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Abstract

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, where early risk identification is
critical for improving survival outcomes. While existing machine learning approaches for lung cancer prediction
frequently rely on medical imaging, such methods are costly and often impractical in low-resource clinical settings. This
study proposes an efficient and interpretable lung cancer risk prediction framework using demographic, lifestyle, and
symptom-based data. A Genetic Algorithm (GA) is employed as a metaheuristic optimization strategy to jointly perform
feature selection and hyperparameter tuning of a Random Forest (RF) classifier. To address the inherent class
imbalance in the dataset, the Synthetic Minority Oversampling Technique (SMOTE) is applied exclusively to the training
data to prevent information leakage and enhance minority-class learning. The proposed GA-optimized RF model is
evaluated against several baseline classifiers, including Logistic Regression, Support Vector Machine, k-Nearest
Neighbors, Decision Tree, standard Random Forest, and XGBoost, using accuracy, precision, recall, F1-score, and ROC-
AUC as evaluation metrics. Experimental results demonstrate that the optimized RF model achieves superior
performance, with an accuracy of 90.6%, an F1-score of 0.885, and a ROC-AUC of 0.917, outperforming all baseline
models. Feature importance analysis identifies smoking habit, breathing difficulties, and throat discomfort as the most
influential predictors, aligning with established clinical knowledge. The findings highlight that a metaheuristic-driven
optimization approach applied to non-imaging data can provide a cost-effective, reliable, and interpretable solution for
early lung cancer risk screening, particularly in resource-constrained healthcare environments.

Keywords: Demographic Data, Feature Selection, Genetic Algorithm, Lung Cancer Prediction, Metaheuristic
Optimization, Random Forest.

Introduction

Lung cancer remains one of the chief causes of

cancer-related deaths worldwide. In many
countries, survival rates have improved only
marginally because the disease is frequently
detected at advanced stages when therapeutic
options are limited and outcomes poorer.
Consequently, early risk identification is crucial:
timely detection permits targeted screening,
earlier intervention, and better allocation of
medical resources. Historically, diagnosis and risk
stratification have relied on imaging modalities
such as low-dose computed tomography (LDCT),
histopathology, and molecular tests (1). While
effective, these methods are costly and dependent
on specialised equipment and trained personnel.
settings, demographic,
lifestyle, and symptom information often remain
the only accessible inputs (2). Hence, there is a

In resource-limited

pressing need for accurate and interpretable
prediction systems that function well with such
non-imaging features. Machine learning (ML)
methods have shown great promise in clinical risk
modelling across various diseases. ML models
trained on imaging data for lung cancer achieve
impressive discriminative performance; however,
their high cost and dependency on imaging
infrastructure limit their widespread use (3).
Alternatively, models using demographic and
symptom features such as age, smoking history,
occupational comorbidities, and
patient-reported symptoms offer cost-effective

exposures,

and scalable screening tools. Building robust
models on these features is challenging. First,
imperative to
redundancy and noise, improving both predictive
accuracy and interpretability. This has been

feature selection is reduce
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extensively reviewed in medical applications
emphasizing feature selection as a key step for
clinical machine learning (4, 5). Second, class
imbalance where negative cases significantly
outnumber positive lung cancer cases poses
challenges during training, as naive classifiers may
bias towards the majority class. Third,
hyperparameter tuning critically influences model
performance; improper tuning can
overfitting or  underfitting, = undermining
generalisability (6). Recent comparative studies
underscore the importance of effective
hyperparameter optimisation methods.

Metaheuristic algorithms, particularly Genetic
Algorithms (GAs), offer practical solutions for
simultaneous feature selection and
hyperparameter tuning. GAs navigates large,
complex search spaces effectively without
requiring gradient information, making them
highly suitable for combinatorial optimization
problems encountered in clinical ML pipelines (7).
Representing feature subsets as
chromosomes alongside encoded
hyperparameters allows unified optimisation,
potentially discovering synergistic combinations
that sequential methods might miss (8,9).
Addressing class imbalance, synthetic
oversampling techniques like SMOTE (Synthetic
Minority Over-sampling Technique)
minority class representation by generating
realistic synthetic samples, facilitating fairer
Random Forest (RF)
classifiers naturally complement this framework:
they tolerate noisy features, accommodate mixed
data types, resist overfitting via ensemble
averaging, and provide interpretable feature
importance valued by

cause

binary
continuous

enhance

decision boundaries.

metrics—attributes
clinicians for transparency (10).

