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Abstract

The objective is to create a real-time, leakage-resistant stroke-risk pipeline that incorporates privacy-preserving
learning methodologies and is deployable on smart watches. This paper employed 38 clinically curated variables to
implement plausibility filtering, stratified splitting, correlation trimming, imputation, winsorization, robust scaling,
rare-level grouping, and one-hot encoding on a harmonized dataset of 10,000 individuals. The RFECV wrapper was
employed for feature selection, while Cat Swarm Optimization was utilized to optimize these features while searching
for a regularization hyper-parameter and a binary feature mask. The creation of two-layered hybrid ensembles involved
SCT optimization, which included threshold tuning, isotonic probability calibration on the validation set, and train-only
SMOTE. Hybrid Model 1 attained the highest accuracy of 96.4% on the reserved test set at the optimal operating
threshold (threshold = 0.50). The performance consistently demonstrates accuracy in threshold-sweep studies around
the ideal point, surpassing both its default settings and the superior configurations of Hybrid Model 2. This research
encompasses calibrated thresholding, a dual-stage selection procedure employing both wrapper and swarm
methodologies, edge-ready artefact packaging comprising the pre-processor, features, model, and threshold, as well as
comprehensive leakage control throughout the entire process. It provides enhancements for privacy preservation
through automated reporting and notifications, along with a federated learning update mechanism designed for non-
IID contexts. It is recommended to conduct multi-centre external validation, incorporate wearable and longitudinal
data streams, uphold calibration and thresholds to address drift, implement safety overrides and bias audits, and
pursue future trials utilizing secure, versioned federated updates and energy-efficient, on-device inference for
sustainable healthcare.

Keywords: Cat Swarm Optimization, Federated Learning, Hybrid Ensemble Learning, RFECV Feature Selection,
Stroke Risk Prediction, Wearable Sensors Edge Computing.

Introduction

A stroke causes rapid damage to brain tissue and is
classified as an acute neurological emergency
caused by either cerebral vessel occlusion
(ischaemic) or rupture (haemorrhagic). Over 7
million deaths worldwide are attributed to it each
year. More than 1.6 million cases are reported
annually in India, where the incidence varies
between 119 and 145 cases per 100,000 (1, 2).
Motor function, cognition, language, and mood are
among the areas where survivors frequently suffer
long-lasting impairments. The four main
categories are subarachnoid haemorrhage,
intracerebral haemorrhage, transient ischemic
attack (a warning event), and ischemic stroke.
Previous studies often rely on a single public
dataset, have data leakage risks, lack external
validation, have class imbalance, have poor

probability calibration, use heuristic thresholds,
and are biased towards a single model. Moreover,
continuous monitoring from wearable data
streams, privacy-preserving updates, and edge
deployment are lacking. Stratified splits,
correlation pruning, imputation, winsorization,
robust scaling, rare-level grouping, one-hot
encoding, and plausibility filtering were applied to
a harmonized cohort of 10,000x38. The wrapper
Recursive Feature Elimination with Cross-
Validation (RFECV) was used to select features,
and Cat Swarm was used to refine them for mask
and hyper-parameter optimization. After training,
two stacked hybrids known as Hybrid Model 1 and
Hybrid Model 2 were subjected to Synthetic
Minority Oversampling Technique (SMOTE)

application, isotonic calibration, and threshold

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,

and reproduction in any medium, provided the original work is properly cited.

(Received 15t October 2025; Accepted 13t January 2026; Published 31st January 2026)



Koley et al,

tuning based on validation. After that, they were
ready for edge inference, which included a
federated-update pathway and alerting. Effective
discrimination is demonstrated by both hybrid
models, according to ROC analysis on the held-out
test data. At the optimal operating point, Hybrid
Model 1 outperforms both its default model and
Hybrid Model 2, achieving an accuracy of 96.4%
(threshold = 0.50). Swarm optimization and
wrapper selection are combined with threshold-
tuned, calibrated hybrids to create a new end-to-
end leakage-safe, edge-ready pipeline. Advanced
sensors on-device process data that looks like
actual patient information; predictions produce
clear reports and alerts, and safety is guaranteed
by a rule-based fall-back. It speculates to use this
system as a triage tool in remote monitoring and
smart hospital environments. Integrating with
EHR/FHIR is crucial, and in order to improve time-
to-care while maintaining privacy protection at the
edge, pilot programs should be carried out in at-
risk communities and occupational health
initiatives.

This corpus attempts to detect strokes early using
routine clinical data such that supervised learning
can predict individual risk and doctors may triage
patients more rapidly while reducing morbidity.
Article establishes a comprehensive benchmark
for 10 classical algorithms and 3/4-layer artificial
neural networks (ANNSs), reporting that Random
Forest (RF) attains 99% accuracy with an AUC of
1.0; nevertheless, deeper networks exhibit inferior
performance (3). There are several problems, such
as relying on only one public dataset and not
having enough external validation, however a
systematic, cross-validated comparison is
provided that makes it clear how to rank models
for tabular risk factors. Research paper evaluates
Naive Bayes (NB), Support Vector Machine (SVM),
Random Forest (RF), K-Nearest Neighbours
(KNN), Decision Tree (DT), and Logistic Regression
(LR) in accordance with this subject, aiming for
early screening. In conclusion, SVM achieves the
highest accuracy at 94.6%, with an AUC of 99% (4).
While drawbacks are recognized such as limited
feature diversity, doubts about class imbalance
and calibration, and the lack of clinical
implementation benefits are offered through a
that facilitates

