝑋𝑆𝛽), 

as stated in equation [2]. Using the backward 

elimination path 𝑆0 ⊃ 𝑆1 ⊃ ⋯, RFECV evaluates 

the average 𝐴𝑈𝐶 over multiple folds, which is 

expressed as 𝐴𝑈𝐶̂(𝑆) =
1

5
∑  5

𝑖=1 𝐴𝑈𝐶𝑖(𝑆). 

Maximizing the area under the curve, or 

𝑎𝑟𝑔 𝑚𝑎𝑥𝑆  𝐴𝑈𝐶̂(𝑆), yields the ideal subset 𝑆. 

Finally, dimension-reduced design matrices with 

maximal estimated discriminative power based on 

the chosen classifier and metric are produced by 

the learned support mask applying all splits to 𝑆. 

𝐴𝑈𝐶(𝑆) = ∫  
1

0
𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑢))𝑑𝑢          [2] 

Cat Swarm 
A candidate for Cat Swarm Optimization is 

represented by 𝑧 ∈ 𝑅𝑛+1, where 𝐶 = 10ℎ for L2-

logistic regression and the last entry ℎ is within 

[−3,3], while the first 𝑛 entries are in the range 

[0,1] (feature gates). Features are chosen using the 

binary mask 𝑚𝑗 = 1[𝑧𝑗 > 0.5]; if ∥ 𝑚 ∥0= 0, the 

fitness value is 1. Equation [3] displays the 

objective formula, which strikes a balance between 

sparsity and discrimination. Initialize a population 

uniformly within predetermined bounds. Cats 

alternate between seeking (making 𝐾 perturbed 

clones on a random subset of dimensions and 

choosing the one with the lowest 𝐹) and tracing 

(adjusting position and velocity in the direction of 

the global best as given equation [4] in each 

iteration. With 𝐶∗ = 10ℎ∗, the optimal 𝑧∗ yields the 

final subset 𝑚∗ after 𝑇 epochs; datasets are then 

projected onto the chosen columns for further 

modelling. 
 

𝐹(𝑧) = (1 − 𝐴𝑈𝐶(5 𝑓𝑜𝑙𝑑)(𝑚, 𝐶)) + 𝜆
‖𝑚‖0

𝑛
                                                          [3] 

𝑣𝑡+1 = 𝜔𝑣𝑡 + 𝑐𝑟(𝑥∗ − 𝑥𝑡) 𝑎𝑛𝑑 𝑥𝑡+1 = 𝑐𝑙𝑖𝑝(𝑥𝑡 + 𝑣𝑡+1, 𝑙𝑏, 𝑢𝑏)                     [4] 
 

There were two hybrid models used. The first, 

Hybrid Model_1, combines Random Forest, 

Logistic Regression, and an Artificial Neural 

Network (MLP). LightGBM, XGBoost, and CatBoost 

are all included in the second, Hybrid Model 2. 

Hybrid Model 1 
Hybrid Model 1 employs layered generalization 

using basic learners: 𝑀𝐿𝑃 (𝑅𝑒𝐿𝑈;  𝑙𝑎𝑦𝑒𝑟𝑠 64 → 32; 

weight decay 𝛼 = 10⁻⁴; cross-entropy), Random 

Forest (400 trees; class weight="balanced"), and 

L2-regularized Logistic Regression (class 

weight="balanced"). Let 𝑥 ∈  𝑅𝑝 be the pre-

processed feature vector. The foundational models 

provide calibrated posteriors ℎ𝑎𝑛𝑛(𝑥) = 𝑃(𝑦 = 1 ∣

𝑥; 𝜃𝑎𝑛𝑛), ℎ𝑟𝑓(𝑥), ℎ𝑙𝑟(𝑥). With 𝑝𝑎𝑠𝑠𝑡ℎ𝑟𝑜𝑢𝑔ℎ =

𝑇𝑟𝑢𝑒, the meta-design enhances characteristics as 

shown in Equation [5]. The meta-learner employs 

L2-penalized logistic regression to minimize the 

class-weighted log-loss, as shown in equation [6], 

with 𝜎(𝑎) = 1/(1 + 𝑒−𝑎), and 𝑤𝑐 = 𝑁/𝐾𝑁𝑐  to 

address class imbalance. RF posteriors are derived 

from the mean of terminal-node class frequencies 

across trees, while MLP posteriors result from 

backpropagation-optimized logits using ReLU 
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nonlinearity and early convergence regulation 