This study aims to develop an accurate and
interpretable lung cancer risk predictor using
demographic and symptom data under real-world
constraints such as limited samples, mixed data
types, and class imbalance. The primary objective
is to learn a mapping from patient features to
binary risk labels (high vs. low), simultaneously
selecting an informative feature subset and
optimising classifier hyperparameters to maximise
predictive performance via cross-validation and
testing. The motivations behind this work are
threefold: demographic and symptom data are
inexpensive and widely obtainable in primary care,
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enabling extensive screening where imaging is
impractical; metaheuristic dual optimisation
automates crucial design decisions, potentially
enhancing model performance beyond manual
tuning; and the interpretability of RF ensembles
facilitates clinician understanding and patient
communication regarding risk factors.

Specific goals include: (a) designing a GA encoding
to jointly represent feature selection and RF
hyperparameters, evolving near-optimal solutions
under cross-validation; (b) evaluating SMOTE’s
impact on minority detection and predictive
metrics with properly applied oversampling; (c)
benchmarking the GA-optimised RF against
baseline classifiers (Logistic Regression, SVM, k-
NN, Decision Tree, standard RF, XGBoost) using
Accuracy, Precision, Recall, F1-score, and ROC-
AUC; (d) analysing the final features to provide
clinical insights into influential demographic and
symptom predictors. Several prior studies have
explored lung cancer risk prediction using
demographic, lifestyle, or questionnaire-based
data, typically employing conventional classifiers
such as logistic regression, support vector
machines, or tree-based ensembles with
predefined feature sets. While these models
demonstrate reasonable predictive performance,
most rely on manual or filter-based feature
selection and standard hyperparameter tuning
strategies. Recent ensemble-based approaches
using Random Forest or gradient boosting have
reported improved discrimination; however,
optimization is often performed sequentially or
limited to either feature selection or parameter
tuning. In contrast, the present study introduces a
unified genetic algorithm-driven framework that
simultaneously optimizes feature subsets and
under balanced

classifier hyperparameters

training conditions. This
enables the discovery of synergistic features-
parameter configurations, leading to improved
screening-level performance while retaining

interpretability based on clinically meaningful

joint optimization

demographic and symptom variables.

The literature relevant to this study spans three
principal areas: (a) metaheuristic algorithms for
feature selection and hyperparameter tuning, (b)
methods to handle class imbalance (with emphasis
on SMOTE and its variants), and (c) machine
learning approaches for lung cancer prediction

using  demographic/tabular  features and
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complementary imaging-based studies that

provide context and performance baselines.
Metaheuristic Algorithms for Feature
Selection and hyper Parameter
Optimisation

Genetic Algorithms (GAs) and other evolutionary
methods have a long history in computational
optimization and have been applied extensively to
feature selection. Guyon and Elisseeff provided a
foundational perspective on variable and feature
selection, outlining filter, wrapper and embedded
strategies, and pointing out the utility of search-
based wrappers
interactions matter (11). In healthcare analytics,
wrapper methods using GAs have been shown to
effectively reduce dimensionality while preserving
classification performance, for example
microarray and clinical datasets
combinatorial interactions are important (12).
Recent comparative studies show that GAs often
outperforms simple greedy or filter approaches
when the feature space is moderately large and
features interact in nonlinear ways (13). Hybrid GA
frameworks that combine filters for initial pruning
and a GA wrapper for fine search have been
proposed to make the search tractable on higher-
dimensional data; such hybrids strike a balance