shortened pipeline practical

screening (3, 4).
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Study enhances robustness using WEKA-based
experiments: post-SMOTE balance, stacking (NB,
LR, SGD, KNN, J48/RepTree DT, RF, MLP) achieves
98% accuracy (AUC 98.9%) (5). Majority voting
and logistic-meta stacking with 10-fold evaluation
are used to show author contributions. There is
also a suggestion for an expansion to CT-image
deep learning. However, there are still problems
with single-source data and the lack of an external
cohort. The work presents an improved ensemble
model (RXLM) that integrates RF, XGBoost, and
LightGBM. We wuse careful pre-processing
approaches like KNN imputation, outlier
management, one-hot encoding, normalisation,
train-only SMOTE, and random-search tuning (6).
This gets us an accuracy of 96.34% and an AUC of
99.38%. Innovation is shown by using leakage-
aware oversampling with tailored stacking;
however, a common limit is still in place because
only one dataset is employed. In piece, features are
standardised, an 80/20 split is used, and RF, SVM,
and DT are evaluated through a simplified but
informative pipeline. RF achieves 95.3% accuracy
with high sensitivity (95.57%) but low specificity
(25%), which shows that even with accuracy
improvements, many non-stroke cases can still be
missed. A clear baseline is offered as a
contribution, which shows the lack of specificity
and encourages further work to choose and
calibrate features (7). Manuscript presents a
comprehensive engineering endeavour that
incorporates encoding, scaling, BMI imputation,
SMOTE,
correlation analysis across decision trees (DT),
random forests (RF), logistic regression (LR),
support vector machines (SVM), and hard/soft
voting methodologies. RF achieves approximately

smoking-status correction,  and

94.6 to 94.7% in precision, recall, and F1 score; it
has large benefits from a reproducible workflow
and good data cleaning, but it has long-term
problems because it has few features and no
external validation (8). Report talks about
trustworthiness and deployment. It looks at RF,
XGBoost, SVM, KNN, LR, and NB using leakage-
pre-processing, ANOVA /x?/Mutual
Information feature tests, k-fold CV, and
explainable Al (SHAP, LIME), and it gets an
accuracy of about 90 to 91%. A distinctive addition

aware

is made via a clinician-accessible web application
that provides rationales for decisions; yet,
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challenges persist concerning computational
expenses and external validation (9).

Article describes an XGBoost-first design
methodology that includes label encoding, BMI
imputation, a 70/30 data split, and optimised
hyper-parameters. It reports 96% accuracy and
provides a clear, reproducible framework for
improving performance through transparent pre-
processing (10). In an emerging paper, eleven
classifiers are tested using oversampling, cross-
validation, and hyper-parameter optimisation.
These classifiers are SVM, RF, KNN, DT, NB, LR,
AdaBoost, Gradient Boosting, MLP, Nearest
Centroid, and Voting. SVM gets the highest
accuracy of 99.99%, while RF gets 99.87%. The
authors offer valuable web and mobile
applications; however, they must
oversampling bias and generalising from a single
cohort (11). Article assesses SVM, RF, DT, and LR
within a Flask/GUI application, emphasising
deployment, achieving a maximum accuracy of
94.30%. The innovation allows for quick and cheap
inference and uses a user-centred design;
nonetheless, the claims are not supported by
imaging, longitudinal signals, or outside clinical
review (12). Report tries to be strong against
missing data and imbalance by using
mean/MICE/age-group BMI imputation, SMOTE,
and a Dense Stacking Ensemble that incorporates
TabNet, LR-AGD, NN, RF, Gradient Boosting,
LightGBM, XGBoost, and CatBoost. In situations
when the data is not balanced, the accuracy is over
96% with an AUC of 83.94%. When the data is
balanced, the accuracy is 98.92%. The study
encompasses 10,421 cases and identifies
significant variables such as age, BMI, glucose
levels, heart disease, hypertension, and marital

avoid

status; however, the analysis is confined to a single
dataset and may be biased due to oversampling
(13). A small but effective soft-voting ensemble is
formed in research utilising SMOTE-balanced UCI
data (4,981x11) and the following methods:
Random Forest, Extremely Randomised Trees, and
Gradient
96.88%
precision and recall rates of about 0.96 and 0.98,
respectively. It is more robust than individual
learners because of its unique weighting method.

Histogram-Based Boosting.  The

ensemble achieves accuracy, with

The next steps are to use stroke-type stratification
and swarm-intelligence optimization (14). In a
study, the RDET stack of RF, DT, and Extra Trees is
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tested against nine baselines using
SMOTE/ADASYN and k-fold cross-validation. With
SMOTE, 100% accuracy is reported (about 95-
96% otherwise), and a new perspective is
provided by statistical testing (e.g., t-tests) and
meticulous tweaking; yet, significant limits arise
from oversampling-induced optimism and
evaluation on a solitary cohort (15).