(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 500). During validation, the stack 

generates scores 𝑝̂ = 𝜎(𝑤⊤𝑧(𝑥)), and we delineate 

the ROC curve by varying the threshold 𝑡 ∈ [0,1], 

plotting 𝑇𝑃𝑅(𝑡) against 𝐹𝑃𝑅(𝑡) and calculating 

𝐴𝑈𝐶(𝑆) = ∫  
1

0
𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑢))𝑑𝑢, as seen in 

Figure 2. This design utilizes complementing 

inductive biases nonlinear (MLP), ensemble 

variance reduction (RF), and linear margin (LR) 

while maintaining original features in the meta-

space for optimal discriminative efficacy. The 

performance score is shown in Table 1. 
 

𝑧(𝑥) = [𝑥; ℎ𝑎𝑛𝑛(𝑥); ℎ𝑟𝑓(𝑥); ℎ𝑙𝑟(𝑥)]                                                                                                     [5] 

∑   
𝑖 𝑤𝑦𝑖

[−𝑦𝑖 𝑙𝑜𝑔 𝑙𝑜𝑔 𝜎(𝑤𝑇𝑧𝑖) − (1 − 𝑦𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 −  𝜎(𝑤𝑇𝑧𝑖))] + 𝜆‖𝑤‖2
2                             [6] 

 

Hybrid Model 2 
Hybrid Model 2 incorporates an L2-regularized 

logistic meta-learner with 𝑝𝑎𝑠𝑠𝑡ℎ𝑟𝑜𝑢𝑔ℎ = 𝑇𝑟𝑢𝑒 

and applies stacked generalization across three 

gradient-boosting tree learners: LightGBM, 

XGBoost, and CatBoost. Equation [7] shows that 

each base model optimizes a regularized logistic 

objective. Define 𝛺(𝑇𝑡) as 𝛾#𝑙𝑒𝑎𝑣𝑒𝑠 +
1

2
 𝜆 ∥ 𝑤𝑡 ∥2

2, 

where 𝑙 stands for logloss. XGBoost uses column 

and row subsampling in addition to a second-order 

Taylor expansion of the loss function with 

shrinkage parameter𝜂. To address class imbalance, 

it also uses 𝑠𝑐𝑎𝑙𝑒_𝑝𝑜𝑠_𝑤𝑒𝑖𝑔ℎ𝑡, which is defined as 

(1 − 𝜋)/𝜋. LightGBM achieves high efficiency with 

sparse, high-dimensional data by using leaf-wise 

growth controlled by num_leaves and histogram 

binning. CatBoost efficiently handles categorical 

interactions following one-hot encoding and 

reduces prediction shift by using ordered boosting 

with symmetric (oblivious) trees. Every base 

learner generates a posterior ℎ𝑏(𝑥) = 𝜎(𝑓𝑏(𝑥)) 

and a margin𝑓𝑏(𝑥). [8] Indicates that the meta-

design improves features, and equation [8] states 

that the final logistic regression is resolved with 

class weights defined as 𝑤𝑐 =
𝑁

𝐾𝑁𝑐
. By altering the 

threshold 𝑡 ∈ [0,1] on 𝑝̂ = 𝜎(𝑤⊤𝑧(𝑥)), validation 

uses the 𝑅𝑂𝐶 𝑐𝑢𝑟𝑣𝑒 to plot 𝑇𝑃𝑅(𝑡) against 𝐹𝑃𝑅(𝑡). 