in domains where subset

in
where

between computational cost and selection quality
(14). In parallel, more sophisticated evolutionary
schemes (multi-objective GA, island models, and
adaptive mutation) have been adapted to maintain
population diversity and to avoid premature
convergence in complex search landscapes (15).
The idea of applying metaheuristics for hyper
parameter tuning of ensemble models is also well
explored. Evolutionary algorithms can tune both
discrete and continuous hyper parameters jointly
and are particularly useful when the search space
Studies
comparing GA, particle swarm optimisation (PSO),

is multi-modal or non-differentiable.
Bayesian optimisation and random/grid search
show that no single method dominates universally;
however, GA provides strong exploration
capability and flexible encoding of mixed-type
parameters, which makes it attractive for joint
feature-hyper parameter optimisation in wrapper
settings (16, 17). Application-oriented works
demonstrate that GA-tuned Random Forests or
boosted trees often achieve better generalisation
than models tuned by naive grid search, especially
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when combined with cross-validated fitness
metrics that penalise complexity (18).

Several medical domain studies are notable: GA
wrappers for ECG and EEG feature selection, and
GA-guided hyper parameter search for ensemble
classifiers in cardiovascular and pulmonary
disease prediction show consistent performance
gains, particularly in sensitivity or recall for
minority classes (19, 20). These examples
illustrate the potential of a GA to simultaneously
trim irrelevant features and find stable model
settings that generalise well.

Class Imbalance Handling: SMOTE and

Enhancements

Class imbalance is a persistent issue in medical
datasets. The SMOTE algorithm remains a
standard technique: it generates synthetic
minority class samples along the line segments
joining minority class neighbours and has been
shown to sensitivity
numerous studies (21). Since its introduction,
several SMOTE variants have been proposed to
reduce generation of noisy examples and to pay
attention to borderline or hard-to-classify
minority examples: Borderline-SMOTE focuses
synthesising  samples near  classification
boundaries; ADASYN adapts the amount of
oversampling to local difficulty; safe-level and
density-based SMOTE variants attempt to avoid

enhance classifier in

generating samples in regions dominated by
majority class points (22, 23).

Empirical analyses emphasise
experimental practice: oversampling must be
applied within training folds

careful

during cross-
validation to avoid information leakage, and
hybrid strategies (SMOTE
controlled under-sampling or with noise filters)
often improve robustness (24). In healthcare
prediction tasks, improving recall (sensitivity) for
the positive class is usually a priority; SMOTE and

combined with

its variants have been instrumental in achieving
balanced performance measures (precision/recall
trade-offs) rather than merely improving accuracy
(25). Recent reviews also caution that synthetic
oversampling can sometimes produce over fitting
if the synthetic samples are not representative of
real minority distributions; hence, pairing SMOTE
with robust model selection and validation

procedures is advisable (26).
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Machine Learning for Lung Cancer
Prediction: Demographic and Imaging

Studies

Machine learning in lung cancer spans imaging-
heavy radiomics/deep learning work and
demographic/clinical tabular studies. On the
imaging side, approaches extract
quantitative features from CT images and have
been successful in predicting nodule malignancy
and outcomes; radiomic features contain
prognostic information across cancer types,
including lung cancer, and can be used to predict
survival and phenotypes (27). Similarly, deep
learning models trained on LDCT volumes deliver
state-of-the-art performance in screening tasks, as
shown in large-scale studies where convolutional
networks matched or outperformed radiologists
on certain tasks (28). While these studies set high
performance benchmarks, their dependence on
large annotated imaging datasets and high
computational costs limits applicability in low-
resource clinical environments. Conversely,
models trained on demographic, lifestyle and
symptom variables are attractive for primary
screening. Several recent studies demonstrate that
ensemble methods — Random Forests and

radiomics

gradient boosted trees perform well on such
tabular datasets, giving stable performance and
interpretable importance rankings (29, 30). For
instance, multi-model ensemble studies on elderly
cohorts found that combining demographic,
environmental and clinical features yield ROC-AUC
values in the 0.9 range for cohort-level incidence
prediction when external validation is available
(31). Other works that explicitly compare multiple
classifiers report that RF and XGBoost frequently

Vol 7 | Issue 1

outperform linear models and single decision trees
on mixed-type demographic data, largely due to
their ability to capture nonlinear interactions and
to tolerate correlated predictors (32).