In research work, multiple classifiers (NB, SVM, RF,
AdaBoost, and XGBoost) are used with SMOTE and
feature-selection methods (principal components,
feature significance, and mutual information). The
RF and feature significance methods get an
accuracy of 97.19%, while the feature set is cut
down by 36.3% and a graphical user interface is
added. This hybrid selection-classifier
framework's best feature is that it can find a
balance between simplicity and accuracy, however
it can only work with one dataset (16). Study
enhances interpretability by integrating OptiSelect
with EnShap, utilising a Shapley-ranked ensemble
comprising LR, KNN, SVM (linear/RBF), NN, NB,
and AdaBoost on SMOTE-balanced data. An
accuracy of 92.39% (95% CI: 91.19 to 93.59) is
achieved, and game-theoretic model/feature
ranking is provided alongside TOPSIS analysis,
resulting in a concise top-4 feature set with explicit
explanations, hence differentiating this work from
accuracy-centric benchmarks (17). In an another

article, hyper-parameter-optimized Gradient
Boosting, AdaBoost, and XGBoost are integrated
with robust scaling, explainable artificial
intelligence  (LIME, SHAP), and strategic

resampling, achieving a test accuracy of 92.13%
(AUC = 0.97). The intimate integration of
optimised boosting with explanatory frameworks
gives it a unique quality. These frameworks turn
patterns into insights that may be used in a
therapeutic environment (18).

Across the sixteen studies, several recurring
deficiencies have been noted: dependence on a
singular open dataset lacking external validation;
ambiguous methodologies for addressing class
imbalance and calibration; reported enhance-
ments in stacking without clinical examination;
leakage-aware ensembles trained on a sole source;
and the utilisation of low specificity and
unconventional imputation techniques in previous
models; Limited data has made it hard to create
replicable pipelines; Web apps based on XAl have
been made that need a lot of computing power and
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haven't been tested by anybody else yet. Flexible
graphical interfaces have been made available
without the need for longitudinal or imaging data;
designs that focus on XGBoost have been
demonstrated to be susceptible to imbalance.
Aggressive oversampling and bad calibration have
led to inflated performance metrics, and soft-
voting approaches have been suggested without
stroke-type stratification. RDET stacking has only
been tested on one dataset and has been affected
by SMOTE-driven optimism; hybrid feature-
selection methods have only been tested on the
original dataset; Shapley-ranked ensembles have
been affected by oversampling bias and the lack of
external cohorts; explainable boosting approaches
have been shown without clinical validation or an
assessment of their future effects; and dense
stacking has shown single-cohort bias even though
there are more cases.

Methodology

Within a specified ascertainment window, incident
stroke labels are established using imaging or
clinical records, excluding baseline occurren-

ces. Following plausibility filters,
requires valid lipid, blood pressure, glycaemia, and
age panels. Exclusions focus on laboratories with
physiologically implausible results or vitals that
contradict (e.g., SBP (systolic blood pressure) <
DBP (diastolic blood pressure)). Sensitivity
analyses down-weight dubious labels to determine
misclassification resilience. The 95% Cls for
sensitivity, specificity, Positive Predictive Value
(PPV), Negative Predictive Value (NPV), Area
under the Receiver Operating Characteristic Curve
(AUROC) and Area Under the Precision-Recall
Curve (AUPRC) are reported using a 1,000-
replicate stratified bootstrap. Pairing accuracy
makes use of DeLong's, AUROC differences, and
McNemar's tests. The operating points are
determined by maximising verified net benefit or

inclusion

balanced accuracy and calibration-in-the-large and
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calibration slope are estimated by validation and
test partitions.

After testing on held-out locations and training on
index sites, a temporal holdout is added to gauge
drift and transportability. Site- and time-wise
results are presented in the report along with
calibration charts to assess over- and under-
prediction and pooled random-effects summaries.
Sex, age, hypertension/diabetes, and sociodemo-
graphic factors all affect performance. The
sensitivity studies measure TPR/FPR gaps and
equalized-odds differences, analyse subgroup
calibration, and evaluate mitigation using group-
aware thresholds and reweighting. Examine net
benefit for both treat-all and treat-none scenarios
across threshold probabilities. The operational
threshold minimizes the burden of false-positive
results for triage capacity while optimizing net
benefit by adjusting model usage to clinical limits.
Profile memory footprint, expected inference
energy, and edge latency; federated rounds are
scheduled during low-carbon times. FedAvg/
FedProx-secured updates limit privacy loss with
DP-SGD. Private over-the-air updates are ensured
by canary deployment, rollback, and robust
aggregation (median/Krum). Release determinis-
tic pipelines in this case, complete with specified
features, model, threshold, deployable artefact
bundling pre-processor, environment definition,
and fixed seeds. A model card that explains data
sources, intended usage, limits, and fairness
diagnostics, along with a small synthetic sample,
can enable end-to-end replay without PHI

Create and test a real-time stroke-hazard pipeline
that collects patient information, pre-processes
feature, uses Cat Swarm optimization to choose
wrappers, trains hybrid ensembles, and deploys
the best model on a smart watch for ongoing risk
monitoring. The system will automatically produce
reports and send emergency alerts to hospitals and
family members when a predetermined threshold
is exceeded. Figure 1 depicts the methodological
parts as a whole.
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Figure 1: The Architecture of Systems

A consolidated corpus
extracting structured patient data and definitions

was assembled by

from national and international
organizations and clinics, such as the American
College of Cardiology, American Diabetes
Association, Mayo Clinic, and NIDDK while
concurrently cross-referencing with authoritative
texts Stroke Medicine (19-23). Here added public
datasets from healthcare stroke data, IEEE
DataPort, RRID International Stroke Database,
Figshare stroke-risk records and HDR UK synthetic

admissions for acute stroke to make the data more

leading

varied (24-27). After harmonization, clinical
evaluation, and parameter validation based on
existing literature, identified the
prognostically significant factors to develop the

National & International Brain Stroke Data

we most

(NIBSD) featuring 10,000 patients and 38
variables privately disseminated on dataset (28).
The pipeline works as follows and is safe from
leaks. Duplicate entries are discarded, as are
entries with missing targets. The physiological
limits are imposed by plausibility filters (e.g.,
assignNaN if SBP < DBP,SBP ¢