As shown in Figure 2, the formula for calculating 

the 𝐴𝑈𝐶 is 𝐴𝑈𝐶 = ∫  
1

0
𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑢))𝑑𝑢. In order 

to improve separability, this stack incorporates 

complementary boosting biases leaf-wise, second-

order, and ordered boosting while maintaining 

raw features in meta-space. Table 1 display the 

Hybrid Model 2's performance score. 
 

𝑚𝑖𝑛𝑓 ∑   
𝑖 𝑙(𝑦𝑖 , 𝑓(𝑥𝑖)) + ∑  𝑇

𝑡=1 𝛺(𝑇𝑡)               [7] 
 

𝑧(𝑥) = [𝑥; ℎ𝑙𝑔𝑏𝑚(𝑥); ℎ𝑥𝑔𝑏(𝑥); ℎ𝑐𝑎𝑡(𝑥)]        [8] 
 

SCT Optimization (SMOTE, Calibration 

and Threshold Tuning) 
There are three leakage-safe steps in the SCT 

Optimization phase. In the first stage of SMOTE 

(train-only), the minority class is oversampled 

using 𝑘 = 5 neighbours and the training 

prevalence 𝜋 = 𝑃𝑟(𝑦 = 1) is calculated. After 

choosing a neighbour 𝑥𝑖
(𝑁𝑁)

 for every minority 

point 𝑥𝑖 , a synthetic point 𝑥𝑖
′ is created using the 

formula 𝑥𝑖
′  = 𝑥𝑖 + 𝛿(𝑥𝑖

(𝑁𝑁)
− 𝑥𝑖), where 𝛿 is taken 

from a uniform distribution 𝑈(0,1), until the 

desired ratio (for example, 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 =

0.5) is reached. To prevent leaks, the test and 

validation sets stay the same. Train the hybrid 

stackers on (𝑋𝑡𝑟,𝑆𝑀, 𝑦𝑡𝑟,𝑆𝑀). Probability calibration 

is a validation-only step in the second stage. 

CalibratedClassifierCV(𝑚𝑒𝑡ℎ𝑜𝑑 = "𝑖𝑠𝑜𝑡𝑜𝑛𝑖𝑐", 𝑐𝑣 =

"𝑝𝑟𝑒𝑓𝑖𝑡") is used to wrap the prefit stack using 

isotonic regression. To produce calibrated 

probabilities𝑝𝑖 = 𝑔∗(𝑠𝑖), it seeks to learn a non-

decreasing function 𝑔∗ that minimizes the sum 

∑   
𝑖 (𝑔(𝑠𝑖) − 𝑦𝑖)

2 over the validation scores 𝑠𝑖 . Step 

three is threshold tuning (validation), which 

entails sweeping over 𝑡 ∈ {0.01, … ,0.99}. If 𝑝 ≥ 𝑡, 

then 𝑦̂𝑡  is set to 1. Balanced accuracy 𝐵(𝑡) is 

calculated as 𝐵(𝑡) = 0.5 ∗ (𝑇𝑃𝑅(𝑡) +

𝑇𝑁𝑅(𝑡)), where 𝑇𝑃𝑅 = 𝑇𝑃/𝑃 and 𝑇𝑁𝑅 = 𝑇𝑁/𝑁. 

Accuracy 𝐴(𝑡) is calculated as 𝐴(𝑡) = (𝑇𝑃(𝑡) +

𝑇𝑁(𝑡))/𝑁. The ideal thresholds are determined to 

be 𝑡𝐴
∗ =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥𝑡  𝐴(𝑡) and𝑡𝐵

∗ =

𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥𝑡  𝐵(𝑡). Figures 3 and 4 show the 

validation threshold-sweep curves (score vs. t), 

which demonstrate robustness and provide 

information for the final calibrated threshold used 

in the held-out test. The accuracy of both hybrid 

models mentioned in Table 1 increased after the 

SCT Optimization technique was applied.  Using 

the comprehensive combination of threshold 

tuning shown in Figures 3 and 4, choose a suitable 

threshold value. 
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App and Edge 
Only research-related email and SMS endpoints 

not including hospital paging are used by the 

prototype. Tamper-evident audit trails are 

maintained, PHI is kept out of logs and SMS, and 

secrets are managed using environment variables. 