Finally, there is a smaller body of work in which
metaheuristics and oversampling is combined
with ensembles for lung cancer and related
respiratory disease prediction. Studies applying
GA-based feature selection together with SMOTE
and RF report improvements in recall and overall
balanced metrics on non-imaging datasets,
suggesting that the combined pipeline is promising
for screening tasks where sensitivity is essential
(33). Nevertheless, many published studies do not
perform joint GA optimisation of both features and
hyper parameters; instead, they tune hyper
parameters separately or use simpler feature
selection techniques. This gap motivates a unified
GA dual-optimisation approach in the present
work. Table 1 provides a comparative summary of
key works referenced in this article.

The literature indicates strong evidence for three
facts: (a) SMOTE and its variants are useful for
improving minority-class detection in medical
datasets; (b) ensemble methods like Random
Forest and XGBoost are reliable choices for tabular
clinical data; and (c) Genetic Algorithms and other
metaheuristics are well suited for feature selection
and hyperparameter tuning, but their joint
application in a single pipeline for demographic-
based lung cancer prediction remains under-
represented. Thus, we proceed to implement and
evaluate a GA-driven dual optimisation pipeline
(feature selection + RF hyperparameter tuning),
combined with SMOTE balancing, and benchmark
against standard baselines.

Data Preprocessing

Train-Test Split

@ Handle Missing Values Stratified Sampling

Encode Categorical Training
Variables Set
@ Normalize Features

Test Set
%!

Genetic Algorithm
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-) Feature Selection
=\ RF Hyperparameter

Model Evaluation
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°00 °00
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Figure 1: Overall Workflow of the Proposed Lung Cancer Prediction Framework
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Methodology

Research Framework

The present study was designed as a well-
organized pipeline that links various stages of
machine learning aimed at lung cancer prediction.
Initially, the demographic and symptom-related
dataset is preprocessed to handle missing values
and prepare the features appropriately. Following
this, the issue of class imbalance is addressed using
the Synthetic Minority Oversampling Technique
(SMOTE). To enhance model accuracy and
efficiency, a Genetic Algorithm is incorporated for
both feature selection and hyperparameter tuning
of the Random Forest classifier. Finally, the
performance of the optimized model is compared
against multiple baseline classifiers to
demonstrate its robustness and effectiveness. The
entire experiment was carried out on a system
equipped with an Intel i7 processor and 16 GB of
RAM. A graphical illustration of this
comprehensive machine learning workflow is
presented in Figure 1.

Table 1: Dataset Characteristics

Vol 7 | Issue 1

Dataset Description

The dataset used in this study contained
demographic details such as age, gender, and
lifestyle attributes, along with symptom variables
like persistent cough, chest pain, fatigue, throat
discomfort, and breathing difficulties. Each patient
record was marked either as positive for lung
cancer risk or negative. The class distribution was
skewed with more negative than positive cases,
which reflects the real-world scenario where the
prevalence of lung cancer is lower compared to the
healthy population. Such imbalance needed to be
handled carefully before model training. This
dataset was downloaded from Kaggle and consists
of a total of 5,000 patient records. The class
distribution is imbalanced, with 2,963 instances
labeled as negative and 2,037 instances labeled as
positive for lung cancer risk. This imbalance posed
a challenge for model training and motivated the
use of balancing techniques such as SMOTE to
generate a fairer training dataset. A descriptive
overview of dataset statistics is presented in
Table 1.

Attribute Description Type

AGE Age of patient Continuous
GENDER Male (1) / Female (0) Categorical
SMOKING Smoking habit Binary
FINGER_DISCOLORATION Discoloration due to smoking Binary
MENTAL_STRESS Presence of mental stress Binary
EXPOSURE_TO_POLLUTION Long-term exposure to pollutants Binary
LONG_TERM_ILLNESS Existing chronic illness Binary
ENERGY_LEVEL Self-reported energy level Continuous
IMMUNE_WEAKNESS Weakness in immune system Binary
BREATHING_ISSUE Difficulty in breathing Binary
ALCOHOL_CONSUMPTION Alcohol usage Binary
THROAT_DISCOMFORT Presence of throat discomfort Binary
OXYGEN_SATURATION Blood oxygen saturation (%) Continuous
CHEST_TIGHTNESS Feeling of chest tightness Binary
FAMILY_HISTORY Family history of lung disease Binary
SMOKING_FAMILY_HISTORY Family history of smoking habit Binary
STRESS_IMMUNE Stress-immune interaction indicator Binary
PULMONARY_DISEASE (Target) Presence of lung cancer risk (Yes/No) Binary
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Before SMOTE