[70,250], DBP ¢ [30,150], Sp0? ¢

[70,100],BMI ¢

[14,60], fasting glucose [40,600], and lipid/
renal parameters). For training, validation, and
testing datasets, a stratified split preserves the
class prior m = Pr(y = 1). Equation [1] specifies
that the Pearson correlation matrix is used to
eliminate highly collinear numerical characteris-
tics during training, each column in the top triangle
with | r; 1= 0.95 is eliminated.
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RobustScales are calculated as z=(x'—
median)/IQR after the numeric transformer
imputes medians and applies winsorization to
quantiles  x" = min(max(x, qo01) Go99)- Using
frequency thresholds, the category transformer
aggregates  infrequent levels (if n,<
Npimn O7 P < @, classify as “Other”), imputes the
mode, and then applies one-hot encoding x +~

1[x =[], ignoring unknowns. These are combined

cov(xjx;)

Y 00}
Feature Selection
Through a logistic regression base learner set up
with L2 regularization and balanced class weights,
the wrapper feature selection method uses
Recursive Feature Elimination with Cross-
Validation (RFECV). To address class imbalance

. . ) N .
issues, class weights are defined as w, = P Using
c

k =5 and shuffling, a stratified KFold divides the
data while preserving the class prior m for each
fold. The estimator is trained starting with the
entire feature set S, and the coefficients f show
the importance values | §; |. The least important
feature is removed in each iteration (step=1). The

Vol 7 | Issue 1

single mapping T:RP ->R% by a
ColumnTransformer, which is trained on the
training set and applied to validation and test sets.
The final feature names are produced in a
constrained, robust, and recognizable form by
fusing one-hot encoding level indications with
numeric identifiers. After pre-processing, a total of
33 features were selected out of 37.

into a

(1]

cross-validated score for any subset S is
determined using the ROC AUC formula, which is
derived from the model's p(y =11 x) = o(Xsf),
as stated in equation [2]. Using the backward
elimination path S, © §; D --, RFECV evaluates

the average AUC over multiple folds, which is

ATC(S) = X%y AUC(S).
Maximizing the area under the curve, or
arg maxs AUC(S), yields the ideal subset S.
Finally, dimension-reduced design matrices with
maximal estimated discriminative power based on
the chosen classifier and metric are produced by

the learned support mask applying all splits to S.

expressed as

AUC(S) = [} TPR(FPR™'(w))du  [2]

Cat Swarm

A candidate for Cat Swarm Optimization is
represented by z € R**!, where C = 10" for L2-
logistic regression and the last entry h is within
[—3,3], while the first n entries are in the range
[0,1] (feature gates). Features are chosen using the
binary mask m; = 1[z; > 0.5]; if I m ll,=0, the
fitness value is 1. Equation [3] displays the
objective formula, which strikes a balance between
sparsity and discrimination. Initialize a population

uniformly within predetermined bounds. Cats
alternate between seeking (making K perturbed
clones on a random subset of dimensions and
choosing the one with the lowest F) and tracing
(adjusting position and velocity in the direction of
the global best as given equation [4] in each
iteration. With C* = 10", the optimal z* yields the
final subset m* after T epochs; datasets are then
projected onto the chosen columns for further
modelling.

F(z) = (1 — AUCG o) (4, C)) n /1”'"% -

Vipr = 0V + cr(x™ — x;) and xp4q = clip(x; + Viyq, Ib, ub) [4]

There were two hybrid models used. The first,
Hybrid Model_1,
Logistic Regression, and an Artificial Neural
Network (MLP). LightGBM, XGBoost, and CatBoost
are all included in the second, Hybrid Model 2.

Hybrid Model 1

Hybrid Model 1 employs layered generalization
using basiclearners: MLP (ReLU; layers 64 — 32;

combines Random Forest,

weight decay a = 107 cross-entropy), Random
Forest (400 trees; class weight="balanced"), and
L2-regularized Logistic = Regression (class
weight="balanced"). Let x € R? be the pre-

1571

processed feature vector. The foundational models
provide calibrated posteriors hy,,(x) = P(y =1 |
X; Ognn)s Rrp (X), by (x). With  passthrough =
True, the meta-design enhances characteristics as
shown in Equation [5]. The meta-learner employs
L2-penalized logistic regression to minimize the
class-weighted log-loss, as shown in equation [6],
with o(a) =1/(14+e7%), and w,=N/KN, to
address class imbalance. RF posteriors are derived
from the mean of terminal-node class frequencies
across trees, while MLP posteriors result from

backpropagation-optimized logits using ReLU
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nonlinearity and early convergence regulation
(max_iter = 500). During validation, the stack
generates scores p = o(w " z(x)), and we delineate
the ROC curve by varying the threshold t € [0,1],
plotting TPR(t) against FPR(t) and calculating

AUC(S) = [, TPR(FPR™*(u))du, as seen in
Z(X) = [X; hann(x); hrf(x); hlr(x)]

Vol 7 | Issue 1

Figure 2. This design utilizes complementing
inductive biases nonlinear (MLP), ensemble
variance reduction (RF), and linear margin (LR)
while maintaining original features in the meta-
space for optimal discriminative efficacy. The
performance score is shown in Table 1.