All alerts require a human-in-the-loop review; 

ambulance auto-dispatch is specifically not 

included in this. 

Using 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑎𝑛𝑑_𝑛𝑜𝑡𝑖𝑓𝑦, the App and Edge 

Development process is carried out. First, 

𝑙𝑜𝑎𝑑_𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 is used to load the serialized stack 

and threshold. After that, it builds a one-row frame 

in 𝑐𝑜𝑚𝑝𝑜𝑠𝑒_𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑑𝑓, applies the embedded 

pre-processor, and reconciles input keys with 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑟𝑎𝑤_𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑓𝑟𝑜𝑚_𝑝𝑟𝑒𝑝𝑟𝑜𝑐. 

Model.predict_proba and a transparent rule-based 

risk are used to calculate a machine learning 

probability. The maximum value between the rule-

based and machine learning outputs is then 

compared to the predetermined threshold. When 

an alert is raised, the 𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑑𝑓_𝑟𝑒𝑝𝑜𝑟𝑡 function 

(using Report Lab) generates a PDF with INPUT 

and OUTPUT. Moreover, a CSV payload is created, 

and both attachments are sent by email using the 

𝑠𝑔_𝑠𝑒𝑛𝑑_𝑒𝑚𝑎𝑖𝑙 function (through the SendGrid 

API). Diagnostics for deliverability are recorded by 

the 𝑠𝑔_𝑐ℎ𝑒𝑐𝑘_𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 function. Using the 

Twilio REST Client (). messages, the 

𝑠𝑒𝑛𝑑_𝑠𝑚𝑠_𝑎𝑙𝑒𝑟𝑡 function leverages Twilio SMS for 

emergency messaging. Provide a way to let family 

members know. Use the Twilio Calling API to 

invoke Client ().calls to start a hospital escalation. 

Create (𝑡𝑤𝑖𝑚𝑙 =. . . , 𝑡𝑜 = 𝐻𝑂𝑆𝑃𝐼𝑇𝐴𝐿_𝑁𝑈𝑀𝐵𝐸𝑅, 𝑓𝑟𝑜𝑚_ =

𝑇𝑊𝐼𝐿𝐼𝑂_𝐹𝑅𝑂𝑀_𝑁𝑈𝑀𝐵𝐸𝑅 ) to initiate an automated 

voice call. Credentials are provided via 

environment variables, and timestamps are 

recorded for every action in log event. 

Federated Learning and Updates 
While preserving raw data on devices, federated 

learning is used to improve generalization across 

non-IID populations. To guarantee safe, privacy-

preserving updates, this method combines secure 

aggregation, DP-SGD with site-specific calibration, 

and canary and rollback mechanisms. 

Federated Learning and Updates is a process for 

improving models that doesn't involve centralizing 

raw patient data. After receiving the pre-

processing schema and global weights 𝜃𝑡 , each 

edge device or site 𝑖 performs local Stochastic 

Gradient Descent (SGD) on its private dataset 𝐷𝑖  

and returns only the parameter deltas 𝛥𝜃𝑖 . A 

coordinator uses 𝐹𝑒𝑑𝐴𝑣𝑔 or 𝐹𝑒𝑑𝑃𝑟𝑜𝑥 to aggregate 

data, adding a proximal term for non-IID data 

according to [9]. Furthermore, to lessen the effects 

of poisoning, strong aggregation techniques like 

Krum or median may be used. To achieve (𝜀, 𝛿)-

differential privacy, gradient clipping 𝐶 and 

Gaussian noise 𝜎 are used in conjunction with 

secure aggregation and DP-SGD. Every round's 

calibration creates decision thresholds for every 

site and uses either Platt or isotonic techniques. 