2,037
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Class Label
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Figure 2: Distribution of Lung Cancer Risk Classes Before and After Applying the Synthetic Minority
Oversampling Technique (SMOTE) to the Training Data

Data Pre-processing

Data preprocessing was carried out in a stepwise
manner to make the dataset suitable for machine
learning tasks. The missing values present in the
dataset were replaced through imputation. For
continuous variables, mean imputation was used,
while for categorical variables the most frequent
value was substituted. Categorical variables such
as gender were encoded using one-hot encoding so
that they could be used in the models. Certain
numerical features were normalized to ensure that
they remained within similar ranges. After
preprocessing, the dataset was divided into
training and testing sets in an 80:20 ratio.
Stratified splitting was performed so that both sets
preserved the same proportion of positive and
negative classes. To address the prominent class
imbalance, Synthetic Minority Oversampling
Technique (SMOTE) was applied to the training
data. Figure 2 illustrates the effect of SMOTE on
class distribution: prior to balancing, the dataset

contained 2,963 negative (majority) and 2,037
positive (minority) instances. After applying
SMOTE, both classes had 2,963 samples in the
training set, resulting in a balanced distribution
and supporting fairer model training.

Class Imbalance Handling with SMOTE
One of the critical challenges of the dataset was the
imbalance between positive and negative cases.
This was overcome using Synthetic Minority
Oversampling Technique (SMOTE). SMOTE
generates synthetic records of the minority class
by interpolating between nearby positive
instances. In the present study, SMOTE was
applied only within training folds during cross-
validation to prevent any information leakage into
the test set. By creating synthetic but realistic
minority samples, SMOTE allowed the classifiers to
learn fairer decision boundaries and improved
their ability to detect true positive cases. Figure 3
provides a schematic illustration of the balancing
process.

Training Folds (with SMOTE)
Fold 1

Fold 2

Fold 1

Test Fold (No SMOTE)

Fold 2
Majority Class 4 A
AAA
AA

Test Fold —

A
AA

Combined Data |*

with Predictions, o

Majority Class 4 A Majority Class 4 A > Ma|omy Class 4 A‘ Original
AA A A @ A A A Minorty

0000 ALA 7| @08 ¢ AAN[’| @0@® ¥ A A A [Samples
L L LA L LS A o000 ® "

L1} A A [ 1 ) hd A A eoe A AN |Synthetic
Minorty

SMOTE Application Samples

+ No Synthetic Samples
(Preventing Test Set Leakage)

| m Predicted Majority Class

Combined Data with Predictions

Figure 3: Schematic Illustration of the Synthetic Minority Oversampling Technique
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Although  Synthetic Minority Oversampling
Technique (SMOTE) may generate artificial
samples that do not perfectly correspond to real
clinical profiles, its controlled use remains
effective for mitigating class imbalance in medical
screening tasks. In this study, SMOTE was applied
exclusively to the training data within each cross-
validation fold, ensuring that no synthetic
information leaked into the test set. The primary
objective was to improve sensitivity toward high-
risk lung cancer cases, as missing true positives is
more detrimental than producing false alarms in
screening contexts. Furthermore, the Random
Forest classifier's ensemble structure and
robustness to noise help reduce sensitivity to
potentially imperfect synthetic samples. This
careful application allows SMOTE to enhance
minority class learning while preserving clinical
plausibility and model generalizability.