[5]

Zi wy,[-yiloglogow'z) — (1 —y;) log log (1 — a(w'z))] + Allwll3 (6]

Hybrid Model 2

Hybrid Model 2 incorporates an L2-regularized
logistic meta-learner with passthrough = True
and applies stacked generalization across three
gradient-boosting tree learners: LightGBM,
XGBoost, and CatBoost. Equation [7] shows that
each base model optimizes a regularized logistic

objective. Define £2(T,) as y#leaves +§ Al w113,

where [ stands for logloss. XGBoost uses column
and row subsampling in addition to a second-order
Taylor expansion of the loss function with
shrinkage parametern. To address class imbalance,
it also uses scale_pos_weight, which is defined as
(1 — )/m. LightGBM achieves high efficiency with
sparse, high-dimensional data by using leaf-wise
growth controlled by num_leaves and histogram
binning. CatBoost efficiently handles categorical
interactions following one-hot encoding and

reduces prediction shift by using ordered boosting
with symmetric (oblivious) trees. Every base
learner generates a posterior hy(x) = a(f,(x))
and a marginfy (x). [8] Indicates that the meta-
design improves features, and equation [8] states
that the final logistic regression is resolved with

class weights defined as w, = % By altering the

threshold t € [0,1] on p = o(w'z(x)), validation
uses the ROC curve to plot TPR(t) against FPR(t).
As shown in Figure 2, the formula for calculating

the AUC is AUC = [ TPR(FPR™"(u))du.In order

to improve separability, this stack incorporates
complementary boosting biases leaf-wise, second-
order, and ordered boosting while maintaining
raw features in meta-space. Table 1 display the
Hybrid Model 2's performance score.

ming 3 Uy;, f(x) + oy 2(T0) [7]
z(x) = [x; hlgbm(x); hxgb(x); heqr ()] [8]

SCT Optimization (SMOTE, Calibration

and Threshold Tuning)

There are three leakage-safe steps in the SCT
Optimization phase. In the first stage of SMOTE
(train-only), the minority class is oversampled
using k=5 neighbours and the training
prevalence m = Pr(y =1) is calculated. After

choosing a neighbour xi(NN) for every minority

point x;, a synthetic point x; is created using the

formula x; =x; + 6(xi(NN) — x;), where § is taken
from a uniform distribution U(0,1), until the
desired ratio (for example, sampling_strategy =
0.5) is reached. To prevent leaks, the test and
validation sets stay the same. Train the hybrid
stackers on (X¢ sy, Ver,su)- Probability calibration
is a validation-only step in the second stage.
CalibratedClassifierCV(method = "isotonic",cv =
"prefit") is used to wrap the prefit stack using
produce calibrated

probabilitiesp; = g*(s;), it seeks to learn a non-

isotonic regression. To

decreasing function g* that minimizes the sum
¥ (g(s;) — y)? over the validation scores s;. Step
three is threshold tuning (validation), which
entails sweeping over t € {0.01,...,0.99}. If p > ¢,
then ¥, is set to 1. Balanced accuracy B(t) is
calculated as B(t) = 0.5« (TPR(t) +
TNR(t)), where TPR =TP/P and TNR =TN/N.
Accuracy A(t) is calculated as A(t) = (TP(t) +
TN(t))/N. The ideal thresholds are determined to
be t; =arg arg max; A(t) andtp =
arg arg max; B(t). Figures 3 and 4 show the
validation threshold-sweep curves (score vs. t),
which demonstrate robustness and provide
information for the final calibrated threshold used
in the held-out test. The accuracy of both hybrid
models mentioned in Table 1 increased after the
SCT Optimization technique was applied. Using
the comprehensive combination of threshold
tuning shown in Figures 3 and 4, choose a suitable
threshold value.
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App and Edge

Only research-related email and SMS endpoints
not including hospital paging are used by the
prototype. Tamper-evident audit
maintained, PHI is kept out of logs and SMS, and
secrets are managed using environment variables.
All alerts require a human-in-the-loop review;
ambulance auto-dispatch 1is specifically not
included in this.

trails are

Using predict_and_notify, the App and Edge
Development process is carried out. First,
load_artifacts is used to load the serialized stack
and threshold. After that, it builds a one-row frame
in compose_patient_df, applies the embedded
pre-processor, and reconciles input keys with
expected_raw_columns_from_preproc.
Model.predict_proba and a transparent rule-based
risk are used to calculate a machine learning
probability. The maximum value between the rule-
based and machine learning outputs is then
compared to the predetermined threshold. When
an alert is raised, the create_pdf _report function
(using Report Lab) generates a PDF with INPUT
and OUTPUT. Moreover, a CSV payload is created,
and both attachments are sent by email using the
sg_send_email function (through the SendGrid
API). Diagnostics for deliverability are recorded by
the sg_check_suppressions function. Using the
Twilio REST Client (). messages, the
send_sms_alert function leverages Twilio SMS for
emergency messaging. Provide a way to let family
members know. Use the Twilio Calling API to
invoke Client ().calls to start a hospital escalation.
Create (twiml =...,to = HOSPITAL_NUMBER, from_=
TWILIO_FROM_NUMBER ) to initiate an automated
voice call. Credentials are provided via
environment variables, and timestamps are
recorded for every action in log event.

Vol 7 | Issue 1

Federated Learning and Updates

While preserving raw data on devices, federated
learning is used to improve generalization across
non-I1ID populations. To guarantee safe, privacy-
preserving updates, this method combines secure
aggregation, DP-SGD with site-specific calibration,
and canary and rollback mechanisms.