The feature map is updated or re-threshold by drift 

monitors like PSI/KL and ECE. The use of fairness 

dashboards, personalization layers that include 

fine-tuning the final head, and client selection 

which is defined by fraction 𝑞 and straggler 

tolerance all work together to provide robustness 

across a range of demographics. During low-

carbon times, updates are delivered over-the-air 

with energy-efficient scheduling, rollback 

capabilities, version control, and canary testing. To 

guarantee safe operation during model transitions, 

a rule-based fall-back is kept in place. 

𝜃𝑡+1 = ∑   
𝑖

𝑛𝑖

∑   
𝑗 𝑛𝑗

(𝜃𝑡 + 𝛥𝜃𝑖)                   [9] 

 

Results 
The objective of the project is to develop a real-

time, leakage-safe stroke-risk pipeline that selects 

compact features, trains stacked hybrids, and uses 

a calibrated decision model for edge alerts. The 

ROC curves for the two hybrid stacks on the held-

out test set are displayed in the results section of 

Figure 2. This displays trustworthy ranking and 

distinct classifier separation. In Figure 3, the 

Hybrid Model 1 validation threshold-sweep is 

displayed. Stability is noted across neighbouring 

thresholds, and accuracy peaks at the ideal 

operating point, which is approximately 0.50. 

Figure 4 displays the matching sweep for Hybrid 

Model 2, which displays a marginally flatter 

optimum. Accuracy is the ratio of correct 

predictions to all predictions. Balanced accuracy 

calculates the average sensitivity or recalls for 

each class, guaranteeing that each class is assigned 

equal weight. This approach maintains reliability 

in class imbalance scenarios where traditional 
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accuracy metrics might produce erroneous results. 

Table 1 summarizes the accuracy of each model's 

tests for both the tuned threshold and the default 

operating point. It also compares the scores before 

and after Cat Swarm-guided feature selection and 

threshold tuning. Using Cat Swarm through a 

simplified feature set, Hybrid Model 1 shows the 

highest tuned accuracy at the designated operating 

point when compared to its untuned baseline, 

producing a quantifiable accuracy improvement. 
 

 
Figure 2: ROC Curve  

 

Figure 2 shows that the two hybrid models have 

the same ROC performance (AUC≈0.655) and are 

only marginally better than chance. The near 

overlap of curves throughout FPR suggests a 

similar, low discriminative capacity; therefore, 

recalibration or adjustments are likely needed. 
 

 
 

A combination of one peak at 𝜏 ≈  0.50 and a soft 

plateau (~0.45 − 0.55) Hybrid Model 1 (Figure 3) 

exhibits exceptional precision and balanced 

accuracy. It is also very resilient to even the 

smallest threshold drift, guaranteeing dependable 

deployment. The lower maximum and flatter apex 

of Hybrid Model 2 (Figure 4) suggest less effective 

class separation and less benefit from threshold 

tuning. Between 0.40 and 0.60, performance barely 

changes. Due to its higher peak, resilience to slight 

threshold changes, and balanced accuracy 

particularly in cases of class imbalance Model 1 

with 𝜏 ≈ 0.50 is a sensible choice for the 

operational point. 
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Table 1: Accuracy Summarized of Both Hybrid Models 
Name of the Model Threshold Value Accuracy 

Hybrid Model 1 Default 66.4% 

Hybrid Model 2 Default 65.1% 

Hybrid Model 1 with SMOTE, Calibration, Threshold Tuning 0.04 69.07% 

Hybrid Model 2 with SMOTE, Calibration, Threshold Tuning 0.04 61.6% 

Hybrid Model 1 with SMOTE, Calibration, Threshold Tuning 0.34 96.27% 

Hybrid Model 2 with SMOTE, Calibration, Threshold Tuning 0.17 96.27% 

Hybrid Model 1 with SMOTE, Calibration, Threshold Tuning 0.5 96.4% 

Hybrid Model 2 with SMOTE, Calibration, Threshold Tuning 0.5 96.27% 
 

This system uses train-only SMOTE, cross-

validated wrapper selection, Cat Swarm with 

sparsity regularization, and leakage-safe stratified 

splits to eliminate bias, over fitting, and under-

fitting. L2 regularization and early stopping are 

used to control complexity, while stacked 

ensembles, such as ANN with RF and LR or GBDTs, 

are used to minimize variance. To avoid miss-

calibrated decisions, isotonic calibration and 

validation-based threshold tuning are used, and 

drift and fairness checks are used to find any 

remaining imbalance. 