Genetic Algorithm for Optimization

A Genetic Algorithm was employed to serve two
purposes: feature selection and hyperparameter
tuning of the Random Forest classifier. GA is an
evolutionary metaheuristic which simulates
natural selection through operations like selection,
crossover and mutation. In this study, the
chromosomes were designed to contain both
binary bits representing inclusion or exclusion of
features and numerical values representing
hyperparameters of the Random Forest model,
such as number of trees, maximum depth and
minimum samples required for split. The fitness of
a chromosome was calculated based on cross-
validated accuracy and F1 score. Tournament
selection was used to identify strong parent
chromosomes, and one-point crossover exchanged
information between parents. Mutation was
applied to randomly alter feature bits or change
parameter values. The GA was allowed to evolve
for a fixed number of generations or until
convergence was reached. This design ensured
that the algorithm simultaneously discovered the
best subset of features and the most appropriate
hyperparameters. The overall flow of this process
is depicted in Algorithm 1 and Algorithm 2.
Algorithm 1: Genetic Algorithm for Feature
Selection

Input and Output:

The inputs to the proposed algorithm consist of the
datasetX, y, where X represents the feature matrix
and y denotes the corresponding class labels. In
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addition, the Genetic Algorithm parameters
include the population size N, which determines
the number of candidate solutions evaluated in
each generation,
generations Gcontrolling the evolutionary search
process, and the early stopping patience
parameter P, which terminates the optimization
when no improvement in fitness is observed over
a predefined number of consecutive generations.
The output of the algorithm is the optimal selected
S*, representing the
informative set of features identified through the
evolutionary optimization process.

Procedure:

a) Initialize a population of N chromosomes: each
chromosome is a binary vector indicating
selected features.

For each generation g=1 to G:

a. Evaluate fitness of each chromosome (model
performance on selected features via cross-
validation).

b. Keep track of the best chromosome and its
fitness score.

c. If no improvement in best fitness over
last P generations, break early.

d. Select parents using tournament selection.

e. Generate offspring: Offspring are generated
through crossover between selected parent
chromosomes, followed by mutation at a
predefined rate to preserve population
diversity and avoid premature convergence.

the maximum number of

feature subset most

b)

f. Form a new population from offspring and a

portion of elite chromosomes.
c) Return the best feature subset chromosome S-*.
Algorithm 2: Genetic Algorithm for Hyper
parameter Optimization
Input and Output:
The inputs to the hyper parameter optimization
process include the predefined hyper parameter
bounds®, which specify the allowable ranges for
the Random Forest parameters to be optimized.
The Genetic Algorithm is further configured with a
population size N, determining the number of
candidates
evaluated in each generation, a maximum number
of generations Gthat governs the extent of the
evolutionary search, and an early stopping
patience P, which halts the
optimization process if no improvement in fitness

hyperparameter configurations
parameter

is observed over a specified number of consecutive
generations. The output of this procedure is the
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optimal hyperparameter set 8%, representing the

most effective configuration identified through the

evolutionary optimization.

Procedure:

a) Initialize a population of N chromosomes: each
chromosome encodes hyperparameter values
within bounds ©.

b) For each generation g=1to G:

a. Evaluate fitness of each chromosome (model
performance with hyperparameters via cross-
validation).

b. Keep track of the best chromosome and its
fitness score.

c. If no improvement in best fitness over
last P generations, break early.

d. Select parents using tournament selection.

e. Generate offspring: Offspring are generated
through crossover between selected parent
chromosomes, followed by mutation at a
predefined rate to preserve population
diversity and avoid premature convergence.

f. Form a new population from offspring and a
portion of elite chromosomes.

c) Return the best  hyper
chromosome 6~

Random Forest Classifier

Random Forest was selected as the main predictive

classifier because of its ability to handle mixed-

type data and its resistance to overfitting. It is an
ensemble approach where multiple decision trees

parameter

are constructed on bootstrapped subsets of the
training data. Predictions are then obtained
through majority voting or averaging across trees.
Another strength of Random Forest is its
interpretability, as it provides feature importance
rankings, which are valuable for clinical
understanding. In this research, Random Forest
was used in its GA-optimized form as well as in its
standard form to compare the advantage of
optimization.