Federated Learning and Updates is a process for
improving models that doesn't involve centralizing
raw patient data. After receiving the pre-
processing schema and global weights 6,, each
edge device or site i performs local Stochastic
Gradient Descent (SGD) on its private dataset D;
and returns only the parameter deltas 46;. A
coordinator uses FedAvg or FedProx to aggregate
data, adding a proximal term for non-IID data
according to [9]. Furthermore, to lessen the effects
of poisoning, strong aggregation techniques like
Krum or median may be used. To achieve (g, §)-
differential privacy, gradient clipping C and
Gaussian noise ¢ are used in conjunction with
secure aggregation and DP-SGD. Every round's
calibration creates decision thresholds for every
site and uses either Platt or isotonic techniques.
The feature map is updated or re-threshold by drift
monitors like PSI/KL and ECE. The use of fairness
dashboards, personalization layers that include
fine-tuning the final head, and client selection
which is defined by fraction q and straggler
tolerance all work together to provide robustness
across a range of demographics. During low-
carbon times, updates are delivered over-the-air
with  energy-efficient  scheduling, rollback
capabilities, version control, and canary testing. To
guarantee safe operation during model transitions,
arule-based fall-back is kept in place.

i1 =X —= (0, + 46)) [9]

Zj nj

Results

The objective of the project is to develop a real-
time, leakage-safe stroke-risk pipeline that selects
compact features, trains stacked hybrids, and uses
a calibrated decision model for edge alerts. The
ROC curves for the two hybrid stacks on the held-
out test set are displayed in the results section of
Figure 2. This displays trustworthy ranking and
distinct classifier separation. In Figure 3, the
Hybrid Model 1 validation threshold-sweep is
displayed. Stability is noted across neighbouring

thresholds, and accuracy peaks at the ideal
operating point, which is approximately 0.50.
Figure 4 displays the matching sweep for Hybrid
Model 2, which displays a marginally flatter
optimum. Accuracy is the ratio of correct
predictions to all predictions. Balanced accuracy
calculates the average sensitivity or recalls for
each class, guaranteeing that each class is assigned
equal weight. This approach maintains reliability
in class imbalance scenarios where traditional
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accuracy metrics might produce erroneous results.
Table 1 summarizes the accuracy of each model's
tests for both the tuned threshold and the default
operating point. It also compares the scores before
and after Cat Swarm-guided feature selection and

Vol 7 | Issue 1

threshold tuning. Using Cat Swarm through a
simplified feature set, Hybrid Model 1 shows the
highest tuned accuracy at the designated operating
point when compared to its untuned baseline,
producing a quantifiable accuracy improvement.

1.0 4 o -
&~ ’ ~ o
0.8 1 ij e 3
5~ s
= -
= e
& 0.6 1 r_r.f' S
o g
= 4 D 5
& 0.4 c i
s A
e ,,g- P
o f,f
-
LI// - ANN+RF+LR (AUC=0.655)
0.0 4 4 LGBM +XGB +CatBoost (AUC=0.655)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 2: ROC Curve

Figure 2 shows that the two hybrid models have
the same ROC performance (AUCx0.655) and are
only marginally better than chance. The near

overlap of curves throughout FPR suggests a
similar, low discriminative capacity; therefore,
recalibration or adjustments are likely needed.

10 10
0.8 1 F 0.8
0.6 1
¢ g1 1
o = o
b b
0.4 4
0.4
0.2 4
J = ALCUracy 0.2 — AfCuracy
—— Balanced Accuracy — Balanced Accuracy
0.0+ . . - r T : ’ . ; T
0.0 0.2 0.4 0.6 0.8 10 0.0 032 0.4 0.6 08 10
Threshold Threshold
Figure 3: Hybrid Model 1 Validation Threshold- Figure 4: Hybrid Model 2 Validation Threshold-
Sweep Sweep

A combination of one peak at T = 0.50 and a soft
plateau (~0.45 — 0.55) Hybrid Model 1 (Figure 3)
exhibits precision and balanced
accuracy. It is also very resilient to even the

exceptional

smallest threshold drift, guaranteeing dependable
deployment. The lower maximum and flatter apex
of Hybrid Model 2 (Figure 4) suggest less effective

class separation and less benefit from threshold
tuning. Between 0.40 and 0.60, performance barely
changes. Due to its higher peak, resilience to slight
threshold and balanced accuracy
particularly in cases of class imbalance Model 1
with 7= 0.50 is a sensible choice for the
operational point.

changes,
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Table 1: Accuracy Summarized of Both Hybrid Models

Vol 7 | Issue 1

Name of the Model Threshold Value Accuracy
Hybrid Model 1 Default 66.4%
Hybrid Model 2 Default 65.1%
Hybrid Model 1 with SMOTE, Calibration, Threshold Tuning 0.04 69.07%
Hybrid Model 2 with SMOTE, Calibration, Threshold Tuning 0.04 61.6%
Hybrid Model 1 with SMOTE, Calibration, Threshold Tuning 0.34 96.27%
Hybrid Model 2 with SMOTE, Calibration, Threshold Tuning 0.17 96.27%
Hybrid Model 1 with SMOTE, Calibration, Threshold Tuning 0.5 96.4%
Hybrid Model 2 with SMOTE, Calibration, Threshold Tuning 0.5 96.27%

This system uses train-only SMOTE, cross-
validated wrapper selection, Cat Swarm with
sparsity regularization, and leakage-safe stratified
splits to eliminate bias, over fitting, and under-
fitting. L2 regularization and early stopping are
used to control complexity, while stacked
ensembles, such as ANN with RF and LR or GBDTs,
are used to minimize variance. To avoid miss-
calibrated decisions, isotonic calibration and
validation-based threshold tuning are used, and
drift and fairness checks are used to find any
remaining imbalance.