Since every learner encodes a unique inductive 

bias, hybrid stacks are used. Nonlinear networks, 

bagging, and boosting techniques are integrated 

through the stacking of models like ANN, RF, and 

LR in addition to LGBM, XGB, and CatBoost. This 

method captures complementary patterns and 

effectively reduces variance. Wrapper feature 

selection with cross-validation (RFECV) preserves 

feature interactions that filtering techniques 

usually ignore while optimizing the particular 

downstream metric using the chosen classifier. In 

order to avoid the local minima that gradient-

based tuning techniques frequently encounter, Cat 

Swarm employs sparsity regularization in 

conjunction with a binary feature mask and 

continuous hyper-parameters to perform an 

extensive search across a mixed space. Threshold 

tuning determines the ideal operating point for 

accuracy and balanced accuracy, SMOTE reduces 

class imbalance, and calibration corrects 

overconfident or under-confident probabilities. 

Every step is cross-validated and made to guard 

against data leaks. 

The edge application sends an SMS to the family 

and an email to the hospital when the first trigger 

is triggered (p≥0.5) (Figures 7 and 8). A 

timestamped event log of actions and results is 

then created and stored by the device (e.g., 

medication initiation, ER visits, follow-up 

appointments). To make sure that future alerts 

reflect the patient's past sequence of events, it also 

performs continuous, context-sensitive policy 

updates (e.g., "contact provider prior to ambulance 

dispatch"). Federated Learning and Updates 

protect the privacy of raw data while improving 

model performance across numerous users. 

Individual sites conduct local training before 

transmitting encrypted parameter deltas. FedAvg 

or robust aggregation rules are used to aggregate 

these deltas. Furthermore, methods like secure 

aggregation and DP-SGD are used, which allow for 

personalization in non-IID data environments 

while maintaining privacy and consuming the least 

amount of bandwidth. 

People get personalized follow-up messages, 

timely alerts, and fewer cases of disabilities. 

Hospitals benefit from increased capacity 

management, decreased readmission rates, faster 

triage, and thorough audit trails for alerts. The 

industry that includes wearables, payers, and 

device manufacturers makes it easier to develop 

interoperable APIs, unlock new services, and lower 

risk. To improve surge planning, deploy focused 

preventative measures, and place ambulances as 

efficiently as possible, smart cities use privacy-

preserving population risk signals. Using edge 

inference techniques, this method lowers carbon 

emissions while increasing resilience. 
 

Discussion 
In line with continuous sensing from 

smartwatches, the calibrated hybrid provides 

probability-based triage that is adjusted to certain 

thresholds. By linking operating thresholds to net 

clinical benefit, decision-curve analysis reduces 

alert fatigue and identifies patients at high risk. 

Deployment is made easier by edge packaging and 

federated updates, which incorporate sustaina-

bility and privacy protections.   

Despite performing sensitivity analyses, residual 

label noise may still exist; sensor fidelity may vary 

between devices; development used a single 

corpus while awaiting multi-site external 

validation. Positive predictive value (PPV) and 

negative predictive value (NPV) can be impacted 
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by differences in prevalence, even though SMOTE 

and calibration address imbalance concerns. 

Future research will include longitudinal signal 

integration, prospective evaluation, improved 

subgroup fairness guarantees, and real-time drift, 

energy, and alert burden monitoring. 

When used on a smartwatch, the edge model 

evaluates streaming vital signs and related risk 

factors. Even though the operating threshold is set 

at ≥0.50, the watch shows the status as "No Stroke" 

in Figure 5 because the current risk estimate is 

below the cut-off. The system functions under 

passive monitoring, logs events locally, and is 

intended to not notify users until subsequent 

readings surpass the predetermined threshold. 