Baseline Models for Comparison

To demonstrate the strength of the proposed GA-
RF framework, several baseline models were

implemented. These included Logistic Regression,

Vol 7 | Issue 1

Support Vector Machine, k-Nearest Neighbors,
Decision Tree, and standard Random Forest
without optimization and XGBoost. The baseline
models trained and tuned through
conventional procedures and evaluated under the

were

same protocol to ensure fairness in comparison.
Their results provide a benchmark against which
the performance of the GA-optimized RF can be
measured.

Evaluation Metrics and Validation
Strategy

The performance of all models was assessed using
accuracy, precision, recall, F1 score and ROC-AUC.
Accuracy reflects the proportion of correctly
cases, precision measures the
correctness of predicted positives, recall denotes
the proportion of actual positives that were
correctly detected, while F1 score provides a
balance between precision and recall. ROC-AUC
was also considered as it indicates the overall

classified

discriminative power of the model across different
thresholds. The models were evaluated using 5-
fold cross-validation during training to avoid
overfitting, and the final metrics were reported on
the independent test set.

Results

Comparative Model Performance

The comparison of different models is shown in
Table 2. Among all classifiers, the GA-optimized
Random Forest achieved the highest accuracy of
90.6 percent, an F1 score of 0.885, and an ROC-AUC
of 0.917. Logistic Regression and SVM showed
moderate performance, while k-Nearest Neighbors
and Decision Tree performed relatively weaker.
Standard Random Forest without optimization
gave satisfactory results, but once combined with
GA optimization it achieved a clear performance
gain. XGBoost also performed well, yet it was
slightly inferior to GA-RF. These results indicate
that the combined effect of GA-based feature
selection and parameter tuning significantly
enhanced the predictive ability of Random Forest.
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Figure 4: ROC Curves of Various Classifiers for Lung Cancer Prediction

The ROC curves of the evaluated classifiers are
presented in Figure 4. It is observed that the
standard Random Forest model achieves a slightly
higher ROC-AUC value (0.921) compared to the
GA-optimized Random Forest (0.917). This
suggests that while the Genetic Algorithm
optimization improved other metrics such as
accuracy and F1 score, the discriminative ability of
the optimized model as measured by ROC-AUC is

Table 2: Performance Comparison of Models

marginally reduced. Such a trade-off is common in
model optimization, where gains in prediction
accuracy might come with subtle changes in
classification thresholds and sensitivity-specificity
balance. Overall, both Random Forest models
demonstrate strong discriminatory power, with
the GA-optimized version offering enhanced
overall predictive performance.

Model Accuracy F1 Score ROC-AUC
Logistic Regression 0.872 0.852 0.925
Support Vector Machine 0.885 0.863 0.923
k-Nearest Neighbors 0.828 0.804 0.892
Decision Tree 0.779 0.745 0.781
Random Forest 0.894 0.872 0.921
XGBoost 0.873 0.847 0.908
Optimized RF (GA) 0.906 0.885 0.917

Classification Report

The classification report of GA-RF given in Table 3
highlights that the model was able to maintain high
precision and recall simultaneously. This shows
that it is not only predicting correctly but also

cases. The confusion matrix in Figure 5 further
supports this by showing that a majority of cancer
positive cases were correctly classified. Even
though a few false positives were present, such an
outcome is acceptable in a medical screening

reducing the chances of missing true positive scenario where the consequences of false
negatives are much more severe.

Table 3: Classification Report of Optimized RF (GA)

Class Precision Recall F1-Score Support

Negative (NO) 0.91 0.93 0.92 2963

Positive (YES) 0.86 0.84 0.85 2963

Accuracy - - 0.906 5926

Macro Avg 0.883 0.887 0.885 -

Weighted Avg 0.904 0.906 0.905 -

1
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Figure 5: Confusion Matrix for Optimized RF (GA)
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Figure 6: Feature Importance of Optimized RF (GA)

Feature Importance Analysis

The analysis of feature importance revealed
smoking habit as the top predictor of lung cancer
risk. This was followed by breathing difficulty and
throat discomfort, which also carried high
importance. Other features such as chest pain,
fatigue and gender played supportive roles in
prediction. This order of importance is in line with
existing medical evidence, where smoking and
respiratory symptoms are identified as leading
indicators of lung cancer. The ranking of features is
shown in Figure 6. Such interpretability adds
practical value, as clinicians can relate the
predictions to patient history and symptoms.