Since every learner encodes a unique inductive
bias, hybrid stacks are used. Nonlinear networks,
bagging, and boosting techniques are integrated
through the stacking of models like ANN, RF, and
LR in addition to LGBM, XGB, and CatBoost. This
method captures complementary patterns and
effectively reduces variance. Wrapper feature
selection with cross-validation (RFECV) preserves
feature interactions that filtering techniques
usually ignore while optimizing the particular
downstream metric using the chosen classifier. In
order to avoid the local minima that gradient-
based tuning techniques frequently encounter, Cat
employs sparsity regularization in
conjunction with a binary feature mask and
continuous hyper-parameters to perform an
extensive search across a mixed space. Threshold

Swarm

tuning determines the ideal operating point for
accuracy and balanced accuracy, SMOTE reduces
class imbalance, and
overconfident or under-confident probabilities.
Every step is cross-validated and made to guard
against data leaks.

calibration corrects

The edge application sends an SMS to the family
and an email to the hospital when the first trigger
is triggered (p=0.5) (Figures 7 and 8). A
timestamped event log of actions and results is
then created and stored by the device (e.g,
ER visits,
appointments). To make sure that future alerts
reflect the patient's past sequence of events, it also

medication initiation, follow-up

performs continuous, context-sensitive policy
updates (e.g., "contact provider prior to ambulance
dispatch"). Federated Learning and Updates
protect the privacy of raw data while improving
model performance across numerous users.
Individual sites conduct local training before
transmitting encrypted parameter deltas. FedAvg
or robust aggregation rules are used to aggregate
these deltas. Furthermore, methods like secure
aggregation and DP-SGD are used, which allow for
personalization in non-IID data environments
while maintaining privacy and consuming the least
amount of bandwidth.

People get personalized follow-up messages,
timely alerts, and fewer cases of disabilities.
Hospitals benefit from increased capacity
management, decreased readmission rates, faster
triage, and thorough audit trails for alerts. The
industry that includes wearables, payers, and
device manufacturers makes it easier to develop
interoperable APIs, unlock new services, and lower
risk. To improve surge planning, deploy focused
preventative measures, and place ambulances as
efficiently as possible, smart cities use privacy-
preserving population risk signals. Using edge
inference techniques, this method lowers carbon
emissions while increasing resilience.

Discussion

In line with continuous sensing from
smartwatches, the calibrated hybrid provides
probability-based triage that is adjusted to certain
thresholds. By linking operating thresholds to net
clinical benefit, decision-curve analysis reduces
alert fatigue and identifies patients at high risk.
Deployment is made easier by edge packaging and
federated updates, which incorporate  sustaina-
bility and privacy protections.

Despite performing sensitivity analyses, residual
label noise may still exist; sensor fidelity may vary
between devices; development used a single
corpus while awaiting multi-site external
validation. Positive predictive value (PPV) and

negative predictive value (NPV) can be impacted
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by differences in prevalence, even though SMOTE
and calibration address imbalance concerns.
Future research will include longitudinal signal
integration, prospective evaluation, improved
subgroup fairness guarantees, and real-time drift,
energy, and alert burden monitoring.

When used on a smartwatch, the edge model
evaluates streaming vital signs and related risk

Vol 7 | Issue 1

factors. Even though the operating threshold is set
at >0.50, the watch shows the status as "No Stroke"
in Figure 5 because the current risk estimate is
below the cut-off. The system functions under
passive monitoring, logs events locally, and is
intended to not notify users until subsequent
readings surpass the predetermined threshold.

{

"threshold": 0.5,
"alert_triggered": false,
"email_sent": false,
"call_sid": null

2025-08-30T13:17:50.633094 | Risk below threshold; no alert.

"probability": ©.04534005037783375,

Figure 5: Observed Result, No Stroke

A smartwatch is given to a stroke patient who was
admitted to the hospital. When streaming vitals
and risk factors are processed on-device, the
calibrated hybrid model detects flags at p = 0.50,
triggering the "Stroke Detected" alert shown in
Figure 6. In addition to storing an auditable log, the
system quickly produces a structured Figure 8
report that contains a timestamp, risk score, key

telemetry, and decision. As shown in Figure
7(Inset), the system simultaneously sends an
emergency SMS notification to the patient's family
and Figure 7 displays the system sending an email
the report to the hospital authority. Resuming
continuous monitoring ensures timely updates in
the event that the patient's condition changes.

PDF saved at: /content/stroke_alert_report_1.pdf

2025-08-30T15:28:06.146184 | SendGrid send: status=202, message_id=31AkGKg5QQad4jk]t5ilPeg, body=

2025-08-30T15:28:06.146881 | Email accepted by SendGrid. message_id=31AkGKq5QQa4jk]t5ilPeg

2025-08-30T15:28:06.515231 | SMS sent. SID=SM9fal@e3f3fIbd37322e2abB126ea26la

gBZS—EB—BGTIS:28:03436412 | Suppression check for subhodip.koley@jiscollege.acin: bounces=@, blocks=8, spam_reports=@, invalid=0