 

 
Figure 5: Observed Result, No Stroke 

 

A smartwatch is given to a stroke patient who was 

admitted to the hospital. When streaming vitals 

and risk factors are processed on-device, the 

calibrated hybrid model detects flags at p ≥ 0.50, 

triggering the "Stroke Detected" alert shown in 

Figure 6. In addition to storing an auditable log, the 

system quickly produces a structured Figure 8 

report that contains a timestamp, risk score, key 

telemetry, and decision. As shown in Figure 

7(Inset), the system simultaneously sends an 

emergency SMS notification to the patient's family 

and Figure 7 displays the system sending an email 

the report to the hospital authority. Resuming 

continuous monitoring ensures timely updates in 

the event that the patient's condition changes. 

 

 
Figure 6: Observed Result, Stroke Detection 

 

 
Figure 7: Sent Email Alert to the Concerned Health Care Professional 

Inset: SMS Alert to the Concerned People 
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The single harmonized corpus used in this study is 

pending multi-site external validation. Despite 

sensitivity tests, label noise might persist, and 

sensor quality varies from device to device. While 

SMOTE and calibration lessen imbalance, 

PPV/NPV may be impacted by changes in 

prevalence. The next steps include improved 

subgroup fairness guarantees, longitudinal signal 

integration, prospective assessment, and 

monitoring of drift, energy, and alert burden. 

This model handles common issues by using a 

carefully selected, harmonized multi-source 

corpus (10k/38) in place of single-source data and 

by utilizing leakage-safe pre-processing methods 

such as correlation pruning, stratified splits, and 

train-only imputation/SMOTE. The strategy 

integrates SMOTE, isotonic calibration, and 

validation-based threshold tuning to address class 

imbalance, miss-calibration, and arbitrary cut-offs. 

The strategy uses RFECV and Cat Swarm in 

combination with hybrid stacks to co-optimize 

features and hyper-parameters according to the 

desired metric. The goal of this approach is to 

improve generalization and decrease variance. An 

edge application that incorporates auditable logs, 

rule-based overrides, and PDF reports addresses 

deployment constraints. Along with optional drift 

and fairness monitoring, federated learning is also 

used for privacy-preserving updates. Real-time on-

device inference is made possible by smart watch-

grade sensors, which supports useful and energy-

efficient clinical workflows. 
 

 
Figure 8: Patient Report 
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Conclusion 
To ensure privacy-preserving learning, a real-time, 

leakage-safe stroke-risk pipeline is built for 

wearable deployment. Cat Swarm search, wrapper 

selection, and thorough pre-processing were used 

on a 10,000x38 curated corpus. Additionally, two 

stacked hybrids were compared using SMOTE 

calibration and threshold tuning. At the tuned 

operating point (threshold = 0.50), the Hybrid 

Model 1 recorded the highest accuracy of 96.4%. 

The Hybrid Model 2 and its default settings were 

outperformed by this outcome. The artifact 

enables rule-based safety overrides, automated 

alerts via PDF, email, and SMS, and on-device 

inference. It consists of the pre-processor, chosen 

features, and decision threshold. Altogether, the 

outcomes meet the stated AIM and goal: a 

transparent, edge-ready system that improves 

discriminative performance while maintaining 

deployment realism and offering a clear path for 

updates that protect privacy. 

Using multimodal fusion techniques with ECG, 

PPG, IMU, and CGM data is advised for future 

implementations. When considering 

counterfactual recourse, think about using 

temporal transformers with self-supervised pre-

training, calibrated uncertainty measures, and 

causal inference techniques. Prioritizing on-device 

federated distillation with differential privacy 

secure aggregation is also necessary. Moreover, 

real-world A/B testing, FHIR-based 

interoperability, energy-aware continuous 

learning, and rigorous regulatory validation are 

advised for complete system development. 
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