Discussion

The results of this study demonstrate that the
proposed Genetic Algorithm-optimized Random
Forest (GA-RF) model
performance for lung cancer risk prediction using
demographic and symptom-based data. The
obtained accuracy, Fl-score, and ROC-AUC are
consistent with recent studies reporting that

achieves  robust
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ensemble learning models outperform linear and
single-tree applied
heterogeneous clinical datasets. In particular,
ensemble-based approaches have been shown to
effectively capture nonlinear relationships and

classifiers  when to

feature interactions in demographic and lifestyle
data, leading to improved predictive reliability in
lung cancer risk assessment tasks (34, 35).

The performance gains observed through Genetic
Algorithm-based optimization align with earlier
the of
evolutionary metaheuristics for feature selection
and hyperparameter tuning in medical prediction
problems (36, 37). Prior studies indicate that GA-
based optimization is particularly advantageous in
complex search spaces involving mixed-type

research emphasizing effectiveness

variables, where conventional grid or random
search strategies may fail to identify optimal
configurations. The results of this study further
support these findings, showing that evolutionary
optimization can enhance model generalization
and balanced performance metrics in disease
screening scenarios.
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Class imbalance handling using SMOTE played a
critical role in improving the detection of high-risk
lung cancer cases. The improvement in recall and
F1-score observed in this work is consistent with
comparative studies demonstrating that SMOTE-
based techniques significantly enhance minority-
class learning in imbalanced clinical datasets when
applied carefully within the training process (38).
By restricting oversampling to training folds only,
the present study mitigates the risk of information
leakage and overfitting, thereby maintaining the
validity of the evaluation.

Although genetic algorithm-based
selection and Random Forest classifiers have been
explored independently in prior studies, most
existing works apply feature selection and
hyperparameter tuning as separate or sequential
processes. In contrast, the present study
formulates lung cancer risk prediction as a joint
optimization problem, in which a single Genetic
Algorithm simultaneously evolves both the feature
subset and the Random Forest hyperparameters
under class-imbalanced training conditions. This
integrated design facilitates the identification of
synergistic features-parameter combinations
while preserving model interpretability and
suitability for
applications based on demographic and symptom
data.

Feature importance analysis revealed smoking
habit, breathing difficulties, and throat discomfort

feature

ensuring screening-level

as dominant predictors, which is consistent with
findings reported in earlier demographic-based
lung cancer prediction studies (34, 35). Minor
differences in feature ranking compared to
previous work may be attributed to variations in
dataset composition, population characteristics,
and feature encoding strategies. While advanced
interpretability methods such as SHAP and partial
dependence plots have been shown to provide
instance-level explanations in recent ensemble-
based healthcare studies (39), the present study
deliberately employs Random Forest feature
maintain

global
approach aligns well with the screening-oriented
objective  of the proposed framework.
Nevertheless, incorporating SHAP or partial

importance to simplicity  and

transparency.  This interpretability

dependence analysis to provide individualized
explanations is identified as a promising direction
for future research.

Vol 7 | Issue 1

Conclusion

The present study attempted to design an efficient
and interpretable framework for predicting lung
cancer risk using simple demographic and
symptom-based information. By employing
Genetic Algorithm for simultaneous feature
selection and hyperparameter optimization of
Random Forest, and combining it with SMOTE to
overcome class imbalance, the proposed model
achieved superior performance compared to
conventional classifiers. The results clearly
indicated that smoking habit, breathing issues and
throat discomfort are dominant predictors, which
is also consistent with medical knowledge. The GA-
optimized Random Forest not only improved
predictive  accuracy but also provided
interpretability, thereby making it a practical tool
for early detection in low-resource settings where
costly imaging-based approaches may not be
feasible. From a broader perspective, such models
can  support  community-level  screening
programmes and contribute to better allocation of
healthcare resources.
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