“probability_final": .55,

“probability_rule": @.55,

“probability_ml": 0,034,

“threshold": 0.04,

“alert_triggered": true,

“email_sent": true,

"sendgrid_message_id": "31AkGKq5QQadjkJt5ilPeg",

“sms_sid": "SM9fa10e3f3f9bd37322e2ab8126ea261a",

"pdf_report_path": "/content/stroke_alert_report_1.pdf",

"csv_payload_path": "/content/edge_patient_payload.csv",

"suppressions": {
"bounces_error": "HTTP Error 483: Forbidden",
"blocks_error": "HTTP Error 403: Forbidden",
"spam_reports_error": "HTTP Error 403: Forbidden",
"invalid_emails_error": "HTTP Error 4@3: Forbidden"

Figure 6: Observed Result, Stroke Detection

« B® 0 B &8 0 @ 8 o

URGENT: Stroke Risk Al A d) G 55 Sent from your Twilio trial account -
s [ " %
PUoke s ert (Automated) @i ! Emargency, Emargency, Emargency

Automated Stroke Risk via sendgrid net in Brain stroke need action.

Sent from your Twilio trial account -

Automated Stroke Risk Alert

UTC: 2025-08-30T14:53:40.974714

FINAL Probabilty: 0.550

Threshold: 0.04

Status: ALERT

(Seo attachod PDF for full input & output details.)

Emargency, Emargency, Emargency
in Brain stroke need action.

2 Attachments « Scanned by Gmail ©

B edge_patient pa. ' B3 stroke_alert_repo. '

Figure 7: Sent Email Alert to the Concerned Health Care Professional
Inset: SMS Alert to the Concerned People
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The single harmonized corpus used in this study is
pending multi-site external validation. Despite
sensitivity tests, label noise might persist, and
sensor quality varies from device to device. While
SMOTE and calibration imbalance,
PPV/NPV may be impacted by changes in
prevalence. The next steps include improved

lessen

subgroup fairness guarantees, longitudinal signal
integration, assessment, and
monitoring of drift, energy, and alert burden.

prospective

This model handles common issues by using a
carefully selected, harmonized multi-source
corpus (10k/38) in place of single-source data and
by utilizing leakage-safe pre-processing methods
such as correlation pruning, stratified splits, and

Vol 7 | Issue 1

integrates SMOTE, isotonic calibration, and
validation-based threshold tuning to address class
imbalance, miss-calibration, and arbitrary cut-offs.
The strategy uses RFECV and Cat Swarm in
combination with hybrid stacks to co-optimize
features and hyper-parameters according to the
desired metric. The goal of this approach is to
improve generalization and decrease variance. An
edge application that incorporates auditable logs,
rule-based overrides, and PDF reports addresses
deployment constraints. Along with optional drift
and fairness monitoring, federated learning is also
used for privacy-preserving updates. Real-time on-
device inference is made possible by smart watch-
grade sensors, which supports useful and energy-

train-only imputation/SMOTE. The strategy efficient clinical workflows.

UTC Timestamp: 2025-08-30 14:19.08

Output Metrics
Maetric Value
ML Probat=ity 0034
Rule Probability 0.550
FINAL Probability (decision) = 0.550
Decision Threshold 004
Status ALERT (>= threshoid)

Input Data (Payload)
Field Value
agoe 78
alcohol_uso Moderato
atrial_fibnkation o
bmi 302
ckd 0
creatinine_mgdl 1.1
orp_mgl 50
diabotes 1
diastolic_bp_mmHg 105
diet_score_1t05 2
eglf_mLmin1.73m2 550
famity_history_stroke 1
fasting_ghucose_mgdl 210.0
hbalc_percent 2.1
hdl_mgadl 38.0
hean_disease [+]
hypertension 1
Idl_migal 180.0
on_antcoagulant [+]
on_antihypertensive o
on_statin ]
physical_activity Low
priorn_tia 1
reghon Urban
resting_he_bpm a8
sodentany_minutos 200
S Male
sleep_hours 50
smoking_status Current
spo2_mean_night_pct 92.0
$po2_min_night_pct 856.0
steps_daily 2000
SYMPIOMs_sudden_weakness 0
systolic_bp_mmiHg 170
total_cholesterol_mgadl 240.0
triglycerides_mgdi 2200
waist_crcumference_com 104.0

Figure 8: Patient Report
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Conclusion

To ensure privacy-preserving learning, a real-time,
leakage-safe stroke-risk pipeline is built for
wearable deployment. Cat Swarm search, wrapper
selection, and thorough pre-processing were used
on a 10,000x38 curated corpus. Additionally, two
stacked hybrids were compared using SMOTE
calibration and threshold tuning. At the tuned
operating point (threshold = 0.50), the Hybrid
Model 1 recorded the highest accuracy of 96.4%.
The Hybrid Model 2 and its default settings were
outperformed by this outcome. The artifact
enables rule-based safety overrides, automated
alerts via PDF, email, and SMS, and on-device
inference. It consists of the pre-processor, chosen
features, and decision threshold. Altogether, the
outcomes meet the stated AIM and goal: a
transparent, edge-ready system that improves
discriminative performance while maintaining
deployment realism and offering a clear path for
updates that protect privacy.

Using multimodal fusion techniques with ECG,
PPG, IMU, and CGM data is advised for future
implementations. When considering
counterfactual think about using
temporal transformers with self-supervised pre-
training, calibrated uncertainty measures, and
causal inference techniques. Prioritizing on-device
federated distillation with differential privacy

recourse,

secure aggregation is also necessary. Moreover,
real-world A/B testing, FHIR-based
interoperability, energy-aware continuous
learning, and rigorous regulatory validation are
advised for complete system development.
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